1
|
Hu R, Zhao J, Lai KC, Wang S, Zheng J, Stoddard C, Lai L. CHD7 regulates definitive endodermal and mesodermal development from human embryonic stem cells. Stem Cell Res Ther 2025; 16:311. [PMID: 40528267 DOI: 10.1186/s13287-025-04437-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 06/10/2025] [Indexed: 06/20/2025] Open
Abstract
BACKGROUND CHD7 encodes an ATP-dependent chromodomain helicase DNA binding protein; mutations in this gene lead to multiple developmental disorders, including CHARGE (Coloboma, Heart defects, Atresia of the choanae, Retardation of growth and development, Genital hypoplasia, and Ear anomalies) syndrome. How the mutations cause multiple defects remains largely unclear. Embryonic definitive endoderm (DE) generates the epithelial compartment of vital organs such as the thymus, liver, pancreas, and intestine. METHODS In this study, we used the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technique to delete the CHD7 gene in human embryonic stem cells (hESCs) to generate CHD7 homozygous mutant (CHD7-/-), heterozygous mutant (CHD7+/-), and control wild-type (CHD7+/+) cells. We then investigated the ability of the hESCs to develop into DE and the other two germ layers, mesoderm and ectoderm in vitro. We also compared global gene expression and chromatin accessibility among the hESC-DE cells by RNA sequencing (RNA-seq) and the assay for transposase-accessible chromatin with sequencing (ATAC-seq). RESULTS We found that deletion of CHD7 led to reduced capacity to develop into DE and mesoderm in a dose-dependent manner. Loss of CHD7 led to significant changes in the expression and chromatin accessibility of genes associated with several pathways. We identified 40 genes that were highly down-regulated in both the expression and chromatin accessibility in CHD7 deleted hESC-DE cells. CONCLUSIONS CHD7 is critical for DE and mesodermal development from hESCs. Our results provide new insights into the mechanisms by which CHD7 mutations cause multiple congenital anomalies.
Collapse
Affiliation(s)
- Rong Hu
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, 06269, CT, USA
| | - Jin Zhao
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, 06269, CT, USA
| | - Kuan Chen Lai
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, 06269, CT, USA
| | - Shikun Wang
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, 06269, CT, USA
| | - Jianqing Zheng
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, 06269, CT, USA
| | - Christopher Stoddard
- Department of Department of Genetics and Genome Sciences, University of Connecticut Health, Farmington, CT, USA
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, 06269, CT, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
- University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
2
|
Chen Y, Fu Z, Lu P, Ma Z, Dong Y, Yuan K, Chen W, Li Y, Ma D. FG-lncRNA06490 Is a Key Factor Influencing the Pathogenesis of Fusarium graminearum. PHYTOPATHOLOGY 2025:PHYTO11240378R. [PMID: 40526079 DOI: 10.1094/phyto-11-24-0378-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2025]
Abstract
Long noncoding RNAs (lncRNAs) have been revealed in multiple biological processes; however, their physiological roles, as well as their regulatory mechanisms, are largely unknown in organisms, especially in disease-causing fungi such as Fusarium graminearum, which causes Fusarium head blight in cereal crops. Herein, FG-lncRNA06490 was identified as a key regulator for pathogenesis in F. graminearum. Knockout of FG-lncRNA06490 resulted in significantly reduced pathogenicity during the experiment, which was recovered through a complementation test and dramatically increased by overexpression of FG-lncRNA06490, although the growth and development of the genetic modified strains was not impaired. A significant reduction in the deoxynivalenol (DON) level was observed in the knockout mutant compared with control strain, and the expression levels of TRI5 and TRI6, which are essential for DON synthesis, were correspondingly downregulated. In addition, the transcripts of the genes located 10 kb upstream and downstream of FG-lncRNA06490 were quantified, and significantly increased expression of FGSG_05143, FGSG_05144, and FGSG_12691, as well as dramatically decreased expression of FGSG_05145, was found in the knockout line. Subsequent experiments confirmed the silencing efficiency of FG-lncRNA06490, further validating its significance in F. graminearum. Altogether, we demonstrated the role of FG-lncRNA06490 in modulating the transcription of the genes potentially involved in the generation of DON, as well as pathogenesis. These preliminary insights into FG-lncRNA06490 highlight the function and regulatory model of lncRNAs in plant-fungus interaction.
Collapse
Affiliation(s)
- Yanjie Chen
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Zhizhen Fu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Ping Lu
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhaolan Ma
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Ye Dong
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Kunhang Yuan
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Wang Chen
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Yan Li
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Dongfang Ma
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
3
|
Yan L, Quan Z, Sun T, Wang J. Autophagy signaling mediated by non-coding RNAs: Impact on breast cancer progression and treatment. Mol Aspects Med 2025; 103:101365. [PMID: 40305994 DOI: 10.1016/j.mam.2025.101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
Autophagy, a conserved cellular mechanism which detoxifies and degrades intracellular structures or biomolecules, has been identified as an important factor in the progression of human breast cancer and the development of treatment resistance. Non-coding RNAs (ncRNAs), a broad family of RNA, have the ability to influence various processes, including autophagy, due to their diverse downstream targets. ncRNAs play an important role in suppressing or activating autophagy by targeting autophagy-triggering components such as the ULK1 complex, Beclin1, and ATGs. Recent research has uncovered the intricate regulatory networks that govern autophagy dynamics, with ncRNAs emerging as key participants in this network. miRNAs, lncRNAs, and circRNAs are the three subfamilies of ncRNAs that have the most well-known interactions with autophagy, particularly macroautophagy. The high prevalence of breast cancer necessitates research into finding new biological processes that can help in early detection as well as enhance the effectiveness of treatment. The positive/negative link between autophagy and ncRNAs can be exploited as a supplementary therapy to improve sensitivity to treatment in breast cancer. This review investigates the regulatory roles of ncRNAs, particularly microRNAs (miRNAs), in modifying autophagy pathways in human breast cancer progression and treatment. However, future studies and clinical practice are needed to determine the most relevant microRNAs as biomarkers and also to better understand their role in breast cancer progression or treatment through modifying autophagy.
Collapse
Affiliation(s)
- Lei Yan
- Clinical Experimental Centre, Xi'an International Medical Center Hospital, No.777 Xitai Road, High-tech Zone, Xi'an, Shaanxi Province, 710100, China; Xi'an Engineering Technology Research Center for Cardiovascular Active Peptide, Xi'an, Shaanxi, 710100, China
| | - Zhuo Quan
- Clinical Experimental Centre, Xi'an International Medical Center Hospital, No.777 Xitai Road, High-tech Zone, Xi'an, Shaanxi Province, 710100, China; Xi'an Engineering Technology Research Center for Cardiovascular Active Peptide, Xi'an, Shaanxi, 710100, China
| | - Tiantian Sun
- Department of Oncology, Zibo Central Hospital, Shandong, 255036, China.
| | - Jiaju Wang
- Department of Hematology, Zibo Central Hospital, Shandong, 255036, China.
| |
Collapse
|
4
|
Ding W, Gong W, Bou T, Shi L, Lin Y, Wu H, Dugarjaviin M, Bai D. Pilot Study on the Profiling and Functional Analysis of mRNA, miRNA, and lncRNA in the Skeletal Muscle of Mongolian Horses, Xilingol Horses, and Grassland-Thoroughbreds. Animals (Basel) 2025; 15:1123. [PMID: 40281957 PMCID: PMC12024394 DOI: 10.3390/ani15081123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Muscle fibers, as the fundamental units of muscle tissue, play a crucial role in determining skeletal muscle function through their growth, development, and composition. To investigate changes in muscle fiber types and their regulatory mechanisms in Mongolian horses (MG), Xilingol horses (XL), and Grassland-Thoroughbreds (CY), we conducted histological and bioinformatic analyses on the gluteus medius muscle of these three horse breeds. Immunofluorescence analysis revealed that Grassland-Thoroughbreds had the highest proportion of fast-twitch muscle fibers at 78.63%, while Mongolian horses had the lowest proportion at 57.54%. Whole-transcriptome analysis identified 105 differentially expressed genes (DEGs) in the CY vs. MG comparison and 104 DEGs in the CY vs. XL comparison. Time-series expression profiling grouped the DEGs into eight gene sets, with three sets showing significantly up-regulated or down-regulated expression patterns (p < 0.05). Additionally, 280 differentially expressed long non-coding RNAs (DELs) were identified in CY vs. MG, and 213 DELs were identified in CY vs. XL. A total of 32 differentially expressed microRNAs (DEMIRs) were identified in CY vs. MG, while 44 DEMIRs were found in CY vs. XL. Functional enrichment analysis indicated that the DEGs were significantly enriched in essential biological processes, such as actin filament organization, muscle contraction, and protein phosphorylation. KEGG pathway analysis showed their involvement in key signaling pathways, including the mTOR signaling pathway, FoxO signaling pathway, and HIF-1 signaling pathway. Furthermore, functional variation-based analyses revealed associations between non-coding RNAs and mRNAs, with some non-coding RNAs targeting genes potentially related to muscle function regulation. These findings provide valuable insights into the molecular basis for the environmental adaptability, athletic performance, and muscle characteristics in horses, offering new perspectives for the breeding of Grassland-Thoroughbreds.
Collapse
Affiliation(s)
- Wenqi Ding
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wendian Gong
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tugeqin Bou
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Shi
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanan Lin
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Huize Wu
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dongyi Bai
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
5
|
Ranjitkar S, Shiri M, Sun J, Tian X. Poly(A)-Selected Intergenic Transcripts in In Vivo Developed Bovine Oocytes and Pre-Implantation Embryos. Mol Reprod Dev 2025; 92:e70017. [PMID: 39987550 DOI: 10.1002/mrd.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/18/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Intergenic transcription, either failure to terminate at the transcription end site (TES), or transcription initiation at other intergenic regions, is present in cultured cells and enhanced in the presence of stressors such as viral infection. Such intergenic transcription has not been characterized in natural biological samples such as pre-implantation embryos which express more than 10,000 genes and undergo drastic changes in DNA methylation. Using Automatic Readthrough Transcription Detection (ARTDeco) and poly(A)-selected RNA-seq libraries from in vivo developed bovine oocytes and embryos, we found abundant intergenic transcripts that we termed as read-outs (transcribed from 5 to 15 kb after TES) and read-ins (transcribed 1 kb upstream of reference genes, extending up to 15 kb upstream). Read-throughs (continued transcription from TES of expressed reference genes, 4-15 kb in length), however, were much fewer. For example, the numbers of read-outs and read-ins ranged from 3084 to 6565 or 33.36% to 66.67% of expressed reference genes at different stages of embryo development. The less copious read-throughs were at an average of 10% and significantly correlated with reference gene expression (p < 0.05). Interestingly, intergenic transcription did not seem to be random because many intergenic transcripts (1504 read-outs, 1045 read-ins, and 1021 read-throughs) were associated with common reference genes across all stages of pre-implantation development. Their expression also seemed to be regulated by developmental stages because many were differentially expressed (log2 fold change ≥ 2, p < 0.05). Additionally, while gradual but un-patterned decreases in DNA methylation densities 10 kb both up- and downstream of the intergenic transcribed regions were observed, the correlation between intergenic transcription and DNA methylation was insignificant. Finally, transcription factor binding motifs and polyadenylation signals were found in 27.2% and 12.15% of intergenic transcripts, respectively, suggesting considerable novel transcription initiation and RNA processing. In summary, in vivo developed oocytes and pre-implantation embryos express large numbers of intergenic transcripts, which are not related to the overall DNA methylation profiles either up- or downstream.
