1
|
Upadhyay S, Sharanagat VS. Plant protein-based Pickering emulsion for the encapsulation and delivery of fat-soluble vitamins: A systematic review. Int J Biol Macromol 2025:141635. [PMID: 40037448 DOI: 10.1016/j.ijbiomac.2025.141635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/29/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Vitamin deficiencies pose a significant global health challenge, leading to various health issues and economic burdens. These challenges arise with the delivery of fat-soluble vitamin (FSV) due to its poor stability against the environmental stimuli. The commercial fortification methods such as Pickering emulsion (PE), hydrogel and others offer a potential solution over the limitations of conventional vitamin delivery methods (degradation and poor bioavailability). PE stabilized by solid plant protein particles, have emerged as a promising approach for encapsulation and delivery of oil-soluble vitamins (A, D, E, and K). Plant proteins, with their amphiphilic nature and nutritional benefits, are particularly well-suited as a stabilizer for PE. Plant protein-based PE enhances protection of vitamins against the environmental stimuli and enhances the delivery efficiency of oil-soluble vitamins. Factors such as particle size, concentration, and oil type also influence the stability, encapsulation efficiency, and bio-accessibility of fat-soluble vitamins in PE. Hence, the present review explores the impact of various factors on the stability and bio-accessibility of fat-soluble vitamins (A, D and E) and also emphasizing the role of particle size and concentration of stabilizer in controlling release rates of vitamin encapsulated PE. The review also highlights the application of plant protein-based PEs in various food products including nutrient fortification, functional foods, and 3D food printing.
Collapse
Affiliation(s)
- Srishti Upadhyay
- National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| | | |
Collapse
|
2
|
Wu Q, Luo Y, Lu H, Xie T, Hu Z, Chu Z, Luo F. The Potential Role of Vitamin E and the Mechanism in the Prevention and Treatment of Inflammatory Bowel Disease. Foods 2024; 13:898. [PMID: 38540888 PMCID: PMC10970063 DOI: 10.3390/foods13060898] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 01/06/2025] Open
Abstract
Inflammatory bowel disease (IBD) includes ulcerative colitis and Crohn's disease, and it is a multifactorial disease of the intestinal mucosa. Oxidative stress damage and inflammation are major risk factors for IBD. Vitamin E has powerful antioxidant and anti-inflammatory effects. Our previous work and other investigations have shown that vitamin E has a positive effect on the prevention and treatment of IBD. In this paper, the source and structure of vitamin E and the potential mechanism of vitamin E's role in IBD were summarized, and we also analyzed the status of vitamin E deficiency in patients with IBD and the effect of vitamin E supplementation on IBD. The potential mechanisms by which vitamin E plays a role in the prevention and treatment of IBD include improvement of oxidative damage, enhancement of immunity, maintenance of intestinal barrier integrity, and suppression of inflammatory cytokines, modulating the gut microbiota and other relevant factors. The review will improve our understanding of the complex mechanism by which vitamin E inhibits IBD, and it also provides references for doctors in clinical practice and researchers in this field.
Collapse
Affiliation(s)
- Qi Wu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China; (Q.W.); (H.L.); (T.X.); (Z.H.); (Z.C.)
| | - Yi Luo
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Han Lu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China; (Q.W.); (H.L.); (T.X.); (Z.H.); (Z.C.)
| | - Tiantian Xie
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China; (Q.W.); (H.L.); (T.X.); (Z.H.); (Z.C.)
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China; (Q.W.); (H.L.); (T.X.); (Z.H.); (Z.C.)
| | - Zhongxing Chu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China; (Q.W.); (H.L.); (T.X.); (Z.H.); (Z.C.)
| | - Feijun Luo
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China; (Q.W.); (H.L.); (T.X.); (Z.H.); (Z.C.)
| |
Collapse
|
3
|
Sugandhi VV, Pangeni R, Vora LK, Poudel S, Nangare S, Jagwani S, Gadhave D, Qin C, Pandya A, Shah P, Jadhav K, Mahajan HS, Patravale V. Pharmacokinetics of vitamin dosage forms: A complete overview. Food Sci Nutr 2024; 12:48-83. [PMID: 38268871 PMCID: PMC10804103 DOI: 10.1002/fsn3.3787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 01/26/2024] Open
Abstract
Vitamins are crucial for sustaining life because they play an essential role in numerous physiological processes. Vitamin deficiencies can lead to a wide range of severe health issues. In this context, there is a need to administer vitamin supplements through appropriate routes, such as the oral route, to ensure effective treatment. Therefore, understanding the pharmacokinetics of vitamins provides critical insights into absorption, distribution, and metabolism, all of which are essential for achieving the desired pharmacological response. In this review paper, we present information on vitamin deficiencies and emphasize the significance of understanding vitamin pharmacokinetics for improved clinical research. The pharmacokinetics of several vitamins face various challenges, and thus, this work briefly outlines the current issues and their potential solutions. We also discuss the feasibility of enhanced nanocarrier-based pharmaceutical formulations for delivering vitamins. Recent studies have shown a preference for nanoformulations, which can address major limitations such as stability, solubility, absorption, and toxicity. Ultimately, the pharmacokinetics of pharmaceutical dosage forms containing vitamins can impede the treatment of diseases and disorders related to vitamin deficiency.
