1
|
Franco-Juárez EX, González-Villasana V, Camacho-Moll ME, Rendón-Garlant L, Ramírez-Flores PN, Silva-Ramírez B, Peñuelas-Urquides K, Cabello-Ruiz ED, Castorena-Torres F, Bermúdez de León M. Mechanistic Insights about Sorafenib-, Valproic Acid- and Metformin-Induced Cell Death in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:1760. [PMID: 38339037 PMCID: PMC10855535 DOI: 10.3390/ijms25031760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is among the main causes of death by cancer worldwide, representing about 80-90% of all liver cancers. Treatments available for advanced HCC include atezolizumab, bevacizumab, sorafenib, among others. Atezolizumab and bevacizumab are immunological options recently incorporated into first-line treatments, along with sorafenib, for which great treatment achievements have been reached. However, sorafenib resistance is developed in most patients, and therapeutical combinations targeting cancer hallmark mechanisms and intracellular signaling have been proposed. In this review, we compiled evidence of the mechanisms of cell death caused by sorafenib administered alone or in combination with valproic acid and metformin and discussed them from a molecular perspective.
Collapse
Affiliation(s)
- Edgar Xchel Franco-Juárez
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo Leon, Mexico; (E.X.F.-J.); (M.E.C.-M.); (P.N.R.-F.); (K.P.-U.)
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo Leon, Mexico; (V.G.-V.); (L.R.-G.); (E.D.C.-R.)
| | - Vianey González-Villasana
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo Leon, Mexico; (V.G.-V.); (L.R.-G.); (E.D.C.-R.)
| | - María Elena Camacho-Moll
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo Leon, Mexico; (E.X.F.-J.); (M.E.C.-M.); (P.N.R.-F.); (K.P.-U.)
| | - Luisa Rendón-Garlant
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo Leon, Mexico; (V.G.-V.); (L.R.-G.); (E.D.C.-R.)
| | - Patricia Nefertari Ramírez-Flores
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo Leon, Mexico; (E.X.F.-J.); (M.E.C.-M.); (P.N.R.-F.); (K.P.-U.)
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Nuevo Leon, Mexico;
| | - Beatriz Silva-Ramírez
- Departamento de Inmunogenética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo Leon, Mexico;
| | - Katia Peñuelas-Urquides
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo Leon, Mexico; (E.X.F.-J.); (M.E.C.-M.); (P.N.R.-F.); (K.P.-U.)
| | - Ethel Daniela Cabello-Ruiz
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo Leon, Mexico; (V.G.-V.); (L.R.-G.); (E.D.C.-R.)
| | - Fabiola Castorena-Torres
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Nuevo Leon, Mexico;
| | - Mario Bermúdez de León
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo Leon, Mexico; (E.X.F.-J.); (M.E.C.-M.); (P.N.R.-F.); (K.P.-U.)
| |
Collapse
|
2
|
Ye WY, Lu HP, Li JD, Chen G, He RQ, Wu HY, Zhou XG, Rong MH, Yang LH, He WY, Pang QY, Pan SL, Pang YY, Dang YW. Clinical Implication of E2F Transcription Factor 1 in Hepatocellular Carcinoma Tissues. Cancer Biother Radiopharm 2023; 38:684-707. [PMID: 34619053 DOI: 10.1089/cbr.2020.4342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: To date, the clinical management of advanced hepatocellular carcinoma (HCC) patients remains challenging and the mechanisms of E2F transcription factor 1 (E2F1) underlying HCC are obscure. Materials and Methods: Our study integrated datasets mined from several public databases to comprehensively understand the deregulated expression status of E2F1. Tissue microarrays and immunohistochemistry staining was used to validate E2F1 expression level. The prognostic value of E2F1 was assessed. In-depth subgroup analyses were implemented to compare the differentially expressed levels of E2F1 in HCC patients with various tumor stages. Functional enrichments were used to address the predominant targets of E2F1 and shedding light on their potential roles in HCC. Results: We confirmed the elevated expression of E2F1 in HCC. Subgroup analyses indicated that elevated E2F1 level was independent of various stages in HCC. E2F1 possessed moderate discriminatory capability in differentiating HCC patients from non-HCC controls. Elevated E2F1 correlated with Asian race, tumor classification, neoplasm histologic grade, eastern cancer oncology group, and plasma AFP levels. Furthermore, high E2F1 correlated with poor survival condition and pooled HR signified E2F1 as a risk factor for HCC. Enrichment analysis of differentially expressed genes, coexpressed genes, and putative targets of E2F1 emphasized the importance of cell cycle pathway, where CCNE1 and CCNA2 served as hub genes. Conclusions: We confirmed the upregulation of E2F1 and explored the prognostic value of E2F1 in HCC patients. Two putative targeted genes (CCNE1 and CCNA2) of E2F1 were identified for their potential roles in regulating cell cycle and promote antiapoptotic activity in HCC patients.
