1
|
Bi XR, Zhao SY, Ma YQ, Duan XY, Hu TT, Bi LZ, Cai HY. Multiple primary cancers with gastrointestinal malignant tumors as the first manifestation: Three case reports and review of literature. World J Gastroenterol 2025; 31:100146. [DOI: 10.3748/wjg.v31.i8.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/03/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND The incidence of malignant gastrointestinal (GI) tumors is increasing, and advancements in medical care have significantly improved patient survival rates. As a result, the number of cases involving multiple primary cancers (MPC) has also increased. The rarity of MPC and the absence of sensitive and specific diagnostic markers often lead to missed or incorrect diagnoses. It is, therefore, of vital importance to improve the vigilance of clinicians and the accurate diagnosis of this disease. Patients with GI malignancies face a higher relative risk of developing additional primary malignant tumors compared to those with other systemic tumors. Vigilant monitoring and follow-up are crucial, especially for high-risk groups, which include older adults, men, those with addictions to alcohol and tobacco, those with a family history of tumors, and those who have undergone radiotherapy.
CASE SUMMARY In this article, we report three cases of MPC, each involving malignant tumors of the GI tract as the initial primary carcinoma, offering insights that may aid in effectively managing similar cases.
CONCLUSION Patients with GI malignancies face a higher MPC risk. Developing screening and follow-up protocols may enhance detection and treatment outcomes.
Collapse
Affiliation(s)
- Xin-Ran Bi
- The First Clinical Medical College of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu Province, China
- Department of Radiotherapy Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Shuang-Yan Zhao
- The First Clinical Medical College of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu Province, China
- Department of Radiotherapy Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Yu-Qi Ma
- The First Clinical Medical College of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu Province, China
- Department of Gastrointestinal Surgery, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Xiao-Yu Duan
- Department of Radiotherapy Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Ting-Ting Hu
- Department of Radiotherapy Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Lian-Zhu Bi
- Department of Neurology, Hospital of Fengnan District, Tangshan 063300, Hebei Province, China
| | - Hong-Yi Cai
- Department of Radiotherapy Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
2
|
Li Z, Li Z, Sun C, Zhang X, Fei H, Xing C, Zhao D. Association between adjuvant radiotherapy in adults with gastric cancer and risk of second primary malignancy: a retrospective cohort study using the Surveillance, Epidemiology and End Results database. BMJ Open 2025; 15:e086349. [PMID: 39938963 PMCID: PMC11822440 DOI: 10.1136/bmjopen-2024-086349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 01/27/2025] [Indexed: 02/14/2025] Open
Abstract
OBJECTIVES This study aims to assess the association between adjuvant radiotherapy and the development of second primary malignancies (SPMs) and identify its determinants in patients who have undergone surgical treatment for gastric cancer. DESIGN Retrospective cohort study using the Surveillance, Epidemiology and End Results (SEER) database. SETTING Cohorts (18 registries, 2000-2018, from SEER) were screened for any malignancy that developed after sufficient latency from diagnosis of surgically treated non-metastatic gastric cancer. PARTICIPANTS 24 777 surgically treated gastric cancer cases were included in the cohort. Among them, 6128 patients underwent adjuvant radiotherapy. OUTCOME MEASURES The cumulative incidence of SPMs was estimated using Fine and Gray's competing risk model and the radiotherapy-correlated risks were calculated using Poisson regression analysis. RESULTS Among patients with sufficient latency, there was no significant association between radiotherapy and the risk of developing second primary solid malignancies (relative risk=1.05, 95% CI 0.83 to 1.33) or haematological malignancies (relative risk=1.17, 95% CI 0.62 to 2.11). Interestingly, radiotherapy was associated with a reduced cumulative incidence of second lung and bronchus cancer compared with no radiotherapy, with a 15-year incidence of 1.4%-3.17% (p<0.05). Radiotherapy was not associated with a significant increase in standardised incidence ratios of SPMs. CONCLUSIONS Adjuvant radiotherapy was not associated with an increased risk of developing SPMs in surgically treated patients with gastric cancer. Clinical trials are warranted to further verify the findings.
Collapse
Affiliation(s)
- Zheng Li
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/ National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zefeng Li
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/ National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chongyuan Sun
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/ National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaojie Zhang
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/ National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He Fei
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/ National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Xing
- Department of General Surgery, Beijing Hospital, Beijing, China
| | - Dongbing Zhao
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/ National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Sun Q, Chen Y, Li T, Ni B, Zhu X, Xu B, Li J. Risk and prognosis of secondary esophagus cancer after radiotherapy for breast cancer. Sci Rep 2023; 13:3968. [PMID: 36894590 PMCID: PMC9998633 DOI: 10.1038/s41598-023-30812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Although radiation therapy (RT) improves locoregional recurrence and overall survival in breast cancer (BC), it is not yet clear whether RT affects the risk of patients with BC developing second esophageal cancer (SEC). We enrolled patients with BC as their first primary cancer from nine registries in the Surveillance, Epidemiology, and End Results (SEER) database between 1975 and 2018. Fine-Gray competing risk regressions were assessed to determine the cumulative incidence of SECs. The standardized incidence ratio (SIR) was used to compare the prevalence of SECs among BC survivors to that in the general population of the US. Kaplan-Meier survival analysis was applied to calculate the 10-year overall survival (OS) and cancer-specific survival (CSS) rates for SEC patients. Among the 523,502 BC patients considered herein, 255,135 were treated with surgery and RT, while 268,367 had surgery without radiotherapy. In a competing risk regression analysis, receiving RT was associated with a higher risk of developing an SEC in BC patients than that in the patients not receiving RT (P = .003). Compared to the general population of the US, the BC patients receiving RT showed a greater incidence of SEC (SIR, 1.52; 95% confidence interval [CI], 1.34-1.71, P < .05). The 10-year OS and CSS rates of SEC patients after RT were comparable to those of the SEC patients after no RT. Radiotherapy was related to an increased risk of developing SECs in patients with BC. Survival outcomes for patients who developed SEC after RT were similar to those after no RT.
Collapse
Affiliation(s)
- Qianhui Sun
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixian Pavilion, Xicheng District, Beijing, China
| | - Yunru Chen
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Baoyi Ni
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixian Pavilion, Xicheng District, Beijing, China
| | - Xiaoyu Zhu
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixian Pavilion, Xicheng District, Beijing, China
| | - Bowen Xu
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixian Pavilion, Xicheng District, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Jie Li
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixian Pavilion, Xicheng District, Beijing, China.
| |
Collapse
|
4
|
Saga R, Matsuya Y, Sato H, Hasegawa K, Obara H, Komai F, Yoshino H, Aoki M, Hosokawa Y. Translational study for stereotactic body radiotherapy against non-small cell lung cancer, including oligometastases, considering cancer stem-like cells enable predicting clinical outcome from in vitro data. Radiother Oncol 2023; 181:109444. [PMID: 37011969 DOI: 10.1016/j.radonc.2022.109444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/15/2022] [Accepted: 12/06/2022] [Indexed: 02/16/2023]
Abstract
BACKGROUND Curative effects of stereotactic body radiotherapy (SBRT) for non-small cell lung cancer (NSCLC) have been evaluated using various biophysical models. Because such model parameters are empirically determined based on clinical experience, there is a large gap between in vitro and clinical studies. In this study, considering the heterogeneous cell population, we performed a translational study to realize the possible linkage based on a modeling approach. METHODS We modeled cell-killing and tumor control probability (TCP) considering two populations: progeny and cancer stem-like cells. The model parameters were determined from in vitro survival data of A549 and EBC-1 cells. Based on the cellular parameters, we predicted TCP and compared it with the corresponding clinical data from 553 patients collected at Hirosaki University Hospital. RESULTS Using an all-in-one developed model, the so-called integrated microdosimetric-kinetic (IMK) model, we successfully reproduced both in vitro survival after acute irradiation and the 3-year TCP with various fractionation schemes (6-10 Gy per fraction). From the conventional prediction without considering cancer stem cells (CSCs), this study revealed that radioresistant CSCs play a key role in the linkage between in vitro and clinical outcomes. CONCLUSIONS This modeling study provides a possible generalized biophysical model that enables precise estimation of SBRT worldwide.