Collapse
Affiliation(s)
- Saurav Ranjitkar
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Mohammad Shiri
- Department of Computer Science, Old Dominion University, Norfolk, Virginia, USA
| | - Jiangwen Sun
- Department of Computer Science, Old Dominion University, Norfolk, Virginia, USA
| | - Xiuchun Tian
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
6
|
He X, Zhao X, Wang H. LPI-GPR55 promotes endothelial cell activation and inhibits autophagy through inducing LINC01235 expression. Ann Med 2024; 56:2407525. [PMID: 39316662 PMCID: PMC11423533 DOI: 10.1080/07853890.2024.2407525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
INTRODUCTION Atherosclerosis (AS) is a chronic inflammatory disease characterized by lipid accumulation, inflammation and apoptosis of the arterial wall. This study evaluated the effects of lysophosphatidylinositol (LPI) on endothelial cells activation and autophagy in AS. METHODS qRT-PCR and Western blotting were done to verify the expression of ICAM1, GPR55 and SOD2. RNA-Seq was performed and screened for the different expressions of long noncoding RNAs (lncRNAs), combining bioinformatics analysis to elucidate the mechanism by which lncRNA functions. RESULTS qRT-PCR and Western blotting results showed that LPI increased GPR55 and ICAM1 expression. RNA-Seq analysis and qRT-PCR results showed that LPI increased the expression of LINC01235, LINC00520 and LINC01963; LINC01235 was the most obvious. Mechanistically, bioinformatic analysis demonstrated that LINC01235 inhibited autophagy through sponging miR-224-3p. And miRNA-224-3p targeted RABEP1. CONCLUSIONS LPI promoted endothelial cell activation. LPI induced the expression of LINC01235 and LINC01235 inhibited autophagy through miR-224-3p/RABEP1. Collectively, this study first reveals the function of LINC01235, which may serve as a potential therapeutic target in AS.
Collapse
Affiliation(s)
- Xiaoying He
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Xin Zhao
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital, Taiyuan, China
| | | |
Collapse
|
7
|
Aol L, Zhou X, Hao H, Nie J, Zhang W, Yao D, Su L, Xue W. LncRNAs modulating tooth development and alveolar resorption: Systematic review. Heliyon 2024; 10:e39895. [PMID: 39524731 PMCID: PMC11550122 DOI: 10.1016/j.heliyon.2024.e39895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/30/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Tooth development is an intricate process that encompasses cellular activities, molecular signaling pathways, and gene expression patterns. Disruptions in any of the processes can lead to structural anomalies, impairments in function, and increased vulnerability to oral disorders. Alveolar resorption, which refers to the pathological loss of alveolar bone around teeth, poses a substantial clinical problem in periodontal disorders such as periodontitis. Long non-coding RNAs (LncRNAs) have been implicated in the regulation of these physiological and pathological processes, and they exert their impact on gene expression through both transcriptional and post-transcriptional mechanisms. However, they also interact with certain microRNAs (mi-RNAs), thereby modulating the expression of downstream genes that are involved in tooth development. An exemplar is lncRNA ZFAS1, which has been demonstrated to regulate gene expression and impact these physiological and pathological processes. As a result, lncRNAs contribute to these processes by interacting with chromatin regulators, RNA enhancers, mi-RNAs, and their modulating signaling pathways involved in tooth development and alveolar resorption. Taken together, this review explores and gives a systematic account of the recent research findings that enhance our understanding of the molecular mechanisms that drive these processes and their potential consequences for the remodeling of teeth and bones in the oral cavity.
Collapse
Affiliation(s)
- Lilliane Aol
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinhong Zhou
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hong Hao
- Affiliated Hospital of Huazhong University of Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiaqi Nie
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wanjun Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dunjie Yao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wanlin Xue
- Affiliated Hospital of Huazhong University of Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
8
|
Molavand M, Ebrahimnezhade N, Kiani A, Yousefi B, Nazari A, Majidinia M. Regulation of autophagy by non-coding RNAs in human glioblastoma. Med Oncol 2024; 41:260. [PMID: 39375229 DOI: 10.1007/s12032-024-02513-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
Glioblastoma, a lethal form of brain cancer, poses substantial challenges in treatment due to its aggressive nature and resistance to standard therapies like radiation and chemotherapy. Autophagy has a crucial role in glioblastoma progression by supporting cellular homeostasis and promoting survival under stressful conditions. Non-coding RNAs (ncRNAs) play diverse biological roles including, gene regulation, chromatin remodeling, and the maintenance of cellular homeostasis. Emerging evidence reveals the intricate regulatory mechanisms of autophagy orchestrated by non-coding RNAs (ncRNAs) in glioblastoma. The diverse roles of these ncRNAs in regulating crucial autophagy-related pathways, including AMPK/mTOR signaling, the PI3K/AKT pathway, Beclin1, and other autophagy-triggering system regulation, sheds light on ncRNAs biological mechanisms in the proliferation, invasion, and therapy response of glioblastoma cells. Furthermore, the clinical implications of targeting ncRNA-regulated autophagy as a promising therapeutic strategy for glioblastoma treatment are in the spotlight of ongoing studies. In this review, we delve into our current understanding of how ncRNAs regulate autophagy in glioblastoma, with a specific focus on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), and their intricate interplay with therapy response.
Collapse
Affiliation(s)
- Mehran Molavand
- Student Research Commitee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Ebrahimnezhade
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Arash Kiani
- Student Research Commite, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
- Molecular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Nazari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
- Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
9
|
Hofman B, Szyda J, Frąszczak M, Mielczarek M. Long non-coding RNA variability in porcine skeletal muscle. J Appl Genet 2024; 65:565-573. [PMID: 38539022 DOI: 10.1007/s13353-024-00860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/14/2024] [Accepted: 03/21/2024] [Indexed: 08/09/2024]
Abstract
Recently, numerous studies including various tissues have been carried out on long non-coding RNAs (lncRNAs), but still, its variability has not yet been fully understood. In this study, we characterised the inter-individual variability of lncRNAs in pigs, in the context of number, length and expression. Transcriptomes collected from muscle tissue belonging to six Polish Landrace boars (PL1-PL6), including half-brothers (PL1-PL3), were investigated using bioinformatics (lncRNA identification and functional analysis) and statistical (lncRNA variability) methods. The number of lncRNA ranged from 1289 to 3500 per animal, and the total number of common lncRNAs among all boars was 232. The number, length and expression of lncRNAs significantly varied between individuals, and no consistent pattern has been found between pairs of half-brothers. In detail, PL5 exhibits lower expression than the others, while PL4 has significantly higher expression than PL2-PL3 and PL5-PL6. Noteworthy, comparing the inter-individual variability of lncRNA and mRNA expression, they exhibited concordant patterns. The enrichment analysis for common lncRNA target genes determined a variety of biological processes that play fundamental roles in cell biology, and they were mostly related to whole-body homeostasis maintenance, energy and protein synthesis as well as dynamics of multiple nucleoprotein complexes. The high variability of lncRNA landscape in the porcine genome has been revealed in this study. The inter-individual differences have been found in the context of three aspects: the number, length and expression of lncRNAs, which contribute to a better understanding of its complex nature.
Collapse
Affiliation(s)
- Bartłomiej Hofman
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Joanna Szyda
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Magdalena Frąszczak
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Magda Mielczarek
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland.
| |
Collapse
|
10
|
Tchurikov NA, Vartanian AA, Klushevskaya ES, Alembekov IR, Kretova AN, Lukicheva VN, Chechetkin VR, Kravatskaya GI, Kosorukov VS, Kravatsky YV. Strong Activation of ID1, ID2, and ID3 Genes Is Coupled with the Formation of Vasculogenic Mimicry Phenotype in Melanoma Cells. Int J Mol Sci 2024; 25:9291. [PMID: 39273240 PMCID: PMC11394958 DOI: 10.3390/ijms25179291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Gene expression patterns are very sensitive to external influences and are reflected in phenotypic changes. It was previously described that transferring melanoma cells from a plastic surface to Matrigel led to formation of de novo vascular networks-vasculogenic mimicry-that are characteristic to a stemness phenotype in aggressive tumors. Up to now there was no detailed data about the gene signature accompanying this process. Here, we show that this transfer shortly led to extremely strong epigenetic changes in gene expression in the melanoma cells. We observed that on Matrigel numerous genes controlling ribosome biogenesis were upregulated. However, most of the activated genes were inhibitors of the differentiation genes (ID1, ID2, and ID3). At the same time, the genes that control differentiation were downregulated. Both the upregulated and the downregulated genes are simultaneously targeted by different transcription factors shaping sets of co-expressed genes. The specific group of downregulated genes shaping contacts with rDNA genes are also associated with the H3K27me3 mark and with numerous lincRNAs and miRNAs. We conclude that the stemness phenotype of melanoma cells is due to the downregulation of developmental genes and formation of dedifferentiated cells.
Collapse
Affiliation(s)
- Nickolai A Tchurikov
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Amalia A Vartanian
- Department of Experimental Diagnosis and Therapy of Tumors, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, 115478 Moscow, Russia
| | - Elena S Klushevskaya
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ildar R Alembekov
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Antonina N Kretova
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Viktoriya N Lukicheva
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir R Chechetkin
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Galina I Kravatskaya
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vyacheslav S Kosorukov
- Department of Experimental Diagnosis and Therapy of Tumors, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, 115478 Moscow, Russia
| | - Yuri V Kravatsky
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
11
|
Luo Q, Shen F, Zhao S, Dong L, Wei J, Hu H, Huang Q, Wang Q, Yang P, Liang W, Li W, He F, Cao J. LINC00460/miR-186-3p/MYC feedback loop facilitates colorectal cancer immune escape by enhancing CD47 and PD-L1 expressions. J Exp Clin Cancer Res 2024; 43:225. [PMID: 39135122 PMCID: PMC11321182 DOI: 10.1186/s13046-024-03145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) have been implicated as critical regulators of cancer tumorigenesis and progression. However, their functions and molecular mechanisms in colorectal cancer (CRC) still remain to be further elucidated. METHODS LINC00460 was identified by differential analysis between human CRC and normal tissues and verified by in situ hybridization (ISH) and qRT-PCR. We investigated the biological functions of LINC00460 in CRC by in vitro and in vivo experiments. We predicted the mechanism and downstream functional molecules of LINC00460 by bioinformatics analysis, and confirmed them by dual luciferase reporter gene assay, RNA immunoprecipitation (RIP), RNA pull-down, etc. RESULTS: LINC00460 was found to be significantly overexpressed in CRC and associated with poor prognosis. Overexpression of LINC00460 promoted CRC cell immune escape and remodeled a suppressive tumor immune microenvironment, thereby promoting CRC proliferation and metastasis. Mechanistic studies showed that LINC00460 served as a molecular sponge for miR-186-3p, and then promoted the expressions of MYC, CD47 and PD-L1 to facilitate CRC cell immune escape. We also demonstrated that MYC upregulated LINC00460 expression at the transcriptional level and formed a positive feedback loop. CONCLUSIONS The LINC00460/miR-186-3p/MYC feedback loop promotes CRC cell immune escape and subsequently facilitates CRC proliferation and metastasis. Our findings provide novel insight into LINC00460 as a CRC immune regulator, and provide a potential therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Qingqing Luo
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Fei Shen
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, China
- Department of Thyroid surgery, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Sheng Zhao
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Lan Dong
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Jianchang Wei
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - He Hu
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Qing Huang
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Qiang Wang
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Ping Yang
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Wenlong Liang
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Wanglin Li
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Feng He
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China.
| | - Jie Cao
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China.
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China.
| |
Collapse
|
12
|
Rajabi D, Khanmohammadi S, Rezaei N. The role of long noncoding RNAs in amyotrophic lateral sclerosis. Rev Neurosci 2024; 35:533-547. [PMID: 38452377 DOI: 10.1515/revneuro-2023-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/18/2024] [Indexed: 03/09/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease with a poor prognosis leading to death. The diagnosis and treatment of ALS are inherently challenging due to its complex pathomechanism. Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides involved in different cellular processes, incisively gene expression. In recent years, more studies have been conducted on lncRNA classes and interference in different disease pathologies, showing their promising contribution to diagnosing and treating neurodegenerative diseases. In this review, we discussed the role of lncRNAs like NEAT1 and C9orf72-as in ALS pathogenesis mechanisms caused by mutations in different genes, including TAR DNA-binding protein-43 (TDP-43), fused in sarcoma (FUS), superoxide dismutase type 1 (SOD1). NEAT1 is a well-established lncRNA in ALS pathogenesis; hence, we elaborate on its involvement in forming paraspeckles, stress response, inflammatory response, and apoptosis. Furthermore, antisense lncRNAs (as-lncRNAs), a key group of transcripts from the opposite strand of genes, including ZEB1-AS1 and ATXN2-AS, are discussed as newly identified components in the pathology of ALS. Ultimately, we review the current standing of using lncRNAs as biomarkers and therapeutic agents and the future vision of further studies on lncRNA applications.