Collapse
Affiliation(s)
- Wang-Yang Ye
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Hui-Ping Lu
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jian-Di Li
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Gang Chen
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Hua-Yu Wu
- Department of Cell Biology and Genetics, School of Preclinical Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Xian-Guo Zhou
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Min-Hua Rong
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Li-Hua Yang
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Wei-Ying He
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Qiu-Yu Pang
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Yu-Yan Pang
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
3
|
Zhang B, Chang B, Wang L, Xu Y. Three E2F target-related genes signature for predicting prognosis, immune features, and drug sensitivity in hepatocellular carcinoma. Front Mol Biosci 2023; 10:1266515. [PMID: 37854038 PMCID: PMC10579819 DOI: 10.3389/fmolb.2023.1266515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is extremely malignant and difficult to treat. The adenoviral early region 2 binding factors (E2Fs) target pathway is thought to have a major role in tumor growth. This study aimed to identify a predictive E2F target signature and facilitate individualized treatment for HCC patients. Methods: We constructed an E2F target-related gene profile using univariate COX and LASSO regression models and proved its predictive efficacy in external cohorts. Furthermore, we characterized the role of the E2F target pathway in pathway enrichment, immune cell infiltration, and drug sensitivity of HCC. Results: Lasso Cox regression created an E2F target-related gene signature of GHR, TRIP13, and CDCA8. HCC patients with high risk were correlated with shorter survival time, immune evasion, tumor stem cell characteristics and high sensitivity to Tipifarnib and Camptothecin drugs. Conclusion: Hepatocellular carcinoma prognosis was predicted by an E2F target signature. This finding establishes the theoretical usefulness of the E2F target route in customized identification and treatment for future research.
Collapse
Affiliation(s)
- Baozhu Zhang
- Department of Radiation Oncology, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Boyang Chang
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lu Wang
- Department of Clinical Laboratory, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yuzhong Xu
- Department of Clinical Laboratory, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Liu T, Pan C, Shi H, Huang T, Huang YL, Deng YY, Ni WX, Man WL. Cytotoxic cis-ruthenium(III) bis(amidine) complexes. Dalton Trans 2023. [PMID: 37000490 DOI: 10.1039/d3dt00328k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
In chemotherapy, the search for ruthenium compounds as alternatives to platinum compounds is proposed because of their unique properties. However, the geometry effect of ruthenium complexes is sparely investigated. In this paper, we report the synthesis of a series of bis(acetylacetonato)ruthenium(III) complexes bearing two amidines (1-) in a cis configuration. These complexes are highly cytotoxic against various cancer cell lines, including a cisplatin-resistant cell line. In vitro studies suggested that the representative complex can induce cell cycle G0/G1 phase arrest, decrease the mitochondrial membrane potential, elevate the intracellular reactive oxygen species level, and cause DNA damage and caspase-mediated mitochondrial pathway apoptosis in NCI-H460 cells. In vivo, it can effectively inhibit tumor xenograft growth in nude mouse models with no body weight loss. In combination with the reported trans-bis(amidine)ruthenium(III) complexes, we found that ruthenium(III) bis(amidine) complexes could be cytotoxic in both trans and cis geometries, which is in contrast to platinum-based compounds.
Collapse
Affiliation(s)
- Tao Liu
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P.R. China.
| | - Chen Pan
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P.R. China.
| | - Huatian Shi
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China.
| | - Tao Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P.R. China.
| | - Yong-Liang Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P.R. China.
| | - Yang-Yang Deng
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P.R. China.
| | - Wen-Xiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P.R. China.
| | - Wai-Lun Man
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China.
| |
Collapse
|
5
|
Cao J, Xiao C, Fong CJTH, Gong J, Li D, Li X, Jie Y, Chong Y. Expression and Regulatory Network Analysis of Function of Small Nucleolar RNA Host Gene 4 in Hepatocellular Carcinoma. J Clin Transl Hepatol 2022; 10:297-307. [PMID: 35528985 PMCID: PMC9039712 DOI: 10.14218/jcth.2020.00175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND AIMS Long non-coding RNA small nucleolar RNA host genes (SNHGs) play a critical role in the occurrence and development of tumors. In this study, we aimed to investigate the role of SNHG4 in hepatocellular carcinoma (HCC) and its underlining mechanism. METHODS Datasets were acquired from The Cancer Genome Atlas (TCGA) database. lncLocator 2.0 was used to identify the distribution of SNHG4 in HCC cells. Gene expression, Kaplan-Meier survival, microRNA and transcription factor target analyses were performed with the University of Alabama Cancer (UALCAN) Database, Kaplan-Meier Plotter, LinkedOmics, WebGestalt and gene set enrichment analysis, respectively. Gene Ontology and pathway enrichment analyses and assessment of RNA binding proteins were performed by R software, circlncRNAnet and Encyclopedia of RNA Interactomes (ENCORI). In addition, CirclncRNAnet and ENCORI were used to find the correlation between SNHG4 and important proteins, while the prognostic value was assessed with the Human Protein Atlas database and Kaplan-Meier Plotter. RESULTS Expression of SNHG4 in HCC is higher in HCC tissue than in normal healthy liver tissues and is mainly distributed in the nucleus. SNHG4 positively correlated with poor prognosis (p<0.01 for overall survival and recurrence-free survival). Functional enrichment analysis revealed SNHG4 involvement with regulation of ribosomal RNA synthesis and the RNA processing and surveillance pathway. SNHG4 is closely associated with miR-154 and miR-206, transcription factor target E2F family and the signaling pathway for MAPK/ERK and mTOR. U2 auxiliary factor 2 (U2AF2) showed strong correlation with SNHG4, while low-expression of U2AF2 showed good prognosis. CONCLUSIONS Based on our findings, we infer SNHG4 may play a role in the formation of HCC via regulation of tumor-related pathways.
