1
|
Holst S, Weber AK, Meier F, Otte J, Petzsch P, Reifenberger J, Wachtmeister T, Westphal D, Ziemer M, Wruck W, Adjaye J, Betz RC, Rütten A, Surowy HM, Redler S. Gene expression profiling in porocarcinoma indicates heterogeneous tumor development and substantiates poromas as precursor lesions. J Dtsch Dermatol Ges 2024; 22:1115-1124. [PMID: 38899945 DOI: 10.1111/ddg.15445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 04/02/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND AND OBJECTIVES Malignant sweat gland tumors are rare, with the most common being eccrine porocarcinoma (EP). Approximately 18% of benign eccrine poroma (EPO) transit to EP. Previous research has provided first insights into the mutational landscape of EP. However, only few studies have performed gene expression analyses. This leaves a gap in the understanding of EP biology and potential drivers of malignant transformation from EPO to EP. METHODS Transcriptome profiling of 23 samples of primary EP and normal skin (NS). Findings from the EP samples were then tested in 17 samples of EPO. RESULTS Transcriptome profiling revealed diversity in gene expression and indicated biologically heterogeneous sub-entities as well as widespread gene downregulation in EP. Downregulated genes included CD74, NDGR1, SRRM2, CDC42, ANXA2, KFL9 and NOP53. Expression levels of CD74, NDGR1, SRRM2, ANXA2, and NOP53 showed a stepwise-reduction in expression from NS via EPO to EP, thus supporting the hypothesis that EPO represents a transitional state in EP development. CONCLUSIONS We demonstrated that EP is molecularly complex and that evolutionary trajectories correspond to tumor initiation and progression. Our results provide further evidence implicating the p53 axis and the EGFR pathway. Larger samples are warranted to confirm our findings.
Collapse
Affiliation(s)
- Svenja Holst
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anna K Weber
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Friedegund Meier
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Germany
- Skin Cancer Center at the University Cancer Centre Dresden and National Center for Tumor Diseases, Dresden, Germany
| | - Jörg Otte
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Patrick Petzsch
- Biological and Medical Research Centre (BMFZ), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Julia Reifenberger
- Department of Dermatology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Biological and Medical Research Centre (BMFZ), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dana Westphal
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Germany
- Skin Cancer Center at the University Cancer Centre Dresden and National Center for Tumor Diseases, Dresden, Germany
| | - Mirjana Ziemer
- Department of Dermatology, University Medical Center Leipzig, Leipzig, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Regina C Betz
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Arno Rütten
- Dermatopathology, Bodensee, Siemensstrasse 6/1, 88048, Friedrichshafen, Germany
| | - Harald M Surowy
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Silke Redler
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Holst S, Weber AK, Meier F, Otte J, Petzsch P, Reifenberger J, Wachtmeister T, Westphal D, Ziemer M, Wruck W, Adjaye J, Betz RC, Rütten A, Surowy HM, Redler S. Genexpressionsprofile beim Porokarzinom deuten auf heterogene Tumorentwicklung hin und untermauern Porome als Vorläuferläsionen. J Dtsch Dermatol Ges 2024; 22:1115-1125. [PMID: 39105214 DOI: 10.1111/ddg.15445_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 04/02/2024] [Indexed: 08/07/2024]
Abstract
ZusammenfassungHintergrund und ZieleMaligne Schweißdrüsentumoren sind selten, wobei das ekkrine Porokarzinom (EP) das häufigste ist. Etwa 18 % der benignen ekkrinen Porome (EPO) entwickeln sich zum EP. Wissenschaftliche Studien haben erste Einblicke in die Mutationslandschaft von EPs geliefert. Allerdings wurden in nur wenigen Studien Genexpressionsanalysen durchgeführt. Dies hinterlässt eine Lücke im Verständnis der EP‐Biologie und potenzieller Treiber der malignen Transformation von EPO zu EP.MethodenEs wurde eine Transkriptomanalyse von 23 Proben primärer EP und normaler Haut (NH) durchgeführt. Die Ergebnisse aus den EP‐Proben wurden dann an 17 EP‐Proben getestet.ErgebnisseDas Transkriptom‐Profiling zeigte eine Vielfalt in der Genexpression und deutete auf biologisch heterogene Subeinheiten sowie eine weit verbreitete Herunterregulierung von Genen im EP hin. Herunterregulierte Gene umfassten CD74, NDGR1, SRRM2, CDC42, ANXA2, KFL9 und NOP53. Die Expressionsniveaus von CD74, NDGR1, SRRM2, ANXA2 und NOP53 zeigten eine stufenweise Abnahme der Expression von NH über EPO zu EP, was die Hypothese unterstützt, dass das EPO einen Zwischenschritt in der EP‐Entwicklung darstellt.SchlussfolgerungenDie Studie zeigt, dass das EP molekular komplex ist und der evolutionäre Verlauf der Tumorinitiierung und ‐progression entspricht. Die Ergebnisse legen eine Beteiligung der p53‐Achse und des EGFR‐Signalwegs nahe. Eine größere Probenanzahl ist erforderlich, um diese Ergebnisse zu bestätigen.