Collapse
Affiliation(s)
- Darya Rajabi
- School of Medicine, Tehran University of Medical Sciences, Felestin St., Keshavarz Blvd., Tehran, 1416634793, Iran
| | - Shaghayegh Khanmohammadi
- School of Medicine, Tehran University of Medical Sciences, Felestin St., Keshavarz Blvd., Tehran, 1416634793, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, No 63, Gharib Ave, Keshavarz Blv, Tehran, 1419733151, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, No 63, Gharib Ave, Keshavarz Blv, Tehran, 1419733151, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, No 63, Gharib Ave, Keshavarz Blv, Tehran, 1419733151, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, No 63, Gharib Ave, Keshavarz Blv, Tehran, 1419733151, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Felestin St., Keshavarz Blvd., Tehran, 1416634793, Iran
| |
Collapse
|
13
|
Ding W, Gong W, Liu H, Hu H, Shi L, Ren X, Cao Y, Zhang A, Shi X, Li Z, Bou T, Dugarjaviin M, Bai D. Changes of mRNA, miRNA and lncRNA expression contributing to skeletal muscle differences between fetus and adult Mongolian horses. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101294. [PMID: 39180870 DOI: 10.1016/j.cbd.2024.101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024]
Abstract
The growth and development of myofibers, as the fundamental units comprising muscle tissue, and their composition type are indeed among the most crucial factors influencing skeletal muscle types. Muscle fiber adaptation is closely associated with alterations in physiological conditions. Muscle fiber types undergo dynamic changes in fetus and adult horses. Our aim is to investigate the mechanisms influencing the differences in muscle fiber types between fetal and adult stages of Mongolian horses. The study investigated the distribution of muscle fiber types within longissimus dorsi muscle of fetus and adult Mongolian horses. A total of 652 differentially expressed genes (DEGs), 476 Differentially expressed lncRNAs (DELs), and 174 Differentially expressed miRNAs (DEMIRs) were identified using deep RNA-seq analysis. The results of functional analysis reveal the transformations in muscle fiber type from the fetal to adult stage in Mongolian horses. The up-regulated DEGs were implicated in the development and differentiation of muscle fibers, while down-regulated DEGs were associated with muscle fiber contraction, transformation, and metabolism. Additionally, connections between non-coding RNA and mRNA landscapes were identified based on their functional alterations, some non-coding RNA target genes may be associated with immunity. These data have broadened our understanding of the specific roles and interrelationships among regulatory molecules involved in Mongolian horse development, this provides new perspectives for selecting and breeding superior individuals and for disease prevention.
Collapse
Affiliation(s)
- Wenqi Ding
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wendian Gong
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Huiying Liu
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hanwen Hu
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Shi
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiujuan Ren
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuying Cao
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Aaron Zhang
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaoyuan Shi
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zheng Li
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tugeqin Bou
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dongyi Bai
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
14
|
Fahad M, Tariq L, Muhammad S, Wu L. Underground communication: Long non-coding RNA signaling in the plant rhizosphere. PLANT COMMUNICATIONS 2024; 5:100927. [PMID: 38679911 PMCID: PMC11287177 DOI: 10.1016/j.xplc.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as integral gene-expression regulators underlying plant growth, development, and adaptation. To adapt to the heterogeneous and dynamic rhizosphere, plants use interconnected regulatory mechanisms to optimally fine-tune gene-expression-governing interactions with soil biota, as well as nutrient acquisition and heavy metal tolerance. Recently, high-throughput sequencing has enabled the identification of plant lncRNAs responsive to rhizosphere biotic and abiotic cues. Here, we examine lncRNA biogenesis, classification, and mode of action, highlighting the functions of lncRNAs in mediating plant adaptation to diverse rhizosphere factors. We then discuss studies that reveal the significance and target genes of lncRNAs during developmental plasticity and stress responses at the rhizobium interface. A comprehensive understanding of specific lncRNAs, their regulatory targets, and the intricacies of their functional interaction networks will provide crucial insights into how these transcriptomic switches fine-tune responses to shifting rhizosphere signals. Looking ahead, we foresee that single-cell dissection of cell-type-specific lncRNA regulatory dynamics will enhance our understanding of the precise developmental modulation mechanisms that enable plant rhizosphere adaptation. Overcoming future challenges through multi-omics and genetic approaches will more fully reveal the integral roles of lncRNAs in governing plant adaptation to the belowground environment.
Collapse
Affiliation(s)
- Muhammad Fahad
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Leeza Tariq
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Sajid Muhammad
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liang Wu
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
15
|
Zhou J, Sheng Y, Chen Z, Ding H, Zheng X. RNA-seq reveals differentially expressed lncRNAs and circRNAs and their associated functional network in HTR-8/Svneo cells under hypoxic conditions. BMC Med Genomics 2024; 17:172. [PMID: 38943134 PMCID: PMC11212387 DOI: 10.1186/s12920-024-01933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024] Open
Abstract
Placental hypoxia is hazardous to maternal health as well as fetal growth and development. Preeclampsia and intrauterine growth restriction are common pregnancy problems, and one of the causes is placental hypoxia. Placental hypoxia is linked to a number of pregnancy illnessesv. To investigate their potential function in anoxic circumstances, we mimicked the anoxic environment of HTR-8/Svneo cells and performed lncRNA and circRNA studies on anoxic HTR-8/Svneo cells using high-throughput RNA sequencing. The miRNA target genes were predicted by integrating the aberrant expression of miRNAs in the placenta of preeclampsia and intrauterine growth restriction, and a ceRNA network map was developed to conduct a complete transcriptomic and bioinformatics investigation of circRNAs and lncRNAs. The signaling pathways in which the genes were primarily engaged were predicted using GO and KEGG analyses. To propose a novel explanation for trophoblastic organism failure caused by lncRNAs and circRNAs in an anoxic environment.
Collapse
Affiliation(s)
- Jiaqing Zhou
- Obstetrics and Gynecology, Ningbo University, Ningbo, China
- Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - YueHua Sheng
- Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zhezhan Chen
- Obstetrics and Gynecology, Ningbo University, Ningbo, China
- Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Huiqing Ding
- Obstetrics and Gynecology, Ningbo University, Ningbo, China.
- Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Xiaojiao Zheng
- Obstetrics and Gynecology, Ningbo University, Ningbo, China.
- Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
16
|
Anderson EM, Anderson SK. Economy of Effort or Sophisticated Programming? The Prevalence of Bidirectional Promoter Complexes in the Human Genome. Genes (Basel) 2024; 15:252. [PMID: 38397241 PMCID: PMC10887517 DOI: 10.3390/genes15020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
An abundance of antisense promoters in the vicinity of the transcriptional start site of coding genes suggests that they play an important role in gene regulation. The divergent transcription of housekeeping genes by a common central promoter region allows for coordinated regulation of genes in related pathways and is also linked to higher promoter activity. However, closely positioned transcription start sites can also result in competition between overlapping promoter elements and generate a binary switch element. Furthermore, the direct competition resulting from the presence of an antisense promoter immediately downstream of the transcription start site of the gene produces an element that can exist in only one of two stable transcriptional states: sense or antisense. In this review, we summarize analyses of the prevalence of antisense transcription in higher eukaryotes and viruses, with a focus on the antisense promoters competing with the promoters of coding genes. The structures of bidirectional promoters driving the simultaneous expression of housekeeping genes are compared with examples of human bidirectional elements that have been shown to act as switches. Since many bidirectional elements contain a noncoding RNA as the divergent transcript, we describe examples of functional noncoding antisense transcripts that affect the epigenetic landscape and alter the expression of their host gene. Finally, we discuss opportunities for additional research on competing sense/antisense promoters, uncovering their potential role in programming cell differentiation.
Collapse
Affiliation(s)
- Erik M. Anderson
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Stephen K. Anderson
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
17
|
Cracco RC, Alexandre PA, Polizel GHG, Fernandes AC, de Almeida Santana MH. Evaluation of Muscle Long Non-Coding RNA Profile during Rearing and Finishing Phase of Bulls Subjected to Different Prenatal Nutritional Strategies. Animals (Basel) 2024; 14:652. [PMID: 38396620 PMCID: PMC10886332 DOI: 10.3390/ani14040652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Maternal nutrition has the ability of influence critical processes in fetal life, including muscle development. Also, in this period, epigenetic sensitivity to external stimuli is higher and produces long-lasting effects. Thus, the aim of this study was to investigate epigenetic mechanisms, including the identification and characterization of long non-coding RNA (lncRNA) from animals that had undergone different strategies of prenatal supplementation. A group of Nellore cows (n = 126) were separated into three nutritional plans: NP (control)-Not Programmed, without protein-energy supplementation; PP-Partially Programmed, protein-energy supplementation in the final third of pregnancy; and CP-Complete Programming, protein-energy supplementation during the full period of gestation. A total of 63 male offspring were used in this study, of which 15 (5 per treatment) had Longissimus thoracis muscle at 15 (biopsy) and 22 months (slaughter). Biopsy samples were subjected to RNA extraction and sequencing. Differential expression (DE) of remodeling factors and chromatin-modifying enzyme genes were performed. For the identification and characterization of lncRNA, a series of size filters and protein coding potential tests were performed. The lncRNAs identified had their differential expression and regulatory potential tested. Regarding DE of epigenetic mechanisms, no differentially expressed gene was found (p > 0.1). Identification of potential lncRNA was successful, identifying 1823 transcripts at 15 months and 1533 at 22 months. Among these, four were considered differentially expressed between treatments at 15 months and 6 were differentially expressed at 22 months. Yet, when testing regulatory potential, 13 lncRNAs were considered key regulators in the PP group, and 17 in the CP group. PP group lncRNAs possibly regulate fat-cell differentiation, in utero embryonic development, and transforming growth factor beta receptor, whereas lncRNA in the CP group regulates in utero embryonic development, fat-cell differentiation and vasculogenesis. Maternal nutrition had no effect on differential expression of epigenetic mechanisms; however, it seems to impair lncRNA regulation of epigenetics.
Collapse
Affiliation(s)
- Roberta Cavalcante Cracco
- Department of Animal Science, College of Animal Science and Food Engineering—USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (R.C.C.); (G.H.G.P.)
| | - Pamela Almeida Alexandre
- Microbiomes for One Systems Health (MOSH), CSIRO Agriculture & Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia;
| | - Guilherme Henrique Gebim Polizel
- Department of Animal Science, College of Animal Science and Food Engineering—USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (R.C.C.); (G.H.G.P.)
| | - Arícia Christofaro Fernandes
- Department of Animal Science, College of Animal Science and Food Engineering—USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (R.C.C.); (G.H.G.P.)
| | - Miguel Henrique de Almeida Santana
- Department of Animal Science, College of Animal Science and Food Engineering—USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (R.C.C.); (G.H.G.P.)
| |
Collapse
|
18
|
Mohammadpour S, Noukabadi FN, Esfahani AT, Kazemi F, Esmaeili S, Zafarjafarzadeh N, Sarpash S, Nazemalhosseini-Mojarad E. Non-coding RNAs in Precursor Lesions of Colorectal Cancer: Their Role in Cancer Initiation and Formation. Curr Mol Med 2024; 24:565-575. [PMID: 37226783 DOI: 10.2174/1566524023666230523155719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/26/2023]
Abstract
Colorectal cancer (CRC) is one of the world's most common types of malignancy. The proliferation of precancerous lesions causes this type of cancer. Two distinct pathways for CRC carcinogenesis have been identified: the conventional adenoma-carcinoma pathway and the serrated neoplasia pathway. Recently, evidence has demonstrated the regulatory roles of noncoding RNAs (ncRNAs) in the initiation and progression of precancerous lesions, especially in the adenoma-carcinoma pathway and serrated neoplasia pathway. By expanding the science of molecular genetics and bioinformatics, several studies have identified dysregulated ncRNAs that function as oncogenes or tumor suppressors in cancer initiation and formation by diverse mechanisms via intracellular signaling pathways known to act on tumor cells. However, many of their roles are still unclear. This review summarizes the functions and mechanisms of ncRNAs (such as long non-coding RNAs, microRNAs, long intergenic non-coding RNAs, small interfering RNAs, and circRNAs) in the initiation and formation of precancerous lesions.
