1
|
Jiao X, Li R, Ocholi SS, Wang H, Cui T, Chen B, Wang L, Fu Z, Liu E, Wang F, Han L. A multi-level strategy based on comprehensive two-dimensional liquid chromatography-Q-Orbitrap-mass spectrometry combined with PLS regression model and RT-Ensemble Pred model to intelligently distinguish different geographical locations of Huanglian sample. J Pharm Biomed Anal 2025; 262:116864. [PMID: 40233553 DOI: 10.1016/j.jpba.2025.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/17/2025]
Abstract
Huanglian (HL) is a member of the Ranunculaceae family, including Coptis chinensis Franch., Coptis deltoidea C. Y. Cheng et Hsiao, or Coptis teeta Wall. The dried rhizomes are highly esteemed herbal medicine in Chinese pharmacopeia. However, the composition of HL is complex, and current identification technologies are insufficient for conducting a comprehensive analysis of HL, leading to major obstacles in quality control. Therefore, an in-depth exploration of the influence of species diversity and geographic provenance on the chemical profile of HL is imperative for its rational application and quality assurance. To comprehensively analyze compounds in HL samples from diverse geographical regions, this study employed an integrated approach combining offline two-dimensional ultra-high-performance liquid chromatography coupled with quadrupole-Orbitrap mass spectrometry (2D-LC-MS/MS) with online 2D-LC-MS/MS. This dual-platform strategy enabled detailed characterization of complex compound profiles. Additionally, the retention time prediction (RT-Ensemble Pred) models were utilized to predict and identify the retention times of unknown compounds, which particularly facilitated the differentiation of isomers. The comprehensive research resulted in the identification of 150 chemical constituents in HL, including 72 isomers. Furthermore, the compounds were analyzed and categorized according to mathematical classification models, allowing for distinction between various geographical origins. Based on unexposed data, the model demonstrated robust predictive capability, enabling the selection of 20 distinctive characteristic compounds with prominent features for use in geographical origin discrimination. Overall, this multidimensional investigation significantly enhanced our understanding of the chemical composition and inherent variability of HL plant resources, providing crucial technical underpinnings and methodological insights for the comprehensive exploitation and utilization of HL in biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Xinyi Jiao
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Rongrong Li
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Simon Sani Ocholi
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Haitao Wang
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Tongcan Cui
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Biying Chen
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Liming Wang
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Zhifei Fu
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Erwei Liu
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Fengchao Wang
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Lifeng Han
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
2
|
Cao Y, Xu A, Tao M, Wang S, Yu Q, Li S, Tu Z, Liu Z. Flavor evolution of unsweetened green tea beverage during actual storage: Insights from multi-omics analysis. Food Chem 2025; 481:144039. [PMID: 40157108 DOI: 10.1016/j.foodchem.2025.144039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/13/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
The flavor evolution of unsweetened green tea beverage (USGTB) under actual storage is critical for quality control yet remains unclear. Unlike previous studies conducted by accelerated shelf-life testing, this research investigated sensory-chemical changes in naturally stored USGTB (0-7 months) through multi-omics integrating metabolomics and sensomics. Results identified the 5-month as a critical point for flavor preservation. The EC-EGCG dimer emerged as a novel aging marker, contrasting with freshness indicators (ascorbic acid and other antioxidants). Protocatechuic acid and 2-furoic acid served as multi-flavor contributors (yellowish, sweetness and astringency), whereas L-tartaric acid and malic acid enhanced sourness. Concurrently, aroma deterioration was driven by the diminished (E)-β-ionone and accumulated methyl salicylate. Mechanistically, oxidations of ascorbic acid, catechins, and fresh aroma-related volatiles, flavonoid glycosylation, and oligosaccharides hydrolysis collectively drove color darkening, astringency enhancement, sweetness intensification, and cooked-off flavor development. These findings provided targeted quality control points for USGTB during actual shelf-life.
Collapse
Affiliation(s)
- Yanyan Cao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Anan Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Meng Tao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Shanshan Wang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Qinyan Yu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sixu Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; The College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China
| | - Zheng Tu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Zhengquan Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
3
|
Chen CY, Zhang Y. Berberine: An isoquinoline alkaloid targeting the oxidative stress and gut-brain axis in the models of depression. Eur J Med Chem 2025; 290:117475. [PMID: 40107207 DOI: 10.1016/j.ejmech.2025.117475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/08/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Depression seriously affects people's quality of life, and there is an urgent need to find novel drugs to cure treatment-resistant depression. Berberine (BBR), extracted from Coptis chinensis Franch., Phellodendron bark, Berberis vulgaris, and Berberis petiolaris, could be a potential multi-target drug for depression. To summarize the effects of BBR on depression in terms of in vitro or in vivo experiments, we searched electronic databases, such as PubMed, Web of Science, Google Scholar, Wanfang Database, and China National Knowledge Infrastructure, from inception until May 2024. Then, we summarize that BBR has indirect antidepressant properties to improve depressive symptoms, manifesting in modulating the gut microbial community, strengthening the intestinal barrier, increasing the abundance of short-chain fatty acid-producing bacteria, and regulating tryptophan metabolism. BBR also exerts antidepressant-like effects via remodulating nuclear factor-erythroid 2-related factor 2/antioxidant response element pathway, hypothalamic-pituitary-adrenal axis, and peroxisome proliferators-activated receptor-delta. Nevertheless, further clinical trials and more high-quality animal studies are needed to show the actual clinical value of BBR for depression.
Collapse
Affiliation(s)
- Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
4
|
Liu D, Li L, Zhang J, Qin H, Zhang M, Sun X, Han Y, Wang F, Wang Z, Cai Z. Berberine promotes apoptosis and inhibits the migration of oral squamous carcinoma cells through inhibition of the RAGE/PI3K/AKT/mTOR pathway. Biomed Pharmacother 2025; 187:118147. [PMID: 40339228 DOI: 10.1016/j.biopha.2025.118147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025] Open
Abstract
Given the high recurrence rate, elevated risk of metastasis, and drug resistance associated with oral squamous cell carcinoma (OSCC), the development of low - toxicity and highly efficient therapeutic agents has emerged as a top research priority. In this study, we conducted an in-depth investigation into the efficacy and underlying mechanism of berberine (BBR), a compound renowned for its broad anticancer activity, in the context of OSCC. Using network pharmacology, we identified 91 potential targets of BBR in OSCC, with SRC, PIK3CA, and CDC42 ranking among the top. KEGG pathway analysis indicated that the cross-targets were predominantly concentrated in signaling pathways such as PI3K/AKT, AGE-RAGE, and Ras. Molecular docking assays demonstrated that the binding energies between BBR and the core targets were all below -5 kcal/mol, signifying favorable binding interactions. Bioinformatics studies unveiled that SRC, PIK3CA, and CDC42 were highly expressed in OSCC patients and correlated with a poorer prognosis. In vitro, experiments further substantiated that BBR impeded the proliferation and migration of OSCC cells and reduced the intracellular expression levels of RAGE, p-PI3K, p-AKT, and p-mTOR proteins. Our results suggest that BBR effectively facilitates apoptosis and curbs the proliferation and migration of OSCC, potentially by suppressing the RAGE/PI3K/AKT/mTOR pathway. In summary, these findings underscore the potential of BBR as a single agent capable of exerting multi-target and multi-pathway synergistic effects on cancer cells.
Collapse
Affiliation(s)
- Daili Liu
- Department of Stomatology, Binzhou Medical University, Yantai 264000, China; Department of Stomatology, Linyi people's Hospital, Linyi 276000, China
| | - Ling Li
- Department of Stomatology, Linyi people's Hospital, Linyi 276000, China
| | - Jingfei Zhang
- Department of Stomatology, Binzhou Medical University, Yantai 264000, China
| | - Han Qin
- Department of Stomatology, Tengzhou Hospital of Traditional Chinese Medicine, Tengzhou 277599, China
| | - Meng Zhang
- Department of Stomatology, Binzhou Medical University, Yantai 264000, China; Department of Stomatology, Linyi people's Hospital, Linyi 276000, China
| | - Xiaoyang Sun
- Department of Stomatology, Linyi people's Hospital, Linyi 276000, China; Department of Stomatology, Shandong Second Medical University, Weifang 261000, China
| | - Yuting Han
- Department of Stomatology, Binzhou Medical University, Yantai 264000, China; Department of Stomatology, Linyi people's Hospital, Linyi 276000, China
| | - Feng Wang
- Department of Stomatology, Linyi people's Hospital, Linyi 276000, China; Department of Stomatology, Shandong Second Medical University, Weifang 261000, China
| | - Zhi Wang
- Department of Stomatology, Linyi people's Hospital, Linyi 276000, China.
| | - Zhen Cai
- Department of Stomatology, Linyi people's Hospital, Linyi 276000, China.
| |
Collapse
|
5
|
Jia X, Qiang W, Chang L, Xiao K, Zhou R, Qiu Q, Jiang G, Li X, Chi C, Liu W, Zhang D. Integrative whole-genome methylation and transcriptome analysis reveals epigenetic modulation of glucose metabolism by dietary berberine in blunt snout bream (Megalobrama amblycephala). Comp Biochem Physiol B Biochem Mol Biol 2025; 278:111098. [PMID: 40250795 DOI: 10.1016/j.cbpb.2025.111098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
The present research was designed to explore the epigenetic mechanism by which dietary berberine (BBR) affects glucose metabolism in fish. Blunt snout bream (Megalobrama amblycephala) is susceptible to disturbances in glucose metabolism when subjected to prolonged high-carbohydrate diets. This study aimed to elucidate whether BBR can enhance glucose regulation in M. amblycephala via modulating DNA methylation levels. Fish (average weight of 20.36 ± 1.44 g) were administered a normal-carbohydrate diet (NC, 30 % carbohydrate), a high-carbohydrate diet (HC, 43 % carbohydrate), or a high-carbohydrate diet supplemented with 50 mg/kg berberine (HB) for 10 weeks. Subsequently, global DNA methylation level, whole-genome bisulfite sequencing (WGBS), RNA-seq, bisulfite sequencing PCR, and real-time quantitative PCR were employed to analyze the DNA methylation patterns and transcription results of the liver genome. The findings indicated that high carbohydrate diets induced glucose metabolism disorders in M. amblycephala, whereas BBR mitigated these metabolic disturbances by reducing methylation levels. WGBS results revealed that CG-type cytosine methylation predominated, and that DNA methylation mainly occurred in promoter, intron, and exon regions. Furthermore, analyses demonstrated a negative correlation between DNA methylation around the transcriptional start site and gene expression levels for 47 genes. Functional enrichment analysis revealed that these genes were associated with 60 KEGG pathways, including 12 genes implicated in the amelioration of insulin resistance, reduction of gluconeogenesis, and maintenance of glucose homeostasis. Consequently, we generated a comprehensive catalog of liver DNA methylation in M. amblycephala, which provides a foundational framework for future investigations into the epigenetic regulation of glucose metabolism by BBR.
Collapse
Affiliation(s)
- Xiaoyan Jia
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Qiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Le Chang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Xiao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ronghua Zhou
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiyong Qiu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Karimi M, Azizi M, Hamidi M, Dalirfardouei R, Samadian H, Jalali A. Development and evaluation of a strontium-doped berberine quantum dot-loaded nanofibrous dressing for accelerated wound healing in animal models. Int J Biol Macromol 2025:144484. [PMID: 40409650 DOI: 10.1016/j.ijbiomac.2025.144484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 05/06/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
This research focused on fabricating a new type of wound dressing made from nanofibers infused with strontium-doped berberine carbon quantum dots (Str-Ber-CQD) to speed up healing and improve the quality of healed tissue. We applied a hydrothermal method using berberine as the carbon source to synthesize Str-Ber-CQD and then blended it into nanofibers made from scleroglucan/polyvinyl alcohol at different concentrations. The results showed that the CQDs have spherical morphology with a size of 3.6 ± 0.9 nm, an average hydrodynamic diameter of 53.2 ± 2.1 nm, and a PDI of 0.350. The XPS and EDX analysis showed that CQDs were composed of C, O, N, and Sr. The fabricated nanofibers have a uniform morphology with promising mechanical strength, swelling capacity, biodegradation, water vapor transmittance rate, and microbial barrier potential. The in vitro biological evaluations confirmed potent antioxidant and antibacterial activities and excellent hemocompatibility/cytocompatibility. The animal studies showed that the optimum structure (nanofibers/ Str-Ber-CQD 5 %) showed impressive results in animal tests involving full-thickness skin wounds. In summary, this study demonstrates that nanofibers/Str-CQD exhibited promising physical, chemical, and biological properties and can be considered a multifunctional wound dressing.
Collapse
Affiliation(s)
- Masoud Karimi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Azizi
- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Hamidi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Razieh Dalirfardouei
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hadi Samadian
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Akram Jalali
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
7
|
Bhatt J, Kumar VJ, Chahat. "Acne vulgaris: key insights, treatment, and future prospects". Mol Divers 2025:10.1007/s11030-025-11209-3. [PMID: 40377827 DOI: 10.1007/s11030-025-11209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/23/2025] [Indexed: 05/18/2025]
Abstract
Acne vulgaris is an immune-mediated inflammatory skin condition. It is the 8th most treated skin condition, affecting over 80% of teenagers globally. The pathophysiology of the disease is intricate and involves the interaction of multiple factors, including hyperactivation of sebaceous glands, abnormal hyperkeratinization of pilosebaceous follicles, dysbiosis of microflora, and, subsequently, immune-mediated inflammation. Due to the multifaceted nature of the disorder, a combination of different anti-acne agents is preferred. However, synthetic topical anti-acne agents such as retinol derivatives and benzoyl peroxide are often associated with common side effects such as redness, dryness, peeling, irritation, and eczema. Also, increasing cases of multidrug resistance against commonly used antibiotics further reduce the therapeutic effectiveness of the treatment and upsurge the overall expense. Many studies validate using plant extracts and secondary metabolites for treating acne. Alongside synergistic formulations, the co-delivery of synthetic and herbal agents is emerging as the latest target for developing novel and efficient acne treatments. This article summarizes the comprehensive pathophysiology of the disease, classification, and grading system evolution, along with detailed information on different FDA-approved synthetic topical and systemic anti-acne agents (retinoids, antibiotics, and diverse medications). In addition, we highlight the new investigation on several phytoconstituents and secondary metabolites for treating acne vulgaris. Finally, we have attached the details of all the ongoing clinical trials on acne therapy.