Collapse
Affiliation(s)
| | - Rudra Pangeni
- Department of PharmaceuticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | | | - Sagun Poudel
- Department of PharmaceuticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Sopan Nangare
- Department of PharmaceuticsH. R. Patel Institute of Pharmaceutical Education and ResearchShirpurMaharashtraIndia
| | - Satveer Jagwani
- KLE College of PharmacyKLE Academy of Higher Education and ResearchBelagaviKarnatakaIndia
| | - Dnyandev Gadhave
- Department of PharmaceuticsSinhgad Technical Education SocietySinhgad Institute of PharmacyPuneMaharashtraIndia
| | - Chaolong Qin
- Department of PharmaceuticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Anjali Pandya
- Department of Pharmaceutical Sciences and TechnologyInstitute of Chemical TechnologyMumbaiIndia
| | - Purav Shah
- Thoroughbred Remedies ManufacturingTRM Industrial EstateNewbridgeIreland
| | - Kiran Jadhav
- KLE College of PharmacyKLE Academy of Higher Education and ResearchBelagaviKarnatakaIndia
| | - Hitendra S. Mahajan
- Department of PharmaceuticsR. C. Patel Institute of Pharmaceutical Education and ResearchShirpurMaharashtraIndia
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and TechnologyInstitute of Chemical TechnologyMumbaiIndia
| |
Collapse
|
4
|
Lobo LMDC, Hadler MCCM. Vitamin E deficiency in childhood: a narrative review. Nutr Res Rev 2023; 36:392-405. [PMID: 35929460 DOI: 10.1017/s0954422422000142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vitamin E is an important nutrient from the earliest stages of life. It plays key roles as an antioxidant and in the maintenance of the immune system, among others. Vitamin E deficiency (VED), which occurs more frequently in children, is rarely addressed in the literature. This narrative review aims to summarise the chemistry, biology, serum indicators and clinical trials that have evaluated the impact of fortification and other relevant aspects of vitamin E, in addition to the prevalence of its deficiency, in children worldwide. Vitamin E intake in recommended amounts is essential for this nutrient to perform its functions in the body. Serum α-tocopherol is the most widely used biochemical indicator to assess the prevalence of VED. VED has been associated with symptoms secondary to fat malabsorption and may lead to peripheral neuropathy and increased erythrocyte haemolysis. Reduced concentrations of α-tocopherol may be caused by the combination of diets with low amounts of vitamin E and inadequate consumption of fats, proteins and calories. The lowest prevalence of VED was found in Asia and the highest in North America and Brazil. High proportions of VED provide evidence that this nutritional deficiency is a public health problem in children and still little addressed in the international scientific literature. The planning, evaluation and implementation of health policies aimed at combatting VED in the paediatric population are extremely important.
Collapse
Affiliation(s)
| | - Maria Claret Costa Monteiro Hadler
- Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia, Goiás, Brazil
- Graduate Program in Nutrition and Health, Faculty of Nutrition, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
5
|
Arai H. [Physiological Function and Congenital Deficiency of α-TTP, a Determinant of Vitamin E Transport in the Body -One Portion of the Research for Which the Pharmaceutical Society of Japan Award Was Given]. YAKUGAKU ZASSHI 2022; 142:775-795. [PMID: 35908939 DOI: 10.1248/yakushi.22-00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review summarizes one portion of the research for which the author received the Pharmaceutical Society of Japan Award. The complete title of the awarded research is "Pharmacological Studies on Metabolism and Functions of Biomembrane Lipids". Because the awarded research is a very broad study, this review describes the discovery, physiological functions, and congenital defects of α-tocopherol transfer protein (α-TTP), a critical factor in determining the transport of vitamin E in the body, which has been the focus of the author's work throughout his research career.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
6
|
Arai H, Kono N. α-Tocopherol transfer protein (α-TTP). Free Radic Biol Med 2021; 176:162-175. [PMID: 34563650 DOI: 10.1016/j.freeradbiomed.2021.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
α-Tocopherol transfer protein (α-TTP) is so far the only known protein that specifically recognizes α-tocopherol (α-Toc), the most abundant and most biologically active form of vitamin E, in higher animals. α-TTP is highly expressed in the liver where α-TTP selects α-Toc among vitamin E forms taken up via plasma lipoproteins and promotes its secretion to circulating lipoproteins. Thus, α-TTP is a major determinant of plasma α-Toc concentrations. Familial vitamin E deficiency, also called Ataxia with vitamin E deficiency, is caused by mutations in the α-TTP gene. More than 20 different mutations have been found in the α-TTP gene worldwide, among which some missense mutations provided valuable clues to elucidate the molecular mechanisms underlying intracellular α-Toc transport. In hepatocytes, α-TTP catalyzes the vectorial transport of α-Toc from the endocytotic compartment to the plasma membrane (PM) by targeting phosphatidylinositol phosphates (PIPs) such as PI(4,5)P2. By binding PIPs at the PM, α-TTP opens the lid covering the hydrophobic pocket, thus facilitating the release of bound α-Toc to the PM.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
7
|
Smyk B. Spectroscopic Evidence for Photooxidation of Tocopherols in n-Hexane. Molecules 2021; 26:571. [PMID: 33499107 PMCID: PMC7865854 DOI: 10.3390/molecules26030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 11/24/2022] Open
Abstract
This paper presents the results of an investigation into the photooxidation of tocopherols (Tocs) dissolved in argonated and non-argonated n-hexane. During irradiation, steady-state absorption and fluorescence spectra as well as lifetimes were measured. In all experiments, the photoreactions were of the first order type. The reaction rate was higher for all Tocs in argonated solvent. A new emission band with a maximum at 298 nm as well as new absorption and fluorescence bands beyond the 300 nm connected with charge-transfer (C-T) complexes for all Tocs appeared during the irradiation of γ- and δ-Toc. The above results indicate that the photooxidation process is very complex and that the observed phenomena strongly depend on the number and position of methyl groups in the chromanol ring.