Collapse
Affiliation(s)
- Jing Cao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cuicui Xiao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Christ-Jonathan Tsia Hin Fong
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiao Gong
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Danyang Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiangyong Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yusheng Jie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Correspondence to: Yusheng Jie and Yutian Chong, Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China. ORCID: https://orcid.org/0000-0003-3756-0653 (YJ), https://orcid.org/0000-0001-8215-4393 (YC). Tel: +86-20-8525-2372, Fax: +86-20-8525-2250, E-mail: (YJ), (YC)
| | - Yutian Chong
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Correspondence to: Yusheng Jie and Yutian Chong, Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China. ORCID: https://orcid.org/0000-0003-3756-0653 (YJ), https://orcid.org/0000-0001-8215-4393 (YC). Tel: +86-20-8525-2372, Fax: +86-20-8525-2250, E-mail: (YJ), (YC)
| |
Collapse
|
6
|
Construction of Bone Metastasis-Specific Regulation Network Based on Prognostic Stemness-Related Signatures in Prostate Cancer. DISEASE MARKERS 2022; 2022:8495923. [PMID: 35392496 PMCID: PMC8983176 DOI: 10.1155/2022/8495923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/10/2022] [Indexed: 12/24/2022]
Abstract
Background We planned to uncover the cancer stemness-related genes (SRGs) in prostate cancer (PCa) and its underlying mechanism in PCa metastasis. Methods We acquired the RNA-seq data of 406 patients with PCa from the TCGA database. Based on the mRNA stemness index (mRNAsi) calculated by one-class logistic regression (OCLR) algorithm, SRGs in PCa were extracted by WGCNA. Univariate and multivariate regression analyses were applied to uncover OS-associated SRGs. Gene Set Variation Analysis (GSVA), Gene Set Enrichment Analysis (GSEA), and Pearson's correlation analysis were performed to discover the possible mechanism of PCa metastasis. The significantly correlated transcription factors of OS-associated SRGs were also identified by Pearson's correlation analysis. ChIP-seq was applied to validate the binding relationship of TFs and OS-associated SRGs and spatial transcriptome and single-cell sequencing were performed to uncover the location of key biomarkers expression. Lastly, we explored the specific inhibitors for SRGs using CMap algorithm. Results We identified 538 differentially expressed genes (DEGs) between non-metastatic and metastatic PCa. Furthermore, OS-associated SRGs were identified. The Pearson correlation analysis revealed that FOXM1 was significantly correlated with NEIL3 (correlation efficient =0.89, p < 0.001) and identified hallmark_E2F_targets as the potential pathway mechanism of NEIL3 promoting PCa metastasis (correlation efficient =0.58, p < 0.001). Single-cell sequencing results indicated that FOXM1 regulating NEIL3 may get involved in the antiandrogen resistance of PCa. Rottlerin was discovered to be a potential target drug for PCa. Conclusion We constructed a regulatory network based on SRGs associated with PCa metastasis and explored possible mechanism.
Collapse
|
7
|
E2F1 Maintains Gastric Cancer Stemness Properties by Regulating Stemness-Associated Genes. JOURNAL OF ONCOLOGY 2021; 2021:6611327. [PMID: 33986804 PMCID: PMC8093057 DOI: 10.1155/2021/6611327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022]
Abstract
Purpose To determine the regulatory role of E2F1 in maintaining gastric cancer stemness properties and the clinical significance of E2F1 in gastric cancer. Materials and Methods We conducted a tumor spheroid formation assay to enrich gastric cancer stem-like cells. The protein and mRNA expression levels of genes were measured using Western Blot and qRT-PCR. Lentivirus-mediated overexpression and downregulation of E2F1 were performed to evaluate the effect of E2F1 on the stemness properties of gastric cancer cells. The effect of E2F1 on gastric cancer cell sensitivity of 5-Fu was evaluated using cell viability assay and TdT-mediated dUTP Nick-End Labeling staining. We also analyzed the association between E2F1 expression and clinical characteristics in gastric cancer patients. The KM plotter database was used to analyze the relationship between E2F1 and overall survival in GC patients. Results We found that E2F1 expression was significantly higher in gastric cancer tissues than in the paired adjacent normal tissues (p < 0.05) and was positively correlated with tumor size (p < 0.05), T stage (p < 0.05), and differentiation degree (p < 0.05). KM plotter database demonstrated a close association between higher E2F1 expression level and worse overall survival of gastric cancer patients (p < 0.05). In vitro assay illustrated that E2F1 could regulate the expression of stemness-associated genes, such as BMI1, OCT4, Nanog, and CD44, and maintain the tumor spheroid formation ability of gastric cancer cells. E2F1 enhanced 5-Fu resistance in gastric cancer cells, and the E2F1 expression level was correlated with the prognosis of gastric cancer patients receiving 5-Fu therapy. The expression levels of stemness-associated genes were also significantly higher in gastric cancer tissues than the paired adjacent normal tissues (p < 0.05). A positive correlation was observed between E2F1 and BMI1 (r = 0.422, p < 0.05), CD44 (r = 0.634, p < 0.05), OCT4 (r = 0.456, p < 0.05), and Nanog (r = 0.337, p < 0.05) in gastric cancer tissues. The co-overexpression of E2F1 and stemness-associated genes was associated with worse overall survival. Conclusion E2F1 plays a significant role in gastric cancer progression by maintaining gastric cancer stemness properties through the regulation of stemness-associated genes. The close association between E2F1 and poor prognosis of patients suggests that E2F1 could serve as a prognostic biomarker and a therapeutic target in gastric cancer patients.