Collapse
Affiliation(s)
- Jyotsana Bhatt
- Hemvati Nandan Bahuguna University (A Central University), Srinagar, Uttarakhand, 246174, India
| | - Vijay Jyoti Kumar
- Hemvati Nandan Bahuguna University (A Central University), Srinagar, Uttarakhand, 246174, India.
| | - Chahat
- Hemvati Nandan Bahuguna University (A Central University), Srinagar, Uttarakhand, 246174, India
| |
Collapse
|
8
|
Li S, Fan Z, Zheng K, Wu Y, Zhong G, Xu X. Engineered Probiotics with Low Oxygen Targeting Porphyromonas gingivalis and Gingival Fibroblasts for the Treatment of Periodontitis. ACS Biomater Sci Eng 2025; 11:2753-2767. [PMID: 40286317 DOI: 10.1021/acsbiomaterials.5c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
The overuse of antibiotics has increased the prevalence of drug-resistant bacteria in periodontitis. "Sentinel" gingival fibroblasts, stimulated by pathogenic bacteria, continue to release signaling factors that affect stem cell repair and recruit immune cells, resulting in persistent inflammation in periodontal tissues, eventually leading to the loosening and loss of teeth. Periodontal pathogenic bacteria cause surface hypoxia, and gingival fibroblasts in the inflammatory microenvironment express HIF-1α, promoting hypoxic areas in periodontal pockets. No drug delivery system is available for the hypoxic region of periodontal pockets. We synthesized BI NPs via berberine (BBR) and indocyanine green (ICG) and formed BIP NPs by wrapping BI NPs with polydopamine (PDA), and the BIP NPs were delivered to the hypoxic region of the periodontal pocket by hitchhiking with the anaerobic probiotic Bifidobacterium bifidum (Bif). The BIP NPs released berberin (BBR) under near-infrared (NIR) irradiation, which inhibited the sulfur metabolism of Porphyromonas gingivalis via mild photothermal action and BBR-targeted serine acetyltransferase, resulting in a decrease in resistance to oxidative stress, thus exerting a nonantibiotic bacteriostatic effect. This mild photothermal effect facilitated the uptake of BIP NPs bygingival fibroblasts. Moreover, BBR targeted nuclear factor-erythroid 2-related factor 2 (NRF2) to reduce ferroptosis, and the gingival fibroblast supernatant modulated macrophage polarization through the NF-κB pathway. In the periodontitis rat model, Bif@BIP+NIR treatment carried the drug to deep periodontal pockets, decreasing local gingival ferroptosis and alleviating periodontitis symptoms. To summarize, engineered probiotics target low-oxygen periodontal pockets for drug delivery, P. gingivalis for nonantibiotic bacterial inhibition, and gingival fibroblasts to mitigate ferroptosis, thus alleviating periodontitis to reduce periodontitis.
Collapse
Affiliation(s)
- Shenghong Li
- Department of Orthodontics, The Affiliated Stomatology Hospital, Luzhou, Sichuan 646000, P.R. China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhibo Fan
- Department of Orthodontics, The Affiliated Stomatology Hospital, Luzhou, Sichuan 646000, P.R. China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Kaijun Zheng
- Department of Orthodontics, The Affiliated Stomatology Hospital, Luzhou, Sichuan 646000, P.R. China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yujie Wu
- Department of Orthodontics, The Affiliated Stomatology Hospital, Luzhou, Sichuan 646000, P.R. China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Guannan Zhong
- Department of Orthodontics, The Affiliated Stomatology Hospital, Luzhou, Sichuan 646000, P.R. China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaomei Xu
- Department of Orthodontics, The Affiliated Stomatology Hospital, Luzhou, Sichuan 646000, P.R. China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Institute of Stomatology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
9
|
Street ME, Casadei F, Di Bari ER, Ferraboschi F, Montani AG, Shulhai AM, Esposito S. The Role of Nutraceuticals and Probiotics in Addition to Lifestyle Intervention in the Management of Childhood Obesity-Part 1: Metabolic Changes. Nutrients 2025; 17:1630. [PMID: 40431370 DOI: 10.3390/nu17101630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Childhood obesity is a growing global health issue. Its rising prevalence is linked to genetic, environmental, and lifestyle factors. Obesity in children could lead to different comorbidities and complications with an increased risk of metabolic disorders, such as insulin resistance, dyslipidemia, type 2 diabetes mellitus (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD). First-line treatment involves dietary modifications and lifestyle changes; however, adherence is often poor and remains a significant challenge. Pharmacotherapy, while a potential option, has limitations in availability and can cause side effects, leading to growing interest in alternative treatments, such as nutraceutical compounds. Derived from natural sources, these compounds have different anti-inflammatory, antiallergic, antioxidant, antibacterial, antifungal, neuroprotective, antiaging, antitumor, insulin-sensitizing, glucose, and lipid-lowering effects. This review describes commonly used nutraceutical compounds, such as omega-3 fatty acids, vitamin D, polyphenols (such as resveratrol and curcumin), berberine, white mulberry leaves and others, and pre- and probiotics in the management of obesity, evaluating the evidence on their mechanisms of action and efficacy in metabolic comorbidities. The evidence suggests that the integration of nutraceuticals into the diet may positively influence body mass index, glucose metabolism, lipid profiles, and gut microbiota composition and reduce inflammation in obese individuals. These effects may provide future practical guidance for clinical practice, contribute to metabolic health improvement, and potentially prevent obesity-related complications. In this first part, we discuss the effects of nutraceutical compounds on insulin sensitivity and insulin resistance, T2DM, dyslipidemia, and MASLD in addition to diet and lifestyle interventions.
Collapse
Affiliation(s)
- Maria Elisabeth Street
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Unit of Paediatrics, P. Barilla Children's Hospital, University Hospital of Parma, 43126 Parma, Italy
| | - Federica Casadei
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Erika Rita Di Bari
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | | | | | - Susanna Esposito
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Unit of Paediatrics, P. Barilla Children's Hospital, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
10
|
Lee JE, Park S, Kim Y, Wi S, Kim YT. Novel evidence in vivo: Berberine ameliorated glucocorticoid-induced post-natal growth retardation by regulating the GH/IGF-1 axis through KMT1A downregulation. Toxicol Appl Pharmacol 2025; 500:117362. [PMID: 40328339 DOI: 10.1016/j.taap.2025.117362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/21/2025] [Accepted: 05/01/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Glucocorticoids (GCs) are widely used anti-inflammatory agents that inhibit growth in children. However, their mechanisms and effect on the growth hormone (GH)/insulin-like growth factor (IGF)-1 axis remain unclear. PURPOSE This study, we aimed to establish a mouse model of GC-induced growth retardation during the critical growth period and explore the underlying mechanisms. Additionally, we aimed to identify novel biomarkers and potential therapeutic agents for GC-induced growth impairment. METHODS Four-week-old mice were treated with GCs for two weeks and subsequently assessed for body length, weight, and body composition. Immunohistochemical analysis of the growth plate in the proximal tibia and biochemical assays of blood were performed to evaluate changes in growth plate length and GH/IGF-1 axis. KMT1A expression and its effects on Ghr expression were examined, and the impact of berberine on GC-induced growth retardation was assessed. RESULTS GCs significantly reduced growth by impairing growth plate expansion, disrupting the GH/IGF-1 axis, and downregulation of the GH receptor (Ghr) and Igf-1 levels in the liver. These changes were attributed to the upregulation of the H3K9 trimethyltransferase KMT1A, which decreased Ghr transcription in the liver. In vitro screening of natural compounds revealed that berberine chloride hydrate decreased the KMT1A levels and increased GHR levels. Berberine chloride hydrate also effectively ameliorated GC-induced growth retardation by restoring Ghr expression via KMT1A inhibition, thereby enhancing the circulating IGF-1 levels. CONCLUSION Overall, our findings highlight the potential of targeting KMT1A using berberine chloride hydrate as an epigenetic modifier to treat GC-induced growth impairment.
Collapse
Affiliation(s)
- Jung-Eun Lee
- Food Functionality Research Division, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Seungmin Park
- Food Functionality Research Division, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Yongeun Kim
- Food Functionality Research Division, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Subin Wi
- Food Functionality Research Division, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Yun-Tai Kim
- Food Functionality Research Division, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
11
|
Men J, Wang J, Lv Z, Wang H, Shi H, Ma Y, Qiao Z, Chen J. Facile fabrication of chitosan-based molecular imprinted microspheres to adsorb selectively, release and anti-bacteria for berberine. Int J Biol Macromol 2025; 306:141592. [PMID: 40024400 DOI: 10.1016/j.ijbiomac.2025.141592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Berberine hydrochloride (Ber), a bioactive compound widely found in the roots, rhizomes, stems and barks of Coptis chinensis, has demonstrated efficacy in treating many diseases, such as cancer, congestive heart failure, Alzheimer's disease, especially inflammatory caused by bacteria. The molecularly imprinted microspheres based on chitosan were fabricated to adsorb selectively, release and anti-bacteria of Ber. The Ber surface molecularly imprinted microspheres (Ber-PSSS@GCS-MIPs) were synthesized using crosslinked chitosan as matrix, Ber as template, and sodium 4-styrene sulfonate (SSS) as functional monomer via a redox surface-initiating system -NH2/-S2O82-. The microspheres were characterized by fourier transform infrared reflection (FTIR), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Adsorption kinetics, isotherms and imprinting factor were investigated, and the drug release performance and antibacterial activity were evaluated. As a result, via electrostatic interaction and "lock-key" imprinted cavities, the adsorption capacity of Ber-PSSS@GCS-MIPs reaches 185 mg/g at 2 h, significantly higher than 51 mg/g observed for non-imprinted microspheres. The adsorption of Ber-PSSS@GCS-MIPs. follows pseudo-second-order kinetics, with adsorption amount decreasing as temperature increases and salt concentration rises. Ber-PSSS@GCS-MIPs show excellent recognition and selectivity with an imprinting factor of 3.07, a selectivity factor exceeding to 2. The adsorption capacity remains at 82.4 % of three times cycles. The Ber-PSSS@GCS-MIPs loaded drug microspheres attain slow and sustained release for 70 % at 139 h. The relative antibacterial rate of Ber-PSSS@GCS-MIPs loaded Ber is higher than non-imprinted microsphere and control against S. aureus and E. coli.
Collapse
Affiliation(s)
- Jiying Men
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Ji Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Zhenyan Lv
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Hongfeng Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Hongxing Shi
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yuan Ma
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Zongwen Qiao
- Department of Chemical Engineering, Shanxi Institute of Technology, Xian 710300, PR China
| | - Jianjun Chen
- School of Instrument and Electronics, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
12
|
Zhao X, Ha M, Zhou L, Wang Y, Li P. Berberine diminishes the malignant progression of non-small cell lung cancer cells by targeting CDCA5 and CCNA2. J Nat Med 2025; 79:530-542. [PMID: 40155519 DOI: 10.1007/s11418-025-01885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/13/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Berberine (BBR), an isoquinoline alkaloid from Coptidis Rhizoma, possesses powerful activities against diverse human malignancies, including non-small cell lung cancer (NSCLC). Nevertheless, the underlying anti-tumor mechanisms of BBR in NSCLC remain poorly understood. METHODS NSCLC cells were cultured and treated with various doses (0, 15, 30, and 45 μM) of BBR for 48 h. Cell viability, proliferation, apoptosis, migration, and invasion were detected using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and wound healing assays. Cell division cycle-associated protein 5 (CDCA5) and Cyclin A2 (CCNA2) mRNA level and protein level were measured using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot assays. After STRING databases prediction, the possible interaction between CDCA5 and CCNA2 was identified using Co-Immunoprecipitation (IP) assays. The biological role of BBR treatment on NSCLC tumor growth was assessed using the xenograft tumor model in vivo. RESULTS BBR treatment blocked NSCLC cell proliferation, migration, invasion, and promoted apoptosis. CDCA5 and CCNA2 levels were increased in NSCLC tissues, whereas their expression was decreased in BBR-induced NSCLC cells. CDCA5 or CCNA2 overexpression might attenuate the inhibitory role of BBR on NSCLC cell malignant behaviors. CDCA5 interacted with CCNA2 to regulate its expression in NSCLC cells. BBR administration blocked NSCLC xenograft growth in vivo. CONCLUSION BBR hindered NSCLC cell malignant progression partly by modulating CDCA5 and CCNA2, providing a promising therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, No.2, Section 5, Renmin Street, Guta District, Jinzhou City, 121000, Liaoning Province, China
| | - Minwen Ha
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, No.2, Section 5, Renmin Street, Guta District, Jinzhou City, 121000, Liaoning Province, China
| | - Lulu Zhou
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, No.2, Section 5, Renmin Street, Guta District, Jinzhou City, 121000, Liaoning Province, China
| | - Yanyun Wang
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, No.2, Section 5, Renmin Street, Guta District, Jinzhou City, 121000, Liaoning Province, China
| | - Ping Li
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, No.2, Section 5, Renmin Street, Guta District, Jinzhou City, 121000, Liaoning Province, China.
| |
Collapse
|
13
|
Liu TT, Zeng KW. Recent advances in target identification technology of natural products. Pharmacol Ther 2025; 269:108833. [PMID: 40015520 DOI: 10.1016/j.pharmthera.2025.108833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Natural products, characterized by their structural diversity, broad spectrum of biological activities, and safe yet effective therapeutic potential, have become pivotal resources in drug research and development. However, the target proteins of many natural products remain unidentified, a significant challenge that impedes their development into viable drug candidates. Therefore, the target identification is crucial for elucidating the pharmacological mechanisms of natural products and facilitating their therapeutic applications. In this review, we present a comprehensive overview of recent advancements in methodologies for target identification of natural products. Additionally, we predict future developments in new technologies for target discovery. Collectively, this review establishes a methodological framework for uncovering the cellular targets and pharmacological mechanisms of natural products, thereby advancing the development of innovative natural product-based drugs.
