1
|
Du L, Qin Q, He X, Wang X, Sun G, Zhu B, Liu K, Gao X. Interstitial Cells of Cajal Are Required for Different Intestinal Motility Responses Induced by Acupuncture. Neurogastroenterol Motil 2025; 37:e14973. [PMID: 39617979 DOI: 10.1111/nmo.14973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/02/2024] [Accepted: 11/17/2024] [Indexed: 05/15/2025]
Abstract
BACKGROUND The movement of intestinal smooth muscle is regulated by the external autonomic nervous system (ANS) and its internal enteric nervous system (ENS). Previous studies have shown that acupuncture has a bidirectional regulating effect on intestinal motility through the sympathetic and vagal ANSs. ENS can independently regulate the sensory, secretory, and motor functions of the intestine. The interstitial cells of Cajal (ICC), the pacemaker cells in ENS, play a key role in maintaining gastrointestinal motility. However, studies on the role and mechanism of ICC in the regulation of intestinal function by acupuncture are still unclear. METHODS To investigate the effect of ICC on the regulation of intestinal motility by manual acupuncture (MA), we recorded the pressure of warm water-filled manometric balloons in duodenum, jejunum, and distal colon in ICC deficiency WsWs-/- rats and wild-type littermates WsRC+/+ rats, and performed MA at ST25 (Tianshu), ST37 (Shangjuxu), LI11 (Quchi), and BL25 (Danchangshu) acupoints. Furthermore, the excretion of phenol red in feces before and after MA at ST37 or ST25 was assessed. KEY RESULT In WsRC+/+ rats, MA at ST37, LI11, and BL25 promoted duodenal, jejunal, and distal colon motility, whereas MA at ST25 significantly inhibited duodenal and jejunal motility and promoted distal colon motility. ICC deficiency in WsWs-/- rats led to a reduction in the promoting effect of LI11 on duodenal motility, a decrease in the promoting effect of ST37 on jejunal motility, and a significant reduction in the promoting effect of BL25 on distal colonic motility in those rats. Additionally, ICC absence significantly attenuated the inhibitory effect of ST25 on duodenal motility. MA at ST37 or ST25 did not change the content of phenol red in the feces in WsRC+/+ and WsWs-/- rats. CONCLUSION AND INFERENCES Our results suggest that the absence of ICC impairs the bidirectional regulatory effect of MA on intestinal function. It reveals the important role of ICC in the treatment of intestinal dysfunction diseases by acupuncture and provides a new theoretical basis for the treatment of such diseases by MA.
Collapse
Affiliation(s)
- Longhua Du
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingguang Qin
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- Acupuncture and Moxibustion Department, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Xun He
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxi Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guang Sun
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Bing Zhu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kun Liu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyan Gao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Ishida N, Kanahashi T, Matsubayashi J, Imai H, Männer J, Yamada S, Takakuwa T. Change in diameters of the small intestine according to embryonic and early fetal growth. J Anat 2025. [PMID: 40415652 DOI: 10.1111/joa.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/27/2025] Open
Abstract
No previous studies have examined the diameter of the small intestine successively from the oral to the anal side of the small intestine. Therefore, the objectives of this study were to determine the successive intestinal diameters from the oral to the anal side (proximal to the distal) of the intestine, evaluate changes in diameter associated with growth, examine the effects of positional variation along the intestinal tract, investigate dynamic positional change from the extraembryonic coelom to the abdominal cavity, and assess the impact of complex tertiary intestinal loop formation. To this end, 14 human embryonic and fetal specimens with crown-rump lengths (CRLs) ranging from 25.6 to 69.0 mm were selected for high-resolution magnetic resonance imaging acquisition. The small intestines of the specimens were located in the extraembryonic coelom (herniation phase), transitioning phase, or abdominal cavity (return phase). The small intestine and mesentery were reconstructed in three dimensions, and the resulting morphological changes were observed and analyzed. Successive intestinal diameters from the oral to anal side of the small intestine were determined. Specifically, we observed the following: (1) gradual changes in the diameter of the position from the oral to the anal side in the jejunum-ileum, (2) the difference between the duodenum and jejunum-ileum, and (3) the difference between the superior part of the duodenum derived from the foregut and the remaining parts derived from the midgut. (4) Notably, the dynamic positional change from the extraembryonic coelom to the abdominal cavity, along with the rapid elongation and complex intestinal loop formation-a conspicuous phenomenon in the embryonic and early fetal periods-had little effect on the changes in diameter. This study indicates that increased diameter may serve as a useful indicator of intestinal development and differentiation, independent of tertiary intestinal loop formation and positional changes into and out of the abdominal cavity.
Collapse
Affiliation(s)
- Nanase Ishida
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toru Kanahashi
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Matsubayashi
- Center for Clinical Research and Advanced Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hirohiko Imai
- Innovation Research Center for Quantum Medicine, Gifu University School of Medicine, Gifu, Japan
| | - Joerg Männer
- Institute of Anatomy and Cell Biology, UMG, Georg-August-University of Göttingen, Göttingen, Germany
| | - Shigehito Yamada
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuya Takakuwa
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Davidson AE, Straquadine NRW, Cook SA, Liu CG, Nie C, Spaulding MC, Ganz J. A Rapid F0 CRISPR Screen in Zebrafish to Identify Regulator Genes of Neuronal Development in the Enteric Nervous System. Neurogastroenterol Motil 2025; 37:e70009. [PMID: 40189908 PMCID: PMC11996052 DOI: 10.1111/nmo.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/12/2024] [Accepted: 02/08/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND The neural crest-derived enteric nervous system (ENS) provides the intrinsic innervation of the gut with diverse neuronal subtypes and glial cells. The ENS regulates all essential gut functions, such as motility, nutrient uptake, immune response, and microbiota colonization. Deficits in ENS neuron numbers and composition cause debilitating gut dysfunction. Yet, few studies have identified genes that control neuronal differentiation and the generation of the diverse neuronal subtypes in the ENS. METHODS Utilizing existing CRISPR/Cas9 genome editing technology in zebrafish, we have developed a rapid and scalable screening approach for identifying genes that regulate ENS neurogenesis. KEY RESULTS As a proof-of-concept, F0 guide RNA-injected larvae (F0 crispants) targeting the known ENS regulator genes sox10, ret, or phox2bb phenocopied known ENS phenotypes with high efficiency. We evaluated 10 transcription factor candidate genes as regulators of ENS neurogenesis and function. F0 crispants for five of the tested genes have fewer ENS neurons. Secondary assays in F0 crispants for a subset of the genes that had fewer neurons reveal no effect on enteric progenitor cell migration but differential changes in gut motility. CONCLUSIONS Our multistep, yet straightforward CRISPR screening approach in zebrafish tests the genetic basis of ENS developmental and disease gene functions that will facilitate the high-throughput evaluation of candidate genes from transcriptomic, genome-wide association, or other ENS-omics studies. Such in vivo ENS F0 crispant screens will contribute to a better understanding of ENS neuronal development regulation in vertebrates and what goes awry in ENS disorders.
Collapse
Affiliation(s)
- Ann E. Davidson
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Nora R. W. Straquadine
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- Concordia UniversitySt. PaulMinnesotaUSA
| | - Sara A. Cook
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- College of Veterinary Medicine and Biological SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Christina G. Liu
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- Department of DermatologyUniversity of MichiganAnn ArborMichiganUSA
| | - Chuhao Nie
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- University of New EnglandCollege of Osteopathic MedicineBiddefordMaineUSA
| | - Matthew C. Spaulding
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Julia Ganz
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
4
|
Abdel Hamid M, Pammer LM, Oberparleiter S, Günther M, Amann A, Gruber RA, Mair A, Nocera FI, Ormanns S, Zimmer K, Gerner RR, Kocher F, Vorbach SM, Wolf D, Riedl JM, Huemer F, Seeber A. Multidimensional differences of right- and left-sided colorectal cancer and their impact on targeted therapies. NPJ Precis Oncol 2025; 9:116. [PMID: 40263545 PMCID: PMC12015310 DOI: 10.1038/s41698-025-00892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/31/2025] [Indexed: 04/24/2025] Open
Abstract
Despite advances in metastatic colorectal cancer (mCRC) treatment, long-term survival remains poor, particularly in right-sided colorectal cancer (RCRC), which has a worse prognosis compared to left-sided CRC (LCRC). This disparity is driven by the complex biological diversity of these malignancies. RCRC and LCRC differ not only in clinical presentation and outcomes but also in their underlying molecular and genetic profiles. This article offers a detailed literature review focusing on the distinctions between RCRC and LCRC. We explore key differences across embryology, anatomy, pathology, omics, and the tumor microenvironment (TME), providing insights into how these factors contribute to prognosis and therapeutic responses. Furthermore, we examine the therapeutic implications of these differences, considering whether the conventional classification of CRC into right- and left-sided forms should be refined. Recent molecular findings suggest that this binary classification may overlook critical biological complexities. Therefore, we propose that future approaches should integrate molecular insights to better guide personalized treatments, especially anti-EGFR therapies, and improve patient outcomes.
Collapse
Affiliation(s)
- Marwa Abdel Hamid
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Lorenz M Pammer
- Department of Gastroenterology and Hepatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Silvia Oberparleiter
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Günther
- INNPATH, Institute of Pathology, Tirol Kliniken GmBH, Innsbruck, Austria
| | - Arno Amann
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Rebecca A Gruber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Mair
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Fabienne I Nocera
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Steffen Ormanns
- INNPATH, Institute of Pathology, Tirol Kliniken GmBH, Innsbruck, Austria
| | - Kai Zimmer
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Romana R Gerner
- Department of Medicine III, Hematology and Oncology, University Hospital Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM School of Life Sciences Weihenstephan, ZIEL Institute for Food & Health, 85354, Freising, Germany
| | - Florian Kocher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Samuel M Vorbach
- Department of Radiation Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob M Riedl
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Florian Huemer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, Salzburg, Austria
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria.
- Department of Oncology, Hematology and Palliative Care, General Hospital Oberwart, Oberwart, Austria.
| |
Collapse
|
5
|
Mueller JL, Hotta R. Current and future state of the management of Hirschsprung disease. WORLD JOURNAL OF PEDIATRIC SURGERY 2025; 8:e000860. [PMID: 40177062 PMCID: PMC11962771 DOI: 10.1136/wjps-2024-000860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
The enteric nervous system (ENS) consists of a network of neurons and glia that control numerous complex functions of the gastrointestinal tract. Hirschsprung disease (HSCR) is a congenital disorder characterized by the absence of ENS along variable lengths of distal intestine due to failure of neural crest-derived cells to colonize the distal intestine during embryonic development. A patient with HSCR usually presents with severe constipation in the neonatal period and is diagnosed by rectal suction biopsy, followed by pull-through procedure to surgically remove the affected segment and reconnect the proximal ganglionated intestine to the anus. Outcomes after pull-through surgery are suboptimal and many patients suffer from ongoing issues of dysmotility and bowel dysfunction, suggesting there is room for optimizing the management of this disease. This review focuses on discussing the recent advances to better understand HSCR and leverage them for more accurate and potentially less invasive diagnosis. We also discuss the potential future management of HSCR, particularly cell-based approaches for the treatment of HSCR.