Collapse
Affiliation(s)
- Bogdan Smyk
- Department of Physics and Biophysics, The Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| |
Collapse
|
8
|
Niforou A, Konstantinidou V, Naska A. Genetic Variants Shaping Inter-individual Differences in Response to Dietary Intakes-A Narrative Review of the Case of Vitamins. Front Nutr 2020; 7:558598. [PMID: 33335908 PMCID: PMC7736113 DOI: 10.3389/fnut.2020.558598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Recent advances in the field of nutrigenetics have provided evidence on how genetic variations can impact the individuals' response to dietary intakes. An objective and reliable assessment of dietary exposures should rely on combinations of methodologies including frequency questionnaires, short-term recalls or records, together with biological samples to evaluate markers of intake or status and to identify genetic susceptibilities. In an attempt to present current knowledge on how genetic fingerprints contribute to an individual's nutritional status, we present a review of current literature describing associations between genetic variants and levels of well-established biomarkers of vitamin status in free-living and generally healthy individuals. Based on the outcomes of candidate gene, genome-wide-association studies and meta-analyses thereof, we have identified several single nucleotide polymorphisms (SNPs) involved in the vitamins' metabolic pathways. Polymorphisms in genes encoding proteins involved in vitamin metabolism and transport are reported to have an impact on vitamin D status; while genetic variants of vitamin D receptor were most frequently associated with health outcomes. Genetic variations that can influence vitamin E status include SNPs involved in its uptake and transport, such as in SCAR-B1 gene, and in lipoprotein metabolism. Variants of the genes encoding the sodium-dependent vitamin C transport proteins are greatly associated with the body's status on vitamin C. Regarding the vitamins of the B-complex, special reference is made to the widely studied variant in the MTHFR gene. Methodological attributes of genetic studies that may limit the comparability and interpretability of the findings are also discussed. Our understanding of how genes affect our responses to nutritional triggers will enhance our capacity to evaluate dietary exposure and design personalized nutrition programs to sustain health and prevent disease.
Collapse
Affiliation(s)
- Aikaterini Niforou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Androniki Naska
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
The detection of age-, gender-, and region-specific changes in mouse brain tocopherol levels via the application of different validated HPLC methods. Neurochem Res 2018; 43:2081-2091. [DOI: 10.1007/s11064-018-2630-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
|
10
|
Chung E, Mo H, Wang S, Zu Y, Elfakhani M, Rios SR, Chyu MC, Yang RS, Shen CL. Potential roles of vitamin E in age-related changes in skeletal muscle health. Nutr Res 2018; 49:23-36. [DOI: 10.1016/j.nutres.2017.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 08/29/2017] [Accepted: 09/17/2017] [Indexed: 12/21/2022]
|
11
|
Tańska M, Roszkowska B, Skrajda M, Dąbrowski G. Commercial Cold Pressed Flaxseed Oils Quality and Oxidative Stability at the Beginning and the End of Their Shelf Life. J Oleo Sci 2016; 65:111-21. [PMID: 26782307 DOI: 10.5650/jos.ess15243] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of the study was to determine quality and oxidative stability of selected cold pressed flaxseed oils, fresh (after producing, the beginning of shelf life) and stored at refrigerator temperature (after three months, the end of declared shelf life). The fresh oils were characterized by organoleptic assessment, fatty acids composition and bioactive compounds content (sterols, tocols, squalene, carotenoids, and phenols). For the fresh and stored oils oxidative stability in the Rancimat test, and the hydrolytic and oxidation degrees using standard methods were determined. It was found that fresh flaxseed oils were differentiated in fatty acid composition and content of bioactive compounds. Shares of saturated fatty acids, and content of squalene and phenolic compounds were most variable in the oils. At the end of shelf life flaxseed oils were characterized by 9-26% shorter induction time in compare to the initial state, and increased content of hydrolysis (acid value by 18-40%) and oxidation products (peroxide value by 16-37%, anisidine value by 13-41%, diene content by 10-21%, triene content by 23-42%) was detected.