Collapse
Affiliation(s)
- Ting-Ting Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
14
|
Yang Y, Jiang B, Shi L, Wang L, Yang Y, Li Y, Zhang Y, Zhu Z, Zhang X, Liu X. The potential of natural herbal plants in the treatment and prevention of non-small cell lung cancer: An encounter between ferroptosis and mitophagy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119555. [PMID: 40015539 DOI: 10.1016/j.jep.2025.119555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/15/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese herbal medicine constitutes a substantial cultural and scientific resource for the Chinese nation, attracting considerable scholarly interest due to its intrinsic characteristics of "multi-component, multi-target, and multi-pathway" interactions. Simultaneously, it aligns accurately with the intricate and continuously evolving progression of non-small cell lung cancer (NSCLC). Furthermore, contemporary pharmacological studies indicate that natural herbaceous plants and their bioactive compounds exhibit a diverse array of biological activities, including antioxidant, anti-inflammatory, and anti-tumor effects, among others. Additionally, these substances have been demonstrated to possess a degree of safety, particularly in terms of exhibiting comparatively lower levels of toxicity to the liver and kidneys when contrasted with conventional Western medicine. Thus, the development of herbal plants, which includes both single herbs and composite formulations, as well as their bioactive constituents, through the targeted regulation of ferroptosis and mitophagy, presents substantial potential and instills considerable hope for individuals diagnosed with NSCLC. AIM OF THE REVIEW This review aims to conduct a critical analysis of the ethnopharmacological applications of natural herbaceous plants in relation to ferroptosis and mitophagy in NSCLC. The objective is to evaluate the potential advantages of prioritizing specific phytochemical constituents found in these plants, which may serve as novel therapeutic candidates informed by ethnobotanical knowledge. Additionally, this study seeks to enhance the current pharmacological applications of natural herbaceous plants. METHODS An investigation into natural herbal remedies for NSCLC was conducted, with a particular emphasis on the ferroptosis and mitophagy pathways. This study utilized traditional medical texts and ethnomedicinal literature as primary sources. Furthermore, relevant information related to ethnobotany, phytochemistry, and pharmacology is obtained from online databases, including PubMed and the China National Knowledge Infrastructure (CNKI), among others. "Traditional Chinese medicine compound preparations", "single herb extracts", "active compounds", "NSCLC", "ferroptosis", and "mitophagy" were used as keywords when searching the databases. Consequently, pertinent articles published in recent years were collected and analyzed. RESULTS Given the complex etiology of NSCLC, treatment strategies that concentrate exclusively on ferroptosis or mitophagy often demonstrate limitations. In this regard, the utilization of herbal plants offers unique benefits in the management of NSCLC. The rationale can be summarized within the following two dimensions: Firstly, due to the molecular mechanisms of ferroptosis and mitophagy involving multiple signaling pathways (including PINK1/Parkin, HMGB1, system Xc-/GPX4/GSH, FSP1/CoQ10/NAD (P) H, and so on), sometimes drugs with a single target are difficult to involve multiple pathways. Fortunately, there is an expanding body of evidence suggesting that various herbaceous plants and their bioactive compounds can affect multiple biological targets. Moreover, these compounds seem to interact with several targets associated with ferroptosis and mitophagy in NSCLC (such as NIX, BNIP3, FUNDC1, GPX4, FSP1, P53, Nrf2, LncRNA, and so on). Secondly, Herbaceous plants and their bioactive compounds have been shown to possess a favorable safety profile, particularly with respect to reduced hepatotoxicity and nephrotoxicity in comparison to conventional Western medicine. For example, Numerous compound formulations, such as Fangji Huangqi decoction, Mufangji decoction, Qiyu Sanlong decoction, and Fuzheng Kangai decoction, have been employed in China for millennia, and their clinical efficacy appears to be quite promising. Notably, In recent years, numerous researchers have sought to isolate active constituents from clinically effective compound formulations through the application of chemical methodologies. This endeavor has been driven by the necessity to tackle challenges related to complex ingredient compositions and sophisticated processing. These active compounds have been employed in cellular and animal studies to elucidate the molecular mechanisms underlying these formulations. CONCLUSIONS The Asian region has a long-standing historical tradition of employing natural herbaceous plants for traditional medicinal purposes. Phytochemical and pharmacological studies have shown that various compound preparations derived from traditional Chinese medicine, along with individual herb extracts and their active constituents, display a range of bioactive effects. These effects encompass anti-tumor, anti-inflammatory, antibacterial, and antioxidant properties, among others. Numerous traditional compound formulations originating from China have emerged as promising candidates for the development of pharmacological agents targeting NSCLC. It is noteworthy that a variety of compound formulations aimed at the ferroptosis and mitophagy pathways, which demonstrate unique therapeutic effects on NSCLC, are presently under extensive investigation by an increasing number of researchers. Therefore, it is imperative to consider in vitro mechanistic studies, in vivo pharmacological evaluations, and assessments of clinical efficacy. Furthermore, it is essential to conduct a comprehensive assessment of plant resources, implement quality control measures, and engage in toxicological research to ensure that the data is appropriate for further examination.
Collapse
Affiliation(s)
- Yujie Yang
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Lijuan Shi
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Lili Wang
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Yaru Yang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Yongyu Li
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Yanmei Zhang
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Zhongbo Zhu
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Xuhui Zhang
- Department of Pulmonary Diseases, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, 730030, China.
| | - Xiping Liu
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
15
|
Shi L, Wang W, Jing C, Hu J, Liao X. Berberine and health outcomes: an overview of systematic reviews. BMC Complement Med Ther 2025; 25:147. [PMID: 40269802 PMCID: PMC12016319 DOI: 10.1186/s12906-025-04872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Berberine is an isoquinoline alkaloid isolated from Chinese herb coptis chinensis and other berberis plants which can be used to treat a wide range of chronic diseases. However, the current research evidence on the therapeutic effects of berberine has not been summarized. We aimed to synthesize the current evidence on the systematic review (SRs) of berberine for the treatment of diverse conditions. METHODS A comprehensive search of the Cochrane Library, PubMed, EMBASE, Web of Science, CNKI, Wanfang, VIP, and SinoMed was performed from the database inception to April 11, 2024. SRs on berberine were included and evaluated. The methodological quality and the reporting quality of each SR were assessed using the AMSTAR-2 tool and PRISMA checklist, respectively. The quality of evidence was appraised based on the GRADE. RESULTS Fifty-four SRs were included and analyzed. Overall, associations were found between berberine and 70 health outcomes concerned with 9 diseases. Berberine has improved most outcomes of these diseases: 78% (25/32) cardiovascular disease outcomes, 92.59% (25/27) type 2 diabetes mellitus outcomes, 94.74% (18/19) gastrointestinal disorders outcomes, 72.22% (13/18) polycystic ovary syndrome (PCOS) outcomes, 86.67% (13/15) non-alcoholic fatty liver disease (NAFLD) outcomes, 92.31% (12/13) schizophrenia outcomes, 90.91% (10/11) metabolic syndrome outcomes, 57.14% (4/7) obesity outcomes, and 100.00% (6/6) dyslipidemia outcomes. There was a high overlap of primary studies (CCA > 15%) in the SRs of PCOS, NAFLD, obesity, and schizophrenia. Only one SR was rated as high quality while eight SRs were rated as low quality and forty-five SRs as very low quality according to AMSTAR-2. Regarding the reporting quality, Item 14, 15, 21, and 22 were poorly reported for the included SRs in terms of PRSMA assessment. For GRADE, eight outcomes were rated as high quality evidence, twenty-two outcomes were rated as moderate quality, and 110 outcomes were rated as low quality. CONCLUSION Current evidence suggests that berberine has beneficial effects on a range of health outcomes for people with chronic diseases. Specifically, berberine significantly improves type 2 diabetes, gastrointestinal disorders, schizophrenia, metabolic syndrome, and dyslipidemia outcomes. However, caution is needed considering the shortcomings in the quality of the relevant system reviews included.
Collapse
Affiliation(s)
- Lanjun Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Wenya Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Chengyang Jing
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Jing Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, China.
| | - Xing Liao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Science, Beijing, China.
| |
Collapse
|
16
|
Sadier NS, Hazimeh IA, Khazaal W, Al Sabouri AAK, Almutary AG, Alnuqaydan AM, Abou-Abbas L. Exploring the therapeutic potential of NLRP3 inhibitors in Parkinson's Disease: a systematic review of in-vivo studies. Inflammopharmacology 2025:10.1007/s10787-025-01733-x. [PMID: 40259110 DOI: 10.1007/s10787-025-01733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/29/2024] [Indexed: 04/23/2025]
Abstract
BACKGROUND Parkinson's disease is a progressive neurodegenerative disorder characterized by motor symptoms such as tremors, rigidity, and bradykinesia. Although the exact etiology is unknown, the nod-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome-induced inflammation, plays a crucial role in the pathogenesis of Parkinson's disease. Many NLRP3 inhibitors are recognized for their role as potential therapeutic interventions for Parkinson's disease. METHODS A systematic literature search was performed in PubMed, Embase, and Science Direct databases for papers published during the 10 years prior to May 2023. All animal interventional studies assessing the effects of NLRP3 inhibitors on Parkinson's disease animal models were included. Primary outcomes included NLRP3 inflammasome inhibition, microglial activation reduction, oxidative stress, and anti-inflammatory marker reduction. The secondary outcomes included dopaminergic neuron loss alleviation and behavioral motor function attenuation. Quality assessment and narrative synthesis of the studies were performed. RESULTS Twenty-four studies out of 796 papers initially identified met the inclusion criteria. All the included studies, except one, found a reduction in NLRP3 inflammasome activation and anti-inflammatory markers in Parkinson's disease animal models after treatment with various NLRP3 inhibitors compared to control groups without inhibitors. Additionally, eighteen out of twenty-four inhibitors decreased microglial activation and behavioral deficits. Moreover, ten inhibitors attenuated oxidative stress, and twenty-two out of twenty-four alleviated dopaminergic neuron loss. The inhibitors utilized different mechanisms and pathways to exert their effects, including the NLRP3/Caspase-1 pathway, the NF-κB/NLRP3 pathway, inhibition of ROS and/or pyroptosis, as well as autophagy and mitophagy. CONCLUSION NLRP3 inhibitors represent a prospective therapy for Parkinson's disease, demonstrating efficacy in lowering neuroinflammation and protecting against dopaminergic loss. However, constraints, such as a male animal focus, apparent regional bias from China-centric studies, and diversity in induction models, entail the results presented herein require cautious interpretation. Further research, including preclinical and clinical studies, is required to thoroughly examine the safety, effectiveness, and generalizability of NLRP3 inhibitors in Parkinson's disease.
Collapse
Affiliation(s)
- Najwane Said Sadier
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Al Ain Road, PO Box 3838-111188, Abu Dhabi, UAE
- Department of Neurosciences, Neurosciences Research Center, Faculty of Medical Sciences, Lebanese University, 275 Old Saida Road, PO Box 6573/14, Beirut, Lebanon
| | - Inaam Ali Hazimeh
- Department of Neurosciences, Neurosciences Research Center, Faculty of Medical Sciences, Lebanese University, 275 Old Saida Road, PO Box 6573/14, Beirut, Lebanon
| | - Walaa Khazaal
- Department of Neurosciences, Neurosciences Research Center, Faculty of Medical Sciences, Lebanese University, 275 Old Saida Road, PO Box 6573/14, Beirut, Lebanon
| | - Amani Al Khayat Al Sabouri
- Department of Neurosciences, Neurosciences Research Center, Faculty of Medical Sciences, Lebanese University, 275 Old Saida Road, PO Box 6573/14, Beirut, Lebanon
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Al Ain Road, PO Box 3838-111188, Abu Dhabi, UAE
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Linda Abou-Abbas
- Department of Neurosciences, Neurosciences Research Center, Faculty of Medical Sciences, Lebanese University, 275 Old Saida Road, PO Box 6573/14, Beirut, Lebanon.
- INSPECT-LB (Institut National de Santé Publique, d'Épidémiologie Clinique Et de Toxicologie-Liban), Beirut, Lebanon.
| |
Collapse
|
17
|
Chen G, Zhang C, Zou J, Zhou Z, Zhang J, Yan Y, Liang Y, Tang G, Chen G, Xu X, Wang N, Feng Y. Coptidis rhizoma and berberine as anti-cancer drugs: A 10-year updates and future perspectives. Pharmacol Res 2025; 216:107742. [PMID: 40258505 DOI: 10.1016/j.phrs.2025.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
Cancer continues to be among the most substantial health challenges globally. Among various natural compounds, berberine, an isoquinoline alkaloid obtained from Coptidis Rhizoma, has garnered considerable attention for its broad-spectrum biological activities, including anti-inflammatory, antioxidant, anti-diabetic, anti-obesity, and anti-microbial activities. Furthermore, berberine exhibits a broad spectrum of anti-cancer efficacy against various malignancies, such as ovarian, breast, lung, gastric, hepatic, colorectal, cervical, and prostate cancers. Its anti-cancer mechanisms are multifaceted, encompassing the inhibition of cancer cell proliferation, the prevention of metastasis, the induction of apoptosis, the facilitation of autophagy, the modulation of the tumor microenvironment and gut microbiota, and the enhancement of the efficacy of conventional therapeutic strategies. This paper offers an exhaustive overview of the cancer-fighting characteristics of Coptidis Rhizoma and berberine, while also exploring recent developments in nanotechnology aimed at enhancing the bioavailability of berberine. Furthermore, the side effects and safety of berberine are addressed as well. The potential role of artificial intelligence in optimizing berberine's therapeutic applications is also highlighted. This paper provides precious perspectives on the prospective application of Coptidis Rhizoma and berberine in the prevention and management of cancer.