Collapse
Affiliation(s)
- Ryo Saga
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan.
| | - Yusuke Matsuya
- Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan; Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Hikari Sato
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Kazuki Hasegawa
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Hideki Obara
- Division of Radiology, Hirosaki University Hospital, 53 Hon-cho, Hirosaki, Aomori 036-8563, Japan
| | - Fumio Komai
- Division of Radiology, Hirosaki University Hospital, 53 Hon-cho, Hirosaki, Aomori 036-8563, Japan
| | - Hironori Yoshino
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Masahiko Aoki
- Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Yoichiro Hosokawa
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
5
|
Brachytherapy for Pediatric Patients at Gustave Roussy Cancer Campus: A Model of International Cooperation for Highly Specialized Treatments. Int J Radiat Oncol Biol Phys 2022; 113:602-613. [PMID: 35278672 DOI: 10.1016/j.ijrobp.2022.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 12/18/2022]
Abstract
PURPOSE Childhood cancer is rare, and treatment is frequently associated with long-term morbidity. Disparities in survival and long-term side effects encourage the establishment of networks to increase access to complex organ-conservative strategies, such as brachytherapy. We report our experience of an international cooperation model in childhood cancers. METHODS AND MATERIALS We examined the outcome of all children referred to our center from national or international networks to be treated according to a multimodal organ-conservative approach, including brachytherapy. RESULTS We identified 305 patients whose median age at diagnosis was 2.2 years (range, 1.4 months to 17.2 years). Among these patients, 99 (32.4%) were treated between 2015 and 2020; 172 (56.4%) were referred from national centers; and 133 (43.6%) were international patients from 31 countries (mainly Europe). Also, 263 patients were referred for primary treatment and 42 patients were referred for salvage treatment. Genitourinary tumors were the most frequent sites, with 56.4% bladder/prostate rhabdomyosarcoma and 28.5% gynecologic tumors. In addition to brachytherapy, local treatment consisted of partial tumor resection in 207 patients (67.9%), and 39 patients (13%) had additional external radiation therapy. Median follow-up was 58 months (range, 1 month to 48 years), 93 months for national patients, and 37 months for international patients (P < .0001). Five-year local control, disease-free survival, and overall survival rates were 90.8% (95% confidence interval [CI], 87.3%-94.4%), 84.4% (95% CI, 80.1%-89.0%), and 93.3% (95% CI, 90.1%-96.5%), respectively. Patients referred for salvage treatment had poorer disease-free survival (P < .01). Implementation of image guided pulse-dose-rate brachytherapy was associated with better local control among patients with rhabdomyosarcoma referred for primary treatment (hazard ratio, 9.72; 95% CI, 1.24-71.0). At last follow-up, 16.7% patients had long-term severe treatment-related complications, and 2 patients (0.7%) had developed second malignancy. CONCLUSIONS This retrospective series shows the feasibility of a multinational referral network for brachytherapy allowing high patient numbers in rare pediatric cancers. High local control probability and acceptable late severe complication probability could be achieved despite very challenging situations. This cooperation model could serve as a basis for generating international reference networks for high-tech radiation such as brachytherapy to increase treatment care opportunities and cure probability.
Collapse
|
6
|
Xue F, Niu X, Hu C, He X. Second Primary Lung Adenocarcinoma After Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma. Front Oncol 2022; 12:801090. [PMID: 35280823 PMCID: PMC8907561 DOI: 10.3389/fonc.2022.801090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Objective The improvement of the efficacy of intensity-modulated radiotherapy (IMRT) for nasopharyngeal cancer (NPC) has prolonged the survival of patients, and the incidence of the second tumor has gradually increased. Among them, second primary lung adenocarcinoma (SPLAC) attributes the highest incidence. This study aimed to determine the long-term risk of SPLAC in NPC patients after IMRT. Methods From May 2005 to May 2018, a total of 1,102 non-metastatic NPC patients who received IMRT in our hospital were enrolled, and the incidence and efficacy of SPLAC were followed up in the long term. Results Over a median follow-up period of 66 months, a total of 22 cases of SPLAC were observed, with an incidence of 2.0%. The 1-, 2-, 3-, 4-, and 5-year cumulative risks of SPLAC were 0.4%, 0.7%, 0.8%, 1.1%, and 1.7%, respectively. During follow-up, 90.9% (20/22) of the SPLAC detected was in early stage, and the recurrence rate of surgery alone was 5.3% (1/19). Conclusion In NPC patients, the proportion of SPLAC after IMRT was similar to that of the normal population, and most of them were found in early stage during follow-up, with good surgical efficacy.
Collapse
Affiliation(s)
- Fen Xue
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoshuang Niu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chaosu Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiayun He
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
7
|
Liang YY, Niu FY, Xu AA, Jiang LL, Liu CS, Liang HP, Huang YF, Shao XF, Mo ZW, Yuan YW. Increased MCL-1 synthesis promotes irradiation-induced nasopharyngeal carcinoma radioresistance via regulation of the ROS/AKT loop. Cell Death Dis 2022; 13:131. [PMID: 35136016 PMCID: PMC8827103 DOI: 10.1038/s41419-022-04551-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/13/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022]
Abstract
Worldwide, nasopharyngeal carcinoma (NPC) is a rare head and neck cancer; however, it is a common malignancy in southern China. Radiotherapy is the most important treatment strategy for NPC. However, although radiotherapy is a strong tool to kill cancer cells, paradoxically it also promotes aggressive phenotypes. Therefore, we mimicked the treatment process in NPC cells in vitro. Upon exposure to radiation, a subpopulation of NPC cells gradually developed resistance to radiation and displayed cancer stem-cell characteristics. Radiation-induced stemness largely depends on the accumulation of the antiapoptotic myeloid cell leukemia 1 (MCL-1) protein. Upregulated MCL-1 levels were caused by increased stability and more importantly, enhanced protein synthesis. We showed that repeated ionizing radiation resulted in persistently enhanced reactive oxygen species (ROS) production at a higher basal level, further promoting protein kinase B (AKT) signaling activation. Intracellular ROS and AKT activation form a positive feedback loop in the process of MCL-1 protein synthesis, which in turn induces stemness and radioresistance. AKT/MCL-1 axis inhibition attenuated radiation-induced resistance, providing a potential target to reverse radiation therapy-induced radioresistance.
Collapse
Affiliation(s)
- Ying-Ying Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Fei-Yu Niu
- Department of Internal Medicine, Section 3, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - An-An Xu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Li-Li Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Chun-Shan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Hui-Ping Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yu-Fan Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xun-Fan Shao
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Wen Mo
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| | - Ya-Wei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Chargari C, Giraud P, Lacornerie T, Cosset JM. Prevention of radiation-induced cancers. Cancer Radiother 2021; 26:92-95. [PMID: 34953687 DOI: 10.1016/j.canrad.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The issue of radiation-induced cancers must be taken into consideration during therapeutic irradiations. Risk factors for radiation-induced cancer include: the age of the patients, the volumes irradiated, the presence of risk cofactors and the exposure of critical organs. Those should be part of the therapeutic decision, in terms of indication, as well as choice of the radiotherapy technique (including repositioning systems). We present the update of the recommendations of the French society for radiation oncology on the modalities for preventing radiation-induced cancers.