Collapse
Affiliation(s)
- Małgorzata Tańska
- Chair of Plant Raw Materials Chemistry and Processing, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn
| | | | | | | |
Collapse
|
12
|
Derradjia A, Alanazi H, Park HJ, Djeribi R, Semlali A, Rouabhia M. α-tocopherol decreases interleukin-1β and -6 and increases human β-defensin-1 and -2 secretion in human gingival fibroblasts stimulated with Porphyromonas gingivalis
lipopolysaccharide. J Periodontal Res 2015. [DOI: 10.1111/jre.12308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- A. Derradjia
- Groupe de Recherche en Écologie Buccale; Faculté de Médecine Dentaire; Université Laval; Québec QC Canada
- Groupe de Recherche sur les Biofilms et la Biocontamination des Matériaux; Faculté des Sciences; Université d'Annaba; Annaba Algeria
| | - H. Alanazi
- Groupe de Recherche en Écologie Buccale; Faculté de Médecine Dentaire; Université Laval; Québec QC Canada
| | - H. J. Park
- Groupe de Recherche en Écologie Buccale; Faculté de Médecine Dentaire; Université Laval; Québec QC Canada
| | - R. Djeribi
- Groupe de Recherche sur les Biofilms et la Biocontamination des Matériaux; Faculté des Sciences; Université d'Annaba; Annaba Algeria
| | - A. Semlali
- Department of Biochemistry; College of Science; King Saud University; Riyadh Saudi Arabia
| | - M. Rouabhia
- Groupe de Recherche en Écologie Buccale; Faculté de Médecine Dentaire; Université Laval; Québec QC Canada
| |
Collapse
|
13
|
|
14
|
Faghani M, Kohestani Y, Nasiri E, Moladoust H, Mesbah M. Protective Effect of Vitamin E on Formaldehyde-Induced Injuries in the Rat Kidney. ACTA ACUST UNITED AC 2014. [DOI: 10.17795/gct-21539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
González-Calvo L, Joy M, Alberti C, Ripoll G, Molino F, Serrano M, Calvo JH. Effect of finishing period length with α-tocopherol supplementation on the expression of vitamin E-related genes in the muscle and subcutaneous fat of light lambs. Gene 2014; 552:225-33. [PMID: 25241385 DOI: 10.1016/j.gene.2014.09.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 07/11/2014] [Accepted: 09/17/2014] [Indexed: 01/19/2023]
Abstract
The aim of this study was to investigate how different finishing period lengths with α-tocopherol supplementation or alfalfa grazing affect mRNA expression levels of genes related to vitamin E metabolism in L. thoracis (LT) muscle and subcutaneous fat (SF) from lambs of the Rasa Aragonesa breed. Indoors, concentrate-fed light lambs (n=48) were supplemented with 500 dl-α-tocopheryl acetate/kg concentrate for an average finishing period length of 0 (C), 10.7 (VE10d), 21.2 (VE20d) and, 32.3 (VE30d) days before slaughtering. Simultaneously, 8 lambs with their dams were alfalfa-grazed. The α-tocopherol affected in a short-term the expression of genes in LT muscle (ABCA1, LPL, APOE, and SREBP1) and SF (ABCA1, SCARB1, LPL, and PPARG). On the contrary, PPARA gene expression showed a long-term α-tocopherol effect because the highest levels of PPARA mRNA were found in the VE30d.
Collapse
Affiliation(s)
- L González-Calvo
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Tecnología en Producción Animal, Avda. Montañana, 930, 50059 Zaragoza, Spain
| | - M Joy
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Tecnología en Producción Animal, Avda. Montañana, 930, 50059 Zaragoza, Spain
| | - C Alberti
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Tecnología en Producción Animal, Avda. Montañana, 930, 50059 Zaragoza, Spain
| | - G Ripoll
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Tecnología en Producción Animal, Avda. Montañana, 930, 50059 Zaragoza, Spain
| | - F Molino
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Tecnología en Producción Animal, Avda. Montañana, 930, 50059 Zaragoza, Spain
| | - M Serrano
- Departamento de Mejora Genética animal, INIA, 28040 Madrid, Spain
| | - J H Calvo
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Tecnología en Producción Animal, Avda. Montañana, 930, 50059 Zaragoza, Spain; ARAID, C/ María de Luna, n° 11, 1ª planta, Edificio CEEI Aragón, 50018 Zaragoza, Spain.