Collapse
Affiliation(s)
- Jessica L Mueller
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Fu M, Berk-Rauch HE, Chatterjee S, Chakravarti A. The Role of de novo and Ultra-Rare Variants in Hirschsprung Disease (HSCR): Extended Gene Discovery for Risk Profiling of Patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.07.25320162. [PMID: 39830246 PMCID: PMC11741498 DOI: 10.1101/2025.01.07.25320162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Background Hirschsprung disease (HSCR) is a rare neurodevelopmental disorder caused by disrupted migration and proliferation of enteric neural crest cells during enteric nervous system development. Genetic studies suggest a complex etiology involving both rare and common variants, but the contribution of ultra-rare pathogenic variants (PAs) remains poorly understood. Methods We perform whole-exome sequencing (WES) on 301 HSCR probands and 109 family trios, employing advanced statistical methods and gene prioritization strategies to identify genes carrying de novo and ultra-rare coding pathogenic variants. Multiple study designs, including case-control, de novo mutation analysis and joint test, are used to detect associated genes. Candidate genes are further prioritized based on their biological and functional relevance to disease associated tissues and onset period (i.e., human embryonic colon). Results We identify 19 risk genes enriched with ultra-rare coding pathogenic variants in HSCR probands, including four known genes (RET, EDNRB, ZEB2, SOX10) and 15 novel candidates (e.g., COLQ, NES, FAT3) functioning in neural proliferation and neuromuscular synaptic development. These genes account for 17.5% of the population-attributable risk (PAR), with novel candidates contributing 6.5%. Notably, a positive correlation between pathogenic mutational burden and disease severity is observed. Female cases exhibit at least 42% higher ultra-rare pathogenic variant burden than males (P = 0.05). Conclusions This first-ever genome-wide screen of ultra-rare variants in a large, phenotypically diverse HSCR cohort highlights the substantial contribution of ultra-rare pathogenic variants to the disease risk and phenotypic variability. These findings enhance our understanding of the genetic architecture of HSCR and provide potential targets for genetic screening and personalized interventions.
Collapse
Affiliation(s)
- Mingzhou Fu
- Center for Human Genetics and Genomics, New York University
Grossman School of Medicine, New York, NY, 10016
- Department of Population Health, New York University Grossman
School of Medicine, New York, NY, 10016
| | - Hanna E Berk-Rauch
- Center for Human Genetics and Genomics, New York University
Grossman School of Medicine, New York, NY, 10016
| | - Sumantra Chatterjee
- Center for Human Genetics and Genomics, New York University
Grossman School of Medicine, New York, NY, 10016
- Department of Neuroscience and Physiology, New York University
Grossman School of Medicine, New York, NY, 10016
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, New York University
Grossman School of Medicine, New York, NY, 10016
- Department of Neuroscience and Physiology, New York University
Grossman School of Medicine, New York, NY, 10016
| |
Collapse
|
7
|
Burns AJ, Goldstein AM. Causes and consequences: development and pathophysiology of Hirschsprung disease. WORLD JOURNAL OF PEDIATRIC SURGERY 2024; 7:e000903. [PMID: 39600627 PMCID: PMC11590806 DOI: 10.1136/wjps-2024-000903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Hirschsprung disease (HSCR) is a congenital enteric neuropathy in which the enteric nervous system (ENS) fails to develop along variable lengths of the distal gastrointestinal (GI) tract. This aganglionosis results in a functional bowel obstruction and requires surgical resection of the aganglionic segment. Despite surgery, however, long-term bowel dysfunction affects many patients. Understanding the embryologic causes and pathophysiologic consequences of HSCR is critical to improving its diagnosis and treatment. During normal gut development, the ENS arises from neural crest cells (NCCs) that delaminate from the neural tube to populate the entire GI tract with enteric neurons and glia. This process requires NCCs to undergo proliferation, migration and differentiation to form the complex neuroglial network that regulates gut motility and other intestinal functions. This review discusses the cellular and molecular processes that control normal ENS formation and what goes awry to give rise to HSCR. The complex pathophysiologic consequences of aganglionosis are discussed, including recent observations that describe novel aspects of HSCR beyond the absence of ganglion cells. This review aims to expand the understanding of HSCR and to stimulate new ideas on how to improve current management of the disease.
Collapse
Affiliation(s)
- Alan J Burns
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Chevalier NR, Zig L, Gomis A, Amedzrovi Agbesi RJ, El Merhie A, Pontoizeau L, Le Parco I, Rouach N, Arnoux I, de Santa Barbara P, Faure S. Calcium wave dynamics in the embryonic mouse gut mesenchyme: impact on smooth muscle differentiation. Commun Biol 2024; 7:1277. [PMID: 39375515 PMCID: PMC11458798 DOI: 10.1038/s42003-024-06976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
Intestinal smooth muscle differentiation is a complex physico-biological process involving several different pathways. Here, we investigate the properties of Ca2+ waves in the developing intestinal mesenchyme using GCamp6f expressing mouse embryos and investigate their relationship with smooth muscle differentiation. We find that Ca2+ waves are absent in the pre-differentiation mesenchyme and start propagating immediately following α-SMA expression. Ca2+ waves are abrogated by CaV1.2 and gap-junction blockers, but are independent of the Rho pathway. The myosine light-chain kinase inhibitor ML-7 strongly disorganized or abolished Ca2+ waves, showing that perturbation of the contractile machinery at the myosine level also affected the upstream Ca2+ handling chain. Inhibiting Ca2+ waves and contractility with CaV1.2 blockers did not perturb circular smooth muscle differentiation at early stages. At later stages, CaV1.2 blockers abolished intestinal elongation and differentiation of the longitudinal smooth muscle, leading instead to the emergence of KIT-expressing interstitial cells of Cajal at the gut periphery. CaV1.2 blockers also drove apoptosis of already differentiated, CaV1.2-expressing smooth muscle and enteric neural cells. We provide fundamental new data on Ca2+ waves in the developing murine gut and their relation to myogenesis in this organ.
Collapse
Affiliation(s)
- Nicolas R Chevalier
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France.
| | - Léna Zig
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
| | - Anthony Gomis
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
| | - Richard J Amedzrovi Agbesi
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
| | - Amira El Merhie
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
| | | | - Isabelle Le Parco
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Isabelle Arnoux
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | | | - Sandrine Faure
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
9
|
Meng L, Yang Y, He S, Chen H, Zhan Y, Yang R, Li Z, Zhu J, Zhou J, Li Y, Xie L, Chen G, Zheng S, Yao X, Dong R. Single-cell sequencing of the vermiform appendix during development identifies transcriptional relationships with appendicitis in preschool children. BMC Med 2024; 22:383. [PMID: 39267041 PMCID: PMC11395239 DOI: 10.1186/s12916-024-03611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND The development of the human vermiform appendix at the cellular level, as well as its function, is not well understood. Appendicitis in preschool children, although uncommon, is associated with a high perforation rate and increased morbidity. METHODS We performed single-cell RNA sequencing (scRNA-seq) on the human appendix during fetal and pediatric stages as well as preschool-age inflammatory appendices. Transcriptional features of each cell compartment were discussed in the developing appendix. Cellular interactions and differentiation trajectories were also investigated. We compared scRNA-seq profiles from preschool appendicitis to those of matched healthy controls to reveal disease-associated changes. Bulk transcriptomic data, immunohistochemistry, and real-time quantitative PCR were used to validate the findings. RESULTS Our analysis identified 76 cell types in total and described the cellular atlas of the developing appendix. We discovered the potential role of the BMP signaling pathway in appendiceal epithelium development and identified HOXC8 and PITX2 as the specific regulons of appendix goblet cells. Higher pericyte coverage, endothelial angiogenesis, and goblet mucus scores together with lower epithelial and endothelial tight junction scores were found in the preschool appendix, which possibly contribute to the clinical features of preschool appendicitis. Preschool appendicitis scRNA-seq profiles revealed that the interleukin-17 signaling pathway may participate in the inflammation process. CONCLUSIONS Our study provides new insights into the development of the appendix and deepens the understanding of appendicitis in preschool children.
Collapse
Affiliation(s)
- Lingdu Meng
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Yifan Yang
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Shiwei He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fujian, China
| | - Huifen Chen
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Yong Zhan
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Ran Yang
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Zifeng Li
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Jiajie Zhu
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Jin Zhou
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Yi Li
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Lulu Xie
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Gong Chen
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Shan Zheng
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China.
| | - Xiaoying Yao
- Family Planning Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| | - Rui Dong
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China.
| |
Collapse
|
10
|
Yoshimaru K, Matsuura T, Uchida Y, Sonoda S, Maeda S, Kajihara K, Kawano Y, Shirai T, Toriigahara Y, Kalim AS, Zhang XY, Takahashi Y, Kawakubo N, Nagata K, Yamaza H, Yamaza T, Taguchi T, Tajiri T. Cutting-edge regenerative therapy for Hirschsprung disease and its allied disorders. Surg Today 2024; 54:977-994. [PMID: 37668735 DOI: 10.1007/s00595-023-02741-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/06/2023] [Indexed: 09/06/2023]
Abstract
Hirschsprung disease (HSCR) and its associated disorders (AD-HSCR) often result in severe hypoperistalsis caused by enteric neuropathy, mesenchymopathy, and myopathy. Notably, HSCR involving the small intestine, isolated hypoganglionosis, chronic idiopathic intestinal pseudo-obstruction, and megacystis-microcolon-intestinal hypoperistalsis syndrome carry a poor prognosis. Ultimately, small-bowel transplantation (SBTx) is necessary for refractory cases, but it is highly invasive and outcomes are less than optimal, despite advances in surgical techniques and management. Thus, regenerative therapy has come to light as a potential form of treatment involving regeneration of the enteric nervous system, mesenchyme, and smooth muscle in affected areas. We review the cutting-edge regenerative therapeutic approaches for managing HSCR and AD-HSCR, including the use of enteric nervous system progenitor cells, embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells as cell sources, the recipient intestine's microenvironment, and transplantation methods. Perspectives on the future of these treatments are also discussed.
Collapse
Affiliation(s)
- Koichiro Yoshimaru
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshiharu Matsuura
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Yasuyuki Uchida
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Soichiro Sonoda
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shohei Maeda
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keisuke Kajihara
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuki Kawano
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Shirai
- Department of Pediatric Surgery, Miyazaki Prefectural Miyazaki Hospital, 5-30 Kitatakamatsu-cho, Miyazaki, Miyazaki, 880-8510, Japan
| | - Yukihiro Toriigahara
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Alvin Santoso Kalim
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Xiu-Ying Zhang
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshiaki Takahashi
- Department of Pediatric Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Naonori Kawakubo
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kouji Nagata
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Haruyoshi Yamaza
- Department of Pediatric Dentistry, Kyushu University Graduate School of Dental Science, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoaki Taguchi
- Fukuoka College of Health Sciences, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
11
|
Anderson S, Cavaletti G, Hood LJ, Polydefkis M, Herrmann DN, Rance G, King B, McMichael AJ, Senna MM, Kim BS, Napatalung L, Wolk R, Zwillich SH, Schaefer G, Gong Y, Sisson M, Posner HB. A phase 2a study investigating the effects of ritlecitinib on brainstem auditory evoked potentials and intraepidermal nerve fiber histology in adults with alopecia areata. Pharmacol Res Perspect 2024; 12:e1204. [PMID: 38969959 PMCID: PMC11226387 DOI: 10.1002/prp2.1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 07/07/2024] Open
Abstract
Reversible axonal swelling and brainstem auditory evoked potential (BAEP) changes were observed in standard chronic (9-month) toxicology studies in dogs treated with ritlecitinib, an oral Janus kinase 3/tyrosine kinase expressed in hepatocellular carcinoma family kinase inhibitor, at exposures higher than the approved 50-mg human dose. To evaluate the clinical relevance of the dog toxicity finding, this phase 2a, double-blind study assessed BAEP changes and intraepidermal nerve fiber (IENF) histology in adults with alopecia areata treated with ritlecitinib. Patients were randomized to receive oral ritlecitinib 50 mg once daily (QD) with a 4-week loading dose of 200 mg QD or placebo for 9 months (placebo-controlled phase); they then entered the active-therapy extension and received ritlecitinib 50 mg QD (with a 4-week loading dose of 200 mg in patients switching from placebo). Among the 71 patients, no notable mean differences in change from baseline (CFB) in Waves I-V interwave latency (primary outcome) or Wave V amplitude on BAEP at a stimulus intensity of 80 dB nHL were observed in the ritlecitinib or placebo group at Month 9, with no notable differences in interwave latency or Wave V amplitude between groups. The CFB in mean or median IENF density and in percentage of IENFs with axonal swellings was minimal and similar between groups at Month 9. Ritlecitinib treatment was also not associated with an imbalanced incidence of neurological and audiological adverse events. These results provide evidence that the BAEP and axonal swelling finding in dogs are not clinically relevant in humans.
