1
|
Wang J, Du L, Chen X. Oncolytic virus: A catalyst for the treatment of gastric cancer. Front Oncol 2022; 12:1017692. [PMID: 36505792 PMCID: PMC9731121 DOI: 10.3389/fonc.2022.1017692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
Gastric cancer (GC) is a leading contributor to global cancer incidence and mortality. According to the GLOBOCAN 2020 estimates of incidence and mortality for 36 cancers in 185 countries produced by the International Agency for Research on Cancer (IARC), GC ranks fifth and fourth, respectively, and seriously threatens the survival and health of people all over the world. Therefore, how to effectively treat GC has become an urgent problem for medical personnel and scientific workers at this stage. Due to the unobvious early symptoms and the influence of some adverse factors such as tumor heterogeneity and low immunogenicity, patients with advanced gastric cancer (AGC) cannot benefit significantly from treatments such as radical surgical resection, radiotherapy, chemotherapy, and targeted therapy. As an emerging cancer immunotherapy, oncolytic virotherapies (OVTs) can not only selectively lyse cancer cells, but also induce a systemic antitumor immune response. This unique ability to turn unresponsive 'cold' tumors into responsive 'hot' tumors gives them great potential in GC therapy. This review integrates most experimental studies and clinical trials of various oncolytic viruses (OVs) in the diagnosis and treatment of GC. It also exhaustively introduces the concrete mechanism of invading GC cells and the viral genome composition of adenovirus and herpes simplex virus type 1 (HSV-1). At the end of the article, some prospects are put forward to determine the developmental directions of OVTs for GC in the future.
Collapse
Affiliation(s)
- Junqing Wang
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linyong Du
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Xiangjian Chen, ; Linyong Du,
| | - Xiangjian Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Xiangjian Chen, ; Linyong Du,
| |
Collapse
|
2
|
Huang F, Dai C, Zhang Y, Zhao Y, Wang Y, Ru G. Development of Molecular Mechanisms and Their Application on Oncolytic Newcastle Disease Virus in Cancer Therapy. Front Mol Biosci 2022; 9:889403. [PMID: 35860357 PMCID: PMC9289221 DOI: 10.3389/fmolb.2022.889403] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is caused by the destruction or mutation of cellular genetic materials induced by environmental or genetic factors. It is defined by uncontrolled cell proliferation and abnormality of the apoptotic pathways. The majority of human malignancies are characterized by distant metastasis and dissemination. Currently, the most common means of cancer treatment include surgery, radiotherapy, and chemotherapy, which usually damage healthy cells and cause toxicity in patients. Targeted therapy is an effective tumor treatment method with few side effects. At present, some targeted therapeutic drugs have achieved encouraging results in clinical studies, but finding an effective solution to improve the targeting and delivery efficiency of these drugs remains a challenge. In recent years, oncolytic viruses (OVs) have been used to direct the tumor-targeted therapy or immunotherapy. Newcastle disease virus (NDV) is a solid oncolytic agent capable of directly killing tumor cells and increasing tumor antigen exposure. Simultaneously, NDV can trigger the proliferation of tumor-specific immune cells and thus improve the therapeutic efficacy of NDV in cancer. Based on NDV’s inherent oncolytic activity and the stimulation of antitumor immune responses, the combination of NDV and other tumor therapy approaches can improve the antitumor efficacy while reducing drug toxicity, indicating a broad application potential. We discussed the biological properties of NDV, the antitumor molecular mechanisms of oncolytic NDV, and its application in the field of tumor therapy in this review. Furthermore, we presented new insights into the challenges that NDV will confront and suggestions for increasing NDV’s therapeutic efficacy in cancer.