Collapse
Affiliation(s)
- Guoming Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong
| | - Jiayi Zou
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zitian Zhou
- The Fourth School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiayi Zhang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Yan
- The School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yinglan Liang
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoyi Tang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong
| | - Guang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong
| | - Xiaoyu Xu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|
18
|
Wu Z, Hu Y, Hao R, Li R, Lu X, Itale MW, Yuan Y, Zhu X, Zhang J, Wang L, Sun M, Hou X. Research Progress of Genomics Applications in Secondary Metabolites of Medicinal Plants: A Case Study in Safflower. Int J Mol Sci 2025; 26:3867. [PMID: 40332590 PMCID: PMC12027854 DOI: 10.3390/ijms26083867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 04/13/2025] [Indexed: 05/08/2025] Open
Abstract
Medicinal plants, recognized as significant natural resources, have gained prominence in response to the increasing global demand for herbal medicines, necessitating the large-scale production of these plants and their derivatives. Medicinal plants are exposed to a variety of internal and external factors that interact to influence the biosynthesis and accumulation of secondary metabolites. With the rapid development of omics technologies such as genomics, transcriptomics, proteomics, and metabolomics, multi-omics technologies have become important tools for revealing the complexity and functionality of organisms. They are conducive to further uncovering the biological activities of secondary metabolites in medicinal plants and clarifying the molecular mechanisms underlying the production of secondary metabolites. Also, artificial intelligence (AI) technology accelerates the comprehensive utilization of high-dimensional datasets and offers transformative potential for multi-omics analysis. However, there is currently no systematic review summarizing the genomic mechanisms of secondary metabolite biosynthesis in medicinal plants. Safflower (Carthamus tinctorius L.) has rich and diverse bioactive flavonoids, among of which Hydroxysafflor yellow A (HSYA) is specific to safflower and emerging as a potential medication for treating a wide range of diseases. Hence, significant progress has been made in the study of safflower as an excellent example for the regulation of secondary metabolites in medicinal plants in recent years. Here, we review the progress on the understanding of the regulation of main secondary metabolites at the multi-omics level, and summarize the influence of various factors on their types and contents, with a particular focus on safflower flavonoids. This review aims to provide a comprehensive insight into the regulatory mechanisms of secondary metabolite biosynthesis from the perspective of genomics.
Collapse
Affiliation(s)
- Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Yan Hu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Ruru Hao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Ruting Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Xiaona Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Mdachi Winfrida Itale
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Yang Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xiaoxian Zhu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Jiaqiang Zhang
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 310053, China;
| | - Longxiang Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Meihao Sun
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Xianfei Hou
- Crop Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| |
Collapse
|
19
|
Chen C, Gao H, Wei Y, Wang Y. Traditional Chinese medicine in the prevention of diabetes mellitus and cardiovascular complications: mechanisms and therapeutic approaches. Front Pharmacol 2025; 16:1511701. [PMID: 40290429 PMCID: PMC12021819 DOI: 10.3389/fphar.2025.1511701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Diabetes mellitus (DM) is a chronic endocrine and metabolic disorder characterized by persistent hyperglycemia that poses serious threats to human health and quality of life. The morbidity, disability, and mortality rates of cardiovascular complications stemming from chronic hyperglycemia are primary factors affecting the lifespan of patients with diabetes. Currently, there is no cure for DM. Standard biomedical treatments mostly control the symptoms using insulin injections or oral hypoglycemic drugs. Although the effect of standard biomedical therapy is remarkable, its long-term use is prone to toxic side effects. Numerous studies have recently found that Traditional Chinese Medicine (TCM) has strong advantages in the prevention and treatment of DM and cardiovascular complications (DACC). The collection, processing, preparation and clinical use of TCM are guided by the theory of TCM and follow the "holistic concept." Multiple components, pathways, and targets form the basis for the use of TCM in treating multiple parts and organs of the body simultaneously. TCM is mainly derived from natural medicines and their processed products and has fewer side effects. TCM is clinically used as compound prescriptions, botanical drugs, and monomers. TCM, either independently or in combination with standard biomedical treatments, has shown unique therapeutic advantages. This review aimed to explore the recently reported mechanisms of action of TCM in the prevention and treatment of DACC. These findings will aid the optimization of the current therapy or formation of a therapeutic schedule for integrated TCM and standard biomedical treatments.
Collapse
Affiliation(s)
- Caixia Chen
- Inner Mongolia Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Hui Gao
- Thoracic Surgery Department, Inner Mongolia Hospital of Peking University Cancer Hospital, The Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ying Wei
- Inner Mongolia Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yaxi Wang
- Ultrasonic Department, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
20
|
Zhao M, Deng D, Liu H, Guo R, Wu J, Hao Y, Yang M. Berberine Suppresses Influenza A Virus-Triggered Pyroptosis in Macrophages via Intervening in the mtROS-MAVS-NLRP3 Inflammasome Pathway. Viruses 2025; 17:539. [PMID: 40284982 PMCID: PMC12030943 DOI: 10.3390/v17040539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/21/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Infection with influenza A virus (IAV) may trigger excessive inflammatory responses, leading to severe viral pneumonia and accelerating disease progression. Therefore, controlling these excessive inflammatory responses is crucial for the prevention and treatment of pneumonia caused by IAV. Berberine (BBR), an isoquinoline alkaloid extracted from traditional Chinese medicine, possesses extensive pharmacological activities. However, its immunoregulatory effects and molecular mechanisms in the context of IAV infection require further investigation. This study explored the impact of BBR on macrophage pyroptosis and inflammatory responses induced by IAV infection. Our findings revealed that BBR effectively inhibits the release of IL-1β and TNF-α induced by IAV infection and suppresses gasdermin D (GSDMD)-mediated pyroptosis in a dose-dependent manner. Further research indicates that BBR alleviates macrophage pyroptosis and inflammatory responses in IAV-infected cells by reducing the release of mitochondrial reactive oxygen species (mtROS), inhibiting mitochondrial antiviral signaling protein (MAVS) expression and blocking the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome. Experiments using siRNA to knockdown MAVS further confirmed the pivotal role of MAVS in BBR's inhibition of IAV-induced macrophage pyroptosis. This study provides a scientific basis for the application of BBR as an anti-inflammatory drug in the treatment of inflammatory diseases caused by IAV infection and directs future research endeavors.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Hao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (M.Z.); (D.D.); (H.L.); (R.G.); (J.W.)
| | - Mingrui Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (M.Z.); (D.D.); (H.L.); (R.G.); (J.W.)
| |
Collapse
|
21
|
Chen W, Zhou W, Liu S. The key role of natural products in the fight against endometrial Cancer. Int Immunopharmacol 2025; 151:114344. [PMID: 40015208 DOI: 10.1016/j.intimp.2025.114344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Endometrial cancer (EC) is a common malignant disease in women, originating from the endometrial tissue. Over the past few decades, the global incidence rate of EC has gradually increased, and the affected population has become progressively younger. Traditional treatment methods, such as surgery and adjuvant therapy, have considerable toxic side effects. Furthermore, their therapeutic effectiveness is significantly very uncertain. Therefore, the search for a new type of treatment for EC is a top priority. Natural products are a class of compounds found in nature that have a wide range of biological functions; their derivatives have chemical structures that show great potential for developing new drugs. The latest studies have found that certain natural products, such as flavonoids, plant polyphenols, terpenoids and alkaloids, have inhibitory effects on EC cells in non-clinical models and animal studies. Despite challenges, including low extraction and bioavail ability, the potential of natural products for treating EC is still highly regarded by the scientific community. In the future, as research on natural products deepens and is combined with modern drug design and delivery technologies, it is hoped that more efficient and less toxic anti-cancer drugs will be developed, thereby offering EC patients more treatment options and hope. This article summarises the possible molecular mechanisms of various natural products and their bioactive components with regard to EC cells, as well as the latest research, to provide new ideas for further research and drug development.
Collapse
Affiliation(s)
- Wen Chen
- Tongde Hospital of Zhejiang Province Affiliated to Zhejiang Chinese Medical University (College of Integrated Traditional Chinese and Western Medicine Clinical Medicine), Hangzhou 310053, China
| | - Wencheng Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Songjun Liu
- Tongde Hospital of Zhejiang Province Affiliated to Zhejiang Chinese Medical University (College of Integrated Traditional Chinese and Western Medicine Clinical Medicine), Hangzhou 310053, China; Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China.
| |
Collapse
|
22
|
Zhang L, Wang W, Liu X, Yan K, Li Q, Li M, Li C, Li Y, Chen L. Traditional Chinese medicine compounds modulate signaling pathways to improve cardiac-related pathology. Front Pharmacol 2025; 16:1499060. [PMID: 40242436 PMCID: PMC12000890 DOI: 10.3389/fphar.2025.1499060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Cardiovascular disease poses a significant risk to human health and remains the leading cause of illness and death globally, with its incidence continuing to rise. The intricate pathophysiological mechanisms of CVDs include inflammation, oxidative stress, autophagy, and myocardial fibrosis. In light of these underlying mechanisms, traditional Chinese medicine (TCM) and its constituents have demonstrated distinct advantages in managing CVDs. By exerting synergistic effects across multiple components and targets, traditional Chinese medicine can modulate the inflammatory response, mitigate oxidative stress, regulate excessive autophagy, and enhance myocardial fibrosis repair. This article reviews the latest advancements in understanding how TCM compounds regulate signaling pathways involved in the treatment of CVDs.
Collapse
Affiliation(s)
- Luwen Zhang
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Wei Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Henan Province Traditional Chinese Medicine Epidemic Diseases Engineering Research Center, Zhengzhou, Henan, China
| | - Xincan Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Kuipo Yan
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Qiang Li
- The First Affiliated Hospital of Hena University of Chinese Medicine, Henan Key Laboratory of Viral Diseases Prevention and Treatment of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Ming Li
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Chunying Li
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Yanxin Li
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Lei Chen
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| |
Collapse
|
23
|
Cao N, Shou Z, Wang M, Wu Y, Wang X. The potential role and mechanism of Rhizoma Coptidis in prevention of diabetic encephalopathy: targeting sodium ion and channels. Front Pharmacol 2025; 16:1542015. [PMID: 40160459 PMCID: PMC11949989 DOI: 10.3389/fphar.2025.1542015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/18/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Rhizoma Coptidis (RC) is an edible and medicinal herb with anti-hyperglycemia, which has potential application in the prevention of diabetic encephalopathy (DE). However, its efficacy and underlying mechanism in DE prevention have not been elucidated yet. The objective of the current study is to investigate the preventive effect of RC on DE, thereby focusing on the target through the method of network pharmacology and molecular docking. Methods Sixty 4-week-old, male C57BL/6 mice were randomly allocated to six groups: control, model, metformin (200 mg/kg), RCL (0.75 g/kg), RCM (1.5 g/kg), and RCH (3 g/kg). The DE-model mice were induced by streptozocin combined with a high-fat diet. In addition, the neuroprotective effect of RC was determined both in vivo and in vitro. Network pharmacology analysis was used to screen the potential mechanism of RC. Thereafter, the underlying mechanism of action of RC was explored by molecular docking prediction and Western blot analysis. An analysis of patients with DE was performed to validate it from another perspective. Results The results showed that the cognitive state of DE model mice was improved and neuronal injury was ameliorated after RC administration. Active compounds in RC, berberine and coptisine, were found to ameliorate HT22 injury induced by high glucose. Network pharmacology results suggest that voltage-gated sodium channel subtypes (Nav1.1, Nav1.2, and Nav1.6) may be the targets for RC prevention of DE. Furthermore, the Western blot analysis revealed that RC significantly upregulated Nav1.1 and Nav1.2, while Nav1.6 could not. In addition, serum sodium was related to the cognitive status of DE patients, which can be used as a diagnostic index for mild and moderate-severe DE. Discussion RC has the potential to be a functional food or adjuvant drug for DE prevention, and Nav1.1 and Nav1.2 are promising DE intervention targets.
Collapse
Affiliation(s)
- Ning Cao
- Pharmacy Department, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhangxuan Shou
- Pharmacy Department, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Mimi Wang
- Pharmacy Department, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - You Wu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuefeng Wang
- Pharmacy Department, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
24
|
Liu D, Zhao Y, Liu R, Qiao B, Lu X, Bei Y, Niu Y, Yang X. Traditional Chinese medicine as a viable option for managing vascular cognitive impairment: A ray of hope. Medicine (Baltimore) 2025; 104:e41694. [PMID: 40101029 PMCID: PMC11922442 DOI: 10.1097/md.0000000000041694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Vascular cognitive impairment (VCI) is a prevalent cognitive disorder resulting from cerebrovascular disease and encompasses a spectrum of cognitive deficits, ranging from mild impairment to vascular dementia (VD). VCI is responsible for a minimum of 20% to 40% of all cases of dementia, with its prevalence ranking second only to Alzheimer's disease on a global scale. The pathogenesis of VCI is complex and includes a lack of cholinergic nerve cells, inflammation, oxidative stress, alterations in the blood-brain barrier, and cell apoptosis. Current guideline-recommended drugs have unsatisfactory therapeutic effects. However, traditional Chinese medicine (TCM) has long been associated with treating dementia, and numerous studies regarding treating dementia with TCM have been conducted. The etiology and pathogenesis of VaD are linked to deficiencies in the spleen and kidney, as well as phlegm turbidity. Treatment involves benefiting the spleen and kidney, improving blood circulation, removing blood stasis, and dispelling phlegm. Moreover, TCM presents benefits such as few adverse effects, low cost, long-term use suitability, and preventive effects. This review outlines the pathogenesis of VCI in both modern medicine and TCM, examines traditional prescriptions and single-agent ingredients with their pharmacological effects, emphasizes TCM's unique features, and explores its multi-targeted approach to treating VCI.
Collapse
Affiliation(s)
- Di Liu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
- Department of Pain, Heze Municipal Hospital, Heze, China
| | - YueYu Zhao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| | - RunFeng Liu
- Department of Traditional Chinese Medicine, Weifang People’s Hospital, Weifang, China
| | - BaoGuang Qiao
- Department of Pain, Heze Municipal Hospital, Heze, China
| | - XinRu Lu
- College of Medical, Shandong Yingcai University, Jinan, China
| | - YuanYuan Bei
- Shandong Jiaotong College Hospital, Jinan, China
| | - Yin Niu
- Department of Endocrinology, People’s Hospital of Dingtao District, Heze, China
| | - XiaoNi Yang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
25
|
Wang L, Lian YJ, Dong JS, Liu MK, Liu HL, Cao ZM, Wang QN, Lyu WL, Bai YN. Traditional Chinese medicine for chronic atrophic gastritis: Efficacy, mechanisms and targets. World J Gastroenterol 2025; 31:102053. [PMID: 40061592 PMCID: PMC11886037 DOI: 10.3748/wjg.v31.i9.102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 01/21/2025] [Indexed: 02/18/2025] Open
Abstract
Chronic atrophic gastritis (CAG) is an important stage of precancerous lesions of gastric cancer. Effective treatment and regulation of CAG are essential to prevent its progression to malignancy. Traditional Chinese medicine (TCM) has shown multi-targeted efficacy in CAG treatment, with advantages in enhancing gastric mucosal barrier defense, improving microcirculation, modulating inflammatory and immune responses, and promoting lesion healing, etc. Clinical studies and meta-analyses indicate that TCM provides significant benefits, with specific Chinese herbal compounds and monomers demonstrating protective effects on the gastric mucosa through mechanisms including anti-inflammation, anti-oxidation, and regulation of cellular proliferation and apoptosis, etc. Finally, it is pointed out that the efficacy of TCM in the treatment of CAG requires standardized research and unified standards, and constantly clarifies and improves the evaluation criteria of each dimension of gastric mucosal barrier function.