Collapse
Affiliation(s)
- C Chargari
- Département d'oncologie radiothérapie, Gustave-Roussy Cancer Campus, 114, rue Édouard-Vaillant, 94800 Villejuif, France.
| | - P Giraud
- Département d'oncologie radiothérapie, hôpital européen Georges-Pompidou, université de Paris, 20, rue Leblanc, 75015 Paris, France
| | - T Lacornerie
- Service de physique médicale, centre Oscar-Lambret, 3, rue Frédéric-Combemale, 59000 Lille, France
| | - J-M Cosset
- Centre de radiothérapie Charlebourg/La Défense, groupe Amethyst, 65, avenue Foch, 92250 La Garenne-Colombes, France
| |
Collapse
|
9
|
Blanchard P, Zelefsky MJ, Bossi A, Chargari C, Cosset JM. Second malignancy (SM) in prostate cancer patients treated with SBRT and other contemporary radiation techniques. Radiother Oncol 2021; 164:251-252. [PMID: 34627937 DOI: 10.1016/j.radonc.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 11/27/2022]
Affiliation(s)
| | - Michael J Zelefsky
- Radiation Oncology, Memorial Sloane Kettering Cancer Center, New York, USA
| | - Alberto Bossi
- Radiation Oncology, Centre Charlebourg, La Garenne Colombe, France
| | | | - Jean-Marc Cosset
- Radiation Oncology, Centre Charlebourg, La Garenne Colombe, France
| |
Collapse
|
10
|
François S, Helissey C, Cavallero S, Drouet M, Libert N, Cosset JM, Deutsch E, Meziani L, Chargari C. COVID-19-Associated Pneumonia: Radiobiological Insights. Front Pharmacol 2021; 12:640040. [PMID: 34113249 PMCID: PMC8185272 DOI: 10.3389/fphar.2021.640040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
The evolution of SARS-CoV-2 pneumonia to acute respiratory distress syndrome is linked to a virus-induced “cytokine storm”, associated with systemic inflammation, coagulopathies, endothelial damage, thrombo-inflammation, immune system deregulation and disruption of angiotensin converting enzyme signaling pathways. To date, the most promising therapeutic approaches in COVID-19 pandemic are linked to the development of vaccines. However, the fight against COVID-19 pandemic in the short and mid-term cannot only rely on vaccines strategies, in particular given the growing proportion of more contagious and more lethal variants among exposed population (the English, South African and Brazilian variants). As long as collective immunity is still not acquired, some patients will have severe forms of the disease. Therapeutic perspectives also rely on the implementation of strategies for the prevention of secondary complications resulting from vascular endothelial damage and from immune system deregulation, which contributes to acute respiratory distress and potentially to long term irreversible tissue damage. While the anti-inflammatory effects of low dose irradiation have been exploited for a long time in the clinics, few recent physiopathological and experimental data suggested the possibility to modulate the inflammatory storm related to COVID-19 pulmonary infection by exposing patients to ionizing radiation at very low doses. Despite level of evidence is only preliminary, these preclinical findings open therapeutic perspectives and are discussed in this article.
Collapse
Affiliation(s)
- Sabine François
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | | | - Sophie Cavallero
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Michel Drouet
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | | | - Jean-Marc Cosset
- Centre de Radiothérapie Charlebourg/La Défense, Groupe Amethyst, La Garenne-Colombes, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,INSERM U1030, Université Paris Saclay, Le Kremlin Bicêtre, France
| | - Lydia Meziani
- Department of Radiation Oncology, Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,INSERM U1030, Université Paris Saclay, Le Kremlin Bicêtre, France
| | - Cyrus Chargari
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France.,Department of Radiation Oncology, Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,INSERM U1030, Université Paris Saclay, Le Kremlin Bicêtre, France
| |
Collapse
|
11
|
Mul J, Seravalli E, Bosman ME, van de Ven CP, Littooij AS, van Grotel M, van den Heuvel-Eibrink MM, Janssens GO. Estimated clinical benefit of combining highly conformal target volumes with Volumetric-Modulated Arc Therapy (VMAT) versus conventional flank irradiation in pediatric renal tumors. Clin Transl Radiat Oncol 2021; 29:20-26. [PMID: 34027140 PMCID: PMC8134033 DOI: 10.1016/j.ctro.2021.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, flank target volumes adjusted for organ shift/motion have been defined. Highly conformal volumes with VMAT were compared to conventional volumes/beams. The new approach prevented a dose constraint violation of ≥ 1 OARs in 60% of cases. VMAT reduced the irradiated Total Body Volume receiving > 10% of the prescribed dose. Background For decades, Anterior-Posterior/Posterior-Anterior (AP/PA) photon beams were standard-of-care for flank irradiation in children with renal cancer. Recently, highly conformal flank target volumes were defined correcting for postoperative organ shift and intra-fraction motion. By radiotherapy treatment plan comparison, this study aims to estimate the clinical benefits and potential risks of combining highly conformal target volumes with Volumetric-Modulated Arc Therapy (VMAT) versus conventional target volumes with AP/PA beams for flank irradiation. Materials and Methods Twenty consecutive renal tumor cases (left/right-sided:10/10; median age:3.2 years) were selected. Highly conformal flank target volumes were generated for VMAT, while conventional target volumes were used for AP/PA. For each case, the dose to the organs at risk (OARs) and Total Body Volume (TBV) was calculated to compare VMAT with AP/PA treatment plans for a prescribed dose (PD) of 14.4/1.8 Gy. Dose constraint violation of the tail of the pancreas and spleen (Dmean < 10 Gy), heart (D50 < 5 Gy) or mammary buds (Dmean < 10 Gy) were prioritized as potentially beneficial for clinics. Results Highly conformal Planning Target Volumes (PTV) were smaller than conventional volumes (mean ΔPTVAP/PA-PTVVMAT: 555 mL, Δ60%, p=<0.01). A mean dose reduction favoring VMAT was observed for almost all OARs. Dose constraints to the tail of the pancreas, spleen, heart and mammary buds were fulfilled in 8/20, 12/20, 16/20 and 19/20 cases with AP/PA, versus 14/20, 17/20, 20/20 and 20/20 cases with VMAT, respectively. In 12/20 cases, VMAT prevented the dose constraint violation of one or more OARs otherwise exceeded by AP/PA. VMAT increased the TBV receiving 10% of the PD, but reduced the amount of irradiated TBV for all higher doses. Conclusion Compared to 14.4 Gy flank irradiation using conventional AP/PA photon beams, an estimated clinical benefit by dose reduction to the OARs can be expected in 60% of the pediatric renal tumor cases using highly conformal flank target volumes combined with VMAT.