Collapse
Affiliation(s)
- Somayeh Mohammadpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences. Tehran, Iran
| | - Fatemeh Naderi Noukabadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences. Tehran, Iran
| | - Amir Torshizi Esfahani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences. Tehran, Iran
| | - Fatemeh Kazemi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Sahar Esmaeili
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Nikta Zafarjafarzadeh
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - SeyedKasra Sarpash
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Liu S, Xiang D. New understandings of the genetic regulatory relationship between non-coding RNAs and m 6A modification. Front Genet 2023; 14:1270983. [PMID: 38125749 PMCID: PMC10731383 DOI: 10.3389/fgene.2023.1270983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
One of the most frequent epigenetic modifications of RNA in eukaryotes is N6 methyladenosine (m6A), which is mostly present in messenger RNAs. Through the influence of several RNA processing stages, m6A modification is a crucial approach for controlling gene expression, especially in cancer progression. It is universally acknowledged that numerous non-coding RNAs (ncRNAs), such as microRNAs, circular RNAs, long non-coding RNAs, and piRNAs, are also significantly affected by m6A modification, and the complex genetic regulatory relationship between m6A and ncRNAs plays a pivotal role in the development of cancer. The connection between m6A modifications and ncRNAs offers an opportunity to explore the oncogene potential regulatory mechanisms and suggests that m6A modifications and ncRNAs could be vital biomarkers for multiple cancers. In this review, we discuss the mechanisms of interaction between m6A methylation and ncRNAs in cancer, and we also summarize diagnostic and prognostic biomarkers for clinical cancer detection. Furthermore, our article includes some methodologies for identifying m6A sites when assessing biomarker potential.
Collapse
Affiliation(s)
- Songtao Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Dayong Xiang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Melis M, Marino R, Tian J, Johnson C, Sethi R, Oertel M, Fox IJ, Locker J. Mechanism and Effect of HNF4α Decrease in a Rat Model of Cirrhosis and Liver Failure. Cell Mol Gastroenterol Hepatol 2023; 17:453-479. [PMID: 37993018 PMCID: PMC10837635 DOI: 10.1016/j.jcmgh.2023.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND & AIMS HNF4α, a master regulator of liver development and the mature hepatocyte phenotype, is down-regulated in chronic and inflammatory liver disease. We used contemporary transcriptomics and epigenomics to study the cause and effects of this down-regulation and characterized a multicellular etiology. METHODS Progressive changes in the rat carbon tetrachloride model were studied by deep RNA sequencing and genome-wide chromatin immunoprecipitation sequencing analysis of transcription factor (TF) binding and chromatin modification. Studies compared decompensated cirrhosis with liver failure after 26 weeks of treatment with earlier compensated cirrhosis and with additional rat models of chronic fibrosis. Finally, to resolve cell-specific responses and intercellular signaling, we compared transcriptomes of liver, nonparenchymal, and inflammatory cells. RESULTS HNF4α was significantly lower in 26-week cirrhosis, part of a general reduction of TFs that regulate metabolism. Nevertheless, increased binding of HNF4α contributed to strong activation of major phenotypic genes, whereas reduced binding to other genes had a moderate phenotypic effect. Decreased Hnf4a expression was the combined effect of STAT3 and nuclear factor kappa B (NFκB) activation, which similarly reduced expression of other metabolic TFs. STAT/NFκB also induced de novo expression of Osmr by hepatocytes to complement induced expression of Osm by nonparenchymal cells. CONCLUSIONS Liver decompensation by inflammatory STAT3 and NFκB signaling was not a direct consequence of progressive cirrhosis. Despite significant reduction of Hnf4a expression, residual levels of this abundant TF still stimulated strong new gene expression. Reduction of HNF4α was part of a broad hepatocyte transcriptional response to inflammation.
Collapse
Affiliation(s)
- Marta Melis
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rebecca Marino
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jianmin Tian
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carla Johnson
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rahil Sethi
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Oertel
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ira J Fox
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph Locker
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
21
|
Kim S. LncRNA-miRNA-mRNA regulatory networks in skin aging and therapeutic potentials. Front Physiol 2023; 14:1303151. [PMID: 37881693 PMCID: PMC10597623 DOI: 10.3389/fphys.2023.1303151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
Skin aging is a complex process influenced by intrinsic and extrinsic factors. Although dermatology offers advanced interventions, molecular mechanisms in skin aging remain limited. Competing endogenous RNAs (ceRNAs), a subset of coding or non-coding RNAs, regulate gene expression through miRNA competition. Several ceRNA networks investigated up to now offer insights into skin aging and wound healing. In skin aging, RP11-670E13.6-miR-663a-CDK4/CD6 delays senescence induced by UVB radiation. Meg3-miR-93-5p-epiregulin contributes to UVB-induced inflammatory skin damage. Predicted ceRNA networks reveal UVA-induced photoaging mechanisms. SPRR2C sequesters miRNAs in epidermal aging-associated alteration of calcium gradient. H19-miR-296-5p-IGF2 regulates dermal fibroblast senescence. PVT1-miR-551b-3p-AQP3 influences skin photoaging. And bioinformatics analyses identify critical genes and compounds for skin aging interventions. In skin wound healing, MALAT1-miR-124 aids wound healing by activating the Wnt/β-catenin pathway. Hair follicle MSC-derived H19 promotes wound healing by inhibiting pyroptosis. And the SAN-miR-143-3p-ADD3 network rejuvenates adipose-derived mesenchymal stem cells in wound healing. Thus, ceRNA networks provide valuable insights into the molecular underpinnings of skin aging and wound healing, offering potential therapeutic strategies for further investigation. This comprehensive review serves as a foundational platform for future research endeavors in these crucial areas of dermatology.
Collapse
Affiliation(s)
- Sungchul Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
| |
Collapse
|
22
|
Eldash S, Sanad EF, Nada D, Hamdy NM. The Intergenic Type LncRNA (LINC RNA) Faces in Cancer with In Silico Scope and a Directed Lens to LINC00511: A Step toward ncRNA Precision. Noncoding RNA 2023; 9:58. [PMID: 37888204 PMCID: PMC10610215 DOI: 10.3390/ncrna9050058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/09/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Long intergenic non-coding RNA, is one type of lncRNA, exerting various cellular activities, as does ncRNA, including the regulation of gene expression and chromatin remodeling. The abnormal expression of lincRNAs can induce or suppress carcinogenesis. MAIN BODY LincRNAs can regulate cancer progression through different mechanisms and are considered as potential drug targets. Genetic variations such as single nucleotide polymorphisms (SNPs) in lincRNAs may affect gene expression and messenger ribonucleic acid (mRNA) stability. SNPs in lincRNAs have been found to be associated with different types of cancer, as well. Specifically, LINC00511 has been known to promote the progression of multiple malignancies such as breast cancer, colorectal cancer, lung cancer, hepatocellular carcinoma, and others, making it a promising cancer prognostic molecular marker. CONCLUSION LincRNAs have been proved to be associated with different cancer types through various pathways. Herein, we performed a comprehensive literature and in silico databases search listing lncRNAs, lincRNAs including LINC00511, lncRNAs' SNPs, as well as LINC00511 SNPs in different cancer types, focusing on their role in various cancer types and mechanism(s) of action.
Collapse
Affiliation(s)
- Shorouk Eldash
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk, Cairo 11837, Egypt; (S.E.)
| | - Eman F. Sanad
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Dina Nada
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk, Cairo 11837, Egypt; (S.E.)
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| |
Collapse
|
23
|
Riyazuddin R, Singh K, Iqbal N, Labhane N, Ramteke P, Singh VP, Gupta R. Unveiling the biosynthesis, mechanisms, and impacts of miRNAs in drought stress resilience in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107978. [PMID: 37660607 DOI: 10.1016/j.plaphy.2023.107978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Drought stress is one of the most serious threats to sustainable agriculture and is predicted to be further intensified in the coming decades. Therefore, understanding the mechanism of drought stress tolerance and the development of drought-resilient crops are the major goals at present. In recent years, noncoding microRNAs (miRNAs) have emerged as key regulators of gene expressions under drought stress conditions and are turning out to be the potential candidates that can be targeted to develop drought-resilient crops in the future. miRNAs are known to target and decrease the expression of various genes to govern the drought stress response in plants. In addition, emerging evidence also suggests a regulatory role of long non-coding RNAs (lncRNAs) in the regulation of miRNAs and the expression of their target genes by a process referred as miRNA sponging. In this review, we present the regulatory roles of miRNAs in the modulation of drought-responsive genes along with discussing their biosynthesis and action mechanisms. Additionally, the interactive roles of miRNAs with phytohormone signaling components have also been highlighted to present the global view of miRNA functioning under drought-stress conditions.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary.
| | - Kalpita Singh
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary; Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, H-2462, Martonvásár, Hungary.
| | - Nadeem Iqbal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary.
| | - Nitin Labhane
- Department of Botany, Bhavan's College Andheri West, Mumbai, 400058, India.
| | - Pramod Ramteke
- Department of Biotechnology, Dr. Ambedkar College, Nagpur, India.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Ravi Gupta
- College of General Education, Kookmin University, 02707, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Cullina S, Wojcik GL, Shemirani R, Klarin D, Gorman BR, Sorokin EP, Gignoux CR, Belbin GM, Pyarajan S, Asgari S, Tsao PS, Damrauer SM, Abul-Husn NS, Kenny EE. Admixture mapping of peripheral artery disease in a Dominican population reveals a putative risk locus on 2q35. Front Genet 2023; 14:1181167. [PMID: 37600667 PMCID: PMC10432698 DOI: 10.3389/fgene.2023.1181167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Peripheral artery disease (PAD) is a form of atherosclerotic cardiovascular disease, affecting ∼8 million Americans, and is known to have racial and ethnic disparities. PAD has been reported to have a significantly higher prevalence in African Americans (AAs) compared to non-Hispanic European Americans (EAs). Hispanic/Latinos (HLs) have been reported to have lower or similar rates of PAD compared to EAs, despite having a paradoxically high burden of PAD risk factors; however, recent work suggests prevalence may differ between sub-groups. Here, we examined a large cohort of diverse adults in the BioMe biobank in New York City. We observed the prevalence of PAD at 1.7% in EAs vs. 8.5% and 9.4% in AAs and HLs, respectively, and among HL sub-groups, the prevalence was found at 11.4% and 11.5% in Puerto Rican and Dominican populations, respectively. Follow-up analysis that adjusted for common risk factors demonstrated that Dominicans had the highest increased risk for PAD relative to EAs [OR = 3.15 (95% CI 2.33-4.25), p < 6.44 × 10-14]. To investigate whether genetic factors may explain this increased risk, we performed admixture mapping by testing the association between local ancestry and PAD in Dominican BioMe participants (N = 1,813) separately from European, African, and Native American (NAT) continental ancestry tracts. The top association with PAD was an NAT ancestry tract at chromosome 2q35 [OR = 1.96 (SE = 0.16), p < 2.75 × 10-05) with 22.6% vs. 12.9% PAD prevalence in heterozygous NAT tract carriers versus non-carriers, respectively. Fine-mapping at this locus implicated tag SNP rs78529201 located within a long intergenic non-coding RNA (lincRNA) LINC00607, a gene expression regulator of key genes related to thrombosis and extracellular remodeling of endothelial cells, suggesting a putative link of the 2q35 locus to PAD etiology. Efforts to reproduce the signal in other Hispanic cohorts were unsuccessful. In summary, we showed how leveraging health system data helped understand nuances of PAD risk across HL sub-groups and admixture mapping approaches elucidated a putative risk locus in a Dominican population.