Collapse
Affiliation(s)
- Samira Anderson
- Department of Hearing and Speech SciencesUniversity of MarylandCollege ParkMarylandUSA
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Linda J. Hood
- Department of Hearing and Speech SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Michael Polydefkis
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - Gary Rance
- Department of Audiology and Speech PathologyThe University of MelbourneCarltonVictoriaAustralia
| | - Brett King
- Department of DermatologyYale University School of MedicineNew HavenConnecticutUSA
| | - Amy J. McMichael
- Department of DermatologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Maryanne M. Senna
- Department of DermatologyLahey Hospital and Medical CenterBurlingtonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Brian S. Kim
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Lynne Napatalung
- Pfizer IncNew YorkNew YorkUSA
- Mount Sinai HospitalNew YorkNew YorkUSA
| | | | | | | | | | | | | |
Collapse
|
12
|
Dershowitz LB, Kaltschmidt JA. Enteric Nervous System Striped Patterning and Disease: Unexplored Pathophysiology. Cell Mol Gastroenterol Hepatol 2024; 18:101332. [PMID: 38479486 PMCID: PMC11176954 DOI: 10.1016/j.jcmgh.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
The enteric nervous system (ENS) controls gastrointestinal (GI) motility, and defects in ENS development underlie pediatric GI motility disorders. In disorders such as Hirschsprung's disease (HSCR), pediatric intestinal pseudo-obstruction (PIPO), and intestinal neuronal dysplasia type B (INDB), ENS structure is altered with noted decreased neuronal density in HSCR and reports of increased neuronal density in PIPO and INDB. The developmental origin of these structural deficits is not fully understood. Here, we review the current understanding of ENS development and pediatric GI motility disorders incorporating new data on ENS structure. In particular, emerging evidence demonstrates that enteric neurons are patterned into circumferential stripes along the longitudinal axis of the intestine during mouse and human development. This novel understanding of ENS structure proposes new questions about the pathophysiology of pediatric GI motility disorders. If the ENS is organized into stripes, could the observed changes in enteric neuron density in HSCR, PIPO, and INDB represent differences in the distribution of enteric neuronal stripes? We review mechanisms of striped patterning from other biological systems and propose how defects in striped ENS patterning could explain structural deficits observed in pediatric GI motility disorders.
Collapse
Affiliation(s)
- Lori B Dershowitz
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California.
| |
Collapse
|
13
|
Montalva L, Cheng LS, Kapur R, Langer JC, Berrebi D, Kyrklund K, Pakarinen M, de Blaauw I, Bonnard A, Gosain A. Hirschsprung disease. Nat Rev Dis Primers 2023; 9:54. [PMID: 37828049 DOI: 10.1038/s41572-023-00465-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Hirschsprung disease (HSCR) is a rare congenital intestinal disease that occurs in 1 in 5,000 live births. HSCR is characterized by the absence of ganglion cells in the myenteric and submucosal plexuses of the intestine. Most patients present during the neonatal period with the first meconium passage delayed beyond 24 h, abdominal distension and vomiting. Syndromes associated with HSCR include trisomy 21, Mowat-Wilson syndrome, congenital central hypoventilation syndrome, Shah-Waardenburg syndrome and cartilage-hair hypoplasia. Multiple putative genes are involved in familial and isolated HSCR, of which the most common are the RET proto-oncogene and EDNRB. Diagnosis consists of visualization of a transition zone on contrast enema and confirmation via rectal biopsy. HSCR is typically managed by surgical removal of the aganglionic bowel and reconstruction of the intestinal tract by connecting the normally innervated bowel down to the anus while preserving normal sphincter function. Several procedures, namely Swenson, Soave and Duhamel procedures, can be undertaken and may include a laparoscopically assisted approach. Short-term and long-term comorbidities include persistent obstructive symptoms, enterocolitis and soiling. Continued research and innovation to better understand disease mechanisms holds promise for developing novel techniques for diagnosis and therapy, and improving outcomes in patients.
Collapse
Affiliation(s)
- Louise Montalva
- Department of Paediatric Surgery, Robert-Debré Children's University Hospital, Paris, France.
- Faculty of Health, Paris-Cité University, Paris, France.
- NeuroDiderot, INSERM UMR1141, Paris, France.
| | - Lily S Cheng
- Division of Paediatric Surgery, Texas Children's Hospital, Houston, TX, USA
- Division of Paediatric Surgery, University of Virginia, Charlottesville, VA, USA
| | - Raj Kapur
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, USA
| | - Jacob C Langer
- Division of Paediatric Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dominique Berrebi
- Department of Pathology, Robert-Debré and Necker Children's University Hospital, Paris, France
| | - Kristiina Kyrklund
- Department of Paediatric Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Mikko Pakarinen
- Department of Paediatric Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Ivo de Blaauw
- Department of Surgery, Division of Paediatric Surgery, Radboudumc-Amalia Children's Hospital, Nijmegen, Netherlands
| | - Arnaud Bonnard
- Department of Paediatric Surgery, Robert-Debré Children's University Hospital, Paris, France
- Faculty of Health, Paris-Cité University, Paris, France
- NeuroDiderot, INSERM UMR1141, Paris, France
| | - Ankush Gosain
- Department of Paediatric Surgery, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
14
|
Viti F, De Giorgio R, Ceccherini I, Ahluwalia A, Alves MM, Baldo C, Baldussi G, Bonora E, Borrelli O, Dall'Oglio L, De Coppi P, De Filippo C, de Santa Barbara P, Diamanti A, Di Lorenzo C, Di Maulo R, Galeone A, Gandullia P, Hashmi SK, Lacaille F, Lancon L, Leone S, Mahé MM, Molnar MJ, Palmitelli A, Perin S, Prato AP, Thapar N, Vassalli M, Heuckeroth RO. Multi-disciplinary Insights from the First European Forum on Visceral Myopathy 2022 Meeting. Dig Dis Sci 2023; 68:3857-3871. [PMID: 37650948 PMCID: PMC10517037 DOI: 10.1007/s10620-023-08066-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Visceral myopathy is a rare, life-threatening disease linked to identified genetic mutations in 60% of cases. Mostly due to the dearth of knowledge regarding its pathogenesis, effective treatments are lacking. The disease is most commonly diagnosed in children with recurrent or persistent disabling episodes of functional intestinal obstruction, which can be life threatening, often requiring long-term parenteral or specialized enteral nutritional support. Although these interventions are undisputedly life-saving as they allow affected individuals to avoid malnutrition and related complications, they also seriously compromise their quality of life and can carry the risk of sepsis and thrombosis. Animal models for visceral myopathy, which could be crucial for advancing the scientific knowledge of this condition, are scarce. Clearly, a collaborative network is needed to develop research plans to clarify genotype-phenotype correlations and unravel molecular mechanisms to provide targeted therapeutic strategies. This paper represents a summary report of the first 'European Forum on Visceral Myopathy'. This forum was attended by an international interdisciplinary working group that met to better understand visceral myopathy and foster interaction among scientists actively involved in the field and clinicians who specialize in care of people with visceral myopathy.
Collapse
Affiliation(s)
- Federica Viti
- Institute of Biophysics, National Research Council, Via De Marini, 6, 16149, Genoa, Italy.
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | - Arti Ahluwalia
- Centro di Ricerca 'E. Piaggio' and Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Maria M Alves
- Department of Clinical Genetics, Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Chiara Baldo
- IRCCS Istituto Giannina Gaslini Pediatric Hospital, Genoa, Italy
| | - Giannina Baldussi
- 'Uniti per la P.I.P.O.' Patient Advocacy Organization, Brescia, Italy
| | - Elena Bonora
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, University of Bologna, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Osvaldo Borrelli
- Department of Gastroenterology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Luigi Dall'Oglio
- Digestive Surgery and Endoscopy, Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy
| | - Paolo De Coppi
- Pediatric Surgery, Great Ormond Street Hospital for Children, London, UK
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology of the National Research Council, Pisa, Italy
| | - Pascal de Santa Barbara
- Physiology and Experimental Medicine of the Heart and Muscles (PhyMedExp), University of Montpellier, INSERM, CNRS, Montpellier, France
| | | | - Carlo Di Lorenzo
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | - Paolo Gandullia
- IRCCS Istituto Giannina Gaslini Pediatric Hospital, Genoa, Italy
| | - Sohaib K Hashmi
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, PA, USA
| | - Florence Lacaille
- Pediatric Gastroenterology-Hepatology-Nutrition, Necker-Enfants Malades Hospital, Paris, France
| | - Laurence Lancon
- 'Association des POIC' Patient Advocacy Organization, Marseille, France
| | - Salvatore Leone
- AMICI ETS, Associazione Nazionale per le Malattie Infiammatorie Croniche dell'Intestino, Milan, Italy
| | - Maxime M Mahé
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | | | | | - Silvia Perin
- Unit of Pediatric Surgery, Department of Women and Child Health, University of Padua, Padua, Italy
| | - Alessio Pini Prato
- Unit of Pediatric Surgery, 'St. Antonio e Biagio e Cesare Arrigo' Hospital, Alessandria, Italy
| | - Nikhil Thapar
- Stem Cell and Regenerative Medicine, GOS Institute of Child Health, University College London, London, UK
- Gastroenterology, Hepatology and Liver Transplant, Queensland Children's Hospital, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
- Woolworths Centre for Child Nutrition Research, Queensland University of Technology, Brisbane, Australia
| | - Massimo Vassalli
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Robert O Heuckeroth
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, PA, USA
| |
Collapse
|
15
|
Dershowitz LB, Li L, Pasca AM, Kaltschmidt JA. Anatomical and functional maturation of the mid-gestation human enteric nervous system. Nat Commun 2023; 14:2680. [PMID: 37160892 PMCID: PMC10170115 DOI: 10.1038/s41467-023-38293-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/14/2023] [Indexed: 05/11/2023] Open
Abstract
Immature gastrointestinal motility impedes preterm infant survival. The enteric nervous system controls gastrointestinal motility, yet it is unknown when the human enteric nervous system matures enough to carry out vital functions. Here we demonstrate that the second trimester human fetal enteric nervous system takes on a striped organization akin to the embryonic mouse. Further, we perform ex vivo functional assays of human fetal tissue and find that human fetal gastrointestinal motility matures in a similar progression to embryonic mouse gastrointestinal motility. Together, this provides critical knowledge, which facilitates comparisons with common animal models to advance translational disease investigations and testing of pharmacological agents to enhance gastrointestinal motility in prematurity.