| |
Collapse
|
16
|
Wang DQH, Carey MC. Therapeutic uses of animal biles in traditional Chinese medicine: An ethnopharmacological, biophysical chemical and medicinal review. World J Gastroenterol 2014; 20:9952-9975. [PMID: 25110425 PMCID: PMC4123376 DOI: 10.3748/wjg.v20.i29.9952] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/11/2014] [Accepted: 04/23/2014] [Indexed: 02/06/2023] Open
Abstract
Forty-four different animal biles obtained from both invertebrates and vertebrates (including human bile) have been used for centuries for a host of maladies in traditional Chinese medicine (TCM) beginning with dog, ox and common carp biles approximately in the Zhou dynasty (c. 1046-256 BCE). Overall, different animal biles were prescribed principally for the treatment of liver, biliary, skin (including burns), gynecological and heart diseases, as well as diseases of the eyes, ears, nose, mouth and throat. We present an informed opinion of the clinical efficacy of the medicinal uses of the different animal biles based on their presently known principal chemical components which are mostly steroidal detergent-like molecules and the membrane lipids such as unesterified cholesterol and mixed phosphatidylcholines and sometimes sphingomyelin, as well as containing lipopigments derived from heme principally bilirubin glucuronides. All of the available information on the ethnopharmacological uses of biles in TCM were collated from the rich collection of ancient Chinese books on materia medica held in libraries in China and United States and the composition of various animal biles was based on rigorous separatory and advanced chemical identification techniques published since the mid-20th century collected via library (Harvard’s Countway Library) and electronic searches (PubMed and Google Scholar). Our analysis of ethnomedical data and information on biliary chemistry shows that specific bile salts, as well as the common bile pigment bilirubin and its glucuronides plus the minor components of bile such as vitamins A, D, E, K, as well as melatonin (N-acetyl-5-methoxytryptamine) are salutary in improving liver function, dissolving gallstones, inhibiting bacterial and viral multiplication, promoting cardiac chronotropsim, as well as exhibiting anti-inflammatory, anti-pyretic, anti-oxidant, sedative, anti-convulsive, anti-allergic, anti-congestive, anti-diabetic and anti-spasmodic effects. Pig, wild boar and human biles diluted with alcohol were shown to form an artificial skin for burns and wounds one thousand years ago in the Tang dynasty (618-907 CE). Although various animal biles exhibit several generic effects in common, a number of biles appear to be advantageous for specific therapeutic indications. We attempt to understand these effects based on the pharmacology of individual components of bile as well as attempting to identify a variety of future research needs.
Collapse
|
17
|
Shutu X, Dalong Z, Ye C, Yi Z, Shah T, Ali F, Qing L, Zhigang L, Weidong W, Jiansheng L, Xiaohong Y, Jianbing Y. Dissecting tocopherols content in maize (Zea mays L.), using two segregating populations and high-density single nucleotide polymorphism markers. BMC PLANT BIOLOGY 2012; 12:201. [PMID: 23122295 PMCID: PMC3502391 DOI: 10.1186/1471-2229-12-201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 10/30/2012] [Indexed: 05/08/2023]
Abstract
BACKGROUND Tocopherols, which are vitamin E compounds, play an important role in maintaining human health. Compared with other staple foods, maize grains contain high level of tocopherols. RESULTS Two F(2) populations (K22/CI7 and K22/Dan340, referred to as POP-1 and POP-2, respectively), which share a common parent (K22), were developed and genotyped using a GoldenGate assay containing 1,536 single nucleotide polymorphism (SNP) markers. An integrated genetic linkage map was constructed using 619 SNP markers, spanning a total of 1649.03 cM of the maize genome with an average interval of 2.67 cM. Seventeen quantitative trait loci (QTLs) for all the traits were detected in the first map and 13 in the second. In these two maps, QTLs for different traits were localized to the same genomic regions and some were co-located with candidate genes in the tocopherol biosynthesis pathway. Single QTL was responsible for 3.03% to 52.75% of the phenotypic variation and the QTLs in sum explained 23.4% to 66.52% of the total phenotypic variation. A major QTL (qc5-1/qd5-1) affecting α-tocopherol (αT) was identified on chromosome 5 between the PZA03161.1 and PZA02068.1 in the POP-2. The QTL region was narrowed down from 18.7 Mb to 5.4 Mb by estimating the recombination using high-density markers of the QTL region. This allowed the identification of the candidate gene VTE4 which encodes γ-tocopherol methyltransferase, an enzyme that transforms γ-tocopherol (γT)to αT. CONCLUSIONS These results demonstrate that a few QTLs with major effects and several QTLs with medium to minor effects might contribute to the natural variation of tocopherols in maize grain. The high-density markers will help to fine map and identify the QTLs with major effects even in the preliminary segregating populations. Furthermore, this study provides a simple guide line for the breeders to improve traits that minimize the risk of malnutrition, especially in developing countries.
Collapse
Affiliation(s)
- Xu Shutu
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Zhang Dalong
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Cai Ye
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Zhou Yi
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Trushar Shah
- Department of Bioinformatics, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Farhan Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Cereal Crops Research Institute, Nowshera, Khyber Pukhtoonkhwa, Pakistan
| | - Li Qing
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Li Zhigang
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Wang Weidong
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Li Jiansheng
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Yang Xiaohong
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Yan Jianbing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
18
|
Xu M, Liu K, Swaroop M, Porter FD, Sidhu R, Firnkes S, Finkes S, Ory DS, Marugan JJ, Xiao J, Southall N, Pavan WJ, Davidson C, Walkley SU, Remaley AT, Baxa U, Sun W, McKew JC, Austin CP, Zheng W. δ-Tocopherol reduces lipid accumulation in Niemann-Pick type C1 and Wolman cholesterol storage disorders. J Biol Chem 2012; 287:39349-60. [PMID: 23035117 DOI: 10.1074/jbc.m112.357707] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Niemann-Pick disease type C (NPC) and Wolman disease are two members of a family of storage disorders caused by mutations of genes encoding lysosomal proteins. Deficiency in function of either the NPC1 or NPC2 protein in NPC disease or lysosomal acid lipase in Wolman disease results in defective cellular cholesterol trafficking. Lysosomal accumulation of cholesterol and enlarged lysosomes are shared phenotypic characteristics of both NPC and Wolman cells. Utilizing a phenotypic screen of an approved drug collection, we found that δ-tocopherol effectively reduced lysosomal cholesterol accumulation, decreased lysosomal volume, increased cholesterol efflux, and alleviated pathological phenotypes in both NPC1 and Wolman fibroblasts. Reduction of these abnormalities may be mediated by a δ-tocopherol-induced intracellular Ca(2+) response and subsequent enhancement of lysosomal exocytosis. Consistent with a general mechanism for reduction of lysosomal lipid accumulation, we also found that δ-tocopherol reduces pathological phenotypes in patient fibroblasts from other lysosomal storage diseases, including NPC2, Batten (ceroid lipofuscinosis, neuronal 2, CLN2), Fabry, Farber, Niemann-Pick disease type A, Sanfilippo type B (mucopolysaccharidosis type IIIB, MPSIIIB), and Tay-Sachs. Our data suggest that regulated exocytosis may represent a potential therapeutic target for reduction of lysosomal storage in this class of diseases.