Collapse
Affiliation(s)
- Fang Huang
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Chuanjing Dai
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
| | - Youni Zhang
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
- Department of Laboratory Medicine, Tiantai People’s Hospital, Taizhou, China
| | - Yuqi Zhao
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Yigang Wang, ; Guoqing Ru,
| | - Guoqing Ru
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Yigang Wang, ; Guoqing Ru,
| |
Collapse
|
3
|
Yepuri N, Bahary N, Jain A, Dhir M. Review and Update on the Role of Peritoneal Cytology in the Treatment of Gastric Cancer. J Surg Res 2018; 235:607-614. [PMID: 30691849 DOI: 10.1016/j.jss.2018.10.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/12/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Positive peritoneal cytology (Cyt+) even in the absence of macroscopic disease is associated with poor prognosis in patients with gastric cancer and deemed as M1 disease. Recent years have seen advancements in the evaluation strategies for peritoneal washings and management of patients with Cyt+. The aim of this review was to describe the newest paradigms in the management of patients with gastric cancer who have Cyt+ without macroscopic peritoneal metastases. METHODS A comprehensive literature review was performed to identify studies on the management of gastric cancer and thereby to summarize relevant information on the accuracy of various diagnostic tests and controversies involved in the treatment of patients with Cyt+. RESULTS Although conventional cytology remains the standard technique for assessment of peritoneal washings, it is limited by low sensitivity. The role of immunohistochemistry and molecular techniques for the assessment of peritoneal washings is evolving. Although systemic chemotherapy remains the standard of care for patients with Cyt+ disease, the role of gastrectomy, intraperitoneal chemotherapy, extensive intraperitoneal saline lavage, and hyperthermic intraperitoneal chemotherapy is being evaluated. CONCLUSIONS Clinical decision-making in patients with Cyt+ remains controversial given the seemingly technical resectable albeit biologically unresectable or aggressive disease that portends an overall poor prognosis. Current management strategies are evolving, and further studies are needed to develop an optimal treatment strategy for these patients.
Collapse
Affiliation(s)
- Natesh Yepuri
- Division of Surgical Oncology, Department of Surgery, SUNY Upstate Medical University, Syracuse, New York
| | - Nathan Bahary
- Division of Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ajay Jain
- Division of Surgical Oncology, Department of Surgery, SUNY Upstate Medical University, Syracuse, New York
| | - Mashaal Dhir
- Division of Surgical Oncology, Department of Surgery, SUNY Upstate Medical University, Syracuse, New York.
| |
Collapse
|
4
|
Zamarin D, Ricca JM, Sadekova S, Oseledchyk A, Yu Y, Blumenschein WM, Wong J, Gigoux M, Merghoub T, Wolchok JD. PD-L1 in tumor microenvironment mediates resistance to oncolytic immunotherapy. J Clin Invest 2018; 128:1413-1428. [PMID: 29504948 DOI: 10.1172/jci98047] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022] Open
Abstract
Intralesional therapy with oncolytic viruses (OVs) leads to the activation of local and systemic immune pathways, which may present targets for further combinatorial therapies. Here, we used human tumor histocultures as well as syngeneic tumor models treated with Newcastle disease virus (NDV) to identify a range of immune targets upregulated with OV treatment. Despite tumor infiltration of effector T lymphocytes in response to NDV, there was ongoing inhibition through programmed death ligand 1 (PD-L1), acting as a mechanism of early and late adaptive immune resistance to the type I IFN response and T cell infiltration, respectively. Systemic therapeutic targeting of programmed cell death receptor 1 (PD-1) or PD-L1 in combination with intratumoral NDV resulted in the rejection of both treated and distant tumors. These findings have implications for the timing of PD-1/PD-L1 blockade in conjunction with OV therapy and highlight the importance of understanding the adaptive mechanisms of immune resistance to specific OVs for the rational design of combinatorial approaches using these agents.