Collapse
|
8
|
Cheng CW, Tse E. Targeting PIN1 as a Therapeutic Approach for Hepatocellular Carcinoma. Front Cell Dev Biol 2020; 7:369. [PMID: 32010690 PMCID: PMC6974617 DOI: 10.3389/fcell.2019.00369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
PIN1 is a peptidyl-prolyl cis/trans isomerase that specifically binds and catalyzes the cis/trans isomerization of the phosphorylated serine or threonine residue preceding a proline (pSer/Thr-Pro) motif of its interacting proteins. Through this phosphorylation-dependent prolyl isomerization, PIN1 is involved in the regulation of various important cellular processes including cell cycle progression, cell proliferation, apoptosis and microRNAs biogenesis; hence its dysregulation contributes to malignant transformation. PIN1 is highly expressed in hepatocellular carcinoma (HCC). By fine-tuning the functions of its interacting proteins such as cyclin D1, x-protein of hepatitis B virus and exportin 5, PIN1 plays an important role in hepatocarcinogenesis. Growing evidence supports that targeting PIN1 is a potential therapeutic approach for HCC by inhibiting cell proliferation, inducing cellular apoptosis, and restoring microRNAs biogenesis. Novel formulation of PIN1 inhibitors that increases in vivo bioavailability of PIN1 inhibitors represents a promising future direction for the therapeutic strategy of HCC treatment. In this review, the mechanisms underlying PIN1 over-expression in HCC are explored. Furthermore, we also discuss the roles of PIN1 in HCC tumorigenesis and metastasis through its interaction with various phosphoproteins. Finally, recent progress in the therapeutic options targeting PIN1 for HCC treatment is examined and summarized.
Collapse
Affiliation(s)
- Chi-Wai Cheng
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Eric Tse
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
9
|
Jin Y, Liang ZY, Zhou WX, Zhou L. Plasminogen activator inhibitor 2 (PAI2) inhibits invasive potential of hepatocellular carcinoma cells in vitro via uPA- and RB/E2F1-related mechanisms. Hepatol Int 2019; 13:180-189. [PMID: 30600477 DOI: 10.1007/s12072-018-9920-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Plasminogen activator inhibitor 2 (PAI2) has been shown to be associated with invasive phenotypes and prognosis in hepatocellular carcinoma (HCC). However, its biological roles and underlying mechanisms in invasion of HCC have not been explored. The present study aimed to address the issues. METHODS First, sub-lines in that PAI2 was stably overexpressed and silenced were established based on MHCC97H and BEL7402 cell lines, respectively. Wound-healing and transwell assays were applied to evaluate cell migration and invasion. Urokinase-type plasminogen activator (uPA) activity was measured using an ELISA kit. Real-time RT-PCR and western blotting were used to show gene expression at mRNA and protein levels. E2F1 expression in human specimens was determined by tissue microarray-based immunohistochemical staining. RESULTS The sub-lines, MHCC97H-PAI2 and BEL7402-siPAI2, were successfully established. The two sub-lines carried much lower and higher migration and invasion powers, respectively, in contrast to the controls. In MHCC97H-PAI2 sub-line, intra-medium uPA activity was significantly decreased, while RB expression was obviously elevated, compared with the controls. The BEL7402-siPAI2 sub-line presented the opposite trend. To identify the role of RB/E2F1 pathway, we transiently overexpressed E2F1 in MHCC97H-PAI2 sub-line, and largely reversed the inhibitory effects of PAI2 on cell migration and invasion, through regulating multiple matrix metalloproteinases and epithelial-mesenchymal transition. In HCC specimens, E2F1 expression was much higher in tumor than in non-tumor tissues, and was significantly related to Edmondson-Steiner grade, overall as well as tumor-free survival. CONCLUSIONS Our data suggest that PAI2 inhibits invasive potential of HCC cells via uPA- and RB/E2F1-related mechanisms.