Collapse
Affiliation(s)
- Lori B Dershowitz
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Li Li
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Anca M Pasca
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
16
|
Singh A, Poling HM, Chaturvedi P, Thorner K, Sundaram N, Kechele DO, Childs CJ, McCauley HA, Fisher GW, Brown NE, Spence JR, Wells JM, Helmrath MA. Transplanted human intestinal organoids: a resource for modeling human intestinal development. Development 2023; 150:dev201416. [PMID: 37070767 PMCID: PMC10259511 DOI: 10.1242/dev.201416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/28/2023] [Indexed: 04/19/2023]
Abstract
The in vitro differentiation of pluripotent stem cells into human intestinal organoids (HIOs) has served as a powerful means for creating complex three-dimensional intestinal structures. Owing to their diverse cell populations, transplantation into an animal host is supported with this system and allows the temporal formation of fully laminated structures, including crypt-villus architecture and smooth muscle layers that resemble native human intestine. Although the endpoint of HIO engraftment has been well described, here we aim to elucidate the developmental stages of HIO engraftment and establish whether it parallels fetal human intestinal development. We analyzed a time course of transplanted HIOs histologically at 2, 4, 6 and 8 weeks post-transplantation, and demonstrated that HIO maturation closely resembles key stages of fetal human intestinal development. We also utilized single-nuclear RNA sequencing to determine and track the emergence of distinct cell populations over time, and validated our transcriptomic data through in situ protein expression. These observations suggest that transplanted HIOs do indeed recapitulate early intestinal development, solidifying their value as a human intestinal model system.
Collapse
Affiliation(s)
- Akaljot Singh
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Holly M. Poling
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Praneet Chaturvedi
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Konrad Thorner
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nambirajan Sundaram
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Daniel O. Kechele
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Charlie J. Childs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Heather A. McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Garrett W. Fisher
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nicole E. Brown
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jason R. Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael A. Helmrath
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
17
|
The Potential Role of Microorganisms on Enteric Nervous System Development and Disease. Biomolecules 2023; 13:biom13030447. [PMID: 36979382 PMCID: PMC10046024 DOI: 10.3390/biom13030447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The enteric nervous system (ENS), the inherent nervous system of the gastrointestinal (GI) tract is a vast nervous system that controls key GI functions, including motility. It functions at a critical interface between the gut luminal contents, including the diverse population of microorganisms deemed the microbiota, as well as the autonomic and central nervous systems. Critical development of this axis of interaction, a key determinant of human health and disease, appears to occur most significantly during early life and childhood, from the pre-natal through to the post-natal period. These factors that enable the ENS to function as a master regulator also make it vulnerable to damage and, in turn, a number of GI motility disorders. Increasing attention is now being paid to the potential of disruption of the microbiota and pathogenic microorganisms in the potential aetiopathogeneis of GI motility disorders in children. This article explores the evidence regarding the relationship between the development and integrity of the ENS and the potential for such factors, notably dysbiosis and pathogenic bacteria, viruses and parasites, to impact upon them in early life.
Collapse
|
18
|
Burnham EL, Tomita T. Histogenesis of intracranial germ cell tumors: primordial germ cell vs. embryonic stem cell. Childs Nerv Syst 2023; 39:359-368. [PMID: 36595083 DOI: 10.1007/s00381-022-05808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Intracranial germ cell tumor (iGCT) is a rare disorder and often occurs during childhood and adolescence. iGCTs are frequently localized in pineal region and hypothalamic-neurohypophyseal axis (HNA). In spite of well-established clinical and pathological entity, histogenesis of iGCTs remains unsettled. Current theories of histogenesis of iGCTs include germ cell theory (from primordial germ cells (PGCs) of aberrant migration) and stem cell theory (transformed embryonic stem (ES) cells). In order to comprehend the histogenesis, we revisit the origin, migration, and fate of the human PGCs, and their transformation processes to iGCT. DISCUSSION In "germ cell theory," transformation of ectopic PGCs to iGCT is complex and involves multiple transcription factors. Germinoma is derived from ectopic PGCs and is considered a prototype of all GCTs. Non-germinomatous germ cell tumors (NGGCTs) develop from more differentiated counterparts of embryonic and extra-embryonic tissues. However, there is a distinct genomic/epigenomic landscape between germinoma and NGGCT. ES cells transformed from ectopic PGCs through molecular dysregulation or de-differentiation may become the source of iGCT. "Stem cell theory" is transformation of endogenous ES cells or primitive neural stem cell to iGCTs. It supports histological diversity of NGGCTs because of ES cell's pluripotency. However, neural stem cells are abundantly present along the subependymal zone; therefore, it does not explain why iGCTs almost exclusively occur in pineal and HNA locations. Also, the vast difference of methylation status between germinoma and NGGCT makes it difficult to theorize all iGCTs derive from the common cellular linage. CONCLUSION Transformation of PGCs to ES cells is the most logical mechanism for histogenesis of iGCT. However, its detail remains an enigma and needs further investigations.
Collapse
Affiliation(s)
- Emma L Burnham
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tadanori Tomita
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
19
|
Embryology and anatomy of Hirschsprung disease. Semin Pediatr Surg 2022; 31:151227. [PMID: 36417785 DOI: 10.1016/j.sempedsurg.2022.151227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bowel has its own elegant nervous system - the enteric nervous system (ENS) which is a complex network of neurons and glial clones. Derived from neural crest cells (NCCs), this little brain controls muscle contraction, motility, and bowel activities in response to stimuli. Failure of developing enteric ganglia at the distal bowel results in intestinal obstruction and Hirschsprung disease (HSCR). This Review summarises the important embryological development of the ENS including proliferation, migration, and differentiation of NCCs. We address the signalling pathways which determine NCC cell fate and discuss how they are altered in the context of HSCR. Finally, we outline the anatomical defects and the mechanisms underlying gut motility in HSCR.
Collapse
|
20
|
Alhawaj AF. Stem cell-based therapy for hirschsprung disease, do we have the guts to treat? Gene Ther 2022; 29:578-587. [PMID: 34121091 PMCID: PMC9684071 DOI: 10.1038/s41434-021-00268-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 04/26/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023]
Abstract
Hirschsprung disease (HSCR) is a congenital anomaly of the colon that results from failure of enteric nervous system formation, leading to a constricted dysfunctional segment of the colon with variable lengths, and necessitating surgical intervention. The underlying pathophysiology includes a defect in neural crest cells migration, proliferation and differentiation, which are partially explained by identified genetic and epigenetic alterations. Despite the high success rate of the curative surgeries, they are associated with significant adverse outcomes such as enterocolitis, fecal soiling, and chronic constipation. In addition, some patients suffer from extensive lethal variants of the disease, all of which justify the need for an alternative cure. During the last 5 years, there has been considerable progress in HSCR stem cell-based therapy research. However, many major issues remain unsolved. This review will provide concise background information on HSCR, outline the future approaches of stem cell-based HSCR therapy, review recent key publications, discuss technical and ethical challenges the field faces prior to clinical translation, and tackle such challenges by proposing solutions and evaluating existing approaches to progress further.
Collapse
Affiliation(s)
- Ali Fouad Alhawaj
- Department of Haematology, UCL Cancer Institute, University College London, London, WC1E 6DD, United Kingdom.
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| |
Collapse
|
21
|
Sicard P, Falco A, Faure S, Thireau J, Lindsey SE, Chauvet N, de Santa Barbara P. High-resolution ultrasound and speckle tracking: a non-invasive approach to assess in vivo gastrointestinal motility during development. Development 2022; 149:dev200625. [PMID: 35912573 PMCID: PMC10655954 DOI: 10.1242/dev.200625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2023]
Abstract
Gastrointestinal motor activity has been extensively studied in adults; however, only few studies have investigated fetal motor skills. It is unknown when the gastrointestinal tract starts to contract during the embryonic period and how this function evolves during development. Here, we adapted a non-invasive high-resolution echography technique combined with speckle tracking analysis to examine the gastrointestinal tract motor activity dynamics during chick embryo development. We provided the first recordings of fetal gastrointestinal motility in living embryos without anesthesia. We found that, although gastrointestinal contractions appear very early during development, they become synchronized only at the end of the fetal period. To validate this approach, we used various pharmacological inhibitors and BAPX1 gene overexpression in vivo. We found that the enteric nervous system determines the onset of the synchronized contractions in the stomach. Moreover, alteration of smooth muscle fiber organization led to an impairment of this functional activity. Altogether, our findings show that non-invasive high-resolution echography and speckle tracking analysis allows visualization and quantification of gastrointestinal motility during development and highlight the progressive acquisition of functional and coordinated gastrointestinal motility before birth.
Collapse
Affiliation(s)
- Pierre Sicard
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
- IPAM, Biocampus Montpellier, CNRS, INSERM, University of Montpellier, 34295 Montpellier, France
| | - Amandine Falco
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Sandrine Faure
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Jérome Thireau
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Stéphanie E. Lindsey
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
- Department of Mechanical and Aerospace Engineering, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Norbert Chauvet
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | | |
Collapse
|
22
|
Guérin A, Angebault C, Kinet S, Cazevieille C, Rojo M, Fauconnier J, Lacampagne A, Mourier A, Taylor N, de Santa Barbara P, Faure S. LIX1-mediated changes in mitochondrial metabolism control the fate of digestive mesenchyme-derived cells. Redox Biol 2022; 56:102431. [PMID: 35988446 PMCID: PMC9420520 DOI: 10.1016/j.redox.2022.102431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 11/06/2022] Open
Abstract
YAP1 and TAZ are transcriptional co-activator proteins that play fundamental roles in many biological processes, from cell proliferation and cell lineage fate determination to tumorigenesis. We previously demonstrated that Limb Expression 1 (LIX1) regulates YAP1 and TAZ activity and controls digestive mesenchymal progenitor proliferation. However, LIX1 mode of action remains elusive. Here, we found that endogenous LIX1 is localized in mitochondria and is anchored to the outer mitochondrial membrane through S-palmitoylation of cysteine 84, a residue conserved in all LIX1 orthologs. LIX1 downregulation altered the mitochondrial ultrastructure, resulting in a significantly decreased respiration and attenuated production of mitochondrial reactive oxygen species (mtROS). Mechanistically, LIX1 knock-down impaired the stability of the mitochondrial proteins PHB2 and OPA1 that are found in complexes with mitochondrial-specific phospholipids and are required for cristae organization. Supplementation with unsaturated fatty acids counteracted the effects of LIX1 knock-down on mitochondrial morphology and ultrastructure and restored YAP1/TAZ signaling. Collectively, our data demonstrate that LIX1 is a key regulator of cristae organization, modulating mtROS level and subsequently regulating the signaling cascades that control fate commitment of digestive mesenchyme-derived cells.
LIX1 is tightly anchored to the outer membrane of mitochondria. LIX1 mitochondrial localization is mediated by S-palmitoylation on cysteine 84. LIX1 knock-down reduces the stability of the mitochondrial proteins PHB2 and OPA1 and impairs cristae organization. Redox signaling modulations regulate YAP1/TAZ activity and control fate commitment of digestive mesenchyme-derived cells.