Collapse
Affiliation(s)
- Dmitriy Zamarin
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA.,Weill Cornell Medical College, New York, New York, USA.,Ludwig Collaborative Laboratory.,Swim Across America Laboratory, and.,Parker Institute for Cancer Immunotherapy, MSKCC, New York, New York, USA
| | - Jacob M Ricca
- Ludwig Collaborative Laboratory.,Swim Across America Laboratory, and
| | | | - Anton Oseledchyk
- Ludwig Collaborative Laboratory.,Swim Across America Laboratory, and
| | - Ying Yu
- Merck Research Labs (MRL), Palo Alto, California, USA
| | | | - Jerelyn Wong
- Merck Research Labs (MRL), Palo Alto, California, USA
| | - Mathieu Gigoux
- Ludwig Collaborative Laboratory.,Swim Across America Laboratory, and
| | - Taha Merghoub
- Weill Cornell Medical College, New York, New York, USA.,Ludwig Collaborative Laboratory.,Swim Across America Laboratory, and.,Parker Institute for Cancer Immunotherapy, MSKCC, New York, New York, USA
| | - Jedd D Wolchok
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA.,Weill Cornell Medical College, New York, New York, USA.,Ludwig Collaborative Laboratory.,Swim Across America Laboratory, and.,Parker Institute for Cancer Immunotherapy, MSKCC, New York, New York, USA
| |
Collapse
|
5
|
Kagawa S, Shigeyasu K, Ishida M, Watanabe M, Tazawa H, Nagasaka T, Shirakawa Y, Fujiwara T. Molecular diagnosis and therapy for occult peritoneal metastasis in gastric cancer patients. World J Gastroenterol 2014; 20:17796-17803. [PMID: 25548478 PMCID: PMC4273130 DOI: 10.3748/wjg.v20.i47.17796] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/07/2014] [Accepted: 06/26/2014] [Indexed: 02/06/2023] Open
Abstract
To apply an individualized oncological approach to gastric cancer patients, the accurate diagnosis of disease entities is required. Peritoneal metastasis is the most frequent mode of metastasis in gastric cancer, and the tumor-node-metastasis classification includes cytological detection of intraperitoneal cancer cells as part of the staging process, denoting metastatic disease. The accuracy of cytological diagnosis leaves room for improvement; therefore, highly sensitive molecular diagnostics, such as an enzyme immunoassay, reverse transcription polymerase chain reaction, and virus-guided imaging, have been developed to detect minute cancer cells in the peritoneal cavity. Molecular targeting therapy has also been spun off from basic research in the past decade. Although conventional cytology is still the mainstay, novel approaches could serve as practical complementary diagnostics to cytology in near future.
Collapse
|
6
|
Oncolytic specificity of Newcastle disease virus is mediated by selectivity for apoptosis-resistant cells. J Virol 2011; 85:6015-23. [PMID: 21471241 DOI: 10.1128/jvi.01537-10] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Newcastle disease virus (NDV) is a negative-sense RNA virus that has been shown to possess oncolytic activity. NDV's selective replication in tumor cells has been previously suggested to be due to the lack of a proper antiviral response in these cells. Here we demonstrate that NDV possesses oncolytic activity in tumor cells capable of a robust type I interferon (IFN) response, suggesting that another mechanism underlies NDV's tumor specificity. We show that the oncolytic selectivity of NDV for tumor cells is dependent upon tumor cell resistance to apoptosis. Utilizing the human non-small-cell lung cancer cell line A549 overexpressing the antiapoptotic protein Bcl-xL, we show significant enhancement of oncolytic activity and NDV replication. Interestingly, while the Bcl-xL-overexpressing cells were resistant to apoptotic stimuli induced by chemotherapeutic agents and early viral replication, during the subsequent viral cycles, we observed a paradoxical increase in apoptosis in response to NDV. The increased oncolytic activity seen was secondary to enhanced viral replication and syncytium formation. The induction of a type I IFN response was enhanced in Bcl-xL cells. Overall, these findings propose a new mechanism for cancer cell specificity for NDV, making it an attractive anticancer agent for chemoresistant tumors with enhanced antiapoptotic activity.
Collapse
|