Collapse
Affiliation(s)
- Sinead Cullina
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Genevieve L. Wojcik
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Ruhollah Shemirani
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Derek Klarin
- VA Palo Alto Healthcare System, Palo Alto, CA, United States
- Division of Vascular Surgery, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Bryan R. Gorman
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, United States
- Booz Allen Hamilton, McLean, VA, United States
| | - Elena P. Sorokin
- Department of Genetics, Stanford University, Stanford, CA, United States
| | - Christopher R. Gignoux
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Colorado Center for Personalized Medicine, Aurora, CO, United States
| | - Gillian M. Belbin
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Division of General Internal Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, United States
- Department of Medicine, Brigham Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Samira Asgari
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Philip S. Tsao
- VA Palo Alto Healthcare System, Palo Alto, CA, United States
| | - Scott M. Damrauer
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Noura S. Abul-Husn
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eimear E. Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Division of General Internal Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
25
|
Ghafouri-Fard S, Safarzadeh A, Hussen BM, Taheri M, Eghbali A. Expression of LINC00174 in different cancers: Review of the literature and bioinformatics analyses. Pathol Res Pract 2023; 248:154617. [PMID: 37320864 DOI: 10.1016/j.prp.2023.154617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
LINC00174 is an example of long intergenic non-coding RNAs with important functions in the development of human cancers. The gene encoding this lincRNA is located on 7q11.21. LINC00174 has been demonstrated to play an oncogenic role in a variety of cancers, including colorectal carcinoma, thymic carcinoma, glioma, glioblastoma, hepatocellular carcinoma, kidney renal clear cell carcinoma, breast cancer and non-functioning pituitary adenoma. In lung cancer, there is an obvious discrepancy between different studies regarding the role of this lincRNA. This lincRNA is also involved in the determination of prognosis of different cancers, particularly colorectal cancer. In the current review, we discuss the role of this lincRNA in human carcinogenesis based on the available data in the literature and bioinformatics tools.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Arash Safarzadeh
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan, Islamic Republic of Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
26
|
Ghafouri F, Sadeghi M, Bahrami A, Naserkheil M, Dehghanian Reyhan V, Javanmard A, Miraei-Ashtiani SR, Ghahremani S, Barkema HW, Abdollahi-Arpanahi R, Kastelic JP. Construction of a circRNA- lincRNA-lncRNA-miRNA-mRNA ceRNA regulatory network identifies genes and pathways linked to goat fertility. Front Genet 2023; 14:1195480. [PMID: 37547465 PMCID: PMC10400778 DOI: 10.3389/fgene.2023.1195480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Background: There is growing interest in the genetic improvement of fertility traits in female goats. With high-throughput genotyping, single-cell RNA sequencing (scRNA-seq) is a powerful tool for measuring gene expression profiles. The primary objective was to investigate comparative transcriptome profiling of granulosa cells (GCs) of high- and low-fertility goats, using scRNA-seq. Methods: Thirty samples from Ji'ning Gray goats (n = 15 for high fertility and n = 15 for low fertility) were retrieved from publicly available scRNA-seq data. Functional enrichment analysis and a literature mining approach were applied to explore modules and hub genes related to fertility. Then, interactions between types of RNAs identified were predicted, and the ceRNA regulatory network was constructed by integrating these interactions with other gene regulatory networks (GRNs). Results and discussion: Comparative transcriptomics-related analyses identified 150 differentially expressed genes (DEGs) between high- and low-fertility groups, based on the fold change (≥5 and ≤-5) and false discovery rate (FDR <0.05). Among these genes, 80 were upregulated and 70 were downregulated. In addition, 81 mRNAs, 58 circRNAs, 8 lincRNAs, 19 lncRNAs, and 55 miRNAs were identified by literature mining. Furthermore, we identified 18 hub genes (SMAD1, SMAD2, SMAD3, SMAD4, TIMP1, ERBB2, BMP15, TGFB1, MAPK3, CTNNB1, BMPR2, AMHR2, TGFBR2, BMP4, ESR1, BMPR1B, AR, and TGFB2) involved in goat fertility. Identified biological networks and modules were mainly associated with ovary signature pathways. In addition, KEGG enrichment analysis identified regulating pluripotency of stem cells, cytokine-cytokine receptor interactions, ovarian steroidogenesis, oocyte meiosis, progesterone-mediated oocyte maturation, parathyroid and growth hormone synthesis, cortisol synthesis and secretion, and signaling pathways for prolactin, TGF-beta, Hippo, MAPK, PI3K-Akt, and FoxO. Functional annotation of identified DEGs implicated important biological pathways. These findings provided insights into the genetic basis of fertility in female goats and are an impetus to elucidate molecular ceRNA regulatory networks and functions of DEGs underlying ovarian follicular development.
Collapse
Affiliation(s)
- Farzad Ghafouri
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mostafa Sadeghi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Masoumeh Naserkheil
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Animal Breeding and Genetics Division, National Institute of Animal Science, Cheonan-si, Republic of Korea
| | - Vahid Dehghanian Reyhan
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Arash Javanmard
- Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyed Reza Miraei-Ashtiani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Soheila Ghahremani
- Department of Animal Science, Faculty of Agriculture, University of Tarbiat Modares, Tehran, Iran
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Rostam Abdollahi-Arpanahi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - John P. Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
Chen H, Xie G, Luo Q, Yang Y, Hu S. Regulatory miRNAs, circRNAs and lncRNAs in cell cycle progression of breast cancer. Funct Integr Genomics 2023; 23:233. [PMID: 37432486 DOI: 10.1007/s10142-023-01130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/12/2023]
Abstract
Breast cancer is a complex and heterogeneous disease that poses a significant public health concern worldwide, and it remains a major challenge despite advances in treatment options. One of the main properties of cancer cells is the increased proliferative activity that has lost regulation. Dysregulation of various positive and negative modulators in the cell cycle has been identified as one of the driving factors of breast cancer. In recent years, non-coding RNAs have garnered much attention in the regulation of cell cycle progression, with microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) being of particular interest. MiRNAs are a class of highly conserved and regulatory small non-coding RNAs that play a crucial role in the modulation of various cellular and biological processes, including cell cycle regulation. CircRNAs are a novel form of non-coding RNAs that are highly stable and capable of modulating gene expression at posttranscriptional and transcriptional levels. LncRNAs have also attracted considerable attention because of their prominent roles in tumor development, including cell cycle progression. Emerging evidence suggests that miRNAs, circRNAs and lncRNAs play important roles in the regulation of cell cycle progression in breast cancer. Herein, we summarized the latest related literatures in breast cancer that emphasize the regulatory roles of miRNAs, circRNAs and lncRNAs in cell cycle progress of breast cancer. Further understanding of the precise roles and mechanisms of non-coding RNAs in breast cancer cell cycle regulation could lead to the development of new diagnostic and therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Huan Chen
- Department of Clinical Laboratory, Wuhan Institute of Technology Hospital, Wuhan Institute of Technology, Wuhan, China
| | - Guoping Xie
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, China
| | - Qunying Luo
- Department of Internal Medicine-Neurology, Huarun Wuhan Iron and Steel General Hospital, Wuhan, China
| | - Yisha Yang
- Luoyang Campus, Henan Vocational College of Agriculture, Luoyang, China
| | - Siheng Hu
- Department of Clinical Laboratory, Honggangcheng Street Community Health Service Center, Wuhan, China.
| |
Collapse
|
28
|
Yehuda H, Madrer N, Goldberg D, Soreq H, Meerson A. Inversely Regulated Inflammation-Related Processes Mediate Anxiety-Obesity Links in Zebrafish Larvae and Adults. Cells 2023; 12:1794. [PMID: 37443828 PMCID: PMC10341043 DOI: 10.3390/cells12131794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Anxiety and metabolic impairments are often inter-related, but the underlying mechanisms are unknown. To seek RNAs involved in the anxiety disorder-metabolic disorder link, we subjected zebrafish larvae to caffeine-induced anxiety or high-fat diet (HFD)-induced obesity followed by RNA sequencing and analyses. Notably, differentially expressed (DE) transcripts in these larval models and an adult zebrafish caffeine-induced anxiety model, as well as the transcript profiles of inherently anxious versus less anxious zebrafish strains and high-fat diet-fed versus standard diet-fed adult zebrafish, revealed inversely regulated DE transcripts. In both larval anxiety and obesity models, these included long noncoding RNAs and transfer RNA fragments, with the overrepresented immune system and inflammation pathways, e.g., the "interleukin signaling pathway" and "inflammation mediated by chemokine and cytokine signaling pathway". In adulthood, overrepresented immune system processes included "T cell activation", "leukocyte cell-cell adhesion", and "antigen processing and presentation". Furthermore, unlike adult zebrafish, obesity in larvae was not accompanied by anxiety-like behavior. Together, these results may reflect an antagonistic pleiotropic phenomenon involving a re-adjusted modulation of the anxiety-metabolic links with an occurrence of the acquired immune system. Furthermore, the HFD potential to normalize anxiety-upregulated immune-related genes may reflect the high-fat diet protection of anxiety and neurodegeneration reported by others.
Collapse
Affiliation(s)
- Hila Yehuda
- MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (H.Y.); (N.M.)
| | - Nimrod Madrer
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (H.Y.); (N.M.)
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Doron Goldberg
- MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel
- Tel-Hai College, Upper Galilee 1220800, Israel;
| | - Hermona Soreq
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (H.Y.); (N.M.)
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ari Meerson
- MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel
- Tel-Hai College, Upper Galilee 1220800, Israel;
| |
Collapse
|
29
|
Zhao X, Yuan J, Jia J, Zhang J, Liu J, Chen Q, Li T, Wu Z, Wu H, Miao X, Wu T, Li B, Cheng X. Role of non‑coding RNAs in cartilage endplate (Review). Exp Ther Med 2023; 26:312. [PMID: 37273754 PMCID: PMC10236100 DOI: 10.3892/etm.2023.12011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/14/2023] [Indexed: 06/06/2023] Open
Abstract
Cartilage endplate (CEP) degeneration is considered one of the major causes of intervertebral disc degeneration (IDD), which causes non-specific neck and lower back pain. In addition, several non-coding RNAs (ncRNAs), including long ncRNAs, microRNAs and circular RNAs have been shown to be involved in the regulation of various diseases. However, the particular role of ncRNAs in CEP remains unclear. Identifying these ncRNAs and their interactions may prove to be is useful for the understanding of CEP health and disease. These RNA molecules regulate signaling pathways and biological processes that are critical for a healthy CEP. When dysregulated, they can contribute to the development disease. Herein, studies related to ncRNAs interactions and regulatory functions in CEP are reviewed. In addition, a summary of the current knowledge regarding the deregulation of ncRNAs in IDD in relation to their actions on CEP cell functions, including cell proliferation, apoptosis and extracellular matrix synthesis/degradation is presented. The present review provides novel insight into the pathogenesis of IDD and may shed light on future therapeutic approaches.
Collapse
Affiliation(s)
- Xiaokun Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jinghong Yuan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jingyu Jia
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiahao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qi Chen
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tao Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiwen Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xinxin Miao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
30
|
Bresnahan ST, Lee E, Clark L, Ma R, Markey M, Rangel J, Grozinger CM, Li-Byarlay H. Examining parent-of-origin effects on transcription and RNA methylation in mediating aggressive behavior in honey bees (Apis mellifera). BMC Genomics 2023; 24:315. [PMID: 37308882 PMCID: PMC10258952 DOI: 10.1186/s12864-023-09411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
Conflict between genes inherited from the mother (matrigenes) and the father (patrigenes) is predicted to arise during social interactions among offspring if these genes are not evenly distributed among offspring genotypes. This intragenomic conflict drives parent-specific transcription patterns in offspring resulting from parent-specific epigenetic modifications. Previous tests of the kinship theory of intragenomic conflict in honey bees (Apis mellifera) provided evidence in support of theoretical predictions for variation in worker reproduction, which is associated with extreme variation in morphology and behavior. However, more subtle behaviors - such as aggression - have not been extensively studied. Additionally, the canonical epigenetic mark (DNA methylation) associated with parent-specific transcription in plant and mammalian model species does not appear to play the same role as in honey bees, and thus the molecular mechanisms underlying intragenomic conflict in this species is an open area of investigation. Here, we examined the role of intragenomic conflict in shaping aggression in honey bee workers through a reciprocal cross design and Oxford Nanopore direct RNA sequencing. We attempted to probe the underlying regulatory basis of this conflict through analyses of parent-specific RNA m6A and alternative splicing patterns. We report evidence that intragenomic conflict occurs in the context of honey bee aggression, with increased paternal and maternal allele-biased transcription in aggressive compared to non-aggressive bees, and higher paternal allele-biased transcription overall. However, we found no evidence to suggest that RNA m6A or alternative splicing mediate intragenomic conflict in this species.
Collapse
Affiliation(s)
- Sean T Bresnahan
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, USA.
| | - Ellen Lee
- Agricultural Research and Development Program, Central State University, Wilberforce, USA
- Department of Biological Sciences, Wright State University, Dayton, USA
| | - Lindsay Clark
- HPCBio, University of Illinois at Urbana-Champaign, Champaign, USA
- Research Scientific Computing Group, Seattle Children's Research Institute, Seattle, USA
| | - Rong Ma
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, USA
| | - Michael Markey
- Department of Biological Sciences, Wright State University, Dayton, USA
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, College Station, USA
| | - Christina M Grozinger
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, USA
| | - Hongmei Li-Byarlay
- Agricultural Research and Development Program, Central State University, Wilberforce, USA.