Collapse
Affiliation(s)
- Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hernández-Pinto AM, Puebla-Jiménez L, Perianes-Cachero A, Arilla-Ferreiro E. Vitamin E deficiency impairs the somatostatinergic receptor-effector system and leads to phosphotyrosine phosphatase overactivation and cell death in the rat hippocampus. J Nutr Biochem 2012; 24:848-58. [PMID: 22902329 DOI: 10.1016/j.jnutbio.2012.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/17/2012] [Accepted: 05/01/2012] [Indexed: 11/30/2022]
Abstract
Vitamin E plays an essential role in maintaining the structure and function of the nervous system, and its deficiency, commonly associated with fat malabsorption diseases, may reduce neuronal survival. We previously demonstrated that the somatostatinergic system, implicated in neuronal survival control, can be modulated by α-tocopherol in the rat dentate gyrus, increasing cyclic adenosine monophosphate response element binding protein phosphorylation. To gain a better understanding of the molecular actions of tocopherols and examine the link among vitamin E, somatostatin and neuronal survival, we have investigated the effects of a deficiency and subsequent administration of tocopherol on the somatostatin signaling pathway and neuronal survival in the rat hippocampus. No changes in somatostatin expression were detected in vitamin-E-deficient rats. These rats, however, showed a significant increase in the somatostatin receptor density and dissociation constant, which correlated with a significant increase in the protein levels of somatostatin receptors. Nevertheless, vitamin E deficiency impaired the ability of the somatostatin receptors to couple to the effectors adenylyl cyclase and phosphotyrosine phosphatase by diminishing Gi protein functionality. Furthermore, vitamin E deficiency significantly increased phosphotyrosine phosphatase activity and PTPη expression, as well as PKCδ activation, and decreased extracellular-signal-regulated kinase phosphorylation. All these changes were accompanied by an increase in neuronal cell death. Subsequent α-tocopherol administration partially or completely reversed all these values to control levels. Altogether, our results prove the importance of vitamin E homeostasis in the somatostatin receptor-effector system and suggest a possible mechanism by which this vitamin may regulate the neuronal cell survival in the adult hippocampus.
Collapse
Affiliation(s)
- Alberto M Hernández-Pinto
- Biochemical and Molecular Biology Department, Neuro-Biochemical Group, Faculty of Medicine, Universidad de Alcalá de Henares, Madrid, Spain
| | | | | | | |
Collapse
|
20
|
Da Costa LA, García-Bailo B, Badawi A, El-Sohemy A. Genetic determinants of dietary antioxidant status. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 108:179-200. [PMID: 22656378 DOI: 10.1016/b978-0-12-398397-8.00008-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative stress refers to a physiological state in which an imbalance between pro-oxidants and antioxidants results in oxidative damage. Oxidative stress has been associated with the development of numerous chronic diseases such as type 2 diabetes, cardiovascular disease (CVD), osteoporosis, and cancer. Endogenous production of free radicals occurs during normal physiological processes, such as aerobic metabolism, oxidation of biological molecules, and enzymatic activity. Environmental factors such as ultraviolet radiation, air pollution, and cigarette smoking can also contribute to the accumulation of free radicals in the body. Excess free radicals can damage tissues and promote the upregulation of disease-related pathways such as inflammation. Modulating oxidative stress by dietary supplementation with antioxidant micronutrients such as vitamins C and E or phytochemicals such as different carotenoids may help prevent or delay the development of certain diseases. However, research on antioxidant supplementation and disease has yielded inconsistent findings, which may be due, in part, to interindividual genetic variation. Polymorphisms in genes coding for endogenous antioxidant enzymes or proteins responsible for the absorption, transport, distribution, or metabolism of dietary antioxidants have been shown to affect antioxidant status and response to supplementation. These genetic variants may also interact with environmental factors, such as diet, to determine an individual's overall antioxidant status. This chapter examines current knowledge of the relationship between genetic variation and dietary antioxidant status.