Collapse
Affiliation(s)
- Li Wang
- Department of Gastroenterology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yan-Jie Lian
- Division of Cardiovascular, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Jin-Sheng Dong
- Department of Gastroenterology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ming-Kun Liu
- Department of Gastroenterology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hong-Liang Liu
- Department of Gastroenterology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zheng-Min Cao
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qing-Nan Wang
- Department of Dermatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Wen-Liang Lyu
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yu-Ning Bai
- Department of Gastroenterology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
26
|
Mansour A, Sajjadi-Jazi SM, Gerami H, Khorasanian AS, Moalemzadeh B, Karimi S, Afrakoti NM, Mofid V, Mohajeri-Tehrani MR, Hekmatdoost A. The efficacy and safety of berberine in combination with cinnamon supplementation in patients with type 2 diabetes: a randomized clinical trial. Eur J Nutr 2025; 64:102. [PMID: 39998703 DOI: 10.1007/s00394-025-03618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/09/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Diabetes is a serious global health issue and increases the risk of several chronic diseases. However, if hyperglycemia and other metabolic abnormalities related to diabetes are controlled, fewer micro- and macrovascular complications may occur. OBJECTIVE To investigate whether daily supplementation with berberine in combination with cinnamon could have effect on cardiometabolic risk factors, such as impaired glucose regulation, dyslipidemia, and hypertension in patients with diabetes. METHODS Patients with type 2 diabetes were recruited to participate in a parallel, double-blind, placebo-controlled, randomized study. Participants were randomized into berberine in combination with cinnamon supplementation or placebo group. Participants were then asked to take a divided daily dose of 1200 mg berberine and 600 mg cinnamon or placebo for 12 weeks. ANCOVA was then performed to evaluate the differences between the two groups, controlling for the respective baseline values. RESULTS At the end of study, fasting blood sugar (FBS) (P = 0.031) and hemoglobin A1C (HbA1c) (P = 0.013) were significantly lower in participants taking berberine plus cinnamon than those taking the placebo capsules. The results of the serum lipid profile also indicated a significant difference in the level of low density lipoprotein cholesterol (LDL-C) (P = 0.039), while no difference was observed in the levels of total cholesterol, high density lipoprotein cholesterol (HDL-C), and triglycerides between the study groups. In addition, there was no difference in other measured metabolic and anthropometric parameters between the two groups. CONCLUSION Twelve weeks of berberine plus cinnamon consumption reduced blood FBS, HbA1c and LDL-C concentration in patients with diabetes.
Collapse
Affiliation(s)
- Asieh Mansour
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadis Gerami
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Atie Sadat Khorasanian
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Behnam Moalemzadeh
- Department of Internal Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Karimi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 46, West Arghavan St., Farahzadi Blvd., Shahrak Gharb, Tehran, Iran
| | - Nima Mohamadi Afrakoti
- Anesthesiology and Critical Care Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Mofid
- Department of Food Science and Technology, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 46, West Arghavan St., Farahzadi Blvd., Shahrak Gharb, Tehran, Iran.
| |
Collapse
|
27
|
An J, Zhou Q, Guo X, Xu C, Jia X, Cao Z, Lu Q. From Pathophysiology to Treatment: The Role of Ferroptosis in PCOS. FRONT BIOSCI-LANDMRK 2025; 30:25586. [PMID: 40018919 DOI: 10.31083/fbl25586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 03/01/2025]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent gynecological endocrine and metabolic disorder in women, with an incidence rate of 10-13%. The etiology of PCOS is multifaceted, involving genetic predisposition, environmental influences, lifestyle factors, and endocrine metabolic dysregulation. Iron, a critical mineral, not only plays a role in regulating female physiological functions and the progression of PCOS but also requires careful management to avoid deficiency. However, excess iron can trigger ferroptosis, a form of nonapoptotic cell death characterized by the accumulation of lipid peroxides. While numerous studies have explored ferroptosis in patients with PCOS and animal models, the precise mechanisms and therapeutic implications remain inadequately understood. This review seeks to elucidate the pathophysiology of PCOS and the contributory factors of ferroptosis. Additionally, we examine the diverse manifestations of ferroptosis in PCOS and evaluate its role. Furthermore, we introduce ferroptosis-related traditional Chinese medicines that may enhance the understanding of PCOS pathogenesis and aid in the development of targeted therapies for ferroptosis in PCOS.
Collapse
Affiliation(s)
- Jie An
- Nanjing University of Chinese Medicine, 210029 Nanjing, Jiangsu, China
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - Qin Zhou
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - Xiaojing Guo
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - Congya Xu
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - XiaoFang Jia
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - Zhenzhen Cao
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - Qibin Lu
- Nanjing University of Chinese Medicine, 210029 Nanjing, Jiangsu, China
- Department of Gynecology of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 210029 Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Guo P, Xue Y, Zhang D, Lu Q, Liu Y, Xiong J, Ye C, Fu S, Wu Z, Wang X, Qiu Y. Network Pharmacology to Unveil the Mechanism of Berberine in the Treatment of Streptococcus suis Meningitis in Humans and Pigs. TOXICS 2025; 13:138. [PMID: 39997953 PMCID: PMC11860940 DOI: 10.3390/toxics13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Streptococcus suis (S. suis) is a major swine pathogen throughout the world as well as an emerging zoonotic agent. Among the symptoms caused by S. suis, including septicemia, pneumonia, endo-carditis, arthritis, and meningitis, the latter is the most overlooked. In the present study, we explored the mechanism of action of berberine against S. suis meningitis by obtaining berberine-related action targets, porcine S. suis meningitis targets, and human S. suis meningitis targets from open databases. We constructed a protein-protein interaction (PPI) network by using the STRING database and employed Cytoscape 3.8.0 to screen for core targets. We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses through DAVID. We identified 31 potential targets of berberine, of which Toll-like receptor 4 (TLR4), fibronectin 1 (FN1), superoxide dismutase (SOD1), and catalase (CAT) were the four most critical targets. GO analysis revealed the enrichment of terms related to the response to oxidative stress and the inflammatory response. KEGG analysis revealed the enrichment of the interleukin 17 (IL-17), phosphoinositide 3-kinase (PI3K)-Akt, TLR, tumor necrosis factor (TNF), and mitogen-activated protein kinase (MAPK) signaling pathways. In addition, the admetSAR results showed that berberine can cross the blood-brain barrier. The molecular docking results indicated key binding activity between TLR4-berberine and FN1-berberine. In summary, berberine protects against Streptococcus suis meningitis by regulating inflammatory response and oxidative stress in humans and pigs. Our study updates the current knowledge of the targets of S. suis meningitis to exploit new drugs in humans and pigs, to develop environmentally friendly and antibiotic-free animal-derived food products, and to improve the farming industry and economic development.
Collapse
Affiliation(s)
- Pu Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (P.G.); (Y.X.); (D.Z.); (Q.L.); (Y.L.); (J.X.); (C.Y.); (S.F.); (Z.W.)
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yunda Xue
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (P.G.); (Y.X.); (D.Z.); (Q.L.); (Y.L.); (J.X.); (C.Y.); (S.F.); (Z.W.)
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (P.G.); (Y.X.); (D.Z.); (Q.L.); (Y.L.); (J.X.); (C.Y.); (S.F.); (Z.W.)
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qirong Lu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (P.G.); (Y.X.); (D.Z.); (Q.L.); (Y.L.); (J.X.); (C.Y.); (S.F.); (Z.W.)
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (P.G.); (Y.X.); (D.Z.); (Q.L.); (Y.L.); (J.X.); (C.Y.); (S.F.); (Z.W.)
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jianglin Xiong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (P.G.); (Y.X.); (D.Z.); (Q.L.); (Y.L.); (J.X.); (C.Y.); (S.F.); (Z.W.)
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (P.G.); (Y.X.); (D.Z.); (Q.L.); (Y.L.); (J.X.); (C.Y.); (S.F.); (Z.W.)
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (P.G.); (Y.X.); (D.Z.); (Q.L.); (Y.L.); (J.X.); (C.Y.); (S.F.); (Z.W.)
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (P.G.); (Y.X.); (D.Z.); (Q.L.); (Y.L.); (J.X.); (C.Y.); (S.F.); (Z.W.)
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (P.G.); (Y.X.); (D.Z.); (Q.L.); (Y.L.); (J.X.); (C.Y.); (S.F.); (Z.W.)
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
29
|
Wei M, Jia W, Jiang Y, Dong C, Wang C, Tang Y, Zhang W, Yin D, Guo J, Li A, Gong Y. Efficacy and safety of Danggui Liuhuang Decoction combined with antithyroid drugs for hyperthyroidism: A systematic review and meta-analysis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119253. [PMID: 39732298 DOI: 10.1016/j.jep.2024.119253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 10/01/2024] [Accepted: 12/14/2024] [Indexed: 12/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hyperthyroidism is a prevalent clinical endocrine disorder. Danggui Liuhuang Decoction (DGLHD), a traditional Chinese herbal medicine formula, has shown potential benefits for patients with hyperthyroidism in recent studies. However, the clinical efficacy and safety of DGLHD have not been systematically evaluated. To address this, a systematic review and meta-analysis are necessary to comprehensively evaluate its efficacy and safety in treating hyperthyroidism. AIM OF THE STUDY To evaluate the efficacy and safety of DGLHD in treating hyperthyroidism. MATERIALS AND METHODS A comprehensive search of eight databases was conducted from their inception to November 2023 to identify randomized controlled trials (RCTs) comparing DGLHD combined with antithyroid drugs (ATDs) to ATDs alone. The quality of the included studies was assessed using the Cochrane Risk of Bias Assessment Tool. A meta-analysis was conducted using Revman 5.3 software, while publication bias was evaluated with Stata 16.0 software. The certainty of the evidence was assessed using the GRADE system. RESULTS Overall, 20 RCTs involving 1757 patients with hyperthyroidism were included in this analysis. The methodological quality was generally low. The meta-analysis revealed that, compared to ATDs alone, the combination of DGLHD with ATDs was more effective in reducing free triiodothyronine (FT3) [standardized mean difference (SMD) = -0.80, 95% confidence interval (CI): -1.31 to -0.28, P = 0.002], free thyroxine (FT4) [SMD = -1.47, 95% CI: -1.99 to -0.94, P < 0.00001], Traditional Chinese Medicine (TCM) syndrome scores [mean difference (MD) = -3.65, 95% CI: -4.68 to -2.62, P < 0.00001], and adverse events [relative risk (RR) = 0.23, 95% CI: 0.15 to 0.36, P < 0.00001]. Additionally, combining DGLHD with ATDs led to an improvement in thyroid-stimulating hormone (TSH) levels [SMD = 2.75, 95% CI: 1.37 to 4.13, P < 0.0001] and increased the effectiveness rate of TCM syndrome [RR = 1.20, 95% CI: 1.08 to 1.34, P = 0.001]. However, other outcomes, such as recurrence rates and quality of life scores, could not be analyzed through meta-analysis owing to the limited number of included studies. CONCLUSION Combining DGLHD with ATDs may alleviate clinical symptoms, enhance thyroid function, and reduce adverse events in patients with hyperthyroidism. Moreover, this treatment appears to be safe for clinical use. However, owing to the limited quantity and quality of the included studies, these conclusions require further validation through more large-sample, multicenter, high-quality RCTs.
Collapse
Affiliation(s)
- Maoying Wei
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Weiyu Jia
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yijia Jiang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chenlu Dong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Churan Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yiting Tang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wenhua Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dan Yin
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingyi Guo
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Aijing Li
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanbing Gong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
30
|
Alpaslan Ağaçdiken A, Göktaş Z. Berberine-induced browning and energy metabolism: mechanisms and implications. PeerJ 2025; 13:e18924. [PMID: 39931072 PMCID: PMC11809318 DOI: 10.7717/peerj.18924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Obesity has become a global pandemic. The approaches researched to prevent it include decreasing energy intake and/or enhancing energy expenditure. Therefore, research on brown adipose tissue is of great importance. Brown adipose tissue is characterized by its high mitochondrial content. Mitochondrial uncoupling protein 1 (UCP1) releases energy as heat instead of chemical energy. Thermogenesis increases energy expenditure. Berberine, a phytochemical widely used in Asian countries, has positive effects on body weight control. While the precise mechanisms behind this effect remain unclear, the adenosine monophosphate-activated protein kinase (AMPK) pathway is known to play a crucial role. Berberine activates AMPK through phosphorylation, significantly impacting brown adipose tissue by enhancing lipolytic activity and increasing the expression of UCP1, peroxisome proliferator-activated receptor γ-co-activator-1α (PGC1α), and PR domain containing 16 (PRDM16). While investigating the mechanism of action of berberine, both the AMPK pathway is being examined in more detail and alternative pathways are being explored. One such pathway is growth differentiation factor 15 (GDF15), known for its appetite-suppressing effect. Berberine's low stability and bioavailability, which are the main obstacles to its clinical use, have been improved through the development of nanotechnological methods. This review examines the potential mechanisms of berberine on browning and summarizes the methods developed to enhance its effect.