Collapse
Affiliation(s)
- Ye Jin
- Clinical Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Zhi-Yong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Wei-Xun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
10
|
Zhou MT, Zhao C, Chen X, Zhang HC, Li G, Lou H, Huang WJ, Wei LJ, Li DW, Wu X, Zhang ZC, Liu H, Ou R, Yang WJ, Hu S, Xu Y, Tang KF. MicroRNA-34a promotes MICB expression in hepatocytes. Carcinogenesis 2018; 39:1477-1487. [PMID: 30256916 DOI: 10.1093/carcin/bgy128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/21/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Meng-Tao Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunming Zhao
- Department of Gastroenterology, The 98th Hospital of PLA, Huzhou, Zhejiang, China
| | - Xiao Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Digestive Cancer Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Heng-Chao Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guiling Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongyan Lou
- Department of Gynaecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen-Jie Huang
- Digestive Cancer Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lin-Jie Wei
- Digestive Cancer Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - De-Wei Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoli Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhe-Chao Zhang
- Department of Gynaecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hui Liu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rongying Ou
- Department of Gynaecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen-Jun Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shanshan Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunsheng Xu
- Department of Dermato-Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kai-Fu Tang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Digestive Cancer Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
11
|
Li Y, Huang J, Yang D, Xiang S, Sun J, Li H, Ren G. Expression patterns of E2F transcription factors and their potential prognostic roles in breast cancer. Oncol Lett 2018; 15:9216-9230. [PMID: 29844824 PMCID: PMC5958806 DOI: 10.3892/ol.2018.8514] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/01/2018] [Indexed: 11/12/2022] Open
Abstract
E2Fs, as a family of pivotal transcription factors, have been implicated in multiple biological functions in human cancer; however, the expression and prognostic significance of E2Fs in breast cancer remains unknown. In the present study, the mRNA expression patterns of E2Fs in breast cancer were investigated with Oncomine and The Cancer Genome Atlas data. Prognostic values of E2Fs for patients with breast cancer were determined using the Kaplan-Meier plotter database. The results strongly indicated that E2F1, E2F2, E2F3, E2F5, E2F7 and E2F8 were overexpressed in patients with breast cancer, whereas E2F4 and E2F6 exhibited no expression difference between patients with cancer and healthy controls. In survival analyses, elevated E2F1, E2F3, E2F5, E2F7 and E2F8 expression levels were significantly associated with lower overall survival, relapse-free survival (RFS), distant metastasis-free survival (DMFS) or post-progression survival for patients with breast cancer. Furthermore, high expression of E2F4 indicated improved RFS but reduced DMFS. Subgroup analyses based on four clinicopathological factors further revealed that E2Fs were associated with the prognosis of patients with breast cancer in an estrogen receptor-, progesterone receptor-, human epidermal growth factor 2- and lymph node status-specific manner. These data indicated that E2Fs may serve as promising biomarkers and therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Yunhai Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jing Huang
- Department of Pneumology Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Dejuan Yang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shili Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jiazheng Sun
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
12
|
Wang SN, Wang LT, Sun DP, Chai CY, Hsi E, Kuo HT, Yokoyama KK, Hsu SH. Intestine-specific homeobox (ISX) upregulates E2F1 expression and related oncogenic activities in HCC. Oncotarget 2018; 7:36924-36939. [PMID: 27175585 PMCID: PMC5095049 DOI: 10.18632/oncotarget.9228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/16/2016] [Indexed: 01/29/2023] Open
Abstract
Intestine-specific homeobox (ISX), a newly identified proto-oncogene, is involved in cell proliferation and progression of hepatocellular carcinoma (HCC). However, the underlying mechanisms linking gene expression and tumor formation remain unclear. In this study, we found that ISX transcriptionally activated E2F transcription factor 1 (E2F1) and associated oncogenic activity by directly binding to the E2 site of its promoter. Forced expression of ISX increased the expression of and phosphorylated the serine residue at position 332 of E2F1, which may be translocated into the nucleus to form the E2F1–DP-1 complex, suggesting that the promotion of oncogenic activities of the ISX–E2F1 axis plays a critical role in hepatoma cells. Coexpression of ISX and E2F1 significantly promoted p53 and RB-mediated cell proliferation and anti-apoptosis, and repressed apoptosis and autophagy. In contrast, short hairpin RNAi-mediated attenuation of ISX and E2F1 decreased cell proliferation and malignant transformation, respectively, in hepatoma cells in vitro and in vivo. The mRNA expression of E2F1 and ISX in 238 paired specimens from human HCC patients, and the adjacent, normal tissues exhibited a tumor-specific expression pattern which was highly correlated with disease pathogenesis, patient survival time, progression stage, and poor prognosis. Therefore, our results indicate that E2F1 is an important downstream gene of ISX in hepatoma progression.