Collapse
Affiliation(s)
- Laura A Da Costa
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
21
|
Li CJ, Li RW, Kahl S, Elsasser TH. Alpha-Tocopherol Alters Transcription Activities that Modulates Tumor Necrosis Factor Alpha (TNF-α) Induced Inflammatory Response in Bovine Cells. GENE REGULATION AND SYSTEMS BIOLOGY 2011; 6:1-14. [PMID: 22267916 PMCID: PMC3256998 DOI: 10.4137/grsb.s8303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To further investigate the potential role of α-tocopherol in maintaining immuno-homeostasis in bovine cells (Madin-Darby bovine kidney epithelial cell line), we undertook in vitro experiments using recombinant TNF-α as an immuno-stimulant to simulate inflammation response in cells with or without α-tocopherol pre-treatment. Using microarray global-profiling and IPA (Ingenuity Pathways Analysis, Ingenuity® Systems, http://www.ingenuity.com) data analysis on TNF-α-induced gene perturbation in those cells, we focused on determining whether α-tocopherol treatment of normal bovine cells in a standard cell culture condition can modify cell’s immune response induced by TNF-α challenge. When three datasets were filtered and compared using IPA, there were a total of 1750 genes in all three datasets for comparison, 97 genes were common in all three sets; 615 genes were common in at least two datasets; there were 261 genes unique in TNF-α challenge, 399 genes were unique in α-tocopherol treatment, and 378 genes were unique in the α-tocopherol plus TNF-α treatment. TNF-α challenge induced significant change in gene expression. Many of those genes induced by TNF-α are related to the cells immune and inflammatory responses. The results of IPA data analysis showed that α-tocopherol-pretreatment of cells modulated cell’s response to TNF-α challenge. In most of the canonical pathways, α-tocopherol pretreatment showed the antagonistic effect against the TNF-α-induced pro-inflammatory responses. We concluded that α-tocopherol pre-treatment has a significant antagonistic effect that modulates the cell’s response to the TNF-α challenge by altering the gene expression activities of some important signaling molecules.
Collapse
Affiliation(s)
- Cong-Jun Li
- Bovine Functional Genomics Laboratory, Animal and Natural Resources Institute, ARS, USDA, 10300 Baltimore Ave, Beltsville, MD 20705
| | | | | | | |
Collapse
|
22
|
Li CJ, Li RW, Elsasser TH. Alpha-Tocopherol Modulates Transcriptional Activities that Affect Essential Biological Processes in Bovine Cells. GENE REGULATION AND SYSTEMS BIOLOGY 2010; 4:109-24. [PMID: 21157515 PMCID: PMC3001320 DOI: 10.4137/grsb.s6007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Using global expression profiling and pathway analysis on α-tocopherol-induced gene perturbation in bovine cells, this study has generated comprehensive information on the physiological functions of α-tocopherol. The data confirmed α-tocopherol is a potent regulator of gene expression and α-tocopherol possesses novel transcriptional activities that affect essential biological processes. The genes identified fall within a broad range of functional categories and provide the molecular basis for its distinctive effects. Enrichment analyses of gene regulatory networks indicate α-tocopherol alter the canonical pathway of lipid metabolism and transcription factors SREBP1 and SREBP2, (Sterol regulatory element binding proteins), which mediate the regulatory functions of lipid metabolism. Transcription factors HNF4-α (Hepatocyte nuclear factor 4), c-Myc, SP1 (Sp1 transcription factor), ESR1 (estrogen receptor 1, nuclear), and androgen receptor, along with several others, were centered as the hubs of transcription regulation networks. The data also provided direct evidence that α-tocopherol is involved in maintaining immuno-homeostasis through targeting the C3 (Complement Component 3) gene.
Collapse
Affiliation(s)
- Cong-Jun Li
- Bovine Functional Genomics Laboratory, Animal and Natural Resources Institute, ARS, USDA, 10300 Baltimore Ave, Beltsville, MD, 20705, USA
| | | | | |
Collapse
|
23
|
Di Donato I, Bianchi S, Federico A. Ataxia with vitamin E deficiency: update of molecular diagnosis. Neurol Sci 2010; 31:511-5. [PMID: 20464573 DOI: 10.1007/s10072-010-0261-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 03/31/2010] [Indexed: 01/13/2023]
Abstract
Ataxia with vitamin E deficiency (AVED) is a rare autosomal recessive neurodegenerative disease, due to mutations in TTPA gene (Arita et al. in Biochem J 306(Pt. 2):437-443, 1995; Hentati et al. in Ann Neurol 39:295-300, 1996), which encodes for alpha-TTP, a cytosolic liver protein that is presumed to function in the intracellular transport of alpha-tocopherol. This disease is characterized clinically by symptoms with often striking resemblance to those of Friedreich ataxia. The neurological symptoms include ataxia, dysarthria, hyporeflexia, and decreased vibration sense, sometimes associated with cardiomyopathy and retinitis pigmentosa (Mariotti et al. in Neurol Sci 25:130-137, 2004). Vitamin E supplementation improves symptoms and prevents disease progress (Doria-Lamba et al. in Eur J Pediatr 165(7):494-495, 2006). Over 20 mutations have been identified in patients with AVED. In the present paper we summarize the recent findings on molecular genetic of this disease including the list of the known mutations.