Collapse
Key Words
- 95% CI, 95% Confidence Interval
- AP/PA, Anterior-Posterior/Posterior-Anterior
- CT, Computed Tomography
- CTV, Clinical Target Volume
- Conformal radiotherapy
- GTV, Gross Tumor Volume
- ID, integral dose
- IMRT, Intensity-Modulated Radiotherapy
- ITV, Internal Target Volume
- MRI, Magnetic Resonance Imaging
- OARs, organs at risk
- Organs at risk
- PD, Prescribed Dose
- PTV, Planning Target Volume
- Pediatric renal tumors
- RT, radiotherapy
- SIOP-RTSG, International Society of Pediatric Oncology – Renal Tumor Study Group
- Side-effects
- TBV, Total Body Volume
- VMAT
- VMAT, Volumetric-Modulated Arc Therapy
- Wilms tumor
- vs, versus
Collapse
Affiliation(s)
- Joeri Mul
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands.,Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Enrica Seravalli
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Mirjam E Bosman
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Cornelis P van de Ven
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Annemieke S Littooij
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Martine van Grotel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | | | - Geert O Janssens
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands.,Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| |
Collapse
|
12
|
Shapiro A. Invited Commentary: Secondary Malignancies in Patients Treated with Radiation Therapy. Radiographics 2021; 41:E90-E91. [PMID: 33900119 DOI: 10.1148/rg.2021210028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anna Shapiro
- From the Department of Radiation Oncology, State University of New York Upstate Medical University, 750 E Adams St, Syracuse, NY 13210-2306
| |
Collapse
|
13
|
Mul J, van Grotel M, Seravalli E, Bosman ME, van Tinteren H, Roy P, Dávila Fajardo R, Tytgat GAM, Mavinkurve-Groothuis AMC, van de Ven CP, Wijnen MHWA, de Krijger RR, Littooij AS, van den Heuvel-Eibrink MM, Janssens GO. Locoregional control using highly conformal flank target volumes and volumetric-modulated arc therapy in pediatric renal tumors: Results from the Dutch national cohort. Radiother Oncol 2021; 159:249-254. [PMID: 33845042 DOI: 10.1016/j.radonc.2021.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE In pediatric renal tumors, conventional two opposing photon beams have been used to cover the postoperative flank target volume for decades. This single center study describes the locoregional outcome using highly conformal flank target volumes adjusted for postoperative changes and intra-fraction motion combined with Volumetric-Modulated Arc Therapy (VMAT). MATERIALS AND METHODS Between 01-2015 and 12-2019, 36/161 newly diagnosed patients with renal tumors underwent flank only irradiation (n = 30) or flank + whole lung irradiation (n = 6) using highly conformal target volumes in line with the SIOP-RTSG consensus statement. VMAT consisted of full-arc 10MV photon beams optimized for constraints of the organs at risk. In case of locoregional relapses, image co-registration and dose reconstruction was performed. Each relapse was classified as either 'infield' (V95%relapse: ≥99.0%), 'marginal' (V95%relapse: 20.0-98.9%) or 'outfield' (V95%relapse: 0-19.9%). RESULTS At a median follow-up from diagnosis of 3.1 years (range:0.4-5.7), the estimated 2-year Locoregional Control Rate, Disease-Free Interval and Overall Survival were 94%, 91% and 94%, respectively. Locoregional relapse was observed in two patients. One patient had a combined tumor bed and regional recurrence, classified as infield (V95%relapse: 100%) and outfield (V95%relapse: 1.2%). The second patient had a regional relapse in the inferior vena cava classified as marginal recurrence (V95%relapse: 93%). Relapses would not have been adequately covered by conventional beams. CONCLUSIONS This single center analysis provides encouraging evidence that excellent locoregional control can be obtained by using highly conformal flank target volumes with VMAT in pediatric renal tumors. The safety of this approach will be validated in a prospective multicenter study.
Collapse
Affiliation(s)
- Joeri Mul
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | | | - Enrica Seravalli
- Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | - Mirjam E Bosman
- Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | - Harm van Tinteren
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Prakriti Roy
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Raquel Dávila Fajardo
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | | | | | | | - Marc H W A Wijnen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Pathology, University Medical Center Utrecht, The Netherlands
| | - Annemieke S Littooij
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Radiology, University Medical Center Utrecht, The Netherlands
| | | | - Geert O Janssens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands.
| |
Collapse
|
14
|
Jensen CA, Funderud M, Lervåg C. Free breathing VMAT versus deep inspiration breath-hold 3D conformal radiation therapy for early stage left-sided breast cancer. J Appl Clin Med Phys 2021; 22:44-51. [PMID: 33638600 PMCID: PMC8035549 DOI: 10.1002/acm2.13208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/15/2020] [Accepted: 02/01/2021] [Indexed: 12/25/2022] Open
Abstract
The purpose of the in silico study was to compare free breathing volumetric modulated arc therapy (VMAT) to standard deep inspiration breath‐hold (DIBH) three‐dimensional conformal radiotherapy (3DCRT) and determine whether the former is a viable option for elderly patients with left‐sided early stage breast cancer. Data from 22 patients with early‐stage left breast carcinoma requiring breast‐only radiation therapy were used for this planning study. The robustness of VMAT plans when using the free breathing method was compared to that of standard 3DCRT plans using the DIBH method. The endpoints for evaluation were the target dose coverage as well as doses to the organs‐at‐risk. The free breathing VMAT plans produced a significantly higher mean dose to the heart and right breast than the DIBH‐3DCRT plans. Free breathing VMAT plans resulted in significantly better target coverage than did 3DCRT using DIBH. The external volume that received more than 40 Gy was significantly smaller in the VMAT plans. Free breathing VMAT is a viable alternative to DIBH 3DCRT in elderly patients with a limited life expectancy and in subjects who are unable to perform DIBH. The choice of treatment should be individualized, and all relevant risks ought to be considered.
Collapse
Affiliation(s)
- Christer A Jensen
- Department of Medicine and Healthcare, Møre & Romsdal Hospital Trust, Ålesund Hospital, Ålesund, Norway.,Department of Health Sciences in Ålesund, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Ålesund, Norway
| | - Marit Funderud
- Department of Oncology, Møre & Romsdal Hospital Trust, Ålesund Hospital, Ålesund, Norway
| | - Christoffer Lervåg
- Department of Oncology, Møre & Romsdal Hospital Trust, Ålesund Hospital, Ålesund, Norway
| |
Collapse
|
15
|
Romano E, Simon R, Minard-Colin V, Martin V, Bockel S, Espenel S, Fresneau B, Metayer L, Levy A, Guerin F, Martelli H, Dumas I, Bolle S, Deutsch E, Haie-Meder C, Chargari C. Analysis of Radiation Dose/Volume Effect Relationship for Anorectal Morbidity in Children Treated for Pelvic Malignancies. Int J Radiat Oncol Biol Phys 2021; 109:231-241. [PMID: 32805302 DOI: 10.1016/j.ijrobp.2020.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/14/2023]
Abstract
PURPOSE To examine dose-volume effect relationships for anorectal morbidity in children treated with image-guided brachytherapy for pelvic tumors. METHODS AND MATERIALS Medical records of all consecutive children with pelvic tumors treated in our center and receiving image-guided pulsed-dose-rate brachytherapy with or without external beam radiation therapy (EBRT) between 2005 and 2019 were reviewed. The effect of the minimal doses to the most exposed 0.5 cm3, 1 cm3, and 2 cm3 of the anorectum (respectively: D0.5cm3, D1cm3, and D2cm3), total reference air kerma (TRAK), and volume of 100% isodose was examined for anorectal toxicities. RESULTS Seventy-eight consecutive children were included. Median age was 2.9 years (range, 0.8-14.9 years). Most of the tumors were bladder or prostate (67%) or vaginal (22%) rhabdomyosarcoma. Six patients received EBRT in addition to brachytherapy. Median follow-up was 21.3 months. At last follow-up, 30 children (38%) had experienced Common Terminology Criteria for Adverse Events version 5 grade ≥1 acute or late anorectal events: 24% had grade 1 events, 7.7% had grade 2 events, and 6.4% had grade 3 events. No toxicity greater than grade 3 was observed (eg, fistula or stricture). In univariate analysis, the D0.5cm3 and D1cm3 were significant for probability of grade 1 to 3 (P = .009 and P = .017, respectively) and grade 2 to 3 anorectal morbidity (P = .007 and P = .049, respectively). There was no significant correlation for D2cm3 (P = .057 for grade 1-3; P = .407 for grade 2-3). A 10% probability (95% confidence interval, 4%-20%) for anorectal toxicity of grade 2 or greater was reached for a D0.5cm3 = 52 Gy. The age, EBRT use, TRAK, and treated volume values were not significant. CONCLUSIONS To our knowledge, this study is the first to show a significant dose-volume effect relationships for anorectal morbidity in children undergoing treatment with brachytherapy. Integrating these data into brachytherapy treatment planning could help to optimize the therapeutic index in these young patients.