- Department of Agricultural and Life Science, Central State University, Wilberforce, USA.
| |
Collapse
|
31
|
Ranjitkar S, Shiri M, Sun J, Tian X. Intergenic transcription in in vivo developed bovine oocytes and pre-implantation embryos. RESEARCH SQUARE 2023:rs.3.rs-2934322. [PMID: 37293046 PMCID: PMC10246250 DOI: 10.21203/rs.3.rs-2934322/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Intergenic transcription, either failure to terminate at the transcription end site (TES), or transcription initiation at other intergenic regions, is present in cultured cells and enhanced in the presence of stressors such as viral infection. Transcription termination failure has not been characterized in natural biological samples such as pre-implantation embryos which express more than 10,000 genes and undergo drastic changes in DNA methylation. Results Using Automatic Readthrough Transcription Detection (ARTDeco) and data of in vivo developed bovine oocytes and embryos, we found abundant intergenic transcripts that we termed as read-outs (transcribed from 5 to 15 kb after TES) and read-ins (transcribed 1 kb up-stream of reference genes, extending up to 15 kb up-stream). Read-throughs (continued transcription from TES of expressed reference genes, 4-15 kb in length), however, were much fewer. For example, the numbers of read-outs and read-ins ranged from 3,084 to 6,565 or 33.36-66.67% of expressed reference genes at different stages of embryo development. The less copious read-throughs were at an average of 10% and significantly correlated with reference gene expression (P < 0.05). Interestingly, intergenic transcription did not seem to be random because many intergenic transcripts (1,504 read-outs, 1,045 read-ins, and 1,021 read-throughs) were associated with common reference genes across all stages of pre-implantation development. Their expression also seemed to be regulated by developmental stages because many were differentially expressed (log2 fold change ≥ 2, P < 0.05). Additionally, while gradual but un-patterned decreases in DNA methylation densities 10 kb both up- and down-stream of the intergenic transcribed regions were observed, the correlation between intergenic transcription and DNA methylation was insignificant. Finally, transcription factor binding motifs and polyadenylation signals were found in 27.2% and 12.15% of intergenic transcripts, respectively, suggesting considerable novel transcription initiation and RNA processing. Conclusion In summary, in vivo developed oocytes and pre-implantation embryos express large numbers of intergenic transcripts, which are not related to the overall DNA methylation profiles either up- or down-stream.
Collapse
|
32
|
Li F, Zhu W. LINC00460 promotes angiogenesis by enhancing NF-κB-mediated VEGFA expression in cervical cancer cells. Biochem Biophys Res Commun 2023; 671:146-152. [PMID: 37302288 DOI: 10.1016/j.bbrc.2023.05.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Angiogenesis is a characteristic of tumor development and is key for tumor growth and metastasis. LINC00460 is a long non-coding RNA that plays important yet complex roles in cancer development and progression. Here, we explored the functional mechanism of action of LINC00460 in cervical cancer (CC) angiogenesis for the first time. We found that conditioned medium (CM) from LINC00460-knockdown CC cells attenuated human umbilical vein endothelial cell (HUVEC) migration, invasion, and tube formation, whereas LINC00460 upregulation had the opposite effects. Mechanistically, LINC00460 stimulated VEGFA transcription. Suppressing VEGF-A reversed the effects of CM from LINC00460-overexpressing CC cells on HUVEC angiogenesis. Recombinant VEGFA eliminated the suppressive effects of CM from LINC00460-knockdown CC cells. Furthermore, LINC00460 enhanced VEGFA expression and promoted angiogenesis by activating the NF-κB pathway. Our data illustrate that LINC00460 can promote angiogenesis by activating the NF-κB-VEGFA axis, suggesting that the axis is a promising target for blocking tumor angiogenesis.
Collapse
Affiliation(s)
- Fan Li
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China; Department of Gynecology, Shanghai Xuhui Central Hospital, Shanghai, 200031, China; Department of Gynecology, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China
| | - Weipei Zhu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
33
|
Umer MJ, Zheng J, Yang M, Batool R, Abro AA, Hou Y, Xu Y, Gebremeskel H, Wang Y, Zhou Z, Cai X, Liu F, Zhang B. Insights to Gossypium defense response against Verticillium dahliae: the Cotton Cancer. Funct Integr Genomics 2023; 23:142. [PMID: 37121989 DOI: 10.1007/s10142-023-01065-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
The soil-borne pathogen Verticillium dahliae, also referred as "The Cotton Cancer," is responsible for causing Verticillium wilt in cotton crops, a destructive disease with a global impact. To infect cotton plants, the pathogen employs multiple virulence mechanisms such as releasing enzymes that degrade cell walls, activating genes that contribute to virulence, and using protein effectors. Conversely, cotton plants have developed numerous defense mechanisms to combat the impact of V. dahliae. These include strengthening the cell wall by producing lignin and depositing callose, discharging reactive oxygen species, and amassing hormones related to defense. Despite the efforts to develop resistant cultivars, there is still no permanent solution to Verticillium wilt due to a limited understanding of the underlying molecular mechanisms that drive both resistance and pathogenesis is currently prevalent. To address this challenge, cutting-edge technologies such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), host-induced gene silencing (HIGS), and gene delivery via nano-carriers could be employed as effective alternatives to control the disease. This article intends to present an overview of V. dahliae virulence mechanisms and discuss the different cotton defense mechanisms against Verticillium wilt, including morphophysiological and biochemical responses and signaling pathways including jasmonic acid (JA), salicylic acid (SA), ethylene (ET), and strigolactones (SLs). Additionally, the article highlights the significance of microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) in gene expression regulation, as well as the different methods employed to identify and functionally validate genes to achieve resistance against this disease. Gaining a more profound understanding of these mechanisms could potentially result in the creation of more efficient strategies for combating Verticillium wilt in cotton crops.
Collapse
Affiliation(s)
- Muhammad Jawad Umer
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jie Zheng
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China
| | - Mengying Yang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Raufa Batool
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aamir Ali Abro
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Haileslassie Gebremeskel
- Mehoni Agricultural Research Center, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Yuhong Wang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - ZhongLi Zhou
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.
| | - Baohong Zhang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
34
|
Cullina S, Wojcik GL, Shemirani R, Klarin D, Gorman BR, Sorokin EP, Gignoux CR, Belbin GM, Pyarajan S, Asgari S, Tsao PS, Damrauer SM, Abul-Husn NS, Kenny EE. Admixture Mapping of Peripheral Artery Disease in a Dominican Population Reveals a Novel Risk Locus on 2q35. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.27.23287788. [PMID: 37034679 PMCID: PMC10081406 DOI: 10.1101/2023.03.27.23287788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Peripheral artery disease (PAD) is a form of atherosclerotic cardiovascular disease, affecting ∼8 million Americans, and is known to have racial and ethnic disparities. PAD has been reported to have significantly higher prevalence in African Americans (AAs) compared to non-Hispanic European Americans (EAs). Hispanic/Latinos (HLs) have been reported to have lower or similar rates of PAD compared to EAs, despite having a paradoxically high burden of PAD risk factors, however recent work suggests prevalence may differ between sub-groups. Here we examined a large cohort of diverse adults in the Bio Me biobank in New York City (NYC). We observed the prevalence of PAD at 1.7% in EAs vs 8.5% and 9.4% in AAs and HLs, respectively; and among HL sub-groups, at 11.4% and 11.5% in Puerto Rican and Dominican populations, respectively. Follow-up analysis that adjusted for common risk factors demonstrated that Dominicans had the highest increased risk for PAD relative to EAs (OR=3.15 (95% CI 2.33-4.25), P <6.44×10 -14 ). To investigate whether genetic factors may explain this increased risk, we performed admixture mapping by testing the association between local ancestry (LA) and PAD in Dominican Bio Me participants (N=1,940) separately for European (EUR), African (AFR) and Native American (NAT) continental ancestry tracts. We identified a NAT ancestry tract at chromosome 2q35 that was significantly associated with PAD (OR=2.05 (95% CI 1.51-2.78), P <4.06×10 -6 ) with 22.5% vs 12.5% PAD prevalence in heterozygous NAT tract carriers versus non-carriers, respectively. Fine-mapping at this locus implicated tag SNP rs78529201 located within a long intergenic non-coding RNA (lincRNA) LINC00607 , a gene expression regulator of key genes related to thrombosis and extracellular remodeling of endothelial cells, suggesting a putative link of the 2q35 locus to PAD etiology. In summary, we showed how leveraging health systems data helped understand nuances of PAD risk across HL sub-groups and admixture mapping approaches elucidated a novel risk locus in a Dominican population.
Collapse
|
35
|
AmeliMojarad M, AmeliMojarad M. A comprehensive review of the role of LINC00462 in human disorders. Pathol Res Pract 2023; 243:154370. [PMID: 36812739 DOI: 10.1016/j.prp.2023.154370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
LINC00462; a long intergenic non-coding RNA located on chromosome chr13:48,576,973-48,590,587 is a member of long non-coding RNA (lncRNA) that is participated in different human disorders such as pancreatic cancer and hepatocellular carcinoma. LINC00462 can act as competing endogenous RNAs (ceRNAs), to sponge different MicroRNAs (miRNAs) such as miR-665. Dysregulation of LINC00462 can promote cancer development, progression, and metastasis. LINC00462 can also bind directly with genes and proteins to regulate different pathways, including STAT2/3 and PI3K/AKT pathways to affected tumor progression. In addition, aberrant LINC00462 levels can be important cancer-specific prognostic and diagnostic markers. In this review, we summarize the most recent studies on the role of LINC00462 in different disorders and demonstrated the role of LINC00462 in tumorigenesis.
Collapse
Affiliation(s)
- Melika AmeliMojarad
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, PR China.
| | - Mandana AmeliMojarad
- National Institute of Genetic Engineering and Biotechnology, Tehran, Islamic Republic of Iran; Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| |
Collapse
|
36
|
Noël A, Yilmaz S, Farrow T, Schexnayder M, Eickelberg O, Jelesijevic T. Sex-Specific Alterations of the Lung Transcriptome at Birth in Mouse Offspring Prenatally Exposed to Vanilla-Flavored E-Cigarette Aerosols and Enhanced Susceptibility to Asthma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3710. [PMID: 36834405 PMCID: PMC9967225 DOI: 10.3390/ijerph20043710] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Currently, approximately 8 million adult Americans use electronic cigarettes (e-cigs) daily, including women of childbearing age. It is known that more than 10% of women smoke during their pregnancy, and recent surveys show that rates of maternal vaping are similar to rates of maternal cigarette smoking. However, the effects of inhaling e-cig aerosol on the health of fetuses remain unknown. The objective of the present study was to increase our understanding of the molecular effects caused by in utero exposures to e-cig aerosols on developing mouse lungs and, later in life, on the offspring's susceptibility to developing asthma. METHODS Pregnant mice were exposed throughout gestation to either filtered air or vanilla-flavored e-cig aerosols containing 18 mg/mL of nicotine. Male and female exposed mouse offspring were sacrificed at birth, and then the lung transcriptome was evaluated. Additionally, once sub-groups of male offspring mice reached 4 weeks of age, they were challenged with house dust mites (HDMs) for 3 weeks to assess asthmatic responses. RESULTS The lung transcriptomic responses of the mouse offspring at birth showed that in utero vanilla-flavored e-cig aerosol exposure significantly regulated 88 genes in males (62 genes were up-regulated and 26 genes were down-regulated), and 65 genes were significantly regulated in females (17 genes were up-regulated and 48 genes were down-regulated). Gene network analyses revealed that in utero e-cig aerosol exposure affected canonical pathways associated with CD28 signaling in T helper cells, the role of NFAT in the regulation of immune responses, and phospholipase C signaling in males, whereas the dysregulated genes in the female offspring were associated with NRF2-mediated oxidative stress responses. Moreover, we found that in utero exposures to vanilla-flavored e-cig aerosol exacerbated HDM-induced asthma in 7-week-old male mouse offspring compared to respective in utero air + HDM controls. CONCLUSIONS Overall, these data demonstrate that in utero e-cig aerosol exposure alters the developing mouse lung transcriptome at birth in a sex-specific manner and provide evidence that the inhalation of e-cig aerosols is detrimental to the respiratory health of offspring by increasing the offspring' susceptibility to developing lung diseases later in life.