Collapse
Affiliation(s)
- Svenja Holst
- Institut für Humangenetik, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland
| | - Anna K Weber
- Institut für Humangenetik, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland
| | - Friedegund Meier
- Klinik für Dermatologie, Universitätsklinikum Carl Gustav Carus, TU Dresden, Deutschland
- Hautkrebszentrum am Universitätskrebszentrum Dresden und Nationales Zentrum für Tumorerkrankungen, Dresden, Deutschland
| | - Jörg Otte
- Institut für Stammzellforschung und Regenerative Medizin, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland
- Einheit für Kinderkrebsforschung, Abteilung für Frauen- und Kinderheilkunde, Karolinska-Institut, Stockholm, Schweden
| | - Patrick Petzsch
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland
| | - Julia Reifenberger
- Klinik für Dermatologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland
| | - Thorsten Wachtmeister
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland
| | - Dana Westphal
- Klinik für Dermatologie, Universitätsklinikum Carl Gustav Carus, TU Dresden, Deutschland
- Hautkrebszentrum am Universitätskrebszentrum Dresden und Nationales Zentrum für Tumorerkrankungen, Dresden, Deutschland
| | - Mirjana Ziemer
- Klinik für Dermatologie, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - Wasco Wruck
- Institut für Stammzellforschung und Regenerative Medizin, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland
| | - James Adjaye
- Institut für Stammzellforschung und Regenerative Medizin, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland
| | - Regina C Betz
- Institut für Humangenetik, Universität Bonn, Medizinische Fakultät und Universitätsklinikum Bonn, Bonn, Deutschland
| | - Arno Rütten
- Dermatopathologie, Bodensee, Siemensstrasse 6/1, 88048 Friedrichshafen, Deutschland
| | - Harald M Surowy
- Institut für Humangenetik, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland
| | - Silke Redler
- Institut für Humangenetik, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland
| |
Collapse
|
3
|
Henriksen SD, Stubbe BE, Madsen PH, Johansen JS, Jensen BV, Hansen CP, Johansen MN, Pedersen IS, Krarup H, Thorlacius-Ussing O. Cell-free DNA promoter hypermethylation as a diagnostic marker for pancreatic ductal adenocarcinoma - An external validation study. Pancreatology 2021; 21:S1424-3903(21)00154-X. [PMID: 33994313 DOI: 10.1016/j.pan.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND We recently identified a diagnostic prediction model based on promoter hypermethylation of eight selected genes in plasma cell-free (cf) DNA, which showed promising results as a diagnostic biomarker for pancreatic ductal adenocarcinoma (PDAC). The aim of the present study was to validate this biomarker profile in an external patient cohort and examine any additional effect of serum CA 19-9. METHODS Patients with PDAC (n = 346, stage I-IV) and chronic pancreatitis (n = 25) were included. Methylation-specific PCR of a 28-gene panel was performed on serum cfDNA samples. The previously developed diagnostic prediction model (age>65 years, BMP3, RASSF1A, BNC1, MESTv2, TFPI2, APC, SFRP1 and SFRP2) was validated alone and in combination with serum CA 19-9 in this external patient cohort. RESULTS Patients with PDAC had a higher number of hypermethylated genes (mean 8.11, 95% CI 7.70-8.52) than patients with chronic pancreatitis (mean 5.60, 95% CI 4.42-6.78, p = 0.011). Validation of the diagnostic prediction model yielded an AUC of 0.77 (95% CI 0.69-0.84). The combination of serum CA 19-9 and our test had an AUC of 0.93 (95% CI 0.89-0.96) in the primary study and 0.85 (95% CI 0.79-0.91) in the validation study. CONCLUSION In this validation study, PDAC was associated with a higher number of hypermethylated genes in serum cfDNA than chronic pancreatitis. Our diagnostic test was superior to the predictive value of serum CA 19-9 alone in both the primary and the validation study. The combination of our test with CA 19-9 may serve as a clinically useful diagnostic biomarker for PDAC.