Collapse
Affiliation(s)
- Shen-Nien Wang
- Division of Hepatobiliary Surgery, Department of Surgery, Faculty of Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Ting Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ding-Ping Sun
- Division of General Surgery, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Food Science and Technology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung, Taiwan
| | - Edward Hsi
- Department of Genome Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsing-Tao Kuo
- Department of Internal Medicine, Division of Hepatogastroenterology, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Senior Citizen Service Management, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Faculty of Science and Engineering, Tokushima Bunri University, Sanuki, Japan.,Center of Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center of Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Chang L, Xi L, Liu Y, Liu R, Wu Z, Jian Z. SIRT5 promotes cell proliferation and invasion in hepatocellular carcinoma by targeting E2F1. Mol Med Rep 2017; 17:342-349. [PMID: 29115436 DOI: 10.3892/mmr.2017.7875] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 06/29/2017] [Indexed: 12/16/2022] Open
Abstract
Sirtuin 5 (SIRT5) is a member of the NAD+‑dependent class III protein deacetylases. Although it is known that SIRT5 deacetylates and activates urate oxidase in the liver mitochondria of mice, the mechanism of SIRT5 in the proliferation of hepatocellular carcinoma (HCC) remains to be fully elucidated. The present study investigated the expression and functional significance of SIRT5 in HCC, and examined the relevant mechanism. SIRT5 was found to be upregulated in HCC tissues and cell lines, and the higher expression of SIRT5 indicated poorer overall survival. Reverse transcription‑quantitative polymerase chain reaction analysis, western blot analysis, chromatin immunoprecipitation analysis, and luciferase reporter gene, proliferation and Transwell assays were performed to elucidate the function of SIRT5 in the regulation of cell proliferation and invasion in human HCC. Functionally, it was observed that the inhibition of SIRT5 significantly suppressed HCC cell proliferation and invasion, whereas the overexpression of SIRT5 promoted HCC cell proliferation and invasion in vitro. E2F transcription factor 1 (E2F1) was identified as a novel target gene of SIRT5. In addition, the knockdown of SIRT5 induced the expression of E2F1, and the knockdown of E2F1 in HCC cells partially reversed the effect of SIRT5 in promoting cell proliferation and invasion. Collectively, these data provide the first evidence, to the best of our knowledge, that the SIRT5 gene has an important regulatory role in liver carcinogenesis, and may function as a novel potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Liang Chang
- Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Liang Xi
- Department of Surgical Oncology, Inner Mongolia Baotou Steel General Hospital, Baotou, Inner Mongolia 404010, P.R. China
| | - Yubin Liu
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510000, P.R. China
| | - Rui Liu
- Department of Surgical Oncology, Inner Mongolia Baotou Steel General Hospital, Baotou, Inner Mongolia 404010, P.R. China
| | - Zhongshi Wu
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510000, P.R. China
| | - Zhixiang Jian
- Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
14
|
Xie Y, Si J, Wang Y, Li H, Di C, Yan J, Ye Y, Zhang Y, Zhang H. E2F is involved in radioresistance of carbon ion induced apoptosis via Bax/caspase 3 signal pathway in human hepatoma cell. J Cell Physiol 2017; 233:1312-1320. [DOI: 10.1002/jcp.26005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/11/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Yi Xie
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- CAS Key Laboratory of Heavy Ion Radiation Biology and MedicineInstitute of Modern PhysicsLanzhouGansuChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhouChina
| | - Jing Si
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- CAS Key Laboratory of Heavy Ion Radiation Biology and MedicineInstitute of Modern PhysicsLanzhouGansuChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhouChina
| | - Yu‐Pei Wang
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- CAS Key Laboratory of Heavy Ion Radiation Biology and MedicineInstitute of Modern PhysicsLanzhouGansuChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhouChina
- Graduate School of University of Chinese Academy of SciencesBeijingChina
| | - Hong‐Yan Li
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- CAS Key Laboratory of Heavy Ion Radiation Biology and MedicineInstitute of Modern PhysicsLanzhouGansuChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhouChina
- Graduate School of University of Chinese Academy of SciencesBeijingChina
| | - Cui‐Xia Di
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- CAS Key Laboratory of Heavy Ion Radiation Biology and MedicineInstitute of Modern PhysicsLanzhouGansuChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhouChina
| | - Jun‐Fang Yan
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- CAS Key Laboratory of Heavy Ion Radiation Biology and MedicineInstitute of Modern PhysicsLanzhouGansuChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhouChina
- Graduate School of University of Chinese Academy of SciencesBeijingChina
| | | | | | - Hong Zhang