Collapse
Affiliation(s)
- Edouard Romano
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Cancer Center, University Paris Saclay Medical Faculty, Villejuif, France
| | - Raphaël Simon
- Hospices Civils de Lyon, Lyon Est University Medical Faculty, Lyon, France
| | - Véronique Minard-Colin
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Valentine Martin
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Cancer Center, University Paris Saclay Medical Faculty, Villejuif, France
| | - Sophie Bockel
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Cancer Center, University Paris Saclay Medical Faculty, Villejuif, France
| | - Sophie Espenel
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Cancer Center, University Paris Saclay Medical Faculty, Villejuif, France
| | - Brice Fresneau
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Lucy Metayer
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Antonin Levy
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Cancer Center, University Paris Saclay Medical Faculty, Villejuif, France; INSERM 1030 Molecular radiotherapy, Gustave Roussy Cancer Campus, Villejuif, France
| | - Florent Guerin
- Department of Pediatric Surgery, Kremlin Bicetre University Hospital, Kremlin Bicêtre, France
| | - Hélène Martelli
- Department of Pediatric Surgery, Kremlin Bicetre University Hospital, Kremlin Bicêtre, France
| | - Isabelle Dumas
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Cancer Center, University Paris Saclay Medical Faculty, Villejuif, France
| | - Stéphanie Bolle
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Cancer Center, University Paris Saclay Medical Faculty, Villejuif, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Cancer Center, University Paris Saclay Medical Faculty, Villejuif, France; INSERM 1030 Molecular radiotherapy, Gustave Roussy Cancer Campus, Villejuif, France
| | - Christine Haie-Meder
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Cancer Center, University Paris Saclay Medical Faculty, Villejuif, France
| | - Cyrus Chargari
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Cancer Center, University Paris Saclay Medical Faculty, Villejuif, France; INSERM 1030 Molecular radiotherapy, Gustave Roussy Cancer Campus, Villejuif, France; French Military Health Academy, Ecole du Val-de-Grâce, Paris, France; Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.
| |
Collapse
|
16
|
Chow JCH, Tam AHP, Cheung KM, Lee VHF, Chiang CL, Tong M, Wong ECY, Cheung AKW, Chan SPC, Lai JWY, Ngan RKC, Ng WT, Lee AWM, Au KH. Second primary cancer after intensity-modulated radiotherapy for nasopharyngeal carcinoma: A territory-wide study by HKNPCSG. Oral Oncol 2020; 111:105012. [PMID: 32980659 DOI: 10.1016/j.oraloncology.2020.105012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Long-term risk of second primary cancer (SPC) after definitive intensity-modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC) remains unclear. This study aims to evaluate the risk, predictive factors and survival impact of SPC in a large territory-wide cohort of NPC survivors in an endemic region. MATERIALS AND METHODS In this multicenter study, consecutive NPC patients (n = 3166) who underwent definitive IMRT in all six public oncology centers in Hong Kong between 2001 and 2010 were included. SPC risks were quantified by standardized incidence ratios (SIRs) and absolute excess risks (AERs) estimated from corresponding age-, sex-, and calendar year-specific population cancer incidence data from the Hong Kong Cancer Registry. Predictive factors and SPC-specific mortality were analyzed. RESULTS Over a median follow-up period of 10.8 years, 290 cases of SPC were observed with a crude incidence of 9.2%. Cancer risk in NPC survivors was 90% higher than that in general population [SIR, 1.9; 95% confidence interval (CI), 1.7-2.2], with an AER of 52.1 (95% CI, 36.8-67.3) per 10,000 person-years at risk. Significant excess cancer risks were observed for oral cavity, sarcoma, oropharynx, paranasal sinus, salivary gland, thyroid, skin and lung. Advanced age, smoking, hepatitis B status, and re-irradiation were independent predictive factors. SPC accounted for 9.4% of all deaths among NPC survivors during the study period, and 10-year SPC-specific mortality was 3.4%. CONCLUSIONS Second cancer risk after IMRT was substantial among NPC patients. SPC impairs long-term survival, and close surveillance is warranted as part of survivorship care.
Collapse
Affiliation(s)
- James C H Chow
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong.
| | - Anthony H P Tam
- The Hong Kong Cancer Registry, Hong Kong Hospital Authority, Hong Kong
| | - Ka-Man Cheung
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong
| | - Victor H F Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chi-Leung Chiang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Macy Tong
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong
| | - Edwin C Y Wong
- Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Hong Kong
| | | | - Sunny P C Chan
- Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong
| | - Jessica W Y Lai
- Department of Clinical Oncology, Princess Margaret Hospital, Hong Kong
| | - Roger K C Ngan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Wai-Tong Ng
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Hong Kong
| | - Anne W M Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, China
| | - Kwok-Hung Au
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong
| |
Collapse
|
17
|
Xiang M, Chang DT, Pollom EL. Second cancer risk after primary cancer treatment with three-dimensional conformal, intensity-modulated, or proton beam radiation therapy. Cancer 2020; 126:3560-3568. [PMID: 32426866 DOI: 10.1002/cncr.32938] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/08/2020] [Accepted: 01/25/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND The comparative risks of a second cancer diagnosis are uncertain after primary cancer treatment with 3-dimensional conformal radiotherapy (3DCRT), intensity-modulated radiotherapy (IMRT), or proton beam radiotherapy (PBRT). METHODS Pediatric and adult patients with a first cancer diagnosis between 2004 and 2015 who received 3DCRT, IMRT, or PBRT were identified in the National Cancer Database from 9 tumor types: head and neck, gastrointestinal, gynecologic, lymphoma, lung, prostate, breast, bone/soft tissue, and brain/central nervous system. The diagnosis of second cancer was modeled using multivariable logistic regression adjusting for age, follow-up duration, radiotherapy (RT) dose, chemotherapy, sociodemographic variables, and other factors. Propensity score matching also was used to balance baseline characteristics. RESULTS In total, 450,373 patients were identified (33.5% received 3DCRT, 65.2% received IMRT, and 1.3% received PBRT) with median follow-up of 5.1 years after RT completion and a cumulative follow-up period of 2.54 million person-years. Overall, the incidence of second cancer diagnosis was 1.55 per 100 patient-years. In a comparison between IMRT versus 3DCRT, there was no overall difference in the risk of second cancer (adjusted odds ratio [OR], 1.00; 95% CI, 0.97-1.02; P = .75). By comparison, PBRT had an overall lower risk of second cancer versus IMRT (adjusted OR, 0.31; 95% CI, 0.26-0.36; P < .0001). Results within each tumor type generally were consistent in the pooled analyses and also were maintained in propensity score-matched analyses. CONCLUSIONS The risk of a second cancer diagnosis was similar after IMRT versus 3DCRT, whereas PBRT was associated with a lower risk of second cancer risk. Future work is warranted to determine the cost-effectiveness of PBRT and to identify the population best suited for this treatment.