Collapse
Affiliation(s)
- Stine D Henriksen
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Denmark; Department of Clinical Medicine, Aalborg University, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Denmark.
| | - Benjamin E Stubbe
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Denmark
| | - Poul H Madsen
- Department of Molecular Diagnostics, Aalborg University Hospital, Denmark
| | - Julia S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark; Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Benny V Jensen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark
| | - Carsten P Hansen
- Department of Surgery, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Martin N Johansen
- Unit of Clinical Biostatistics, Aalborg University Hospital, Denmark
| | - Inge S Pedersen
- Department of Clinical Medicine, Aalborg University, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Denmark; Department of Molecular Diagnostics, Aalborg University Hospital, Denmark
| | - Henrik Krarup
- Clinical Cancer Research Center, Aalborg University Hospital, Denmark; Department of Molecular Diagnostics, Aalborg University Hospital, Denmark
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Denmark; Department of Clinical Medicine, Aalborg University, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Denmark
| |
Collapse
|
4
|
Abdullah O, Omran Z, Hosawi S, Hamiche A, Bronner C, Alhosin M. Thymoquinone Is a Multitarget Single Epidrug That Inhibits the UHRF1 Protein Complex. Genes (Basel) 2021; 12:genes12050622. [PMID: 33922029 PMCID: PMC8143546 DOI: 10.3390/genes12050622] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Silencing of tumor suppressor genes (TSGs) through epigenetic mechanisms, mainly via abnormal promoter DNA methylation, is considered a main mechanism of tumorigenesis. The abnormal DNA methylation profiles are transmitted from the cancer mother cell to the daughter cells through the involvement of a macromolecular complex in which the ubiquitin-like containing plant homeodomain (PHD), and an interesting new gene (RING) finger domains 1 (UHRF1), play the role of conductor. Indeed, UHRF1 interacts with epigenetic writers, such as DNA methyltransferase 1 (DNMT1), histone methyltransferase G9a, erasers like histone deacetylase 1 (HDAC1), and functions as a hub protein. Thus, targeting UHRF1 and/or its partners is a promising strategy for epigenetic cancer therapy. The natural compound thymoquinone (TQ) exhibits anticancer activities by targeting several cellular signaling pathways, including those involving UHRF1. In this review, we highlight TQ as a potential multitarget single epidrug that functions by targeting the UHRF1/DNMT1/HDAC1/G9a complex. We also speculate on the possibility that TQ might specifically target UHRF1, with subsequent regulatory effects on other partners.
Collapse
Affiliation(s)
- Omeima Abdullah
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (Z.O.)
| | - Ziad Omran
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (Z.O.)
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ali Hamiche
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France; (A.H.); (C.B.)
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France; (A.H.); (C.B.)
| | - Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: ; Tel.: +966-597-959-354
| |
Collapse
|
5
|
Henriksen SD, Thorlacius-Ussing O. Cell-Free DNA Methylation as Blood-Based Biomarkers for Pancreatic Adenocarcinoma—A Literature Update. EPIGENOMES 2021; 5:epigenomes5020008. [PMID: 34968295 PMCID: PMC8594668 DOI: 10.3390/epigenomes5020008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic adenocarcinoma has a horrible prognosis, which is partly due to difficulties in diagnosing the disease in an early stage. Additional blood-born biomarkers for pancreatic adenocarcinoma are needed. Epigenetic modifications, as changes in DNA methylation, is a fundamental part of carcinogenesis. The aim of this paper is to do an update on cell-free DNA methylation as blood-based biomarkers for pancreatic adenocarcinoma. The current literature including our studies clearly indicates that cell-free DNA methylation has the potential as blood-based diagnostic and prognostic biomarkers for pancreatic adenocarcinoma. However, still no clinical applicable biomarker for pancreatic adenocarcinoma based on DNA methylation do exist. Further well-designed validation studies are needed.
Collapse
Affiliation(s)
- Stine Dam Henriksen
- Department of Gastrointestinal Surgery, Aalborg University Hospital, 9000 Aalborg, Denmark;
- Clinical Cancer Research Center, Aalborg University Hospital, 9000 Aalborg, Denmark
- Correspondence:
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Aalborg University Hospital, 9000 Aalborg, Denmark;
- Clinical Cancer Research Center, Aalborg University Hospital, 9000 Aalborg, Denmark
| |
Collapse
|
6
|
Henriksen SD, Madsen PH, Larsen AC, Johansen MB, Pedersen IS, Krarup H, Thorlacius-Ussing O. Cell-free DNA promoter hypermethylation in plasma as a predictive marker for survival of patients with pancreatic adenocarcinoma. Oncotarget 2017; 8:93942-93956. [PMID: 29212200 PMCID: PMC5706846 DOI: 10.18632/oncotarget.21397] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 09/13/2017] [Indexed: 12/11/2022] Open
Abstract
Introduction Few prognostic biomarkers are available for pancreatic cancer. The aim of this study is to examine the correlation between the survival of pancreatic adenocarcinoma patients and hypermethylated genes in plasma-derived cell-free DNA. Methods Consecutive patients with pancreatic adenocarcinoma were prospectively included and staged according to the TNM classification. Methylation-specific PCR of 28 genes was conducted. A survival prediction model independent of cancer stage and stage-specific survival prediction models were developed by multivariable Cox regression analysis using backward stepwise selection. Results Ninety-five patients with pancreatic adenocarcinoma were included. Patients with more than 10 hypermethylated genes had a HR of 2.03 (95% CI; 1.15-3.57) compared to patients with fewer hypermethylated genes. Three survival prediction models were developed: Total group; (American Society of Anesthesiologists score (ASA)=3, GSTP1, SFRP2, BNC1, SFRP1, TFPI2, and WNT5A) Risk groups 2, 3 and 4 had a HR of 2.65 (95% CI; 1.24-5.66), 4.34 (95% CI; 1.98-9.51) and 21.19 (95% CI; 8.61-52.15), respectively, compared to risk group 1. Stage I-II; (ASA=3, SFRP2, and MESTv2) Risk groups 2, 3 and 4 had a HR of 4.83 (95% CI; 2.01-11.57), 9.12 (95% CI; 2.18-38.25) and 70.90 (95% CI; 12.63-397.96), respectively, compared to risk group 1. Stage IV; (BMP3, NPTX2, SFRP1, and MGMT) Risk group 2 had a HR of 5.23 (95% CI; 2.13-12.82) compared to risk group 1. Conclusion Prediction models based on cell-free DNA hypermethylation stratified pancreatic adenocarcinoma patients into risk groups according to survival. The models have the potential to work as prognostic biomarkers. However, further validation of the results is required to substantiate the findings.