Collapse
Affiliation(s)
| | - Zeynep Göktaş
- Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
31
|
Chen R, Lun J, Wang T, Ma Y, Huang J, He S, Zhang Y, Qu Q, Liu M, Sun H, Sun J, Mao W, Wang J, Lv W, Guo S. Intervention effects of Er Miao san on metabolic syndrome in Bama miniature pigs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156355. [PMID: 39787693 DOI: 10.1016/j.phymed.2024.156355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/12/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Metabolic syndrome (MS) refers to a cluster of metabolic disorders characterized by systemic chronic inflammation. Er Miao San (EMS) is a classic traditional Chinese medicine compound containing Phellodendron amurense and Atractylodis rhizome at a ratio of 1:1, proven to be effective against inflammatory diseases in clinical practice. Nevertheless, the precise functions of EMS in treating MS and its underlying mechanism have yet to be elucidated. PURPOSE This study focuses on the intervention effects of EMS on high humidity exposure and high sugar-fat diet (HHSF)-induced MS in pigs. STUDY DESIGN Blood biochemical indices and metabolome analysis were employed to confirm the successful establishment of the MS model, and the preliminary evaluation of the intervention effect of EMS was conducted. Subsequently, a parallel microbiota analysis of the tongue and cecum was combined with metabolomic analysis, histopathologic examination, and other molecular biological detection to further assess the administration mechanism of EMS. RESULTS The results demonstrated that EMS significantly reduced the excessive weight gain rate, fat accumulation, hyperlipidemia, hyperglycemia, and systemic inflammation while improving serum metabolic disorder in MS pigs. Moreover, microbiota analysis indicates that EMS restored the diversity and composition of oral-gut microbiota by increasing the proportions of Lactobacillus (gut), Roseburia (gut), Faecalibacterium (gut), CF231 (gut), Streptococcus (gut), Prevotella (gut), while decreasing those of Chryseobacterium (oral), Corynebacterium (oral), Clostridium (oral), Oscillospira (gut), and Turicibacter (oral, gut). Subsequently, EMS up-regulated the concentrations of acetic acid, butyric acid, propionic acid, while down-regulated isobutyric acid and isovaleric acid. This resulted in a suppression of HDAC3 expression and an increase of SCL16A1 expression in the colon. Notably, the changes in acetic acid and butyric acid showed a strong correlation with gut microbiota. Additionally, EMS reduced the serum level of lipopolysaccharide (LPS) and enhanced epithelial barrier integrity by inhibiting the LPS-TLR4/MyD88/NF-κB pathways. CONCLUSIONS EMS was found to ameliorate MS by alleviating the dysbiosis of the oral-gut microbiota and serum metabolome, thereby improving gut barrier and reducing systemic inflammation. These findings suggest that EMS holds promise as a therapeutic agent for MS.
Collapse
Affiliation(s)
- Rong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianchi Lun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tianze Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yimu Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jieyi Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shiqi He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yingwen Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mengjie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haiyang Sun
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinbo Sun
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Mao
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juanjuan Wang
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Guangdong Research Center for Veterinary Traditional Chinese Medicine and Natural Medicine Engineering Technology, Guangzhou, China.
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Guangdong Research Center for Veterinary Traditional Chinese Medicine and Natural Medicine Engineering Technology, Guangzhou, China.
| |
Collapse
|
32
|
Komarudin AG, Adharis A, Sasmono RT. Natural Compounds and Their Analogs as Antivirals Against Dengue Virus: A Review. Phytother Res 2025; 39:888-921. [PMID: 39697048 DOI: 10.1002/ptr.8408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 12/20/2024]
Abstract
Dengue virus (DENV) continues to pose a significant global health challenge, causing diseases such as dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. While efforts in vaccine development and antiviral drug discovery are ongoing, effective therapeutic options remain limited. In this review, we highlight natural compounds and the analogs that demonstrated antiviral activity against DENV in in vitro and in vivo studies. Specifically, these studies examine alkaloids, phenolic acids, phenols, flavonoids, terpenoids, and glycosides which have shown potential in inhibiting DENV entry, replication, and reducing the cytokine storm. By focusing on these bioactive compounds and the analogs, a comprehensive overview of their promising roles is provided to advance therapeutic strategies for combating DENV infection.
Collapse
Affiliation(s)
- Amalina Ghaisani Komarudin
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Kabupaten Bogor, Jawa Barat, Indonesia
| | - Azis Adharis
- Department of Chemistry, Faculty of Science and Computer Science, Universitas Pertamina (UPER), Jakarta, Indonesia
| | - R Tedjo Sasmono
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Kabupaten Bogor, Jawa Barat, Indonesia
| |
Collapse
|
33
|
Gunasaykaran SY, Chear NJY, Ismail S, Mohammad NA, Murugaiyah V, Ramanathan S. Drug-drug interactions of plant alkaloids derived from herbal medicines on the phase II UGT enzymes: an introductory review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1447-1464. [PMID: 39325152 DOI: 10.1007/s00210-024-03418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024]
Abstract
Herbal medicines are widely used as alternative or complementary therapies to treat and prevent chronic diseases. However, these can lead to drug-drug interactions (DDIs) that affect the glucuronidation reaction of UDP glucuronosyltransferases (UGTs), which convert drugs into metabolites. Plant extracts derived from medicinal herbs contain a diverse array of compounds categorized into different functional groups. While numerous studies have examined the inhibition of UGT enzymes by various herbal compounds, it remains unclear which group of compounds exerts the most significant impact on DDIs in the glucuronidation reaction. Recently, alkaloids derived from medicinal herbs, including kratom (Mitragyna speciosa), have gained attention due to their diverse pharmacological properties. This review primarily focuses on the DDIs of plant alkaloids from medicinal herbs, including kratom on the phase II UGT enzymes. Kratom is a new emerging herbal product in Western countries that is often used to self-treat chronic pain, opioid withdrawal, or as a replacement for prescription and non-prescription opioids. Kratom is well-known for its psychoactive alkaloids, which have a variety of psychopharmacological effects. However, the metabolism mechanism of kratom alkaloids, particularly on the phase II pathway, is still poorly understood. Simultaneously using kratom or other herbal products containing alkaloids with prescribed medicines may have an impact on the drug metabolism involving the phase II UGT enzymes. To ensure the safety and efficacy of treatments, gaining a better understanding of the DDIs when using herbal products with conventional medicine is crucial.
Collapse
Affiliation(s)
| | | | - Sabariah Ismail
- Centre for Drug Research, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | | | - Vikneswaran Murugaiyah
- Centre for Drug Research, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | - Surash Ramanathan
- Centre for Drug Research, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.
| |
Collapse
|
34
|
Jael Teresa de Jesús QV, Gálvez-Ruíz JC, Márquez Ibarra AA, Leyva-Peralta MA. Perspectives on Berberine and the Regulation of Gut Microbiota: As an Anti-Inflammatory Agent. Pharmaceuticals (Basel) 2025; 18:193. [PMID: 40006007 PMCID: PMC11858814 DOI: 10.3390/ph18020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/26/2024] [Accepted: 11/13/2024] [Indexed: 02/27/2025] Open
Abstract
Berberine is a promising agent for modulating the intestinal microbiota, playing a crucial role in human health homeostasis. This natural compound promotes the growth of beneficial bacteria such as Bacteroides, Bifidobacterium, and Lactobacillus while reducing harmful bacteria such as Escherichia coli. Clinical and preclinical studies demonstrate that Berberine helps regulate T2D and metabolic disorders, improves blood glucose levels during T2D, and reduces lipid profile and chronic inflammation, especially when combined with probiotics. Berberine represents a promising adjuvant therapy for inflammatory diseases, particularly intestinal disorders, due to its multifaceted actions of inhibiting proinflammatory cytokines and pathways during IBS, IBD, and UC and its modulation of gut microbiota and/or enhancement of the integrity of the intestinal epithelial barrier. This review establishes the basis for future treatment protocols with berberine and fully elucidates its mechanisms.
Collapse
Affiliation(s)
| | - Juan-Carlos Gálvez-Ruíz
- Department of Chemical and Biological Sciences, University of Sonora, Hermosillo 83000, Mexico;
| | | | - Mario-Alberto Leyva-Peralta
- Department of Chemical-Biological and Agricultural Sciences, Universidad de Sonora, Unidad Regional Norte, Caborca 83621, Mexico;
| |
Collapse
|
35
|
Tkaczenko H, Kurhaluk N. Antioxidant-Rich Functional Foods and Exercise: Unlocking Metabolic Health Through Nrf2 and Related Pathways. Int J Mol Sci 2025; 26:1098. [PMID: 39940866 PMCID: PMC11817741 DOI: 10.3390/ijms26031098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
This article reviews the synergistic effects of antioxidant-enriched functional foods and exercise in improving metabolic health, focusing on the underlying molecular mechanisms. The review incorporates evidence from PubMed, SCOPUS, Web of Science, PsycINFO, and reference lists of relevant reviews up to 20 December 2024, highlighting the central role of the Nrf2 pathway. As a critical regulator of oxidative stress and metabolic adaptation, Nrf2 mediates the benefits of these interventions. This article presents an innovative approach to understanding the role of Nrf2 in the regulation of oxidative stress and inflammation, highlighting its potential in the prevention and treatment of various diseases, including cancer, neurodegenerative disorders, cardiovascular and pulmonary diseases, diabetes, inflammatory conditions, ageing, and infections such as COVID-19. The novelty of this study is to investigate the synergistic effects of bioactive compounds found in functional foods (such as polyphenols, flavonoids, and vitamins) and exercise-induced oxidative stress on the activation of the Nrf2 pathway. This combined approach reveals their potential to improve insulin sensitivity and lipid metabolism and reduce inflammation, offering a promising strategy for the management of chronic diseases. However, there are significant gaps in current research, particularly regarding the molecular mechanisms underlying the interaction between diet, physical activity, and Nrf2 activation, as well as their long-term effects in different populations, including those with chronic diseases. In addition, the interactions between Nrf2 and other critical signalling pathways, including AMPK, NF-κB, and PI3K/Akt, and their collective contributions to metabolic health are explored. Furthermore, novel biomarkers are presented to assess the impact of these synergistic strategies, such as the NAD+/NADH ratio, the GSH ratio, and markers of mitochondrial health. The findings provide valuable insights into how the integration of an antioxidant-rich diet and regular exercise can improve metabolic health by activating Nrf2 and related molecular pathways and represent promising strategies for the prevention and treatment of metabolic disorders. Further studies are needed to fully understand the therapeutic potential of these interventions in diseases related to oxidative stress, such as cardiovascular disease, neurodegenerative disease, diabetes, and cancer.
Collapse
Affiliation(s)
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22b, 76-200 Słupsk, Poland;
| |
Collapse
|
36
|
Zhang PP, Li L, Qu HY, Chen GY, Xie MZ, Chen YK. Traditional Chinese medicine in the treatment of Helicobacter pylori-related gastritis: The mechanisms of signalling pathway regulations. World J Gastroenterol 2025; 31:96582. [PMID: 39839895 PMCID: PMC11684169 DOI: 10.3748/wjg.v31.i3.96582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/29/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Helicobacter pylori-associated gastritis (HPAG) is a common condition of the gastrointestinal tract. However, extensive and long-term antibiotic use has resulted in numerous adverse effects, including increased resistance, gastrointestinal dysfunction, and increased recurrence rates. When these concerns develop, traditional Chinese medicine (TCM) may have advantages. TCM is based on the concept of completeness and aims to eliminate pathogens and strengthen the body. It has the potential to prevent this condition while also boosting the rate of Helicobacter pylori eradication. This review elaborates on the mechanism of TCM treatment for HPAG based on cellular signalling pathways, which reflects the flexibility of TCM in treating diseases and the advantages of multi-level, multi-pathway, and multi-target treatments for HPAG.
Collapse
Affiliation(s)
- Pei-Pei Zhang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| | - Liang Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| | - Hao-Yu Qu
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- School of Informatics, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Guang-Yu Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| | - Meng-Zhou Xie
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| | - Yan-Kun Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Precision Medicine Research and Development Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, Guangdong Province, China
| |
Collapse
|
37
|
Li S, Chen X, Shi H, Yi M, Xiong B, Li T. Tailoring traditional Chinese medicine in cancer therapy. Mol Cancer 2025; 24:27. [PMID: 39838407 PMCID: PMC11749133 DOI: 10.1186/s12943-024-02213-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/25/2024] [Indexed: 01/23/2025] Open
Abstract
Cancer remains a formidable global health challenge, necessitating innovative therapeutic approaches to enhance treatment efficacy and reduce adverse effects. The traditional Chinese medicine (TCM), as an embodiment of ancient wisdom, has been validated to regulate the holistic human capacity against both internal and external "evils" in accordance with TCM principles. Therefore, it stands to reason to integrate TCM into current cancer therapy paradigms, such as chemotherapy, immunotherapy, and targeted therapy. This strategy conceptually intends to circumvent the inevitable side effects derived from present treatment, alleviate the discomfort, mollify the detrimental mood and synergize tumoricidal effects of distinct approaches. However, it is still vague whether TCM exert favorable function in cancer treatment. Therefore, it is imperative to retrieve and compile the existing literature on TCM in the realm of cancer, followed by a comprehensive recapitulation and synthesis of its core findings. Recently, with the advancement of contemporary biologic and medical theory and technology, it has become both feasible and imperative to elucidate the molecular signaling mechanisms and cellular biology underlying TCM. Specifically, leveraging TCM pharmaceutic components can not only directly impact tumor biology at the molecular level, but regulate the tumor immune environment through distinct pathways. Additionally, the administration of external TCM treatments such as acupuncture and moxibustion also demonstrates beneficial effects in cancer patients. Through comprehensive analysis, we demonstrated that TCM not only potentially increases the efficacy of conventional cancer treatments, but also significantly mitigates their toxic side effects, thereby prolonging patients' prognosis and improving their living quality. Furthermore, we have underscored the challenges and prospects associated with the integration of TCM into contemporary oncological practices, placing particular emphasis on the imperative for rigorous clinical trials and molecular investigations to substantiate the efficacy and safety of these combined therapeutic approaches. This synthesis aims to pave the way for a more integrated approach to cancer treatment rooted in both traditional wisdom and cutting-edge science.
Collapse
Affiliation(s)
- Shuiquan Li
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Xi Chen
- Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, People's Republic of China
| | - Hui Shi
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Bing Xiong
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
38
|
Miao Z, Chang D, Du X, Sun C. Berberrubine protects against cisplatin-induced ototoxicity by promoting folate biosynthesis. Front Pharmacol 2025; 15:1496917. [PMID: 39850559 PMCID: PMC11754208 DOI: 10.3389/fphar.2024.1496917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025] Open
Abstract
Objective This research investigated the possible shielding properties of BB (Berberrubine) against the harmful auditory effects of cisplatin, preliminarily delving into the underlying mechanisms responsible for this protection. Methods HEI-OC1 cell viability was determined using a Cell Counting Kit-8 (CCK-8). The impact of BB on cochlear hair cells was studied through in vitro cochlear explants culture. Apoptosis levels were measured through Annexin V-PI, Cleaved Caspase-3, and TUNEL staining. The level of ROS (reactive oxygen species) was measured through the application of DCFH-DA, MitoSOX, and JC-1 fluorescent dyes for staining. Immunofluorescence analysis of cochlear samples from mice was conducted to quantify the hair cell count, and concurrently, ABR (Auditory Brainstem Response) testing was utilized to evaluate auditory function. The mechanism of action of BB was explored using RNA-Seq and qRT-PCR analysis. Results BB significantly improved cell survival rates under cisplatin treatment, reduced levels of apoptotic markers (TUNEL, Cleaved Caspase-3, Annexin V-PI), decreased ROS and MitoSOX levels, and improved JC-1 signals in both HEI-OC1 cells and cochlear hair cells in cochlear explants culture. Animal studies demonstrated that treatment with BB enhanced the survival of cochlear hair cells, reduced hearing impairment caused by cisplatin in mice. RNA-seq and qRT-PCR analysis revealed that BB influenced the expression levels of multiple genes (Ccnd2, Reln, Pgf, Mylk3, Ppplr12c, Thbsl), by promoting folate biosynthesis for hearing protection. Conclusion Our findings suggest that BB protects against cisplatin-induced hearing damage by enhancing folate biosynthesis, decreasing intracellular ROS levels, and inhibiting apoptosis.