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- CAS Key Laboratory of Heavy Ion Radiation Biology and MedicineInstitute of Modern PhysicsLanzhouGansuChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhouChina
- Gansu Wuwei Tumor HospitalWuweiChina
| |
Collapse
|
15
|
Chuang TY, Wu HL, Min J, Diamond M, Azziz R, Chen YH. Berberine regulates the protein expression of multiple tumorigenesis-related genes in hepatocellular carcinoma cell lines. Cancer Cell Int 2017; 17:59. [PMID: 28572744 PMCID: PMC5450260 DOI: 10.1186/s12935-017-0429-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/08/2017] [Indexed: 01/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the seventh most common malignancy and the third leading cause of cancer-related death worldwide with an extremely grim prognosis. Berberine (BBR) has been found to inhibit proliferation of human HCC cells, although the underlying mechanism(s) are unclear. Methods Protein expression was detected by Western blots. Cell viability was determined by using the CellTiter Assay kit. Results We confirm that BBR treatment inhibits HepG2, Hep3B, and SNU-182 cell viability, and suggest that it regulates this proliferation via the modulation of multiple tumorigenesis-related genes protein expression. BBR treatment up-regulated protein expression of tumor suppressor genes, including Kruppel-like factor 6 (KLF6), activating transcription factor 3 (ATF3) and p21, while down-regulating the expression of selected oncogenes, including E2F transcription factor 1 (E2F1) and pituitary tumor transforming gene 1 (PTTG1). The specific extracellular signal–regulated kinases 1/2 (ERK1/2) inhibitor, PD98059, partially inhibited BBR effects including reduction of cell viability, and up-regulation of KLF6 and ATF3 expressions; although, PD98059 did not alter the down-regulation of E2F1 and PTTG1 expression by BBR. Conclusions Our results suggest that BBR inhibits HCC cell viability by modulating multiple tumorigenesis-related genes, and that up-regulation of tumor suppressor genes by BBR is in part the result of ERK1/2 action. The results of this study augment our understanding of the mechanisms underlying the effect of BBR on hepatocellular cancers and provide further evidence as to the biological plausibility of this agent’s role in the treatment of these malignancies. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0429-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tung-Yueh Chuang
- Department of Obstetrics/Gynecology, Augusta University, 1120 15th Street, CA-2020, Augusta, GA 30912 USA
| | - Hsiao-Li Wu
- Department of Obstetrics/Gynecology, Augusta University, 1120 15th Street, CA-2020, Augusta, GA 30912 USA
| | - Jie Min
- Department of Obstetrics/Gynecology, Augusta University, 1120 15th Street, CA-2020, Augusta, GA 30912 USA.,Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Michael Diamond
- Department of Obstetrics/Gynecology, Augusta University, 1120 15th Street, CA-2020, Augusta, GA 30912 USA
| | - Ricardo Azziz
- Department of Obstetrics/Gynecology, Augusta University, 1120 15th Street, CA-2020, Augusta, GA 30912 USA.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Yen-Hao Chen
- Department of Obstetrics/Gynecology, Augusta University, 1120 15th Street, CA-2020, Augusta, GA 30912 USA
| |
Collapse
|
16
|
Morzyglod L, Caüzac M, Popineau L, Denechaud PD, Fajas L, Ragazzon B, Fauveau V, Planchais J, Vasseur-Cognet M, Fartoux L, Scatton O, Rosmorduc O, Guilmeau S, Postic C, Desdouets C, Desbois-Mouthon C, Burnol AF. Growth factor receptor binding protein 14 inhibition triggers insulin-induced mouse hepatocyte proliferation and is associated with hepatocellular carcinoma. Hepatology 2017; 65:1352-1368. [PMID: 27981611 DOI: 10.1002/hep.28972] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/16/2016] [Accepted: 12/06/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED Metabolic diseases such as obesity and type 2 diabetes are recognized as independent risk factors for hepatocellular carcinoma (HCC). Hyperinsulinemia, a hallmark of these pathologies, is suspected to be involved in HCC development. The molecular adapter growth factor receptor binding protein 14 (Grb14) is an inhibitor of insulin receptor catalytic activity, highly expressed in the liver. To study its involvement in hepatocyte proliferation, we specifically inhibited its liver expression using a short hairpin RNA strategy in mice. Enhanced insulin signaling upon Grb14 inhibition was accompanied by a transient induction of S-phase entrance by quiescent hepatocytes, indicating that Grb14 is a potent repressor of cell division. The proliferation of Grb14-deficient hepatocytes was cell-autonomous as it was also observed in primary cell cultures. Combined Grb14 down-regulation and insulin signaling blockade using pharmacological approaches as well as genetic mouse models demonstrated that Grb14 inhibition-mediated hepatocyte division involved insulin receptor activation and was mediated by the mechanistic target of rapamycin complex 1-S6K pathway and the transcription factor E2F1. In order to determine a potential dysregulation in GRB14 gene expression in human pathophysiology, a collection of 85 human HCCs was investigated. This revealed a highly significant and frequent decrease in GRB14 expression in hepatic tumors when compared to adjacent nontumoral parenchyma, with 60% of the tumors exhibiting a reduced Grb14 mRNA level. CONCLUSION Our study establishes Grb14 as a physiological repressor of insulin mitogenic action in the liver and further supports that dysregulation of insulin signaling is associated with HCC. (Hepatology 2017;65:1352-1368).