Collapse
Affiliation(s)
- Stine Dam Henriksen
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Aalborg, Denmark.,Department of General Surgery, Hospital of Vendsyssel, Hjørring, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Poul Henning Madsen
- Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | | | - Martin Berg Johansen
- Unit of Clinical Biostatistics and Bioinformatics, Aalborg University Hospital, Aalborg, Denmark
| | - Inge Søkilde Pedersen
- Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Krarup
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark.,Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
7
|
Henriksen SD, Madsen PH, Larsen AC, Johansen MB, Pedersen IS, Krarup H, Thorlacius-Ussing O. Promoter hypermethylation in plasma-derived cell-free DNA as a prognostic marker for pancreatic adenocarcinoma staging. Int J Cancer 2017; 141:2489-2497. [PMID: 28857158 DOI: 10.1002/ijc.31024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 08/10/2017] [Accepted: 08/24/2017] [Indexed: 12/17/2022]
Abstract
Correct staging of pancreatic cancer is paramount, as treatment is stage specific. However, minimally invasive tools to facilitate staging are lacking. DNA promoter hypermethylation is a hallmark of cancer. The aim of this study is to evaluate promoter hypermethylation in cell-free DNA as a prognostic marker for stage classification of pancreatic adenocarcinoma. Consecutive patients with pancreatic adenocarcinoma were prospectively included. Plasma samples were obtained before diagnostic work-up and treatment. Patients were staged according to the TNM classification. Methylation-specific PCR of 28 genes was performed. Prognostic prediction models for staging of pancreatic adenocarcinoma were developed by multivariable logistic regression analysis using stepwise backwards elimination. Ninety-five patients with pancreatic adenocarcinoma were included. The mean number of hypermethylated genes was identical for stage I, II and III disease (7.09 (95% CI; 5.51-8.66), 7.00 (95% CI; 5.93-8.07) and 6.77 (95% CI; 5.08-8.46)), respectively, and highly significantly different from stage IV disease (10.24 (95% CI; 8.88-11.60)). The prediction model (SEPT9v2, SST, ALX4, CDKN2B, HIC1, MLH1, NEUROG1, and BNC1) enabled the differentiation of stage IV from stage I-III disease (AUC of 0.87 (cut point 0.55; sensitivity 74%, specificity 87%)). Model (MLH1, SEPT9v2, BNC1, ALX4, CDKN2B, NEUROG1, WNT5A, and TFPI2) enabled the differentiation of stage I-II from stage III-IV disease (AUC of 0.82 (cut point 0.66; sensitivity 73%, specificity 80%)). Cell-free DNA promoter hypermethylation has the potential to be blood-based prognostic markers for pancreatic adenocarcinoma, as panels of hypermethylated genes enables the differentiation according to cancer stage. However, further validation is required.