Collapse
Affiliation(s)
- Amandine Guérin
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Claire Angebault
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Chantal Cazevieille
- Institut de Neurosciences de Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Manuel Rojo
- Centre National de la Recherche Scientifique, Université de Bordeaux, IBGC UMR, 5095, Bordeaux, France
| | - Jérémy Fauconnier
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Arnaud Mourier
- Centre National de la Recherche Scientifique, Université de Bordeaux, IBGC UMR, 5095, Bordeaux, France
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | | | - Sandrine Faure
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.
| |
Collapse
|
23
|
Yang W, Pham J, King SK, Newgreen DF, Young HM, Stamp LA, Hao MM. A Novel Method for Identifying the Transition Zone in Long-Segment Hirschsprung Disease: Investigating the Muscle Unit to Ganglion Ratio. Biomolecules 2022; 12:biom12081101. [PMID: 36008996 PMCID: PMC9406109 DOI: 10.3390/biom12081101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Hirschsprung disease (HSCR) is characterised by the absence of enteric ganglia along variable lengths of the distal bowel. Current gold standard treatment involves the surgical resection of the defective, aganglionic bowel. Clear and reliable distinction of the normoganglionated bowel from the transition zone is key for successful resection of the entire defective bowel, and the avoidance of subsequent postoperative complications. However, the intraoperative nature of the tissue analysis and the variability of patient samples, sample preparation, and operator objectivity, make reproducible identification of the transition zone difficult. Here, we have described a novel method for using muscle units as a distinctive landmark for quantifying the density of enteric ganglia in resection specimens from HSCR patients. We show that the muscle unit to ganglion ratio is greater in the transition zone when compared with the proximal, normoganglionated region for long-segment HSCR patients. Patients with short-segment HSCR were also investigated, however, the muscle unit to ganglion ratio was not significantly different in these patients. Immunohistochemical examination of individual ganglia showed that there were no differences in the proportions of either enteric neurons or glial cells through the different regions of the resected colon. In addition, we identified that the size of enteric ganglia was smaller for patients that went on to develop HSCR associated enterocolitis; although the density of ganglia, as determined by the muscle unit to ganglia ratio, was not different when compared with patients that had no further complications. This suggests that subtle changes in the enteric nervous system, even in the “normoganglionated” colon, could be involved in changes in immune function and subsequent bacterial dysbiosis.
Collapse
Affiliation(s)
- Wendy Yang
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, Australia
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10663, Taiwan
| | - Jenny Pham
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, Australia
| | - Sebastian K. King
- Murdoch Children’s Research Institute, Parkville 3052, Australia
- Department of Paediatric Surgery, The Royal Children’s Hospital, Parkville 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3010, Australia
| | | | - Heather M. Young
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, Australia
| | - Lincon A. Stamp
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, Australia
- Correspondence: (L.A.S.); (M.M.H.)
| | - Marlene M. Hao
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, Australia
- Correspondence: (L.A.S.); (M.M.H.)
| |
Collapse
|
24
|
Li Z, Sau-Wai Ngan E. New insights empowered by single-cell sequencing: from neural crest to enteric nervous system. Comput Struct Biotechnol J 2022; 20:2464-2472. [PMID: 35664232 PMCID: PMC9133688 DOI: 10.1016/j.csbj.2022.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/03/2022] Open
|
25
|
Mueller JL, Goldstein AM. The science of Hirschsprung disease: What we know and where we are headed. Semin Pediatr Surg 2022; 31:151157. [PMID: 35690468 DOI: 10.1016/j.sempedsurg.2022.151157] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The enteric nervous system (ENS) is a rich network of neurons and glial cells that comprise the gastrointestinal tract's intrinsic nervous system and are responsible for controlling numerous complex functions, including digestion, transit, secretion, barrier function, and maintenance of a healthy microbiome. Development of a functional ENS relies on the coordinated interaction between enteric neural crest-derived cells and their environment as the neural crest-derived cells migrate rostrocaudally along the embryonic gut mesenchyme. Congenital or acquired disruption of ENS development leads to various neurointestinal diseases. Hirschsprung disease is a congenital neurocristopathy, a disease of the neural crest. It is characterized by a variable length of distal colonic aganglionosis due to a failure in enteric neural crest-derived cell proliferation, migration, differentiation, and/or survival. In this review, we will review the science of Hirschsprung disease, targeting an audience of pediatric surgeons. We will discuss the basic biology of normal ENS development, as well as what goes awry in ENS development in Hirschsprung disease. We will review animal models that have been integral to studying this disease, as well as current hot topics and future research, including genetic risk profiling, stem cell therapy, non-invasive diagnostic techniques, single-cell sequencing techniques, and genotype-phenotype correlation.
Collapse
Affiliation(s)
- Jessica L Mueller
- Department of Pediatric Surgery, Massachusetts General Hospital, Massachusetts General Hospital for Children, Harvard Medical School, 55 Fruit St., WRN 1151, Boston, MA 02114, United States
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Massachusetts General Hospital for Children, Harvard Medical School, 55 Fruit St., WRN 1151, Boston, MA 02114, United States.
| |
Collapse
|
26
|
Development of the Gastrointestinal Tract in Newborns as a Challenge for an Appropriate Nutrition: A Narrative Review. Nutrients 2022; 14:nu14071405. [PMID: 35406018 PMCID: PMC9002905 DOI: 10.3390/nu14071405] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
The second and third trimesters of pregnancy are crucial for the anatomical and functional development of the gastrointestinal (GI) tract. If premature birth occurs, the immaturity of the digestive and absorptive processes and of GI motility represent a critical challenge to meet adequate nutritional needs, leading to poor extrauterine growth and to other critical complications. Knowledge of the main developmental stages of the processes involved in the digestion and absorption of proteins, carbohydrates, and lipids, as well as of the maturational phases underlying the development of GI motility, may aid clinicians to optimize the nutritional management of preterm infants. The immaturity of these GI systems and functions may negatively influence the patterns of gut colonization, predisposing to an abnormal microbiome. This, in turn, further contributes to alter the functional, immune, and neural development of the GI tract and, especially in preterm infants, has been associated with an increased risk of severe GI complications, such as necrotizing enterocolitis. Deeper understanding of the physiological colonization patterns in term and preterm infants may support the promotion of these patterns and the avoidance of microbial perturbations associated with the development of several diseases throughout life. This review aims to provide a global overview on the maturational features of the main GI functions and on their implications following preterm birth. We will particularly focus on the developmental differences in intestinal digestion and absorption functionality, motility, gut–brain axis interaction, and microbiomes.
Collapse
|
27
|
Boesmans W, Nash A, Tasnády KR, Yang W, Stamp LA, Hao MM. Development, Diversity, and Neurogenic Capacity of Enteric Glia. Front Cell Dev Biol 2022; 9:775102. [PMID: 35111752 PMCID: PMC8801887 DOI: 10.3389/fcell.2021.775102] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
Enteric glia are a fascinating population of cells. Initially identified in the gut wall as the "support" cells of the enteric nervous system, studies over the past 20 years have unveiled a vast array of functions carried out by enteric glia. They mediate enteric nervous system signalling and play a vital role in the local regulation of gut functions. Enteric glial cells interact with other gastrointestinal cell types such as those of the epithelium and immune system to preserve homeostasis, and are perceptive to luminal content. Their functional versatility and phenotypic heterogeneity are mirrored by an extensive level of plasticity, illustrated by their reactivity in conditions associated with enteric nervous system dysfunction and disease. As one of the hallmarks of their plasticity and extending their operative relationship with enteric neurons, enteric glia also display neurogenic potential. In this review, we focus on the development of enteric glial cells, and the mechanisms behind their heterogeneity in the adult gut. In addition, we discuss what is currently known about the role of enteric glia as neural precursors in the enteric nervous system.
Collapse
Affiliation(s)
- Werend Boesmans
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Amelia Nash
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kinga R. Tasnády
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Wendy Yang
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taiwan, Taiwan
| | - Lincon A. Stamp
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Marlene M. Hao
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Delalande JM, Nagy N, McCann CJ, Natarajan D, Cooper JE, Carreno G, Dora D, Campbell A, Laurent N, Kemos P, Thomas S, Alby C, Attié-Bitach T, Lyonnet S, Logan MP, Goldstein AM, Davey MG, Hofstra RMW, Thapar N, Burns AJ. TALPID3/KIAA0586 Regulates Multiple Aspects of Neuromuscular Patterning During Gastrointestinal Development in Animal Models and Human. Front Mol Neurosci 2022; 14:757646. [PMID: 35002618 PMCID: PMC8733242 DOI: 10.3389/fnmol.2021.757646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
TALPID3/KIAA0586 is an evolutionary conserved protein, which plays an essential role in protein trafficking. Its role during gastrointestinal (GI) and enteric nervous system (ENS) development has not been studied previously. Here, we analyzed chicken, mouse and human embryonic GI tissues with TALPID3 mutations. The GI tract of TALPID3 chicken embryos was shortened and malformed. Histologically, the gut smooth muscle was mispatterned and enteric neural crest cells were scattered throughout the gut wall. Analysis of the Hedgehog pathway and gut extracellular matrix provided causative reasons for these defects. Interestingly, chicken intra-species grafting experiments and a conditional knockout mouse model showed that ENS formation did not require TALPID3, but was dependent on correct environmental cues. Surprisingly, the lack of TALPID3 in enteric neural crest cells (ENCC) affected smooth muscle and epithelial development in a non-cell-autonomous manner. Analysis of human gut fetal tissues with a KIAA0586 mutation showed strikingly similar findings compared to the animal models demonstrating conservation of TALPID3 and its necessary role in human GI tract development and patterning.
Collapse
Affiliation(s)
- Jean Marie Delalande
- Centre for Immunobiology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Dipa Natarajan
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Julie E Cooper
- Developmental Biology and Cancer Program, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Gabriela Carreno
- Developmental Biology and Cancer Program, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Alison Campbell
- Department of Paediatric Surgery, Christchurch Hospital, Christchurch, New Zealand
| | - Nicole Laurent
- Génétique et Anomalies du Développement, Université de Bourgogne, Service d'Anatomie Pathologique, Dijon, France
| | - Polychronis Kemos
- Centre for Immunobiology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sophie Thomas
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France
| | - Caroline Alby
- Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Tania Attié-Bitach
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France.,Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.,Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France.,Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.,Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Malcolm P Logan
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Megan G Davey
- Division of Developmental Biology, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Division of Neurogastroenterology and Motility, Department of Gastroenterology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Gastrointestinal Drug Discovery Unit, Takeda Pharmaceuticals International, Inc., Cambridge, MA, United States
| |
Collapse
|
29
|
Constantin A, Achim F, Spinu D, Socea B, Predescu D. Idiopathic Megacolon-Short Review. Diagnostics (Basel) 2021; 11:2112. [PMID: 34829459 PMCID: PMC8622596 DOI: 10.3390/diagnostics11112112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Idiopathic megacolon (IM) is a rare condition with a more or less known etiology, which involves management challenges, especially therapeutic, and both gastroenterology and surgery services. With insufficiently drawn out protocols, but with occasionally formidable complications, the condition management can be difficult for any general surgery team, either as a failure of drug therapy (in the context of a known case, initially managed by a gastroenterologist) or as a surgical emergency (in which the diagnostic surprise leads additional difficulties to the tactical decision), when the speed imposed by the severity of the case can lead to inadequate strategies, with possibly critical consequences. METHOD With such a motivation, and having available experience limited by the small number of cases (described by all medical teams concerned with this pathology), the revision of the literature with the update of management landmarks from the surgical perspective of the pathology appears as justified by this article. RESULTS If the diagnosis of megacolon is made relatively easily by imaging the colorectal dilation (which is associated with initial and/or consecutive clinical aspects), the establishing of the diagnosis of idiopathic megacolon is based in practice almost exclusively on a principle of exclusion, and after evaluating the absence of some known causes that can lead to the occurrence of these anatomic and clinical changes, mimetically, clinically, and paraclinically, with IM (intramural aganglionosis, distal obstructions, intoxications, etc.). If the etiopathogenic theories, based on an increase in the performance of the arsenal of investigations of the disease, have registered a continuous improvement and an increase of objectivity, unfortunately, the curative surgical treatment options still revolve around the same resection techniques. Moreover, the possibility of developing a form of etiopathogenic treatment seems as remote as ever.