Collapse
Affiliation(s)
- Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sultan Yilmaz
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Tori Farrow
- Department of Environmental Toxicology, Southern University and A & M College, Baton Rouge, LA 70813, USA
| | | | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tomislav Jelesijevic
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
37
|
Comparative Transcriptome Profiles of Human HaCaT Cells in Response to Gynostemma pentaphyllum Extracts Obtained Using Three Independent Methods by RNA Sequencing. Life (Basel) 2023; 13:life13020423. [PMID: 36836780 PMCID: PMC9961609 DOI: 10.3390/life13020423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Gynostemma pentaphyllum (GP) is widely used in herbal medicine. In this study, we developed a method for the large-scale production of GP cells using plant tissue culture techniques combined with bioreactors. Six metabolites (uridine, adenosine, guanosine, tyrosine, phenylalanine, and tryptophan) were identified in GP extracts. Transcriptome analyses of HaCaT cells treated with GP extracts using three independent methods were conducted. Most differentially expressed genes (DEGs) from the GP-all condition (combination of three GP extracts) showed similar gene expression on treatment with the three individual GP extracts. The most significantly upregulated gene was LTBP1. Additionally, 125 and 51 genes were upregulated and downregulated, respectively, in response to the GP extracts. The upregulated genes were associated with the response to growth factors and heart development. Some of these genes encode components of elastic fibers and the extracellular matrix and are associated with many cancers. Genes related to folate biosynthesis and vitamin D metabolism were also upregulated. In contrast, many downregulated genes were associated with cell adhesion. Moreover, many DEGs were targeted to the synaptic and neuronal projections. Our study has revealed the functional mechanisms of GP extracts' anti-aging and photoprotective effects on the skin using RNA sequencing.
Collapse
|
38
|
Transcriptome Profiling of the Liver in Nellore Cattle Phenotypically Divergent for RFI in Two Genetic Groups. Animals (Basel) 2023; 13:ani13030359. [PMID: 36766249 PMCID: PMC9913155 DOI: 10.3390/ani13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
The identification and selection of genetically superior animals for residual feed intake (RFI) could enhance productivity and minimize environmental impacts. The aim of this study was to use RNA-seq data to identify the differentially expressed genes (DEGs), known non-coding RNAs (ncRNAs), specific biomarkers and enriched biological processes associated with RFI of the liver in Nellore cattle in two genetic groups. In genetic group 1 (G1), 24 extreme RFI animals (12 low RFI (LRFI) versus 12 high RFI (HRFI)) were selected from a population of 60 Nellore bulls. The RNA-seq of the samples from their liver tissues was performed using an Illumina HiSeq 2000. In genetic group 2 (G2), 20 samples of liver tissue of Nellore bulls divergent for RFI (LRFI, n = 10 versus HRFI, n = 10) were selected from 83 animals. The raw data of the G2 were chosen from the ENA repository. A total of 1811 DEGs were found for the G1 and 2054 for the G2 (p-value ≤ 0.05). We detected 88 common genes in both genetic groups, of which 33 were involved in the immune response and in blocking oxidative stress. In addition, seven (B2M, ADSS, SNX2, TUBA4A, ARHGAP18, MECR, and ABCF3) possible gene biomarkers were identified through a receiver operating characteristic analysis (ROC) considering an AUC > 0.70. The B2M gene was overexpressed in the LRFI group. This gene regulates the lipid metabolism protein turnover and inhibits cell death. We also found non-coding RNAs in both groups. MIR25 was up-regulated and SNORD16 was down-regulated in the LRFI for G1. For G2, up-regulated RNase_MRP and SCARNA10 were found. We highlight MIR25 as being able to act by blocking cytotoxicity and oxidative stress and RMRP as a blocker of mitochondrial damage. The biological pathways associated with RFI of the liver in Nellore cattle in the two genetic groups were for energy metabolism, protein turnover, redox homeostasis and the immune response. The common transcripts, biomarkers and metabolic pathways found in the two genetic groups make this unprecedented work even more relevant, since the results are valid for different herds raised in different ways. The results reinforce the biological importance of these known processes but also reveal new insights into the complexity of the liver tissue transcriptome of Nellore cattle.
Collapse
|
39
|
Fedorova S, Dorogova NV, Karagodin DA, Oshchepkov DY, Brusentsov II, Klimova NV, Baricheva EM. The complex role of transcription factor GAGA in germline death during Drosophila spermatogenesis: transcriptomic and bioinformatic analyses. PeerJ 2023; 11:e14063. [PMID: 36643636 PMCID: PMC9835689 DOI: 10.7717/peerj.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 08/26/2022] [Indexed: 01/11/2023] Open
Abstract
The GAGA protein (also known as GAF) is a transcription factor encoded by the Trl gene in D. melanogaster. GAGA is involved in the regulation of transcription of many genes at all stages of fly development and life. Recently, we investigated the participation of GAGA in spermatogenesis and discovered that Trl mutants experience massive degradation of germline cells in the testes. Trl underexpression induces autophagic death of spermatocytes, thereby leading to reduced testis size. Here, we aimed to determine the role of the transcription factor GAGA in the regulation of ectopic germline cell death. We investigated how Trl underexpression affects gene expression in the testes. We identified 15,993 genes in three biological replicates of our RNA-seq analysis and compared transcript levels between hypomorphic Trl R85/Trl 362 and Oregon testes. A total of 2,437 differentially expressed genes were found, including 1,686 upregulated and 751 downregulated genes. At the transcriptional level, we detected the development of cellular stress in the Trl-mutant testes: downregulation of the genes normally expressed in the testes (indicating slowed or abrogated spermatocyte differentiation) and increased expression of metabolic and proteolysis-related genes, including stress response long noncoding RNAs. Nonetheless, in the Flybase Gene Ontology lists of genes related to cell death, autophagy, or stress, there was no enrichment with GAGA-binding sites. Furthermore, we did not identify any specific GAGA-dependent cell death pathway that could regulate spermatocyte death. Thus, our data suggest that GAGA deficiency in male germline cells leads to an imbalance of metabolic processes, impaired mitochondrial function, and cell death due to cellular stress.
Collapse
Affiliation(s)
- Svetlana Fedorova
- Department of Cell Biology, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russian Federation
| | - Natalya V. Dorogova
- Department of Cell Biology, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russian Federation
| | - Dmitriy A. Karagodin
- Department of Cell Biology, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russian Federation
| | - Dmitry Yu Oshchepkov
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russian Federation
| | - Ilya I. Brusentsov
- Department of Cell Biology, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russian Federation
| | - Natalya V. Klimova
- Department of Molecular Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russian Federation
| | - Elina M. Baricheva
- Department of Cell Biology, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russian Federation
| |
Collapse
|
40
|
Pasieka R, Zasoński G, Raczyńska KD. Role of Long Intergenic Noncoding RNAs in Cancers with an Overview of MicroRNA Binding. Mol Diagn Ther 2023; 27:29-47. [PMID: 36287372 PMCID: PMC9813052 DOI: 10.1007/s40291-022-00619-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 02/04/2023]
Abstract
Long intergenic noncoding RNAs are transcripts originating from the regions without annotated coding genes. They are located mainly in the nucleus and regulate gene expression. Long intergenic noncoding RNAs can be also found in the cytoplasm acting as molecular sponges of certain microRNAs. This is crucial in various biological and signaling pathways. Expression levels of many long intergenic noncoding RNAs are disease related. In this article, we focus on the long intergenic noncoding RNAs and their relation to different types of cancer. Studies showed that abnormal expression of long intergenic noncoding RNA deregulates signaling pathways due to the disrupted free microRNA pool. Hampered signaling pathways leads to abnormal cell proliferation and restricts cell death, thus resulting in oncogenesis. This review highlights promising therapeutic targets and enables the identification of potential biomarkers specific for a certain type of cancer. Moreover, we provide an outline of long intergenic noncoding RNAs/microRNA axes, which might be applied in further detailed experiments broadening our knowledge about the cellular role of those RNA species.
Collapse
Affiliation(s)
- Robert Pasieka
- Laboratory of RNA Processing, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology and Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Gilbert Zasoński
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Katarzyna Dorota Raczyńska
- Laboratory of RNA Processing, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology and Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland.
| |
Collapse
|
41
|
Shabtai R, Tzur YB. Male-specific roles of lincRNA in C. elegans fertility. Front Cell Dev Biol 2023; 11:1115605. [PMID: 37035238 PMCID: PMC10076526 DOI: 10.3389/fcell.2023.1115605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
The testis is the mammalian tissue with the highest expression levels of long intergenic non-coding RNAs (lincRNAs). However, most in vivo models have not found significant reductions in male fertility when highly expressed lincRNA genes were removed. This suggests that certain lincRNAs may act redundantly or lack functional roles. In the genome of the nematode Caenorhabditis elegans, there is an order of magnitude fewer lincRNA genes than in mammals. This characteristic lowers the potential for redundancy, making it an ideal model to test these possibilities. We identified five highly and dynamically expressed lincRNAs in male C. elegans gonads and quantified the fertility of worm strains in which these genes were removed. In contrast to the hermaphrodites of deletion strains, which exhibited no significant reductions in broods, smaller brood sizes were observed in the progeny of males of three of the lincRNA deleted strains. This demonstrates reduced male fertility in worms with those genes removed. Interestingly, reduced brood size was statistically significant only in the last days of egg laying in two of these strains. This suggests the effect is due to early deterioration and aging of the transferred sperm. We detected a mild increase in embryonic lethality in only one of the strains, supporting the possibility that these lincRNAs do not affect fertility through critical roles in essential meiotic processes. Together our results indicate a sexually dimorphic outcome on fertility when lincRNA are removed and show that, unlike mammals, individual lincRNAs in C. elegans do play significant roles in male fertility.
Collapse
|
42
|
Choi M, Kang KW. Mitoregulin controls mitochondrial function and stress-adaptation response during early phase of endoplasmic reticulum stress in breast cancer cells. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166570. [PMID: 36241124 DOI: 10.1016/j.bbadis.2022.166570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/19/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
Abstract
The proper regulation of mitochondrial function is important for cellular homeostasis. Especially, in cancer cells, dysregulation of mitochondria is associated with diverse cellular events such as metabolism, redox status, and stress responses. Mitoregulin (MTLN), a micro protein encoded by LINC00116, recently has been reported to control mitochondrial functions in skeletal muscle cells and adipocytes. However, the role of MTLN in cancer cells remains unclear. In the present study, we found that MTLN regulates membrane potential and reactive oxygen species (ROS) generation of mitochondria in breast cancer cells. Moreover, MTLN deficiency resulted in abnormal mitochondria-associated ER membranes (MAMs) formation, which is crucial for stress adaptation. Indeed, the MTLN-deficient breast cancer cells failed to successfully resolve ER (endoplasmic reticulum) stress, and cell vulnerability to ER-stress inducers was significantly enhanced by the downregulation of MTLN. In conclusion, MTLN controls stress-adaptation responses in breast cancer cells as a key regulator of mitochondria-ER harmonization, and thereby its expression level may serve as an indicator of the responsiveness of cancer cells to proteasome inhibitors.
Collapse
Affiliation(s)
- Munkyung Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
43
|
Bhandari R, Shaikh II, Bhandari R, Chapagain S. LINC01023 Promotes the Hepatoblastoma Tumorigenesis via miR-378a-5p/WNT3 Axis. Mol Cell Biochem 2022:10.1007/s11010-022-04636-5. [PMID: 36576714 DOI: 10.1007/s11010-022-04636-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
Hepatoblastoma is the most common type of hepatic tumors occurring in children between 0 and 5 years. And the exact pathophysiology of the disease is still mysterious. Accumulating studies on LncRNA have shown its pivotal role in the development and progression of distinct human cancers. However, the role of LINC01023 in hepatoblastoma is unknown. The relative expression of LINC01023, miR-378a-5p, and Wnt3 on hepatoblastoma tissue and cell lines was determined by quantitative polymerase chain reaction (qRT-PCR). The effect of LINC01023 downregulation and upregulation on cell proliferation, colony formation and apoptosis activities in HUH6 and HepG2 Cells was assessed by CKK8, clonogenic and flow cytometry analysis, respectively. Dual luciferase, RNA immunoprecipitation (RIP), and RNA pull-down were performed to confirm the interaction between LINC01023 and miR-378a-5p. Similarly, Dual luciferase assay was performed to confirmed the interaction between Wnt3 and miR-378a-5p. The xenograft tumorgenicity test was performed to elucidate the tumorgenicity potential of LINC01023. LINC01023 was significantly upregulated in hepatoblastoma tissue and cell lines rather than in adjacent normal hepatic tissue and QSG7701 cell lines. LINC01023 silencing attenuated cell proliferation, colony formation and increased cell apoptosis. Conversely, LINC01023 upregulation results in significant increase in cell proliferation, and colony formation activities however, a significant reduction in apoptosis activity was reported. Interaction between the LINC01023 and WNT3 was confirmed by dual luciferase assay. Xenograft animal tumorgenicity test confirmed the in-vivo tumorigenesis potential of LINC01203. To the best of our knowledge, this study is the first study demonstrating the role of LINC01023 in hepatoblastoma tumorigenesis through the LINC01023/miR-378a-5p/Wnt3 axis. It could be a potential therapeutic target and a prognostic biomarker in hepatoblastoma.