Collapse
Affiliation(s)
- Stine Dam Henriksen
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Denmark.,Department of General Surgery, Hospital of Vendsyssel, Denmark.,Department of Clinical Medicine, Aalborg University, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital, Denmark
| | - Poul Henning Madsen
- Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Denmark
| | | | - Martin Berg Johansen
- Unit of Clinical Biostatistics and Bioinformatics, Aalborg University Hospital, Denmark
| | - Inge Søkilde Pedersen
- Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Denmark
| | - Henrik Krarup
- Clinical Cancer Research Center, Aalborg University Hospital, Denmark.,Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Denmark
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Denmark.,Department of Clinical Medicine, Aalborg University, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital, Denmark
| |
Collapse
|
8
|
Henriksen SD, Madsen PH, Larsen AC, Johansen MB, Drewes AM, Pedersen IS, Krarup H, Thorlacius-Ussing O. Cell-free DNA promoter hypermethylation in plasma as a diagnostic marker for pancreatic adenocarcinoma. Clin Epigenetics 2016; 8:117. [PMID: 27891190 PMCID: PMC5112622 DOI: 10.1186/s13148-016-0286-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/04/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Pancreatic cancer has a 5-year survival rate of only 5-7%. Difficulties in detecting pancreatic cancer at early stages results in the high mortality and substantiates the need for additional diagnostic tools. Surgery is the only curative treatment and unfortunately only possible in localized tumours. A diagnostic biomarker for pancreatic cancer will have a major impact on patient survival by facilitating early detection and the possibility for curative treatment. DNA promoter hypermethylation is a mechanism of early carcinogenesis, which can cause inactivation of tumour suppressor genes. The aim of this study was to examine promoter hypermethylation in a panel of selected genes from cell-free DNA, as a diagnostic marker for pancreatic adenocarcinoma. METHODS Patients with suspected or biopsy-verified pancreatic cancer were included prospectively and consecutively. Patients with chronic/acute pancreatitis were included as additional benign control groups. Based on an optimized accelerated bisulfite treatment protocol, methylation-specific PCR of a 28 gene panel was performed on plasma samples. A diagnostic prediction model was developed by multivariable logistic regression analysis using backward stepwise elimination. RESULTS Patients with pancreatic adenocarcinoma (n = 95), chronic pancreatitis (n = 97) and acute pancreatitis (n = 59) and patients screened, but negative for pancreatic adenocarcinoma (n = 27), were included. The difference in mean number of methylated genes in the cancer group (8.41 (95% CI 7.62-9.20)) vs the total control group (4.74 (95% CI 4.40-5.08)) was highly significant (p < 0.001). A diagnostic prediction model (age >65, BMP3, RASSF1A, BNC1, MESTv2, TFPI2, APC, SFRP1 and SFRP2) had an area under the curve of 0.86 (sensitivity 76%, specificity 83%). The model performance was independent of cancer stage. CONCLUSIONS Cell-free DNA promoter hypermethylation has the potential to be a diagnostic marker for pancreatic adenocarcinoma and differentiate between malignant and benign pancreatic disease. This study brings us closer to a clinical useful diagnostic marker for pancreatic cancer, which is urgently needed. External validation is, however, required before the test can be applied in the clinic. TRIAL REGISTRATION ClinicalTrials.gov, NCT02079363.
Collapse
Affiliation(s)
- Stine Dam Henriksen
- Department of Gastrointestinal Surgery, Clinical Cancer Research Center, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark ; Department of General Surgery, Hospital of Vendsyssel, Hjørring, Denmark ; Department of Clinical Medicine, Aalborg University, Hobrovej 18-22, 9000 Aalborg, Denmark
| | - Poul Henning Madsen
- Section of Molecular Diagnostics, Clinical Biochemistry, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Anders Christian Larsen
- Department of Gastrointestinal Surgery, Clinical Cancer Research Center, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark
| | - Martin Berg Johansen
- Unit of Clinical Biostatistics and Bioinformatics, Aalborg University Hospital, Aalborg, Denmark
| | - Asbjørn Mohr Drewes
- Department of Clinical Medicine, Aalborg University, Hobrovej 18-22, 9000 Aalborg, Denmark ; Mech-Sense, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
| | - Inge Søkilde Pedersen
- Section of Molecular Diagnostics, Clinical Biochemistry, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Krarup
- Section of Molecular Diagnostics, Clinical Biochemistry, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Clinical Cancer Research Center, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark ; Department of Clinical Medicine, Aalborg University, Hobrovej 18-22, 9000 Aalborg, Denmark
| |
Collapse
|
9
|
Lomberk GA, Iovanna J, Urrutia R. The promise of epigenomic therapeutics in pancreatic cancer. Epigenomics 2016; 8:831-42. [PMID: 27337224 PMCID: PMC5066125 DOI: 10.2217/epi-2015-0016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often viewed to arise primarily by genetic alterations. However, today we know that many aspects of the cancer phenotype require a crosstalk among these genetic alterations with epigenetic changes. Indeed, aberrant gene expression patterns, driven by epigenetics are fixed by altered signaling from mutated oncogenes and tumor suppressors to define the PDAC phenotype. This conceptual framework may have significant mechanistic value and could offer novel possibilities for treating patients affected with PDAC. In fact, extensive investigations are leading to the development of small molecule drugs that reversibly modify the epigenome. These new ‘epigenetic therapeutics’ discussed herein are promising to fuel a new era of studies, by providing the medical community with new tools to treat this dismal disease.