Collapse
Affiliation(s)
| | | | | | - Changling Sun
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
39
|
Liu CY, Li Z, Cheng FE, Nan Y, Li WQ. Radix Codonopsis: a review of anticancer pharmacological activities. Front Pharmacol 2025; 15:1498707. [PMID: 39840099 PMCID: PMC11747557 DOI: 10.3389/fphar.2024.1498707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Radix Codonopsis (Dangshen), derived from the dried root of plants in the Campanulaceae family, is a widely used Chinese herbal medicine. It is renowned for its pharmacological effects, including tonifying the middle qi, invigorating the spleen, benefiting the lungs, enhancing immunity, and nourishing the blood. Codonopsis extract is frequently incorporated into health products such as tablets and capsules, making it accessible for daily health maintenance. Additionally, it is commonly used in dietary applications like soups, teas, and porridges to nourish qi, enrich blood, and promote overall vitality. In recent years, increasing attention has been given to the anti-cancer potential of Radix Codonopsis. Studies have identified key active components such as luteolin, stigmasterol, polyacetylenes, lobetyolin, and glycitein, which exhibit anti-tumor properties through mechanisms like inhibiting cancer cell growth and proliferation, suppressing epithelial-mesenchymal transition (EMT), and inducing apoptosis. This review highlights the research progress on Radix Codonopsis, including its active constituents, anti-cancer mechanisms, and its role in the convergence of medicine and food in modern life. By doing so, it aims to provide valuable insights and references for future scientific studies and clinical applications of Radix Codonopsis.
Collapse
Affiliation(s)
- Cai-Yue Liu
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
| | - Zheng Li
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
| | - Fan-E. Cheng
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
| | - Yi Nan
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Wei-Qiang Li
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
40
|
Lv M, Chen X, Yang Q, Huang C, Lv Y, Zhang T, Cai J. Berberine restrains non-small cell lung cancer cell growth, invasion and glycolysis via inactivating the SPC25/NUF2 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03729-w. [PMID: 39755832 DOI: 10.1007/s00210-024-03729-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025]
Abstract
Berberine (BBR) has been proved to inhibit the malignant progression of non-small cell lung cancer (NSCLC), but the underlying molecular mechanism still needs to be further revealed. NSCLC cells (A549 and H1299) were treated with BBR. CCK8 assay, colony formation assay, flow cytometry, TUNEL staining and transwell assay were used to examine cell proliferation, apoptosis and invasion. The levels of spindle pole body component 25 (SPC25) and NDC80 kinetochore complex component (NUF2) were detected by qRT-PCR or western blot. The interaction between SPC25 and NUF2 was confirmed by Co-IP assay and FISH assay. Xenograft tumors were constructed to assess the anti-tumor role of BBR in vivo. BBR inhibited NSCLC cell growth, invasion and glycolysis. SPC25 was upregulated in NSCLC tissues, and BBR could reduce SPC25 expression in NSCLC cells. SPC25 knockdown repressed NSCLC cell growth, invasion and glycolysis, and its overexpression also reversed the anti-tumor effect of BBR. SPC25 could interact with NUF2, and NUF2 overexpression abolished the inhibitory effect of SPC25 knockdown or BBR on NSCLC cell behaviors. In animal experiments, BBR could suppress NSCLC tumor growth by inhibiting SPC25/NUF2 axis in vivo. BBR mainly played an anti-NSCLC role by targeting SPC25/NUF2 axis, which provided a new idea for NSCLC treatment.
Collapse
Affiliation(s)
- Meng Lv
- Department of Respiratory and Critical Care Medicine, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiangrui Chen
- Department of Hematology and Oncology, Third People's Hospital of Zigong, Zigong, Sichuan, China
| | - Qiting Yang
- Department of Cardiopulmonary Rehabilitation and Sleep Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chushuan Huang
- Pneumology Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongbiao Lv
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tian Zhang
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junxiang Cai
- Department of Respiratory and Critical Care Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, No. 111, Dade Road, Guangzhou, 510120, China.
| |
Collapse
|
41
|
Hirakawa K, Matsuura T, Nishimura Y, Mori H, Takagi S. Relaxation process of photoexcited berberine via aggregation and dissociation state-dependent intramolecular electron transfer. Photochem Photobiol Sci 2025; 24:79-87. [PMID: 39730844 DOI: 10.1007/s43630-024-00673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/06/2024] [Indexed: 12/29/2024]
Abstract
The fluorescence quantum yield of berberine in aqueous solution is significantly smaller than those of organic solution. The time profile of fluorescence intensity of berberine was analyzed by a bi-exponential function, showing that two kinds of states of berberine exist in the solutions. The observed fluorescence lifetime of shorter lifetime species of berberine in water (0.08 ns) was markedly smaller than those of organic solvents and the relative amplitude of the shorter lifetime was dominated in the aqueous solution. Thus, this shorter lifetime can be explained by the deactivation via intramolecular electron transfer. These two states of berberine were independent of pH. The enthalpy and entropy changes between these two states were - 23.2 kJ mol-1 and - 90 J K-1 mol-1, supporting the aggregation of berberine. In the aggregation state, an electrostatic interaction between cationic berberine and chloride ion decreases the electron accepting ability of the isoquinoline moiety of berberine, resulting in the suppression of intramolecular electron transfer. Furthermore, in the presence of clay, the interaction between berberine and clay increased the fluorescence intensity of berberine and its lifetime, showing that the negative charge of clay suppresses the intramolecular electron transfer. Since the electron transfer quenching of the photo-excited berberine is advantageous for suppressing the phototoxic effect of berberine, the inhibition of berberine aggregation is an important process for the phototoxicity prevention.
Collapse
Affiliation(s)
- Kazutaka Hirakawa
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Johoku 3-5-1, Chuo-Ku, Hamamatsu, Shizuoka, 432-8561, Japan.
- Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, Johoku 3-5-1, Chuo-Ku, Hamamatsu, Shizuoka, 432-8561, Japan.
- Cooperative Major in Medical Photonics, Shizuoka University, Johoku 3-5-1, Chuo-Ku, Hamamatsu, Shizuoka, 432-8561, Japan.
| | - Toji Matsuura
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Johoku 3-5-1, Chuo-Ku, Hamamatsu, Shizuoka, 432-8561, Japan
| | - Yoshinobu Nishimura
- Department of Chemistry, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8571, Japan
| | - Hakan Mori
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-Shi, Tokyo, 192-0397, Japan
| | - Shinsuke Takagi
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-Shi, Tokyo, 192-0397, Japan
| |
Collapse
|
42
|
Marcinčáková D, Hudáková N, Miłek M, Kolesárová M, Dżugan M, Cizkova D, Legáth J. Evaluation of the Antioxidant Properties and Biological Effects of a Novel Combined Barberry Root-Propolis Extract on HEK293T Cells. Pharmaceuticals (Basel) 2024; 18:27. [PMID: 39861090 PMCID: PMC11769209 DOI: 10.3390/ph18010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The health benefits of honeybee products and herbs are well known, and their appropriate combination may enhance their biological efficacy. This study investigated the biological properties of a combined barberry root and propolis extract (PBE) in comparison to a propolis extract (PE), a barberry root extract (BE), and pure berberine (BN). Methods: The antioxidant properties were evaluated using DPPH and FRAP methods and total phenolic contents (TPC) were assessed by the Folin-Ciocalteu method. HPTLC was used to quantify the BE in the tested samples. Their effect on HEK293T cells was monitored in real-time by using the xCELLigence system which recorded changes in the proliferative activity (PA). The metabolic activity (MA) was evaluated using an MTS test and cell migration was analyzed via a scratch assay. Results: The PE exhibited a higher TPC (198.67 mg/g) than the BE (119.3 mg/g). The PBE exhibited a comparable antioxidant effect to that of the PE. In the cell assays, the PE, the BE, and BN significantly reduced the proliferative activity at higher concentrations (p < 0.0001) while the PBE demonstrated a lower cytotoxicity and proved to be safer for the tested cells. The highest IC50 value was determined for the PBE (130 µg/mL), suggesting that this combination has a reduced cytotoxicity. However, the scratch test did not confirm a significant supportive effect of the PBE on cell migration. Conclusions: Although the PBE did not show enhanced antioxidant properties, it may mitigate cytotoxicity and support proliferation at lower concentrations. This suggests that extraction of raw propolis with a previously prepared barberry extract results in a safer preparation, but its therapeutic potential requires further studies using biological models.
Collapse
Affiliation(s)
- Dana Marcinčáková
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy in Kosice, Komenského 73, 041 81 Kosice, Slovakia; (D.M.); (M.K.); (J.L.)
| | - Nikola Hudáková
- Centre of Experimental and Clinical Regenerative Medicine, Small Animal Clinic, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia;
| | - Michal Miłek
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszow, Poland; (M.M.); (M.D.)
| | - Mária Kolesárová
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy in Kosice, Komenského 73, 041 81 Kosice, Slovakia; (D.M.); (M.K.); (J.L.)
| | - Małgorzata Dżugan
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszow, Poland; (M.M.); (M.D.)
| | - Dasa Cizkova
- Centre of Experimental and Clinical Regenerative Medicine, Small Animal Clinic, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia;
- Institute of Neuroimmunology, SAS, 845 10 Bratislava, Slovakia
| | - Jaroslav Legáth
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy in Kosice, Komenského 73, 041 81 Kosice, Slovakia; (D.M.); (M.K.); (J.L.)
| |
Collapse
|
43
|
Zhou F, Gu X, Wang W, Lin M, Wang L. Advancements in MRSA treatment: the role of berberine in enhancing antibiotic therapy. BMC Microbiol 2024; 24:540. [PMID: 39731013 DOI: 10.1186/s12866-024-03692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/08/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) is a significant public health problem. This study investigated the antimicrobial properties and mechanisms of berberine (BBR), a plant alkaloid, against MRSA, evaluating its potential to enhance antibiotic therapy. RESULTS Berberine only demonstrated variable but significant inhibitory effects on 50 clinical MRSA strains. When combined with antibiotics, synergistic effects were observed only with amikacin in 6 of the 50 MRSA strains. BBR disrupted MRSA cell wall integrity, leading to leakage of cellular contents. Network pharmacology analysis revealed that BBR targets multiple pathways essential for bacterial survival. CONCLUSION The study confirmed the potent antimicrobial activity of berberine against MRSA and its capability to act synergistically with traditional antibiotics. Berberine's impact on cell wall integrity and bacterial survival pathways highlights its potential as an adjunct therapy in MRSA treatment.
Collapse
Affiliation(s)
- Fangfang Zhou
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, No.8 Caobao Road, Xuhui District, Shanghai, 200235, P.R. China
- School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu, P.R. China
| | - Xuemei Gu
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, No.8 Caobao Road, Xuhui District, Shanghai, 200235, P.R. China
| | - Wei Wang
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, No.8 Caobao Road, Xuhui District, Shanghai, 200235, P.R. China
| | - Ming Lin
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, No.8 Caobao Road, Xuhui District, Shanghai, 200235, P.R. China
| | - Lei Wang
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, No.8 Caobao Road, Xuhui District, Shanghai, 200235, P.R. China.
| |
Collapse
|
44
|
Helal AM, Yossef MM, Seif IK, Abd El-Salam M, El Demellawy MA, Abdulmalek SA, Ghareeb AZ, Holail J, Mohsen Al-Mahallawi A, El-Zahaby SA, Ghareeb DA. Nanostructured biloalbuminosomes loaded with berberine and berberrubine for Alleviating heavy Metal-Induced male infertility in rats. Int J Pharm 2024; 667:124892. [PMID: 39481813 DOI: 10.1016/j.ijpharm.2024.124892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Despite the remarkable biological effects of berberine (BBR), particularly on fertility, its bioavailability is low. This study aims to test the effectiveness of novel nanostructured biloalbuminosomes (BILS) of BBR and its metabolite berberrubine (M1) in treatment of testicular and prostatic lesions. M1 was semi-synthesized from BBR using microwave-assisted reaction. The solvent evaporation method was used to prepare BBR-BILS and M1-BILS by three different concentrations of sodium cholate (SC) or glycocholate (SG), along with the incorporation of bovine serum albumin (BSA). The prepared BILS were fully characterized. Male infertility was induced by cadmium (Cd) at 5 mg/kg and lead (Pb) at 20 mg/kg contaminated water for 90 days, followed by treatment with BBR, M1, and their BILS (BBR-BILS and M1-BILS) for 45 days. Blood male infertility markers, testicular and prostatic oxidative stress status, autophagy, inflammation, along with testicular and prostatic concentrations of Cd and Pb, and histopathology of both tested tissues were determined using standardized protocols. The optimal BBR-BILS and M1-BILS nano-preparations, containing 30 mg SC, were chosen based on the best characterization properties of the preparations. Both nano-preparations improved heavy metals-induced testicular and prostatic deformities, as they reduced Bax and elevated Bcl-2 expressions in both tissues. Moreover, they activated the mTOR/PI3K pathway with a marked reduction in AMPK and activated LC-3II protein levels. Consequently, testicular and prostatic architecture and functions were improved. This study is the first to report the preparation of BBR and M1 BILS nano-preparations and proved their superior efficacy compared to free drugs against testicular and prostatic deformities by attenuating oxidative stress-induced excessive autophagy, offering a new hope to manage male infertility.