Collapse
Affiliation(s)
- Michael Xiang
- Department of Radiation Oncology, Stanford University, Stanford, California, USA.,Palo Alto Veterans Affairs Hospital, Palo Alto, California, USA
| | - Daniel T Chang
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Erqi L Pollom
- Department of Radiation Oncology, Stanford University, Stanford, California, USA.,Palo Alto Veterans Affairs Hospital, Palo Alto, California, USA
| |
Collapse
|
18
|
Filippi AR, Meregalli S, DI Russo A, Levis M, Ciammella P, Buglione M, Guerini AE, De Marco G, De Sanctis V, Vagge S, Ricardi U, Simontacchi G. Fondazione Italiana Linfomi (FIL) expert consensus on the use of intensity-modulated and image-guided radiotherapy for Hodgkin's lymphoma involving the mediastinum. Radiat Oncol 2020; 15:62. [PMID: 32164700 PMCID: PMC7066773 DOI: 10.1186/s13014-020-01504-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Aim Advances in therapy have resulted in improved cure rates and an increasing number of long-term Hodgkin's lymphoma (HL) survivors. However, radiotherapy (RT)-related late effects are still a significant issue, particularly for younger patients with mediastinal disease (secondary cancers, heart diseases). In many Centers, technological evolution has substantially changed RT planning and delivery. This consensus document aims to analyze the current knowledge of Intensity-Modulated Radiation Therapy (IMRT) and Image-Guided Radiation Therapy (IGRT) for mediastinal HL and formulate practical recommendations based on scientific evidence and expert opinions. Methods A dedicated working group was set up within the Fondazione Italiana Linfomi (FIL) Radiotherapy Committee in May 2018. After a first meeting, the group adopted a dedicated platform to share retrieved articles and other material. Two group coordinators redacted a first document draft, that was further discussed and finalized in two subsequent meetings. Topics of interest were: 1) Published data comparing 3D-conformal radiotherapy (3D-CRT) and IMRT 2) dose objectives for the organs at risk 3) IGRT protocols and motion management. Results Data review showed that IMRT might allow for an essential reduction in the high-dose regions for all different thoracic OAR. As very few studies included specific dose constraints for lungs and breasts, the low-dose component for these OAR resulted slightly higher with IMRT vs. 3D-CRT, depending on the technique used. We propose a set of dose objectives for the heart, breasts, lungs, and thyroid. The use of IGRT is advised for margin reduction without specific indications, such as the use of breath-holding techniques. An individual approach, including comparative planning and considering different risk factors for late morbidity, is recommended for each patient. Conclusions As HL therapy continues to evolve, with an emphasis on treatment reduction, radiation oncologists should use at best all the available tools to minimize the dose to organs at risk and optimize treatment plans. This document provides indications on the use of IMRT/IGRT based on expert consensus, providing a basis for clinical implementation and future development.
Collapse
Affiliation(s)
- Andrea Riccardo Filippi
- Radiation Oncology Department, Fondazione IRCCS Policlinico S. Matteo, Viale Golgi 19, 27100, Pavia, Italy.
| | | | - Anna DI Russo
- Fondazione IRCCS Policlinico San Matteo and University of Pavia, Viale Golgi 19, 27100, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Irazola L, Sánchez-Nieto B, García-Hernández MT, Terrón JA, Roselló J, Ortiz-Seidel M, Béjar MJ, Linares R, Vélazquez S, Sánchez-Doblado F. 10-MV SBRT FFF IRRADIATION TECHNIQUE IS ASSOCIATED TO THE LOWEST PERIPHERAL DOSE: THE OUTCOME OF 142 TREATMENT PLANS FOR THE 10 MOST COMMON TUMOUR LOCATIONS. RADIATION PROTECTION DOSIMETRY 2019; 185:183-195. [PMID: 30649534 DOI: 10.1093/rpd/ncy292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/06/2018] [Accepted: 12/30/2018] [Indexed: 06/09/2023]
Abstract
There is a growing interest in the combined use of Stereotactic Body Radiation Therapy (SBRT) with Flattening Filter Free (FFF) due to the high local control rates and reduced treatment times, compared to conventionally fractionated treatments. It has been suggested that they may also provide a better radiation protection to radiotherapy patients as a consequence of the expected decrease in peripheral doses. This work aims to determine this reduction in unattended out-of-field regions, where no CT information is available but an important percentage of second primary cancers occur. For that purpose, ten different cases suitable for SBRT were chosen. Thus, 142 different treatment plans including SBRT, as well as 3D-CRT, IMRT and VMAT (with standard fractionation) in low and high energies for Varian (FF and FFF), Siemens and Elekta machines were created. Then, photon and neutron peripheral dose in 14 organs were assessed and compared using two analytical models. For the prostate case, uncomplicated and cancer free control probability estimation was also carried out. As a general behavior, SBRT plans led to the lowest peripheral doses followed by 3D-CRT, VMAT and IMRT, in this order. Unflattened beams proved to be the most effective in reducing peripheral doses, especially for 10 MV. The obtained results suggest that FFF beams for SBRT with 10 MV represent the best compromise between dose delivery efficiency and peripheral dose reduction.
Collapse
Affiliation(s)
- L Irazola
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - B Sánchez-Nieto
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - J A Terrón
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - J Roselló
- Servicio de Radiofísica ERESA, Hospital General Universitario, Valencia, Spain
| | - M Ortiz-Seidel
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - M J Béjar
- Servicio de Radiofísica, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - R Linares
- Servicio de Radiofísica, Hospital Infanta Luisa, Sevilla, Spain
| | - S Vélazquez
- Servicio de Radiofísica, Hospital Universitario Virgen del Rocío, Sevilla Spain
| | - F Sánchez-Doblado
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla, Spain
| |
Collapse
|
20
|
Chargari C, Deutsch E, Blanchard P, Gouy S, Martelli H, Guérin F, Dumas I, Bossi A, Morice P, Viswanathan AN, Haie-Meder C. Brachytherapy: An overview for clinicians. CA Cancer J Clin 2019; 69:386-401. [PMID: 31361333 DOI: 10.3322/caac.21578] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Brachytherapy is a specific form of radiotherapy consisting of the precise placement of radioactive sources directly into or next to the tumor. This technique is indicated for patients affected by various types of cancers. It is an optimal tool for delivering very high doses to the tumor focally while minimizing the probability of normal tissue complications. Physicians from a wide range of specialties may be involved in either the referral to or the placement of brachytherapy. Many patients require brachytherapy as either primary treatment or as part of their oncologic care. On the basis of high-level evidence from randomized controlled trials, brachytherapy is mainly indicated: 1) as standard in combination with chemoradiation in patients with locally advanced cervical cancer; 2) in surgically treated patients with uterine endometrial cancer for decreasing the risk of vaginal vault recurrence; 3) in patients with high-risk prostate cancer to perform dose escalation and improve progression-free survival; and 4) in patients with breast cancer as adjuvant, accelerated partial breast irradiation or to boost the tumor bed. In this review, the authors discuss the clinical relevance of brachytherapy with a focus on indications, levels of evidence, and results in the overall context of radiation use for patients with cancer.
Collapse
Affiliation(s)
- Cyrus Chargari
- Department of Radiation Oncology, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
- French Military Health Academy, Paris, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
- Faculty of Medicine, Paris-South University/Paris Saclay, Paris, France
- Molecular Radiotherapy Unit 1030, National Institute of Health and Medical Research (INSERM), Paris, France
| | - Pierre Blanchard
- Department of Radiation Oncology, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
| | - Sebastien Gouy
- Department of Surgery, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
| | - Hélène Martelli
- Department of Pediatric Surgery, Kremlin Bicetre University Hospital, Kremlin Bicetre, France
| | - Florent Guérin
- Department of Pediatric Surgery, Kremlin Bicetre University Hospital, Kremlin Bicetre, France
| | - Isabelle Dumas
- Department of Radiation Oncology, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
| | - Alberto Bossi
- Department of Radiation Oncology, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
| | - Philippe Morice
- Department of Surgery, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
- Paris-South University/Paris Saclay, Paris, France
| | - Akila N Viswanathan
- Department of Radiation Oncology, Johns Hopkins Medicine, Baltimore, Maryland
| | - Christine Haie-Meder
- Department of Radiation Oncology, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
| |
Collapse
|
21
|
Perrot JL, Beyens MN, Vallard A, Magné N, Cinotti E. [Will France ever have a radio-vigilance office?]. Bull Cancer 2019; 106:1067-1069. [PMID: 31350014 DOI: 10.1016/j.bulcan.2019.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Jean-Luc Perrot
- Hôpital universitaire Nord de Saint-Etienne, département de dermatologie, avenue Albert-Raimond, 42055 Saint-Etienne cedex 2, France
| | - Marie Noëlle Beyens
- Hôpital universitaire Nord de Saint-Etienne, centre régional de pharmaco-vigilance de Saint-Étienne, avenue Albert-Raimond, 42055 Saint-Etienne cedex 2, France
| | - Alexis Vallard
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis avenue Albert-Raimond, BP60008, 42271 Saint-Priest-en-Jarez cedex, France
| | - Nicolas Magné
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis avenue Albert-Raimond, BP60008, 42271 Saint-Priest-en-Jarez cedex, France.