Collapse
Affiliation(s)
- Gwen A Lomberk
- Laboratory of Epigenetics & Chromatin Dynamics, Gastroenterology Research Unit, Departments of Biochemistry & Molecular Biology, Biophysics, & Medicine, Mayo Clinic, Rochester, MN, USA
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université & Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Raul Urrutia
- Laboratory of Epigenetics & Chromatin Dynamics, Gastroenterology Research Unit, Departments of Biochemistry & Molecular Biology, Biophysics, & Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Grasso D, Bintz J, Lomberk G, Molejon MI, Loncle C, Garcia MN, Lopez MB, Urrutia R, Iovanna JL. Pivotal Role of the Chromatin Protein Nupr1 in Kras-Induced Senescence and Transformation. Sci Rep 2015; 5:17549. [PMID: 26617245 PMCID: PMC4663475 DOI: 10.1038/srep17549] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/15/2015] [Indexed: 12/21/2022] Open
Abstract
Nupr1 is a chromatin protein, which cooperates with KrasG12D to induce PanIN formation and pancreatic cancer development in mice, though the molecular mechanisms underlying this effect remain to be fully characterized. In the current study, we report that Nupr1 acts as a gene modifier of the effect of KrasG12D-induced senescence by regulating Dnmt1 expression and consequently genome-wide levels of DNA methylation. Congruently, 5-aza-2′-deoxycytydine, a general inhibitor of DNA methylation, reverses the KrasG12D-induced PanIN development by promoting senescence. This requirement of Nupr1 expression, however, is not restricted to the pancreas since in lung of Nupr1–/– mice the expression of KrasG12D induces senescence instead of transformation. Therefore, mechanistically this data reveals that epigenetic events, at least at the level of DNA methylation, modulate the functional outcome of common genetic mutations, such as KrasG12D, during carcinogenesis. The biomedical relevance of these findings lies in that they support the rational for developing similar therapeutic interventions in human aimed at controlling either the initiation or progression of cancer.
Collapse
Affiliation(s)
- Daniel Grasso
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Jennifer Bintz
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Gwen Lomberk
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Biophysics, and Medicine, Mayo Clinic, Rochester, USA
| | - Maria Ines Molejon
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Celine Loncle
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Maria Noé Garcia
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Maria Belen Lopez
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Raul Urrutia
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Biophysics, and Medicine, Mayo Clinic, Rochester, USA
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| |
Collapse
|
11
|
Reddy A, Growney JD, Wilson NS, Emery CM, Johnson JA, Ward R, Monaco KA, Korn J, Monahan JE, Stump MD, Mapa FA, Wilson CJ, Steiger J, Ledell J, Rickles RJ, Myer VE, Ettenberg SA, Schlegel R, Sellers WR, Huet HA, Lehár J. Gene Expression Ratios Lead to Accurate and Translatable Predictors of DR5 Agonism across Multiple Tumor Lineages. PLoS One 2015; 10:e0138486. [PMID: 26378449 PMCID: PMC4574744 DOI: 10.1371/journal.pone.0138486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 08/30/2015] [Indexed: 12/16/2022] Open
Abstract
Death Receptor 5 (DR5) agonists demonstrate anti-tumor activity in preclinical models but have yet to demonstrate robust clinical responses. A key limitation may be the lack of patient selection strategies to identify those most likely to respond to treatment. To overcome this limitation, we screened a DR5 agonist Nanobody across >600 cell lines representing 21 tumor lineages and assessed molecular features associated with response. High expression of DR5 and Casp8 were significantly associated with sensitivity, but their expression thresholds were difficult to translate due to low dynamic ranges. To address the translational challenge of establishing thresholds of gene expression, we developed a classifier based on ratios of genes that predicted response across lineages. The ratio classifier outperformed the DR5+Casp8 classifier, as well as standard approaches for feature selection and classification using genes, instead of ratios. This classifier was independently validated using 11 primary patient-derived pancreatic xenograft models showing perfect predictions as well as a striking linearity between prediction probability and anti-tumor response. A network analysis of the genes in the ratio classifier captured important biological relationships mediating drug response, specifically identifying key positive and negative regulators of DR5 mediated apoptosis, including DR5, CASP8, BID, cFLIP, XIAP and PEA15. Importantly, the ratio classifier shows translatability across gene expression platforms (from Affymetrix microarrays to RNA-seq) and across model systems (in vitro to in vivo). Our approach of using gene expression ratios presents a robust and novel method for constructing translatable biomarkers of compound response, which can also probe the underlying biology of treatment response.