Collapse
Affiliation(s)
- Ramesh Bhandari
- Department of Clinical Laboratory Medicine, Shanghai Tenth Peoples Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.
| | - Imran Ibrahim Shaikh
- Department of Orthopedics, Tongji Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200065, People's Republic of China
| | - Rajeev Bhandari
- Department of Clinical Laboratory Medicine, Shanghai Tenth Peoples Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Sadikchha Chapagain
- Department of Clinical Laboratory Medicine, Shanghai Tenth Peoples Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| |
Collapse
|
44
|
Ghafouri-Fard S, Safarzadeh A, Hussen BM, Taheri M, Rashnoo F. A concise review on the role of LINC00324 in different cancers. Pathol Res Pract 2022; 240:154192. [DOI: 10.1016/j.prp.2022.154192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022]
|
45
|
El-Sheikh NM, Abulsoud AI, Wasfey EF, Hamdy NM. Insights on the potential oncogenic impact of long non-coding RNA nicotinamide nucleotide transhydrogenase antisense RNA 1 in different cancer types; integrating pathway(s) and clinical outcome(s) association. Pathol Res Pract 2022; 240:154183. [PMID: 36327824 DOI: 10.1016/j.prp.2022.154183] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Long non-coding RNAs (lncRNAs) are becoming more prevalent in the cancer field arena, with functional roles in both oncogenic and onco-suppressive pathways. Despite their widespread aberrant expression in a range of human malignancies, the biological activities of the ncRNAs majority are unknown. All showed the involvement of the lncRNA nicotinamide nucleotide transhydrogenase antisense RNA 1 (NNT-AS1). Since NNT-AS1 influences cellular proliferation, invasion, migration, apoptosis, and metastasis, this lncRNA appears to be linked to deregulating the normal cellular processes driving malignancy. This was observed in breast cancer (BC), gastric cancer (GC), colorectal cancer (CRC), epithelial ovarian cancer (EOC), and hepatocellular carcinoma (HCC). The current narrative non-systematic review will discuss "the significance of lncRNAs in cancer", as well as "lncRNAs future potential application(s) as diagnostic or predictive biomarkers", therefore, comprising an opportunity as treatment target(s). The review will have a special emphasis on lncRNA NNT-AS1.
Collapse
Affiliation(s)
- Nada M El-Sheikh
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, El Salam City, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, El Salam City, Cairo 11785, Egypt; Biochemistry Department, Faculty of Pharmacy (Boy's branch), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| |
Collapse
|
46
|
LncRNA FAM13A-AS1 Regulates Proliferation and Apoptosis of Cervical Cancer Cells by Targeting miRNA-205-3p/DDI2 Axis. JOURNAL OF ONCOLOGY 2022; 2022:8411919. [PMID: 35783157 PMCID: PMC9246599 DOI: 10.1155/2022/8411919] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022]
Abstract
The aim of this study was to explore the function of long noncoding RNA (lncRNA) FAM13A-AS1 and its associated mechanism in cervical cancer. A total of 30 cervical cancer tissues and adjacent tissues were collected. Cervical cancer cell lines, including SiHa and HeLa, were transfected with constructs expressing LV-FAM13A-AS1, silencing RNA LV-siFAM13A-AS1, miRNA mimics, and miRNA inhibitors. RT-qPCR was used to detect the expression of FAM13A-AS1 in cervical cancer tissues, including SiHa, HeLa, and HUCEC cells. MTT, flow cytometry, and transwell assays were performed to explore the influence of FAM13A-AS1 on cervical cancer cell proliferation, apoptosis, invasion, and migration. A bioinformatics analysis and a dual-luciferase assay were carried to confirm the target relationship between FAM13A-AS1 or DDI2 and miRNA-205-3p. Finally, in vivo tumorigenesis experiments were performed in nude mice to explore the effect of FAM13A-AS1 expression on cervical cancer. Low FAM13A-AS1 expression and high miRNA-205-3p expression were observed in cervical cancer tissues and cell lines (SiHa and HeLa). Upregulating the expression of FAM13A-AS1 inhibited proliferation, migration, and invasion of SiHa and HeLa cells, while the apoptosis of SiHa and HeLa cells was increased. More importantly, LV-FAM13A-AS1 could improve tumor development in vivo. In addition, FAM13A-AS1 negatively regulated the expression of miRNA-205-3p, while miRNA-205-3p reduced DDI2 expression, and miRNA-205-3p mimic reversed the effects of FAM13A-AS1 overexpression in vitro. In conclusion, FAM13A-AS1 inhibits the progression of cervical cancer by targeting the miRNA-205-3p/DDI2 axis, suggesting that FAM13A-AS1 might be a potential target for cancer cell treatment.
Collapse
|
47
|
Xu X, Zhang Y. Regulation of Oxidative Stress by Long Non-coding RNAs in Central Nervous System Disorders. Front Mol Neurosci 2022; 15:931704. [PMID: 35782387 PMCID: PMC9241987 DOI: 10.3389/fnmol.2022.931704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Central nervous system (CNS) disorders, such as ischemic stroke, Alzheimer’s disease, Parkinson’s disease, spinal cord injury, glioma, and epilepsy, involve oxidative stress and neuronal apoptosis, often leading to long-term disability or death. Emerging studies suggest that oxidative stress may induce epigenetic modifications that contribute to CNS disorders. Non-coding RNAs are epigenetic regulators involved in CNS disorders and have attracted extensive attention. Long non-coding RNAs (lncRNAs) are non-coding RNAs more than 200 nucleotides long and have no protein-coding function. However, these molecules exert regulatory functions at the transcriptional, post-transcriptional, and epigenetic levels. However, the major role of lncRNAs in the pathophysiology of CNS disorders, especially related to oxidative stress, remains unclear. Here, we review the molecular functions of lncRNAs in oxidative stress and highlight lncRNAs that exert positive or negative roles in oxidation/antioxidant systems. This review provides novel insights into the therapeutic potential of lncRNAs that mediate oxidative stress in CNS disorders.
Collapse
Affiliation(s)
- Xiaoman Xu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Yi Zhang,
| |
Collapse
|
48
|
Liu M, Xu Q, Zhao J, Guo Y, Zhang C, Chao X, Cheng M, Schinckel AP, Zhou B. Comprehensive Transcriptome Analysis of Follicles from Two Stages of the Estrus Cycle of Two Breeds Reveals the Roles of Long Intergenic Non-Coding RNAs in Gilts. BIOLOGY 2022; 11:biology11050716. [PMID: 35625443 PMCID: PMC9138455 DOI: 10.3390/biology11050716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022]
Abstract
Simple Summary This study provides new perspectives about the roles of lincRNAs in the estrus expression of gilts, which is correlated with ovarian steroid hormone and follicular development. Follicular tissues from two stages of the estrus cycle of Large White and Mi gilts were used for RNA-seq. Some genes and lincRNAs related to estrus expression in pigs were discovered. PPI and ceRNA networks related to the estrus expression were constructed. These results suggest that the estrus expression may be affected by lincRNAs and their target genes. Abstract Visible and long-lasting estrus expression of gilts and sows effectively sends a mating signal. To reveal the roles of Long Intergenic Non-coding RNAs (lincRNAs) in estrus expression, RNA-seq was used to investigate the lincRNAs expression of follicular tissues from Large White gilts at diestrus (LD) and estrus (LE), and Chinese Mi gilts at diestrus (MD) and estrus (ME). Seventy-three differentially expressed lincRNAs (DELs) were found in all comparisons (LE vs. ME, LD vs. LE, and MD vs. ME comparisons). Eleven lincRNAs were differentially expressed in both LD vs. LE and MD vs. ME comparisons. Fifteen DELs were mapped onto the pig corpus luteum number Quantitative Trait Loci (QTL) fragments. A protein–protein interaction (PPI) network that involved estrus expression using 20 DEGs was then constructed. Interestingly, three predicted target DEGs (PTGs) (CYP19A1 of MSTRG.10910, CDK1 of MSTRG.10910 and MSTRG.23984, SCARB1 of MSTRG.1559) were observed in the PPI network. A competitive endogenous RNA (ceRNA) network including three lincRNAs, five miRNAs, and five genes was constructed. Our study provides new insight into the lincRNAs associated with estrus expression and follicular development in gilts.
Collapse
Affiliation(s)
- Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
| | - Qinglei Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
| | - Jing Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
| | - Yanli Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
| | - Xiaohuan Chao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
| | - Meng Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2054, USA;
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
- Correspondence:
| |
Collapse
|
49
|
Shafqat A, Kashir J, Alsalameh S, Alkattan K, Yaqinuddin A. Fertilization, Oocyte Activation, Calcium Release and Epigenetic Remodelling: Lessons From Cancer Models. Front Cell Dev Biol 2022; 10:781953. [PMID: 35309905 PMCID: PMC8931327 DOI: 10.3389/fcell.2022.781953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
Oocyte activation deficiency (OAD) is the basis of Total Fertilisation Failure (TFF) and is attributed to mutations in the PLCζ gene—termed male factor infertility. This derives abnormal Ca2+ oscillations and could be the main cause of primary disruptions in the gene expression of Ca2+-related proteins. Epigenetic mechanisms are universally accepted as key regulators of gene expression. However, epigenetic dysregulations have not been considered as potential mechanisms of oocyte-borne OAD. Herein, we discuss changes in the DNA methylome during oogenesis and embryogenesis. We further highlight key pathways comprising the oocyte Ca2+ toolkit, which could be targets of epigenetic alterations, especially aberrations in DNA methylation. Considering that the vast majority of epigenetic modifications examined during fertilization revolve around alterations in DNA methylation, we aim in this article to associate Ca2+-specific mechanisms with these alterations. To strengthen this perspective, we bring evidence from cancer research on the intricate link between DNA methylation and Ca2+ signaling as cancer research has examined such questions in a lot more detail. From a therapeutic standpoint, if our hypothesis is proven to be correct, this will explain the cause of TFF in idiopathic cases and will open doors for novel therapeutic targets.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- *Correspondence: Ahmed Yaqinuddin,
| |
Collapse
|
50
|
Long non-coding RNA Linc00205 promotes hepatoblastoma progression through regulating microRNA-154-3p/Rho-associated coiled-coil Kinase 1 axis via mitogen-activated protein kinase signaling. Aging (Albany NY) 2022; 14:1782-1796. [PMID: 35179516 PMCID: PMC8908927 DOI: 10.18632/aging.203902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/18/2021] [Indexed: 11/25/2022]
Abstract
Hepatoblastoma (HB) is the most common pediatric liver tumor. The significant tumor heterogeneity of HB leads to varied prognoses among children with the disease. Recent studies have suggested that long non-coding RNAs (lncRNAs) can serve as novel therapies for HB treatment. Thus, in this study, we aimed to reveal the function and mechanism of the lncRNA Linc00205 in HB. Our results exhibited that, in both HB tissues and cell lines, levels of Linc00205 were significantly increased. In addition, knockdown of Linc00205 led to suppression of HB development. Moreover, we identified that Linc00205 was able to directly bind to miR-154-3p, thus isolating miR-154-3p from its target Rho-associated coiled-coil Kinase 1 (ROCK1). Further cellular behavioral experiments elucidated that the miR-154-3p inhibitor and ROCK1 overexpression were able to reverse the effect of downregulated Linc00205 on proliferation, migration, invasion, and apoptosis of HB cells by rescue assays via mitogen-activated protein kinase (MAPK) signaling. Our results demonstrated that Linc00205 enhanced HB progression by regulating ROCK1 expression via sponging miR-154-3p through MAPK signaling, which suggests a novel potential therapeutic target for HB.
Collapse
|