| | - Elisa Cinotti
- Hôpital S. Maria alle Scotte, université de Sienne, département de science médicale, chirurgicale et neurologique, unité de dermatologie, Sienne, Italie
| |
Collapse
|
22
|
Vega-Carrillo HR, Esparza-Hernandez A, Garcia-Reyna MG, Rivera ER, Hernandez-Adame L, Rivera T. H*(10) due to scattered radiation on the cancer-patient bodies treated with Tomotherapy. Appl Radiat Isot 2018; 141:206-209. [PMID: 29699933 DOI: 10.1016/j.apradiso.2018.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/05/2018] [Indexed: 01/01/2023]
Abstract
The ambient dose equivalent has been measured on the walls of a bunker with a 6 MV TomoLINAC, which was designed to have a conventional 18 MV LINAC. The ambient dose equivalent is due to scattered photons on patient bodies during cancer treatment. Measurements were carried out with thermoluminescent dosimeters that were fixed, at the isocentre plane, on the primary and secondary barriers, the maze, and on the TomoLINAC surface. Measurements were repeated three times, in each time dosimeters were on place during seven working days, where approximately 50 patients were treated per day. Ambient dose equivalent at each location was normalized to the total dose applied during the measuring time. The primary and secondary concrete barriers are thick enough to reduce the dose to safe values.
Collapse
Affiliation(s)
- Hector Rene Vega-Carrillo
- Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Cipres 10, Fracc. La Peñuela, 98060 Zacatecas, Zac., Mexico; Unidad Academica de Ingenieria Electrica, Universidad Autonoma de Zacatecas, Av. Ramón López Velarde s/n, 98068 Zacatecas, Zac., Mexico.
| | - Angelica Esparza-Hernandez
- Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Cipres 10, Fracc. La Peñuela, 98060 Zacatecas, Zac., Mexico
| | - Mayra G Garcia-Reyna
- Programa de Doctorado en Ingenieria y Tecnologia Aplicada, Unidad Académica de Ingenieria Electrica, Universidad Autonoma de Zacatecas, Av. Ramón López Velarde s/n, 98068 Zacatecas, Zac., Mexico
| | - Eric Reyes Rivera
- División de Ciencias e Ingenierias CampusLeon, Universidad de Guanajuato, Loma del Bosque 103, Col. Lomas del Campestre, Gto, 37150 Leon, Mexico; UNEME-Oncología, Guadalupe, Zac., Mexico
| | - Luis Hernandez-Adame
- Centro de Investigaciones Biologicas del Noroeste, S.C. Instituto Politecnico Nacional 195, Col. Playa de Santa Rita, 23096 La Paz, BCS, Mexico
| | | |
Collapse
|
23
|
Dzierma Y, Mikulla K, Richter P, Bell K, Melchior P, Nuesken F, Rübe C. Imaging dose and secondary cancer risk in image-guided radiotherapy of pediatric patients. Radiat Oncol 2018; 13:168. [PMID: 30185206 PMCID: PMC6125956 DOI: 10.1186/s13014-018-1109-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/21/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Daily image-guided radiotherapy (IGRT) can contribute to cover extended body volumes with low radiation dose. The effect of additional imaging dose on secondary cancer development is modelled for a collective of children with Morbus Hodgkin. METHODS Eleven radiotherapy treatment plans from pediatric patients with Hodgkin's lymphoma were retrospectively analyzed, including imaging dose from scenarios using different energies (kV/MV) and planar/cone-beam computed tomography (CBCT) techniques. In addition to assessing the effect of imaging dose on organs at risk, the excess average risk (EAR) for developing a secondary carcinoma of the lung or breast was modelled. RESULTS Although the variability between the patients is relatively large due to the different target volumes, the additional EAR due to imaging can be consistently determined. For daily 6MV CBCT, the EAR for developing a secondary cancer at age 50 is over 3 cases per 104 PY (patient-years) for the female breast and 0.7-0.8 per 104 PY for the lungs. This can be decreased by using only planar images (< 1 per 104 PY for the breast and 0.1 for the lungs). Similar values are achieved by daily 360° kV CBCT (0.44-0.57 per 104 PY for the breast and 0.08 per 104 PY for the lungs), which is again reduced for daily 200° kV CBCT (0.02 per 104 PY for the lungs and 0.07-0.08 per 104 PY for the breast). These values increase if an older attained age is considered (e.g., for 70 years, by a factor of four for the lungs). CONCLUSIONS Daily imaging can be performed with an additional secondary cancer risk of less than 1 per 104 PY if kV CBCT is applied. If MV modalities must be chosen, a similar EAR can be achieved with planar images. A further reduction in risk is possible if the imaging geometry allows for sparing of the breast by a partial rotation underneath the patient.
Collapse
Affiliation(s)
- Yvonne Dzierma
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, 66421 Homburg, Saar Germany
| | - Katharina Mikulla
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, 66421 Homburg, Saar Germany
| | - Patrick Richter
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, 66421 Homburg, Saar Germany
| | - Katharina Bell
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, 66421 Homburg, Saar Germany
| | - Patrick Melchior
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, 66421 Homburg, Saar Germany
| | - Frank Nuesken
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, 66421 Homburg, Saar Germany
| | - Christian Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, 66421 Homburg, Saar Germany
| |
Collapse
|
24
|
Mothersill C, Seymour C. Old Data-New Concepts: Integrating "Indirect Effects" Into Radiation Protection. HEALTH PHYSICS 2018; 115:170-178. [PMID: 29787443 DOI: 10.1097/hp.0000000000000876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
PURPOSE To address the following key question, what are the consequences of nontargeted and delayed effects for linear nonthreshold models of radiation risk? This paper considers low-dose "indirect" or nontargeted effects and how they might impact radiation protection, particularly at the level of the environment. Nontargeted effects refer to effects in cells, tissues, or organisms that were not targeted by irradiation and that did not receive direct energy deposition. They include genomic instability and lethal mutations in progeny of irradiated cells and bystander effects in neighboring cells, tissues, or organisms. Low-dose hypersensitivity and adaptive responses are sometimes included under the nontargeted effects umbrella, but these are not considered in this paper. Some concepts emerging in the nontargeted effects field that could be important include historic dose. This suggests that the initial exposure to radiation initiates the instability phenotype which is passed to progeny leading to a transgenerational radiation-response phenotype, which suggests that the system response rather than the individual response is critical in determining outcome. CONCLUSION Nontargeted effects need to be considered, and modeling, experimental, and epidemiological approaches could all be used to determine the impact of nontargeted effects on the currently used linear nonthreshold model in radiation protection.