Collapse
Affiliation(s)
- Adrian Constantin
- General and Esophageal Clinic, Sf. Maria Clinical Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 011172 Bucharest, Romania; (A.C.); (F.A.)
| | - Florin Achim
- General and Esophageal Clinic, Sf. Maria Clinical Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 011172 Bucharest, Romania; (A.C.); (F.A.)
| | - Dan Spinu
- Department of Urology, Central Military Emergency University Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 010825 Bucharest, Romania;
| | - Bogdan Socea
- Department of Surgery, Sf. Pantelimon Emergency Clinical Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 021659 Bucharest, Romania;
| | - Dragos Predescu
- General and Esophageal Clinic, Sf. Maria Clinical Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 011172 Bucharest, Romania; (A.C.); (F.A.)
| |
Collapse
|
30
|
Choe CP, Choi SY, Kee Y, Kim MJ, Kim SH, Lee Y, Park HC, Ro H. Transgenic fluorescent zebrafish lines that have revolutionized biomedical research. Lab Anim Res 2021; 37:26. [PMID: 34496973 PMCID: PMC8424172 DOI: 10.1186/s42826-021-00103-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Since its debut in the biomedical research fields in 1981, zebrafish have been used as a vertebrate model organism in more than 40,000 biomedical research studies. Especially useful are zebrafish lines expressing fluorescent proteins in a molecule, intracellular organelle, cell or tissue specific manner because they allow the visualization and tracking of molecules, intracellular organelles, cells or tissues of interest in real time and in vivo. In this review, we summarize representative transgenic fluorescent zebrafish lines that have revolutionized biomedical research on signal transduction, the craniofacial skeletal system, the hematopoietic system, the nervous system, the urogenital system, the digestive system and intracellular organelles.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seok-Hyung Kim
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, 15355, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
31
|
Abstract
Glia, the non-neuronal cells of the nervous system, were long considered secondary cells only necessary for supporting the functions of their more important neuronal neighbors. Work by many groups over the past two decades has completely overturned this notion, revealing the myriad and vital functions of glia in nervous system development, plasticity, and health. The largest population of glia outside the brain is in the enteric nervous system, a division of the autonomic nervous system that constitutes a key node of the gut-brain axis. Here, we review the latest in the understanding of these enteric glia in mammals with a focus on their putative roles in human health and disease.
Collapse
Affiliation(s)
- Harry J. Rosenberg
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
32
|
Homeostasis of mucosal glial cells in human gut is independent of microbiota. Sci Rep 2021; 11:12796. [PMID: 34140608 PMCID: PMC8211706 DOI: 10.1038/s41598-021-92384-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
In mammals, neural crest cells populate the gut and form the enteric nervous system (ENS) early in embryogenesis. Although the basic ENS structure is highly conserved across species, we show important differences between mice and humans relating to the prenatal and postnatal development of mucosal enteric glial cells (mEGC), which are essential ENS components. We confirm previous work showing that in the mouse mEGCs are absent at birth, and that their appearance and homeostasis depends on postnatal colonization by microbiota. In humans, by contrast, a network of glial cells is already present in the fetal gut. Moreover, in xenografts of human fetal gut maintained for months in immuno-compromised mice, mEGCs persist following treatment with antibiotics that lead to the disappearance of mEGCs from the gut of the murine host. Single cell RNAseq indicates that human and mouse mEGCs differ not only in their developmental dynamics, but also in their patterns of gene expression.
Collapse
|
33
|
Per-oral Endoscopic Myotomy Biopsies of Achalasia Patients Reveal Schwann Cell Depletion in the Muscularis Propria. Clin Gastroenterol Hepatol 2021; 19:1294-1295. [PMID: 32668343 DOI: 10.1016/j.cgh.2020.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
Achalasia is a neurodegenerative condition resulting in abnormal lower esophageal sphincter relaxation and impaired upstream esophageal body peristalsis.1 The pathophysiology and natural history of achalasia remain unclear, and evaluation of the histopathogenesis of achalasia has traditionally been challenging because the esophageal wall muscularis propria is not typically accessible via routine endoscopic biopsies.
Collapse
|
34
|
Diposarosa R, Bustam N, Sahiratmadja E, Susanto P, Sribudiani Y. Literature review: enteric nervous system development, genetic and epigenetic regulation in the etiology of Hirschsprung's disease. Heliyon 2021; 7:e07308. [PMID: 34195419 PMCID: PMC8237298 DOI: 10.1016/j.heliyon.2021.e07308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/16/2021] [Accepted: 06/10/2021] [Indexed: 01/13/2023] Open
Abstract
Hirschsprung's disease (HSCR) is a developmental disorder of the enteric nervous system (ENS) derived from neural crest cells (NCCs), which affects their migration, proliferation, differentiation, or preservation in the digestive tract, resulting in aganglionosis in the distal intestine. The regulation of both NCCs and the surrounding environment involves various genes, signaling pathways, transcription factors, and morphogens. Therefore, changes in gene expression during the development of the ENS may contribute to the pathogenesis of HSCR. This review discusses several mechanisms involved in the development of ENS, confirming that deviant genetic and epigenetic patterns, such as DNA methylation, histone modification, and microRNA (miRNA) regulation, can contribute to the development of neurocristopathy. Specifically, the epigenetic regulation of miRNA expression and its relationship to cellular interactions and gene activation through various major pathways in Hirschsprung's disease will be discussed.
Collapse
Affiliation(s)
- R. Diposarosa
- Department of Surgery, Division of Pediatric Surgery, Dr. Hasan Sadikin General Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - N.A. Bustam
- Department of Surgery, Division of Pediatric Surgery, Dr. Hasan Sadikin General Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Edhyana Sahiratmadja
- Department of Biomedical Sciences, Division of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - P.S. Susanto
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Y. Sribudiani
- Department of Biomedical Sciences, Division of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
35
|
The water load test in school children and adolescents with functional gastrointestinal disorders. Indian J Gastroenterol 2021; 40:162-168. [PMID: 32940846 DOI: 10.1007/s12664-020-01073-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS We hypothesize that patients with functional gastrointestinal disorders (FGID) drink less water volume than healthy subjects during water load test. We evaluated and compared the water load test in students with and without FGID using the Rome III questionnaire. METHODS We performed the water load test in 142 students from two schools in Colombia. Students were diagnosed using the Spanish version of the Rome III questionnaire. Students drank water ad libitum for 3 min or until pain, satiety, or vomiting occurred. We correlated anthropometric variables with water volumes drunk. We recorded symptoms like pain and nausea, before and after the water load test. RESULTS We evaluated 142 students, with a mean age of 12.1 ± 0.2 years and 59.9% girls. Mean water volume drunk was 459 ± 22 mL. There was no significant difference between water volume drunk by students with and without FGID (466 ± 36 vs. 453 ± 27 mL, p = 0.108). We found a significant correlation between water volume drunk and gender, age, weight, height, and body mass index. CONCLUSIONS Students with and without FGID ingest similar volumes of water. Test adverse effects are minimal, and the test is safe to perform and well tolerated.
Collapse
|
36
|
Donadon M, Santoro MM. The origin and mechanisms of smooth muscle cell development in vertebrates. Development 2021; 148:148/7/dev197384. [PMID: 33789914 DOI: 10.1242/dev.197384] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smooth muscle cells (SMCs) represent a major structural and functional component of many organs during embryonic development and adulthood. These cells are a crucial component of vertebrate structure and physiology, and an updated overview of the developmental and functional process of smooth muscle during organogenesis is desirable. Here, we describe the developmental origin of SMCs within different tissues by comparing their specification and differentiation with other organs, including the cardiovascular, respiratory and intestinal systems. We then discuss the instructive roles of smooth muscle in the development of such organs through signaling and mechanical feedback mechanisms. By understanding SMC development, we hope to advance therapeutic approaches related to tissue regeneration and other smooth muscle-related diseases.
Collapse
Affiliation(s)
- Michael Donadon
- Department of Biology, University of Padua, Via U. Bassi 58B, 35121 Padua, Italy
| | - Massimo M Santoro
- Department of Biology, University of Padua, Via U. Bassi 58B, 35121 Padua, Italy
| |
Collapse
|
37
|
Kang YN, Fung C, Vanden Berghe P. Gut innervation and enteric nervous system development: a spatial, temporal and molecular tour de force. Development 2021; 148:148/3/dev182543. [PMID: 33558316 DOI: 10.1242/dev.182543] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryonic development, the gut is innervated by intrinsic (enteric) and extrinsic nerves. Focusing on mammalian ENS development, in this Review we highlight how important the different compartments of this innervation are to assure proper gut function. We specifically address the three-dimensional architecture of the innervation, paying special attention to the differences in development along the longitudinal and circumferential axes of the gut. We review recent information about the formation of both intrinsic innervation, which is fairly well-known, as well as the establishment of the extrinsic innervation, which, despite its importance in gut-brain signaling, has received much less attention. We further discuss how external microbial and nutritional cues or neuroimmune interactions may influence development of gut innervation. Finally, we provide summary tables, describing the location and function of several well-known molecules, along with some newer factors that have more recently been implicated in the development of gut innervation.
Collapse
Affiliation(s)
- Yi-Ning Kang
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| | - Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
38
|
Radenkovic G, Petrovic V, Zivanovic D, Stoiljkovic N, Sokolovic D, Zivkovic N, Radenkovic D, Velickov A, Jovanovic J. Interstitial Cells of Cajal and Neural Structures in the Human Fetal Appendix. J Neurogastroenterol Motil 2021; 27:127-133. [PMID: 33380557 PMCID: PMC7786081 DOI: 10.5056/jnm20100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 11/20/2022] Open
Abstract
Background/Aims The interstitial cells of Cajal (ICC) are located within and around the digestive tract's muscle layers. They function as intestinal muscle pacemakers and aid in the modification of enteric neurotransmission. The appendix's unique position requires an appropriate contraction pattern of its muscular wall to adequately evacuate its contents. We investigated the development and distribution of nervous structures and ICC in the human fetal appendix. Methods Specimens were exposed to anti-c-kit (CD117) antibodies to investigate ICC differentiation. Enteric plexuses were examined using anti-neuron-specific enolase, and the differentiation of smooth muscle cells was studied with anti-desmin antibodies. Results During weeks 13-14, numerous myenteric plexus ganglia form an almost uninterrupted sequence throughout the body and apex of the appendix. Fewer ganglia were present at the submucosal border of the circular muscle layer and within this layer. A large number of ganglia appear within the circular and longitudinal muscle layers in a later fetal period. The first ICC subtypes noted were of the myenteric plexus and the submucous plexus. In the later fetal period, the number of intramuscular ICC markedly rises, and this subtype becomes predominant. Conclusions The ICC and nervous structure distribution in the human fetal appendix are significantly different from all other parts of the small and large intestine. The organization of ICC and the enteric nervous system provides the basis for the specific contraction pattern of the muscular wall of the appendix.