Collapse
Affiliation(s)
- I Di Donato
- Dipartimento di Scienze Neurologiche, Neurochirurgiche e del Comportamento, Università degli Studi di Siena, Viale Bracci, 53100, Siena, Italy
| | | | | |
Collapse
|
24
|
Herbas MS, Ueta YY, Ichikawa C, Chiba M, Ishibashi K, Shichiri M, Fukumoto S, Yokoyama N, Takeya M, Xuan X, Arai H, Suzuki H. Alpha-tocopherol transfer protein disruption confers resistance to malarial infection in mice. Malar J 2010; 9:101. [PMID: 20403155 PMCID: PMC2862040 DOI: 10.1186/1475-2875-9-101] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/19/2010] [Indexed: 12/20/2022] Open
Abstract
Background Various factors impact the severity of malaria, including the nutritional status of the host. Vitamin E, an intra and extracellular anti-oxidant, is one such nutrient whose absence was shown previously to negatively affect Plasmodium development. However, mechanisms of this Plasmodium inhibition, in addition to means by which to exploit this finding as a therapeutic strategy, remain unclear. Methods α-TTP knockout mice were infected with Plasmodium berghei NK65 or Plasmodium yoelii XL-17, parasitaemia, survival rate were monitored. In one part of the experiments mice were fed with a supplemented diet of vitamin E and then infected. In addition, parasite DNA damage was monitored by means of comet assay and 8-OHdG test. Moreover, infected mice were treated with chloroquine and parasitaemia and survival rate were monitored. Results Inhibition of α-tocopherol transfer protein (α-TTP), a determinant of vitamin E concentration in circulation, confers resistance to malarial infection as a result of oxidative damage to the parasites. Furthermore, in combination with the anti-malarial drug chloroquine results were even more dramatic. Conclusion Considering that these knockout mice lack observable negative impacts typical of vitamin E deficiency, these results suggest that inhibition of α-TTP activity in the liver may be a useful strategy in the prevention and treatment of malaria infection. Moreover, a combined strategy of α-TTP inhibition and chloroquine treatment might be effective against drug resistant parasites.
Collapse
Affiliation(s)
- Maria S Herbas
- Research Unit for Functional Genomics, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada, Obihiro, 080-8555 Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Singh VK, Brown DS, Kao TC. Alpha-tocopherol succinate protects mice from gamma-radiation by induction of granulocyte-colony stimulating factor. Int J Radiat Biol 2010; 86:12-21. [DOI: 10.3109/09553000903264515] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Herbas MS, Thekisoe OMM, Inoue N, Xuan X, Arai H, Suzuki H. The effect of alpha-tocopherol transfer protein gene disruption on Trypanosoma congolense infection in mice. Free Radic Biol Med 2009; 47:1408-13. [PMID: 19695323 DOI: 10.1016/j.freeradbiomed.2009.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 08/11/2009] [Accepted: 08/11/2009] [Indexed: 01/17/2023]
Abstract
At present 15 to 20 million people are estimated to be infected with pathogenic trypanosome parasites worldwide, mainly in developing countries. There are a number of factors that affect the severity of trypanosomiasis, including the nutritional status of the host. However, the relationship between micronutrient levels and trypanosomiasis outcome has yet to be reported in detail. Here, we demonstrate that the inhibition of alpha-tocopherol transfer protein, a determinant of the vitamin E concentration in host circulation, confers resistance to Trypanosoma congolense infection, evidently owing to oxidative damage to parasite DNA. These results suggest that transient inhibition of alpha-tocopherol transfer gene activity could possibly be exploited as a strategy for both the prevention and the treatment of trypanosomiasis.
Collapse
Affiliation(s)
- Maria Shirley Herbas
- Research Unit for Functional Genomics, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada, Obihiro 080-8555, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Tsuji S, Onodera O, Goto J, Nishizawa M. Sporadic ataxias in Japan--a population-based epidemiological study. THE CEREBELLUM 2009; 7:189-97. [PMID: 18418674 DOI: 10.1007/s12311-008-0028-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sporadic spinocerebellar ataxias (SCAs) comprise heterogeneous diseases with poorly understood epidemiologies and etiologies. A population-based epidemiological analysis of sporadic ataxias in the Japanese population was described. The prevalence rate of SCAs in the Japanese population is estimated to be 18.5/100,000. Sporadic SCAs account for 67.2% of total SCAs including hereditary SCAs, with olivopontocerebellar atrophy (OPCA) being the most common form sporadic ataxia (64.7%). The natural history analysis conducted on the basis of International Cooperative Ataxia Rating Scale (ICARS) showed that only 33% of patients with OPCA were able to walk at least with one stick 4-5 years after the onset of OPCA, which is much less than that of patients with cortical cerebellar atrophy (CCA). Similarly, 43% of patients with OPCA were able to stand alone 4-5 years after the onset, while 76% of patients with CCA were able to stand alone at the same disease duration. A population-based epidemiological analysis should provide essential information on the natural history of SCAs.
Collapse
Affiliation(s)
- Shoji Tsuji
- Department of Neurology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
28
|
Takahashi T, Murata T, Kosaka H, Wada Y, Yoneda M. Effect of vitamin E treatment on progressive cognitive impairment in a patient with adult-onset ataxia: a case report. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:150-2. [PMID: 18773933 DOI: 10.1016/j.pnpbp.2008.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2008] [Revised: 08/04/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
|