Collapse
Affiliation(s)
- Anupama Reddy
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
- * E-mail:
| | - Joseph D. Growney
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Nick S. Wilson
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Caroline M. Emery
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Jennifer A. Johnson
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Rebecca Ward
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Kelli A. Monaco
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Joshua Korn
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - John E. Monahan
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Mark D. Stump
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Felipa A. Mapa
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Christopher J. Wilson
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Janine Steiger
- Horizon CombinatoRx, Cambridge, MA, United States of America
| | - Jebediah Ledell
- Horizon CombinatoRx, Cambridge, MA, United States of America
| | | | - Vic E. Myer
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Seth A. Ettenberg
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Robert Schlegel
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - William R. Sellers
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Heather A. Huet
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Joseph Lehár
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| |
Collapse
|
12
|
Neureiter D, Jäger T, Ocker M, Kiesslich T. Epigenetics and pancreatic cancer: Pathophysiology and novel treatment aspects. World J Gastroenterol 2014; 20:7830-7848. [PMID: 24976721 PMCID: PMC4069312 DOI: 10.3748/wjg.v20.i24.7830] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/07/2014] [Accepted: 03/13/2014] [Indexed: 02/06/2023] Open
Abstract
An improvement in pancreatic cancer treatment represents an urgent medical goal. Late diagnosis and high intrinsic resistance to conventional chemotherapy has led to a dismal overall prognosis that has remained unchanged during the past decades. Increasing knowledge about the molecular pathogenesis of the disease has shown that genetic alterations, such as mutations of K-ras, and especially epigenetic dysregulation of tumor-associated genes, such as silencing of the tumor suppressor p16ink4a, are hallmarks of pancreatic cancer. Here, we describe genes that are commonly affected by epigenetic dysregulation in pancreatic cancer via DNA methylation, histone acetylation or miRNA (microRNA) expression, and review the implications on pancreatic cancer biology such as epithelial-mesenchymal transition, morphological pattern formation, or cancer stem cell regulation during carcinogenesis from PanIN (pancreatic intraepithelial lesions) to invasive cancer and resistance development. Epigenetic drugs, such as DNA methyltransferases or histone deactylase inhibitors, have shown promising preclinical results in pancreatic cancer and are currently in early phases of clinical development. Combinations of epigenetic drugs with established cytotoxic drugs or targeted therapies are promising approaches to improve the poor response and survival rate of pancreatic cancer patients.
Collapse
|
13
|
Hasanali Z, Stuart A, Yee N, Sharma K, Epner E. The Epigenetics of Gastrointestinal Malignancies. CURRENT COLORECTAL CANCER REPORTS 2012. [DOI: 10.1007/s11888-012-0147-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Zhao G, Zhang JG, Liu Y, Qin Q, Wang B, Tian K, Liu L, Li X, Niu Y, Deng SC, Wang CY. miR-148b functions as a tumor suppressor in pancreatic cancer by targeting AMPKα1. Mol Cancer Ther 2012; 12:83-93. [PMID: 23171948 DOI: 10.1158/1535-7163.mct-12-0534-t] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
miRNAs are small noncoding RNAs that participate in a variety of biologic processes, and dysregulation of miRNA is always associated with cancer development and progression. Aberrant expression of miR-148b has been found in some types of cancer, but its expression and potential biologic role in pancreatic cancer are still largely unknown. In this study, our data showed that miR-148b was significantly downregulated in 48 pairs of human pancreatic cancer tissues and five cell lines. Furthermore, the deregulated miR-148b was correlated with increased tumor size, late tumor-node-metastasis stage, lymphatic invasion, distant metastasis, and worse prognosis in pancreatic cancer. Functional studies indicated overexpression of miR-148b dramatically suppressed the growth of cancer cells, attributable to induction of apoptosis and cell-cycle arrest at S-phase. Meanwhile, miR-148b remarkably inhibited invasion and enhanced chemosensitivity of pancreatic cancer cells. Moreover, ectopic expression of miR-148b was able to inhibit tumorigenicity in nude mice. Further studies revealed that AMPKα1 might be the direct target gene of miR-148b, and overexpressed AMPKα1 inversely correlated with miR-148b in pancreatic cancer. Silencing of AMPKα1 with RNA interference inhibited the growth of pancreatic cancer cells in vitro and in vivo and also induced apoptosis, cell-cycle arrest, and inhibited invasion of cancer cells, which is consistent with the effects of miR-148b overexpression. In conclusion, miR-148b can inhibit cell proliferation, invasion, and enhance chemosensitivity of pancreatic cancer by targeting AMPKα1. Our present results implicate the potential effects of miR-148b on prognosis and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Gang Zhao
- Pancreatic Disease Institute, Union Hospital, Jiefang Avenue 1277, Wuhan, Hubei Province 430022, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Blair LP, Yan Q. Epigenetic mechanisms in commonly occurring cancers. DNA Cell Biol 2012; 31 Suppl 1:S49-61. [PMID: 22519822 PMCID: PMC3460614 DOI: 10.1089/dna.2012.1654] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/20/2012] [Accepted: 03/20/2012] [Indexed: 12/11/2022] Open
Abstract
Cancer is a collection of very complex diseases that share many traits while differing in many ways as well. This makes a universal cure difficult to attain, and it highlights the importance of understanding each type of cancer at a molecular level. Although many strides have been made in identifying the genetic causes for some cancers, we now understand that simple changes in the primary DNA sequence cannot explain the many steps that are necessary to turn a normal cell into a rouge cancer cell. In recent years, some research has shifted to focusing on detailing epigenetic contributions to the development and progression of cancer. These changes occur apart from primary genomic sequences and include DNA methylation, histone modifications, and miRNA expression. Since these epigenetic modifications are reversible, drugs targeting epigenetic changes are becoming more common in clinical settings. Daily discoveries elucidating these complex epigenetic processes are leading to advances in the field of cancer research. These advances, however, come at a rapid and often overwhelming pace. This review specifically summarizes the main epigenetic mechanisms currently documented in solid tumors common in the United States and Europe.