Collapse
Affiliation(s)
- Goran Radenkovic
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, Serbia
| | - Vladimir Petrovic
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, Serbia
| | | | - Nenad Stoiljkovic
- Department of Physiology, Faculty of Medicine, University of Nis, Serbia
| | - Dusan Sokolovic
- Department of Biochemistry, Faculty of Medicine, University of Nis, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Faculty of Medicine, University of Nis, Serbia
| | - Dina Radenkovic
- Guy's and St Thomas' Hospital and King's College London, London, UK
| | - Aleksandra Velickov
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, Serbia
| | | |
Collapse
|
39
|
Kuil LE, Chauhan RK, Cheng WW, Hofstra RMW, Alves MM. Zebrafish: A Model Organism for Studying Enteric Nervous System Development and Disease. Front Cell Dev Biol 2021; 8:629073. [PMID: 33553169 PMCID: PMC7859111 DOI: 10.3389/fcell.2020.629073] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
The Enteric Nervous System (ENS) is a large network of enteric neurons and glia that regulates various processes in the gastrointestinal tract including motility, local blood flow, mucosal transport and secretion. The ENS is derived from stem cells coming from the neural crest that migrate into and along the primitive gut. Defects in ENS establishment cause enteric neuropathies, including Hirschsprung disease (HSCR), which is characterized by an absence of enteric neural crest cells in the distal part of the colon. In this review, we discuss the use of zebrafish as a model organism to study the development of the ENS. The accessibility of the rapidly developing gut in zebrafish embryos and larvae, enables in vivo visualization of ENS development, peristalsis and gut transit. These properties make the zebrafish a highly suitable model to bring new insights into ENS development, as well as in HSCR pathogenesis. Zebrafish have already proven fruitful in studying ENS functionality and in the validation of novel HSCR risk genes. With the rapid advancements in gene editing techniques and their unique properties, research using zebrafish as a disease model, will further increase our understanding on the genetics underlying HSCR, as well as possible treatment options for this disease.
Collapse
Affiliation(s)
- Laura E. Kuil
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Rajendra K. Chauhan
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - William W. Cheng
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Robert M. W. Hofstra
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
- Stem Cells and Regenerative Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Maria M. Alves
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
40
|
Fawkner-Corbett D, Antanaviciute A, Parikh K, Jagielowicz M, Gerós AS, Gupta T, Ashley N, Khamis D, Fowler D, Morrissey E, Cunningham C, Johnson PRV, Koohy H, Simmons A. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell 2021; 184:810-826.e23. [PMID: 33406409 PMCID: PMC7864098 DOI: 10.1016/j.cell.2020.12.016] [Citation(s) in RCA: 300] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/10/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Development of the human intestine is not well understood. Here, we link single-cell RNA sequencing and spatial transcriptomics to characterize intestinal morphogenesis through time. We identify 101 cell states including epithelial and mesenchymal progenitor populations and programs linked to key morphogenetic milestones. We describe principles of crypt-villus axis formation; neural, vascular, mesenchymal morphogenesis, and immune population of the developing gut. We identify the differentiation hierarchies of developing fibroblast and myofibroblast subtypes and describe diverse functions for these including as vascular niche cells. We pinpoint the origins of Peyer’s patches and gut-associated lymphoid tissue (GALT) and describe location-specific immune programs. We use our resource to present an unbiased analysis of morphogen gradients that direct sequential waves of cellular differentiation and define cells and locations linked to rare developmental intestinal disorders. We compile a publicly available online resource, spatio-temporal analysis resource of fetal intestinal development (STAR-FINDer), to facilitate further work.
Multimodal atlas of human intestinal development maps 101 cell types onto tissue Charts developmental origins of diverse cellular compartments and their progenitors Functional diversity of fibroblasts in stem cell, vasculature, and GALT formation Resource applied to interrogate pathology of in utero intestinal diseases
Collapse
Affiliation(s)
- David Fawkner-Corbett
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK; Academic Paediatric Surgery Unit (APSU), Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Agne Antanaviciute
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Kaushal Parikh
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Marta Jagielowicz
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ana Sousa Gerós
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Tarun Gupta
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Neil Ashley
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Doran Khamis
- MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Darren Fowler
- Paediatric Pathology, Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Edward Morrissey
- MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Chris Cunningham
- Colorectal Surgery Department, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Paul R V Johnson
- Academic Paediatric Surgery Unit (APSU), Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Hashem Koohy
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK.
| | - Alison Simmons
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
41
|
Kumari MV, Amarasiri L, Rajindrajith S, Devanarayana NM. Functional abdominal pain disorders and asthma: two disorders, but similar pathophysiology? Expert Rev Gastroenterol Hepatol 2021; 15:9-24. [PMID: 32909837 DOI: 10.1080/17474124.2020.1821652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Functional abdominal pain disorders (FAPDs) and asthma are common ailments affecting both children and adults worldwide. Multiple studies have demonstrated an association between these two disorders. However, the exact reason for this observed association is not apparent. AREAS COVERED The current review has explored available literature and outlined multiple underlying pathophysiological mechanisms, common to both asthma and FAPDs, as possible reasons for this association. EXPERT OPINION Smooth muscle dysfunction, hypersensitivity and hyper-responsiveness, mucosal inflammation, and barrier dysfunction involving gastrointestinal and respiratory tracts are the main underlying pathophysiological mechanisms described for the generation of symptoms in FAPDs and asthma. In addition, alterations in neuroendocrine regulatory functions, immunological dysfunction, and microbial dysbiosis have been described in both disorders. We believe that the pathophysiological processes that were explored in this article would be able to expand the mechanisms of the association. The in-depth knowledge is needed to be converted to therapeutic and preventive strategies to improve the quality of care of children suffering from FAPDs and asthma.
Collapse
Affiliation(s)
- Manori Vijaya Kumari
- Department of Physiology, Faculty of Medicine & Allied Sciences, Rajarata University of Sri Lanka , Anuradhapura, Sri Lanka
| | - Lakmali Amarasiri
- Department of Physiology, Faculty of Medicine, University of Colombo , Colombo, Sri Lanka
| | | | | |
Collapse
|
42
|
Histological, immunohistochemical and transcriptomic characterization of human tracheoesophageal fistulas. PLoS One 2020; 15:e0242167. [PMID: 33201890 PMCID: PMC7671559 DOI: 10.1371/journal.pone.0242167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Esophageal atresia (EA) and tracheoesophageal fistula (TEF) are relatively frequently occurring foregut malformations. EA/TEF is thought to have a strong genetic component. Not much is known regarding the biological processes disturbed or which cell type is affected in patients. This hampers the detection of the responsible culprits (genetic or environmental) for the origin of these congenital anatomical malformations. Therefore, we examined gene expression patterns in the TEF and compared them to the patterns in esophageal, tracheal and lung control samples. We studied tissue organization and key proteins using immunohistochemistry. There were clear differences between TEF and control samples. Based on the number of differentially expressed genes as well as histological characteristics, TEFs were most similar to normal esophagus. The BMP-signaling pathway, actin cytoskeleton and extracellular matrix pathways are downregulated in TEF. Genes involved in smooth muscle contraction are overexpressed in TEF compared to esophagus as well as trachea. These enriched pathways indicate myofibroblast activated fibrosis. TEF represents a specific tissue type with large contributions of intestinal smooth muscle cells and neurons. All major cell types present in esophagus are present-albeit often structurally disorganized-in TEF, indicating that its etiology should not be sought in cell fate specification.
Collapse
|
43
|
Raad S, David A, Que J, Faure C. Genetic Mouse Models and Induced Pluripotent Stem Cells for Studying Tracheal-Esophageal Separation and Esophageal Development. Stem Cells Dev 2020; 29:953-966. [PMID: 32515280 PMCID: PMC9839344 DOI: 10.1089/scd.2020.0075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Esophagus and trachea arise from a common origin, the anterior foregut tube. The compartmentalization process of the foregut into the esophagus and trachea is still poorly understood. Esophageal atresia/tracheoesophageal fistula (EA/TEF) is one of the most common gastrointestinal congenital defects with an incidence rate of 1 in 2,500 births. EA/TEF is linked to the disruption of the compartmentalization process of the foregut tube. In EA/TEF patients, other organ anomalies and disorders have also been reported. Over the last two decades, animal models have shown the involvement of multiple signaling pathways and transcription factors in the development of the esophagus and trachea. Use of induced pluripotent stem cells (iPSCs) to understand organogenesis has been a valuable tool for mimicking gastrointestinal and respiratory organs. This review focuses on the signaling mechanisms involved in esophageal development and the use of iPSCs to model and understand it.
Collapse
Affiliation(s)
- Suleen Raad
- Esophageal Development and Engineering Laboratory, Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Anu David
- Esophageal Development and Engineering Laboratory, Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Department of Medicine, Center for Human Development, Columbia University, New York, New York, USA
| | - Christophe Faure
- Esophageal Development and Engineering Laboratory, Sainte-Justine Research Centre, Montreal, Quebec, Canada.,Esophageal Atresia Clinic and Division of Pediatric Gastroenterology Hepatology and Nutrition, CHU Sainte Justine, Université de Montréal, Montréal, Quebec, Canada.,Address correspondence to: Dr. Christophe Faure, Division of Pediatric Gastroenterology, Sainte-Justine Hospital, 3715 Côte Sainte Catherine, Montreal H3T1C5, Quebec, Canada
| |
Collapse
|
44
|
Kostouros A, Koliarakis I, Natsis K, Spandidos DA, Tsatsakis A, Tsiaoussis J. Large intestine embryogenesis: Molecular pathways and related disorders (Review). Int J Mol Med 2020; 46:27-57. [PMID: 32319546 PMCID: PMC7255481 DOI: 10.3892/ijmm.2020.4583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
The large intestine, part of the gastrointestinal tract (GI), is composed of all three germ layers, namely the endoderm, the mesoderm and the ectoderm, forming the epithelium, the smooth muscle layers and the enteric nervous system, respectively. Since gastrulation, these layers develop simultaneously during embryogenesis, signaling to each other continuously until adult age. Two invaginations, the anterior intestinal portal (AIP) and the caudal/posterior intestinal portal (CIP), elongate and fuse, creating the primitive gut tube, which is then patterned along the antero‑posterior (AP) axis and the radial (RAD) axis in the context of left‑right (LR) asymmetry. These events lead to the formation of three distinct regions, the foregut, midgut and hindgut. All the above‑mentioned phenomena are under strict control from various molecular pathways, which are critical for the normal intestinal development and function. Specifically, the intestinal epithelium constitutes a constantly developing tissue, deriving from the progenitor stem cells at the bottom of the intestinal crypt. Epithelial differentiation strongly depends on the crosstalk with the adjacent mesoderm. Major molecular pathways that are implicated in the embryogenesis of the large intestine include the canonical and non‑canonical wingless‑related integration site (Wnt), bone morphogenetic protein (BMP), Notch and hedgehog systems. The aberrant regulation of these pathways inevitably leads to several intestinal malformation syndromes, such as atresia, stenosis, or agangliosis. Novel theories, involving the regulation and homeostasis of intestinal stem cells, suggest an embryological basis for the pathogenesis of colorectal cancer (CRC). Thus, the present review article summarizes the diverse roles of these molecular factors in intestinal embryogenesis and related disorders.