Collapse
Affiliation(s)
- Aya M Helal
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Mona M Yossef
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Inas K Seif
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria, Egypt
| | - Mohamed Abd El-Salam
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 VN5, Ireland; Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt
| | - Maha A El Demellawy
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), The City of Scientific Research and Technological Applications (SRTA-City), Borg Al-Arab, Alexandria, Egypt
| | - Shaymaa A Abdulmalek
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed Z Ghareeb
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria, Egypt
| | - Jasmine Holail
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt.
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria, Egypt; Research Projects Unit, Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex 21648, Alexandria, Egypt
| |
Collapse
|
45
|
Liu S, Wang W, Liu H, Wei H, Weng Y, Zhou W, Zhang X, He S, Chen Y, Wang Y, Zhang M, Chen X. Berberine promotes primordial follicle activation and increases ovulated oocyte quantity in aged mice. Mol Med 2024; 30:251. [PMID: 39707173 DOI: 10.1186/s10020-024-01042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Primordial follicle activation is vital for the reproduction of women with advanced age and premature ovarian insufficiency (POI). But there is a lack of effective and safe therapeutic options to activate their primordial follicles in vivo. Berberine (BBR) possesses multiple pharmacological properties, but its impact on primordial follicle activation remains unclear. METHODS The role of BBR on primordial activation was investigated by neonatal mouse ovary culture and intraperitoneal injection, and by human ovarian fragment culture. Furthermore, the effect of BBR on the quantity of ovulated oocytes was investigated by the intragastric administration of aged mice. RESULTS BBR in vitro culture and in vivo intraperitoneal injection significantly increased growing follicle number and phosphorylated protein kinase B (p-Akt) levels in neonatal mouse ovaries. BBR also significantly increased the relative fluorescence intensities of p-Akt in the oocytes of primordial follicles. BBR-increased the number of growing follicles and the levels of p-Akt were blocked by LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K). Furthermore, BBR intragastric administration significantly increased the quantity of ovulated oocytes in aged mice. Moreover, BBR significantly increased growing follicle proportion and p-Akt levels in cultured human ovarian fragments. CONCLUSION BBR promotes mouse and human primordial follicle activation through the PI3K/Akt pathway in oocytes, and improves the quantity of ovulated oocytes in aged mice. Our results suggest a potential use of oral medicine BBR to improve fertility in POI patients and aged women.
Collapse
Affiliation(s)
- Shuang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Weiyong Wang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Huiyu Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Hongwei Wei
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yashuang Weng
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Wenjun Zhou
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Xiaodan Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Sihui He
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Ye Chen
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yahong Wang
- Reproductive Medicine Center, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, 528300, China
| | - Meijia Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Xin Chen
- Reproductive Medicine Center, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, 528300, China.
| |
Collapse
|
46
|
Koh WH, Lin LW, Lin TI, Liu CW, Chang LC, Lin IC, Wu MS, Tsai CC. Exploring the relaxation effects of Coptis chinensis and berberine on the lower esophageal sphincter: potential strategies for LES motility disorders. BMC Complement Med Ther 2024; 24:417. [PMID: 39696287 DOI: 10.1186/s12906-024-04720-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Esophageal achalasia, a primary disorder impacting the lower esophageal sphincter (LES), presents symptoms such as dysphagia, regurgitation, chest pain, and weight loss. Traditional treatments, including calcium channel blockers and nitrates, offer limited relief, prompting exploration into alternative therapies. This study examines the efficacy of Traditional Chinese Medicine (TCM), focusing on Coptis chinensis (C. chinensis) and its principal component, berberine, for modulating LES relaxation, offering a new perspective on treatment possibilities. METHODS This research evaluated the impact of C. chinensis extract and berberine on the relaxation of LES contraction pre-induced by carbachol, observing the effects across different concentrations. We employed a series of inhibitors, including tetrodotoxin, ω-conotoxin GVIA, rolipram, vardenafil, KT5823, KT5720, NG-nitro-L-arginine, tetraethylammonium (TEA), apamine, iberiotoxin, and glibenclamide, to investigate the underlying mechanisms of berberine-induced LES relaxation. RESULTS Both C. chinensis extract and berberine induced significant, concentration-dependent relaxation of the LES. The relaxation effect of berberine was significantly reduced by TEA, indicating the involvement of potassium channels in this process. CONCLUSIONS This study demonstrates that C. chinensis and berberine significantly promote LES relaxation, primarily through potassium channel activation. These findings provide a foundation for further investigation of these compounds' potential therapeutic applications in esophageal motility disorders, such as achalasia.
Collapse
Affiliation(s)
- Wen-Harn Koh
- Department of Pediatrics, E-Da Hospital, I-Shou University, No. 1, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C
| | - Li-Wei Lin
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, No. 8, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C
| | - Ting-I Lin
- Department of Pediatrics, E-Da Hospital, I-Shou University, No. 1, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C
| | - Ching-Wen Liu
- Department of Senior Citizen Health Service and Management, Yuh-Ing Junior College of Health Care and Management, No. 15, Lane 420, Dachang 2nd Road, Kaohsiung City, 80776, Taiwan, R.O.C
| | - Li-Ching Chang
- School of Medicine for International Students, College of Medicine, I-Shou University, No. 8, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C
| | - I-Chun Lin
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Road, Niaosong District, Kaohsiung City, 83301, Taiwan, R.O.C
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, No. 7, Zhongshan S. Road, Zhongzheng District, Taipei City, 100225, Taiwan, R.O.C
| | - Ching-Chung Tsai
- Department of Pediatrics, E-Da Hospital, I-Shou University, No. 1, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C..
- School of Medicine for International Students, College of Medicine, I-Shou University, No. 8, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C..
| |
Collapse
|
47
|
Zhang H, Xie S, Deng W. Mitophagy in Doxorubicin-Induced Cardiotoxicity: Insights into Molecular Biology and Novel Therapeutic Strategies. Biomolecules 2024; 14:1614. [PMID: 39766321 PMCID: PMC11674137 DOI: 10.3390/biom14121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Doxorubicin is a chemotherapeutic drug utilized for solid tumors and hematologic malignancies, but its clinical application is hampered by life-threatening cardiotoxicity, including cardiac dilation and heart failure. Mitophagy, a cargo-specific form of autophagy, is specifically used to eliminate damaged mitochondria in autophagosomes through hydrolytic degradation following fusion with lysosomes. Recent advances have unveiled a major role for defective mitophagy in the etiology of DOX-induced cardiotoxicity. Moreover, specific interventions targeting this mechanism to preserve mitochondrial function have emerged as potential therapeutic strategies to attenuate DOX-induced cardiotoxicity. However, clinical translation is challenging because of the unclear mechanisms of action and the potential for pharmacological adverse effects. This review aims to offer fresh perspectives on the role of mitophagy in the development of DOX-induced cardiotoxicity and investigate potential therapeutic strategies that focus on this mechanism to improve clinical management.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.Z.); (S.X.)
- Hubei Key Laboratory of Metabolism and Related Chronic Diseases, Wuhan 430060, China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.Z.); (S.X.)
- Hubei Key Laboratory of Metabolism and Related Chronic Diseases, Wuhan 430060, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.Z.); (S.X.)
- Hubei Key Laboratory of Metabolism and Related Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
48
|
Wang Y, Yu X, Huang Z, Peng J, Zhou L, Cai L, Zhao X, Zhang P. Berberine-doped montmorillonite nanosheet for photoenhanced antibacterial therapy and wound healing. J Colloid Interface Sci 2024; 676:774-782. [PMID: 39059283 DOI: 10.1016/j.jcis.2024.07.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Bacterial infections pose a substantial threat to human health, particularly with the emergence of antibiotic-resistant strains. Therefore, it is essential to develop novel approaches for the efficient treatment of bacterial diseases. This study presents a therapeutic approach involving BBR@MMT nanosheets (NSs), wherein montmorillonite (MMT) was loaded with berberine (BBR) through an ion intercalation reaction to sterilize and promote wound healing. BBR@MMT exhibits nano-enzymatic-like catalytic activity, is easy to synthesize, and requires low reaction conditions. This nanocomplex showed photodynamic properties and superoxide dismutase (SOD) activity. The in vitro experiments indicated that BBR@MMT was able to effectively inhibit the growth of Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli) through the production of ROS when exposed to white light. Meanwhile, BBR@MMT inhibited the secretion of pro-inflammatory factors and scavenged free radicals via its SOD-like activity. In vivo results showed that BBR@MMT NSs were capable of effectively promoting the wound-healing process in infected mice under white light irradiation. Hence, it can be concluded that photodynamic therapy based on BBR@MMT NSs with nano-enzymatic activity has the potential to be used in treating infections and tissue repair associated with drug-resistant microorganisms.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinghua Yu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zhihui Huang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiaofeng Peng
- Instrumental Analysis Center of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Leiji Zhou
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China; Sino-Euro Center of Biomedicine and Health, Luohu Shenzhen 518024, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
49
|
Feng B, Su L, Yang Y, Liu R, Zhang Y, Xin L, Wang L, Yang Z, Wei X, Chen Q. Comprehensive plasma metabolomics analysis of berberine treatment in ulcerative colitis rats by LC-MS/MS. Front Chem 2024; 12:1518110. [PMID: 39722837 PMCID: PMC11668600 DOI: 10.3389/fchem.2024.1518110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Background Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) influenced by multiple factors. Berberine, an isoquinoline alkaloid derived from the root and bark of Coptis chinensis Franch., has shown promise in managing UC, but its underlying mechanisms remain unclear. Methods To elucidate the relationship between berberine, ulcerative colitis (UC), and the organism's metabolome, we established a dextran sulfate sodium (DSS)-induced UC model in rats. Colonic tissue was collected for histopathological examination, while plasma samples were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with dynamic Multiple Reaction Monitoring (dMRM). This approach, characterized by its short analysis time of 20 min per sample, excellent reproducibility, and straightforward data processing, allowed for the comprehensive detection of a wide array of metabolites, including amino acids, lipids, and organic acids, many of which are implicated in the pathophysiology of UC. Results Our results showed that berberine modulated the metabolic disturbances of 33 compounds in the plasma of UC rats, primarily including amino acids, pyrimidines, organic phosphoric acids, fatty acyls, and organonitrogen compounds. These altered metabolites were associated with various pathways, such as amino acid metabolism, glutathione metabolism, nicotinate and nicotinamide metabolism, taurine and hypotaurine metabolism, pyrimidine metabolism, glyoxylate and dicarboxylate metabolism, and the citrate cycle (TCA cycle). Notably, 3-hydroxyproline, homocysteic acid, L-threonine, L-lysine, carbamoyl phosphate, O-phosphoethanolamine, taurine, leucine, and phosphorylcholine exhibited significant differences between the Treatment and Model groups, with levels reverting to those of the Control group (p < 0.001). These findings suggested that these compounds may serve as potential plasma biomarkers for UC. Conclusion This study provided valuable insights into the mechanism by which berberine exerted its therapeutic effects on UC through metabolomics. Our results highlighted berberine's potential to modulate key metabolic pathways and restore the levels of several metabolites, suggesting its utility as a therapeutic agent for UC. These findings underscored the importance of metabolomics in understanding the pathophysiology and treatment of UC.
Collapse
Affiliation(s)
- Baodong Feng
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, China
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| | - Linqi Su
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, China
- Department of Pharmacy, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Yang
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, China
| | - Renyan Liu
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, China
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| | - Yu Zhang
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, China
- Department of Pharmacy, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingyi Xin
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, China
- Department of Pharmacy, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Wang
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, China
- Department of Pharmacy, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiming Yang
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, China
| | - Xuemei Wei
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, China
| | - Qinhua Chen
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, China
- Department of Pharmacy, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
50
|
Liang L, He C, Han X, Liu J, Yang L, Chang F, Zhang Y, Lin J. Zuojin Pill Alleviates Precancerous Lesions of Gastric Cancer by Modulating the MEK/ERK/c-Myc Pathway: An Integrated Approach of Network Pharmacology, Molecular Dynamics Simulation, and Experimental Validation. Drug Des Devel Ther 2024; 18:5905-5929. [PMID: 39679136 PMCID: PMC11646374 DOI: 10.2147/dddt.s487371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
Background Precancerous lesions of gastric cancer (PLGC) represent critical stages in gastric cancer progression, with a high risk of malignancy. Current treatments, such as Helicobacter pylori eradication, show limited efficacy in reversing precancerous molecular changes. Zuojin Pill (ZJP), a traditional Chinese medicine, has demonstrated potential for treating digestive disorders and may offer a promising approach for PLGC intervention. Objective This study aims to investigate the therapeutic effects and mechanisms of ZJP in treating PLGC, focusing on its active components, target pathways, and molecular interactions. By using advanced analytical techniques, we provide a scientific foundation for ZJP's potential application in early gastric cancer intervention. Methods Using ultra-high performance liquid chromatography-quadrupole orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap HRMS), we identified active components in ZJP. A network pharmacology approach was then applied to construct a "ZJP-compound-target-disease" network. Molecular docking and molecular dynamics simulations were conducted to analyze the stability and interactions of the main active components of ZJP with core protein targets in PLGC. Animal experiments were used to validate significant targets and pathways in vivo. Results Tangeritin, Isorhamnetin, Caffeic Acid, Azelaic Acid, and Adenosine were identified as the main active components of ZJP in the treatment of PLGC, with key targets including PIK3R1, MAPK3, SRC, JAK2, STAT3, and PIK3CA. Molecular docking and molecular dynamics simulations further confirmed the relationship between compounds and target proteins. The potential molecular mechanism of ZJP predicted by network pharmacology analysis was confirmed in PLGC rats. ZJP downregulated IL-6, TNF-α, c-myc, p-MEK1 and p-ERK1/2, effectively reversing the progression of PLGC. Conclusion ZJP can reverse MNNG-induced PLGC, potentially through inhibition of the MEK/ERK/c-myc pathway and regulation of cellular proliferation and apoptosis.
Collapse
Affiliation(s)
- Lan Liang
- The First Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
- College of Nursing, Shaanxi Energy Institute, Xianyang, People’s Republic of China
| | - Chenming He
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xue Han
- Xijing 986 Hospital Department, Air Force Medical University, Xian, People’s Republic of China
| | - Jia Liu
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Liuhong Yang
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Fengjiao Chang
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Yami Zhang
- The Fifth Oncology Department, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Jie Lin
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
- Shaanxi Provincial Key Laboratory of TCM Constitution and Disease Prevention, Xianyang, People’s Republic of China
| |
Collapse
|