Collapse
Affiliation(s)
- Lauren P Blair
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520-8023, USA.
| | | |
Collapse
|
16
|
Padilla-Nash HM, Hathcock K, McNeil NE, Mack D, Hoeppner D, Ravin R, Knutsen T, Yonescu R, Wangsa D, Dorritie K, Barenboim L, Hu Y, Ried T. Spontaneous transformation of murine epithelial cells requires the early acquisition of specific chromosomal aneuploidies and genomic imbalances. Genes Chromosomes Cancer 2012; 51:353-74. [PMID: 22161874 PMCID: PMC3276700 DOI: 10.1002/gcc.21921] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/09/2011] [Indexed: 01/10/2023] Open
Abstract
Human carcinomas are defined by recurrent chromosomal aneuploidies, which result in a tissue-specific distribution of genomic imbalances. In order to develop models for these genome mutations and to determine their role in tumorigenesis, we generated 45 spontaneously transformed murine cell lines from normal epithelial cells derived from bladder, cervix, colon, kidney, lung, and mammary gland. Phenotypic changes, chromosomal aberrations, centrosome number, and telomerase activity were assayed in control uncultured cells and in three subsequent stages of transformation. Supernumerary centrosomes, binucleate cells, and tetraploidy were observed as early as 48 hr after explantation. In addition, telomerase activity increased throughout progression. Live-cell imaging revealed that failure of cytokinesis, not cell fusion, promoted genome duplication. Spectral karyotyping demonstrated that aneuploidy preceded immortalization, consisting predominantly of whole chromosome losses (4, 9, 12, 13, 16, and Y) and gains (1, 10, 15, and 19). After transformation, focal amplifications of the oncogenes Myc and Mdm2 were frequently detected. Fifty percent of the transformed lines resulted in tumors on injection into immunocompromised mice. The phenotypic and genomic alterations observed in spontaneously transformed murine epithelial cells recapitulated the aberration pattern observed during human carcinogenesis. The dominant aberration of these cell lines was the presence of specific chromosomal aneuploidies. We propose that our newly derived cancer models will be useful tools to dissect the sequential steps of genome mutations during malignant transformation, and also to identify cancer-specific genes, signaling pathways, and the role of chromosomal instability in this process.
Collapse
|
17
|
Abstract
A good account of the nature of cancer should provide not only a description of its consistent features, but also how they arise, how they are maintained, why conventional chemotherapy succeeds, and fails, and where to look for better targets. Cancer was once regarded as enigmatic and inexplicable; more recently, the "mutation theory," based on random alterations in a relatively small set of proto-oncogenes and tumor suppressor genes, has enjoyed widespread acceptance. The "mutation theory," however, is noticeable for its failure to explain the basis of differential chemosensitivity, for providing a paucity of targets, especially druggable ones, and for justifying the development of targeted therapies with, in general, disappointingly abbreviated clinical benefit. Furthermore, this theory has mistakenly predicted a widespread commonality of consistent genetic abnormalities across the range of cancers, whereas the opposite, that is, roiling macrogenomic instability, is generally the rule. In contrast, concerning what actually is consistent, that is, the suite of metabolic derangements common to virtually all, especially aggressive, cancers, the "Mutation Theory" has nothing to say. Other hypotheses merit serious consideration "aneuploidy theories" posit whole-genome instability and imbalance as causally responsible for the propagation of the tumor. Another approach, that is, "derepression atavism," suggests cancer results from the release of an ancient survival program, characterized by the emergence of remarkably primitive features such as unicellularity, fermentation, and immortality; existential goals are served by heuristic genomic instability coupled with host-to-tumor biomass interconversion, mediated by the Warburg effect, a major component of the program. Carcinogenesis is here seen as a process of de-speciation; however, genomic nonrestabilization raises issues as to where on the tree of life cancers belong, as a genuinely alternative modus vivendi. Philosophical considerations aside, genomic instability offers the prospect of subtle new therapies based on loss of information rather than gain; and the consistent, specific, and broad-spectrum perfidy of the Warburg effect highlights a supplemental target of the highest priority.
Collapse
Affiliation(s)
- Mark D Vincent
- Department of Medical Oncology, London Regional Cancer Centre, London Health Sciences Centre, Ontario, Canada
| |
Collapse
|