Collapse
Affiliation(s)
- Antonios Kostouros
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Ioannis Koliarakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Konstantinos Natsis
- Department of Anatomy and Surgical Anatomy, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki
| | | | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| |
Collapse
|
45
|
Kruepunga N, Hikspoors JPJM, Hülsman CJM, Mommen GMC, Köhler SE, Lamers WH. Development of extrinsic innervation in the abdominal intestines of human embryos. J Anat 2020; 237:655-671. [PMID: 32598482 PMCID: PMC7495293 DOI: 10.1111/joa.13230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Compared to the intrinsic enteric nervous system (ENS), development of the extrinsic ENS is poorly documented, even though its presence is easily detectable with histological techniques. We visualised its development in human embryos and foetuses of 4–9.5 weeks post‐fertilisation using Amira 3D‐reconstruction and Cinema 4D‐remodelling software. The extrinsic ENS originated from small, basophilic neural crest cells (NCCs) that migrated to the para‐aortic region and then continued ventrally to the pre‐aortic region, where they formed autonomic pre‐aortic plexuses. From here, nerve fibres extended along the ventral abdominal arteries and finally connected to the intrinsic system. Schwann cell precursors (SCPs), a subgroup of NCCs that migrate on nerve fibres, showed region‐specific differences in differentiation. SCPs developed into scattered chromaffin cells of the adrenal medulla dorsolateral to the coeliac artery (CA) and into more tightly packed chromaffin cells of the para‐aortic bodies ventrolateral to the inferior mesenteric artery (IMA), with reciprocal topographic gradients between both fates. The extrinsic ENS first extended along the CA and then along the superior mesenteric artery (SMA) and IMA 5 days later. Apart from the branch to the caecum, extrinsic nerves did not extend along SMA branches in the herniated parts of the midgut until the gut loops had returned in the abdominal cavity, suggesting a permissive role of the intraperitoneal environment. Accordingly, extrinsic innervation had not yet reached the distal (colonic) loop of the midgut at 9.5 weeks development. Based on intrinsic ENS‐dependent architectural remodelling of the gut layers, extrinsic innervation followed intrinsic innervation 3–4 Carnegie stages later.
Collapse
Affiliation(s)
- Nutmethee Kruepunga
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.,Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jill P J M Hikspoors
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Cindy J M Hülsman
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Greet M C Mommen
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.,Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Huycke TR, Miller BM, Gill HK, Nerurkar NL, Sprinzak D, Mahadevan L, Tabin CJ. Genetic and Mechanical Regulation of Intestinal Smooth Muscle Development. Cell 2020; 179:90-105.e21. [PMID: 31539501 DOI: 10.1016/j.cell.2019.08.041] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/31/2019] [Accepted: 08/22/2019] [Indexed: 11/30/2022]
Abstract
The gastrointestinal tract is enveloped by concentric and orthogonally aligned layers of smooth muscle; however, an understanding of the mechanisms by which these muscles become patterned and aligned in the embryo has been lacking. We find that Hedgehog acts through Bmp to delineate the position of the circumferentially oriented inner muscle layer, whereas localized Bmp inhibition is critical for allowing formation of the later-forming, longitudinally oriented outer layer. Because the layers form at different developmental stages, the muscle cells are exposed to unique mechanical stimuli that direct their alignments. Differential growth within the early gut tube generates residual strains that orient the first layer circumferentially, and when formed, the spontaneous contractions of this layer align the second layer longitudinally. Our data link morphogen-based patterning to mechanically controlled smooth muscle cell alignment and provide a mechanistic context for potentially understanding smooth muscle organization in a wide variety of tubular organs.
Collapse
Affiliation(s)
- Tyler R Huycke
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bess M Miller
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hasreet K Gill
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nandan L Nerurkar
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - David Sprinzak
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - L Mahadevan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA; Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA
| | - Clifford J Tabin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Loffet E, Brossard L, Mahe MM. Pluripotent stem cell derived intestinal organoids with an enteric nervous system. Methods Cell Biol 2020; 159:175-199. [PMID: 32586442 DOI: 10.1016/bs.mcb.2020.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The use of human pluripotent stem cells (hPSCs) and differentiation techniques offer new ways to generate specific tissue. It is now possible to differentiate hPSC into human intestinal organoids that include an enteric nervous system. Using step-wise differentiation processes, we generate innervated intestinal organoids that form three-dimensional structures bearing an epithelium, neurons and glial cells embedded in a supporting mesenchyme. Innervated organoids further develop to a complex structure with similar organization and cellular differentiation as the developing intestine. These tools open up new fields of application in the study of the development and pathophysiology of enteric neuropathies. Herein, we describe the generation of both human intestinal organoids and vagal neural crest cells from hPSC and their combination into an innervated organoid. We also discuss technical considerations for these experiments, and highlight advantages and limitations of the system.
Collapse
Affiliation(s)
- Elise Loffet
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Lisa Brossard
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Maxime M Mahe
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France; Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
48
|
Gao N, Hou P, Wang J, Zhou T, Wang D, Zhang Q, Mu W, Lv X, Li A. Increased Fibronectin Impairs the Function of Excitatory/Inhibitory Synapses in Hirschsprung Disease. Cell Mol Neurobiol 2020; 40:617-628. [PMID: 31760535 PMCID: PMC11448818 DOI: 10.1007/s10571-019-00759-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
Abstract
Although approximately 50% of cases have a known genetic defect, the precise pathogenesis of Hirschsprung disease (HSCR) is still unclear. We recently reported that expression of fibronectin (FN), which is involved in the migration, colonization, and differentiation of enteric neural crest cells (ENCCs), is increased in aganglionic colonic segments obtained from patients. We hypothesized that abnormally high levels of FN might play a role in the etiology of HSCR. Here, to test this hypothesis, we investigated aganglionic, transitional, and ganglionic colon segments from 63 children with HSCR and distal colon from thirty healthy Wistar rats at embryonic day 20, in addition to in vitro studies with PC12 Adh neural crest cells. We measured the protein and mRNA expression levels of FN, together with a panel of excitatory (VGLUT1, GluA1, GluN1, PSD-95, and NL-1) and inhibitory (GAD67, GABA AR-α1, NL-2, and SLC32) synaptic markers. Expression of all these synaptic markers was significantly decreased in aganglionic colon, compared to ganglionic colon, whereas expression of FN was significantly increased. In a neural crest cell line, PC12 Adh, knockdown of FN with small-interfering RNA increased the expression of synaptic markers. Co-culture of colons from embryonic day 20 rats with RGD recombinant protein, which contains the RGD motif of FN, reduced the expression of excitatory and inhibitory synaptic markers. These results are consistent with the idea that the etiology of HSCR involves aberrant overexpression of FN, which may impair synaptic function and enteric nervous system development, leading to motor dysfunction of intestinal muscles.
Collapse
Affiliation(s)
- Ni Gao
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Peimin Hou
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Jian Wang
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Tingting Zhou
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Dongming Wang
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Qiangye Zhang
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Weijing Mu
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xiaona Lv
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| | - Aiwu Li
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
49
|
Gao N, Wang J, Zhang Q, Zhou T, Mu W, Hou P, Wang D, Lv X, Li A. Aberrant Distributions of Collagen I, III, and IV in Hirschsprung Disease. J Pediatr Gastroenterol Nutr 2020; 70:450-456. [PMID: 31939867 DOI: 10.1097/mpg.0000000000002627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hirschsprung disease (HSCR) is the most common congenital gut motility disorder, involving a severe anomaly of the enteric nervous system, and is characterized by functional intestinal obstruction due to lack of intrinsic innervation (aganglionosis) in the distal bowel. OBJECTIVE The aim of this study was to examine the distribution patterns of collagens I (Col I), III (Col III), and IV (Col IV) in the enteric nervous system of HSCR patients, to determine whether or not collagen levels are altered in the aganglionic bowel. METHODS We measured the expression levels of Col I, Col III, and Col IV in colonic muscle from 129 children with HSCR. The localizations of the 3 collagens and myenteric ganglia were assessed morphologically by immunofluorescence staining. western blots and real-time fluorescence quantitative polymerase chain reaction were performed to examine the relative levels of these collagens in aganglionic, transitional, and ganglionic colon segments. RESULTS Immunoreactivities of Col I and Col III were high around and within myenteric ganglia in the ganglionic segment, moderate in the transitional segment, and weak in the aganglionic segment. Col IV immunoreactivity showed the opposite pattern, being lowest in the ganglionic segment and highest in the aganglionic segment. CONCLUSION Col I and Col III are decreased and Col IV is increased in the distal colon of patients with HSCR.
Collapse
Affiliation(s)
- Ni Gao
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gao Y, Liu JF, Zhang C, Liu L, Liu YP, Zhang SL, Zhao LM. Enzyme-injected method of enzymatic dispersion at low temperature is effective for isolation of smooth muscle cells from human esophagogastric junction. Exp Ther Med 2020; 19:2933-2948. [PMID: 32256779 PMCID: PMC7086163 DOI: 10.3892/etm.2020.8560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/09/2020] [Indexed: 11/29/2022] Open
Abstract
The present study was conducted to examine the feasibility of in vitro isolation and primary culture of smooth muscle cells (SMCs) from the esophagogastric junction (EGJ). Smooth muscles of EGJ were harvested from 23 patients with esophageal cancer during esophagostomy from January 2015 to December 2017. Enzymatic dispersion (ED) was performed for isolation. Collagenase II and Trypsin/EDTA were applied by enzyme injection (EI) into tissue fragments or immersion of tissue fragments into enzyme solution. Growth characteristics and proliferation [Cell Counting Kit-8 (CCK-8)] of cells were recorded for both smooth muscle cell medium (SMCM) and DMEM/F12 containing 10% newborn bovine serum (10%-F12). All ED methods could isolate primary cells; EI was the most effective method with low collagenase II concentration (0.5 mg/ml) at 4˚C for 14-24 h. Primary cells demonstrated mainly spindle- and long-spindle-shaped with ‘hills and valleys’ morphology. The CCK-8 assay in SMCM showed better proliferation results than in 10%-F12. After passaging for 4-8 generations in SMCM or 2-4 generations in 10%-F12, cells enlarged gradually with passages and lost spindle structures. mRNA and proteins of α-smooth muscle actin (α-SMA), smooth muscle 22 α (SM22α), vimentin, desmin, CD90 and proliferating cell nuclear antigen were detected in tissues and cells with different levels of expression. SMCs of esophageal circular muscle, esophageal longitudinal muscle, gastric circular muscle near sling in gastric bottom and gastric circular muscle near clasp in lesser gastric curvature, all cultured in 10%-F12, exhibited superior smooth muscle phenotypes compared with SMCs cultured in SMCM in terms of α-SMA, SM22α and vimentin expression. The EI method of ED at low temperature appears effective for isolation and primary culture of SMCs from human EGJ in vitro.
Collapse
Affiliation(s)
- Yang Gao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China.,Graduate School of Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Jun-Feng Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Chao Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Liang Liu
- Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yue-Ping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Sheng-Lei Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Lian-Mei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|