Collapse
Affiliation(s)
- Carmel Mothersill
- 1Medical Physics and Applied Radiation Sciences Department, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Colin Seymour
- Medical Physics and Applied Radiation Sciences Department, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
25
|
Robustness of VMAT and 3DCRT plans toward setup errors in radiation therapy of locally advanced left-sided breast cancer with DIBH. Phys Med 2018; 45:12-18. [DOI: 10.1016/j.ejmp.2017.11.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/18/2017] [Accepted: 11/24/2017] [Indexed: 12/25/2022] Open
|
26
|
Intensity Modulated Radiation Therapy and Second Cancer Risk in Adults. Int J Radiat Oncol Biol Phys 2018; 100:17-20. [DOI: 10.1016/j.ijrobp.2017.09.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/09/2017] [Accepted: 09/18/2017] [Indexed: 11/19/2022]
|
27
|
Chandra A, Wang L, Young T, Zhong L, Tseng WJ, Levine MA, Cengel K, Liu XS, Zhang Y, Pignolo RJ, Qin L. Proteasome inhibitor bortezomib is a novel therapeutic agent for focal radiation-induced osteoporosis. FASEB J 2017; 32:52-62. [PMID: 28860152 DOI: 10.1096/fj.201700375r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/14/2017] [Indexed: 12/23/2022]
Abstract
Bone atrophy and its related fragility fractures are frequent, late side effects of radiotherapy in cancer survivors and have a detrimental impact on their quality of life. In another study, we showed that parathyroid hormone 1-34 and anti-sclerostin antibody attenuates radiation-induced bone damage by accelerating DNA repair in osteoblasts. DNA damage responses are partially regulated by the ubiquitin proteasome pathway. In the current study, we examined whether proteasome inhibitors have similar bone-protective effects against radiation damage. MG132 treatment greatly reduced radiation-induced apoptosis in cultured osteoblastic cells. This survival effect was owing to accelerated DNA repair as revealed by γH2AX foci and comet assays and to the up-regulation of Ku70 and DNA-dependent protein kinase, catalytic subunit, essential DNA repair proteins in the nonhomologous end-joining pathway. Administration of bortezomib (Bzb) reversed the loss of trabecular bone structure and strength in mice at 4 wk after focal radiation. Histomorphometry revealed that Bzb significantly increased the number of osteoblasts and activity in the irradiated area and suppressed the number and activity of osteoclasts, regardless of irradiation. Two weeks of Bzb treatment accelerated DNA repair in bone-lining osteoblasts and thus promoted their survival. Meanwhile, it also inhibited bone marrow adiposity. Taken together, we demonstrate a novel role of proteasome inhibitors in treating radiation-induced osteoporosis.-Chandra, A., Wang, L., Young, T., Zhong, L., Tseng, W.-J., Levine, M. A., Cengel, K., Liu, X. S., Zhang, Y., Pignolo, R. J., Qin, L. Proteasome inhibitor bortezomib is a novel therapeutic agent for focal radiation-induced osteoporosis.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.,Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Luqiang Wang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tiffany Young
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wei-Ju Tseng
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael A Levine
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Endocrinology and Diabetes Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Center for Bone Health, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Keith Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - X Sherry Liu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yejia Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | | | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
28
|
Radiation-induced inflammatory cascade and its reverberating crosstalks as potential cause of post-radiotherapy second malignancies. Cancer Metastasis Rev 2017; 36:375-393. [DOI: 10.1007/s10555-017-9669-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Chandra A, Lin T, Young T, Tong W, Ma X, Tseng WJ, Kramer I, Kneissel M, Levine MA, Zhang Y, Cengel K, Liu XS, Qin L. Suppression of Sclerostin Alleviates Radiation-Induced Bone Loss by Protecting Bone-Forming Cells and Their Progenitors Through Distinct Mechanisms. J Bone Miner Res 2017; 32:360-372. [PMID: 27635523 PMCID: PMC5476363 DOI: 10.1002/jbmr.2996] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/15/2022]
Abstract
Focal radiotherapy is frequently associated with skeletal damage within the radiation field. Our previous in vitro study showed that activation of Wnt/β-catenin pathway can overcome radiation-induced DNA damage and apoptosis of osteoblastic cells. Neutralization of circulating sclerostin with a monoclonal antibody (Scl-Ab) is an innovative approach for treating osteoporosis by enhancing Wnt/β-catenin signaling in bone. Together with the fact that focal radiation increases sclerostin amount in bone, we sought to determine whether weekly treatment with Scl-Ab would prevent focal radiotherapy-induced osteoporosis in mice. Micro-CT and histomorphometric analyses demonstrated that Scl-Ab blocked trabecular bone structural deterioration after radiation by partially preserving osteoblast number and activity. Consistently, trabecular bone in sclerostin null mice was resistant to radiation via the same mechanism. Scl-Ab accelerated DNA repair in osteoblasts after radiation by reducing the number of γ-H2AX foci, a DNA double-strand break marker, and increasing the amount of Ku70, a DNA repair protein, thus protecting osteoblasts from radiation-induced apoptosis. In osteocytes, apart from using similar DNA repair mechanism to rescue osteocyte apoptosis, Scl-Ab restored the osteocyte canaliculi structure that was otherwise damaged by radiation. Using a lineage tracing approach that labels all mesenchymal lineage cells in the endosteal bone marrow, we demonstrated that radiation damage to mesenchymal progenitors mainly involves shifting their fate to adipocytes and arresting their proliferation ability but not inducing apoptosis, which are different mechanisms from radiation damage to mature bone forming cells. Scl-Ab treatment partially blocked the lineage shift but had no effect on the loss of proliferation potential. Taken together, our studies provide proof-of-principle evidence for a novel use of Scl-Ab as a therapeutic treatment for radiation-induced osteoporosis and establish molecular and cellular mechanisms that support such treatment. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tiao Lin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tiffany Young
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Tong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyuan Ma
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei-Ju Tseng
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ina Kramer
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Michaela Kneissel
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Michael A Levine
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Endocrinology and Diabetes and the Center for Bone Health, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yejia Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Philadelphia Veterans Affairs Medical Center and Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keith Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - X Sherry Liu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Lee SY, Jeong EK, Ju MK, Jeon HM, Kim MY, Kim CH, Park HG, Han SI, Kang HS. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer 2017; 16:10. [PMID: 28137309 PMCID: PMC5282724 DOI: 10.1186/s12943-016-0577-4] [Citation(s) in RCA: 379] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/25/2016] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy is one of the major tools of cancer treatment, and is widely used for a variety of malignant tumours. Radiotherapy causes DNA damage directly by ionization or indirectly via the generation of reactive oxygen species (ROS), thereby destroying cancer cells. However, ionizing radiation (IR) paradoxically promotes metastasis and invasion of cancer cells by inducing the epithelial-mesenchymal transition (EMT). Metastasis is a major obstacle to successful cancer therapy, and is closely linked to the rates of morbidity and mortality of many cancers. ROS have been shown to play important roles in mediating the biological effects of IR. ROS have been implicated in IR-induced EMT, via activation of several EMT transcription factors—including Snail, HIF-1, ZEB1, and STAT3—that are activated by signalling pathways, including those of TGF-β, Wnt, Hedgehog, Notch, G-CSF, EGFR/PI3K/Akt, and MAPK. Cancer cells that undergo EMT have been shown to acquire stemness and undergo metabolic changes, although these points are debated. IR is known to induce cancer stem cell (CSC) properties, including dedifferentiation and self-renewal, and to promote oncogenic metabolism by activating these EMT-inducing pathways. Much accumulated evidence has shown that metabolic alterations in cancer cells are closely associated with the EMT and CSC phenotypes; specifically, the IR-induced oncogenic metabolism seems to be required for acquisition of the EMT and CSC phenotypes. IR can also elicit various changes in the tumour microenvironment (TME) that may affect invasion and metastasis. EMT, CSC, and oncogenic metabolism are involved in radioresistance; targeting them may improve the efficacy of radiotherapy, preventing tumour recurrence and metastasis. This study focuses on the molecular mechanisms of IR-induced EMT, CSCs, oncogenic metabolism, and alterations in the TME. We discuss how IR-induced EMT/CSC/oncogenic metabolism may promote resistance to radiotherapy; we also review efforts to develop therapeutic approaches to eliminate these IR-induced adverse effects.
Collapse
Affiliation(s)
- Su Yeon Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Eui Kyong Jeong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Min Kyung Ju
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Hyun Min Jeon
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Min Young Kim
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Pusan, 619-953, Korea
| | - Cho Hee Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea.,DNA Identification Center, National Forensic Service, Seoul, 158-707, Korea
| | - Hye Gyeong Park
- Nanobiotechnology Center, Pusan National University, Pusan, 609-735, Korea
| | - Song Iy Han
- The Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju, 501-759, Korea
| | - Ho Sung Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea.
| |
Collapse
|