Collapse
Affiliation(s)
- Lucille Morzyglod
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Michèle Caüzac
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Lucie Popineau
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Pierre-Damien Denechaud
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Lluis Fajas
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Bruno Ragazzon
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Véronique Fauveau
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Julien Planchais
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Mireille Vasseur-Cognet
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRA 1392, Paris, and Institut d'Ecologie et des Sciences de l'Environnement de Paris, Bondy, France.,Sorbonne Universités, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Laetitia Fartoux
- APHP, Hôpital La Pitié Salpêtrière, Service d'Hépato-Gastroentérologie, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine, Paris, France
| | - Olivier Scatton
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine, Paris, France.,APHP, Hôpital La Pitié-Salpêtrière, Service de Chirurgie Hépatobiliaire et Transplantation, Paris, France
| | - Olivier Rosmorduc
- APHP, Hôpital La Pitié Salpêtrière, Service d'Hépato-Gastroentérologie, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine, Paris, France
| | - Sandra Guilmeau
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Catherine Postic
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Chantal Desdouets
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Christèle Desbois-Mouthon
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine, Paris, France
| | - Anne-Françoise Burnol
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| |
Collapse
|
17
|
Derivate Isocorydine (d-ICD) Suppresses Migration and Invasion of Hepatocellular Carcinoma Cell by Downregulating ITGA1 Expression. Int J Mol Sci 2017; 18:ijms18030514. [PMID: 28264467 PMCID: PMC5372530 DOI: 10.3390/ijms18030514] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 01/07/2023] Open
Abstract
In our previous studies, we found that isocorydine (ICD) could be a potential antitumor agent in hepatocellular carcinoma (HCC). Derivate isocorydine (d-ICD), a more effective antitumor agent, has been demonstrated to inhibit proliferation and drug resistance in HCC. In order to investigate the potential role of d-ICD on HCC cell migration and its possible mechanism, wound healing assay, trans-well invasion assay, western blot analysis, and qRT-PCR were performed to study the migration and invasion ability of HCC cells as well as relevant molecular alteration following d-ICD treatment. Results indicated that the migration and invasion ability of HCC cells were suppressed when cultured with d-ICD. Meanwhile, the expression level of ITGA1 was markedly reduced. Furthermore, we found that ITGA1 promotes HCC cell migration and invasion in vitro, and that ITGA1 can partly reverse the effect of d-ICD-induced migration and invasion suppression in HCC cells. In addition, dual luciferase reporter assay and chromatin immunoprecipitation assay were used to study the expression regulation of ITGA1, and found that E2F1 directly upregulates ITGA1 expression and d-ICD inhibits E2F1 expression. Taken together, these results reveal that d-ICD inhibits HCC cell migration and invasion may partly by downregulating E2F1/ITGA1 expression.
Collapse
|
18
|
Huntington JT, Tang X, Kent LN, Schmidt CR, Leone G. The Spectrum of E2F in Liver Disease--Mediated Regulation in Biology and Cancer. J Cell Physiol 2016; 231:1438-49. [PMID: 26566968 DOI: 10.1002/jcp.25242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
Abstract
Uncoordinated cell growth is one of the fundamental concepts in carcinogenesis and occurs secondary to dysregulation of the cell cycle. The E2Fs are a large family of transcription factors and are key regulators of the cell cycle. The activation of E2Fs is intimately regulated by retinoblastoma 1 (RB1). The RB pathway has been implicated in almost every human malignancy. Recently there have been exciting developments in the E2F field using animal models to better understand the role of E2Fs in vivo. Genetic mouse models have proven essential in implicating E2Fs in hepatocellular carcinoma (HCC) and liver disease. In this review, the general structure and function of E2Fs as well as the role for E2Fs in the development of HCC and liver disease is evaluated. Specifically, what is known about E2Fs in human disease is explored in depth, and future directions are discussed.
Collapse
Affiliation(s)
- Justin T Huntington
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Xing Tang
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, Columbus, Ohio.,Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, Ohio.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Lindsey N Kent
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, Columbus, Ohio.,Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, Ohio.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Carl R Schmidt
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Gustavo Leone
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, Columbus, Ohio.,Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, Ohio.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
19
|
An E2F1-HOXB9 transcriptional circuit is associated with breast cancer progression. PLoS One 2014; 9:e105285. [PMID: 25136922 PMCID: PMC4138122 DOI: 10.1371/journal.pone.0105285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/22/2014] [Indexed: 01/29/2023] Open
Abstract
Homeobox B9 (HOXB9), a member of the homeobox gene family, is overexpressed in breast cancer and promotes tumor progression and metastasis by stimulating epithelial-to-mesenchymal transition and angiogenesis within the tumor microenvironment. HOXB9 activates the TGFβ-ATM axis, leading to checkpoint activation and DNA repair, which engenders radioresistance in breast cancer cells. Despite detailed reports of the role of HOXB9 in breast cancer, the factors that regulate HOXB9 transcription have not been extensively examined. Here we uncover an underlying mechanism that may suggest novel targeting strategies for breast cancer treatment. To identify a transcription factor binding site (TFBS) in the HOXB9 promoter region, a dual luciferase reporter assay was conducted. Protein candidates that may directly attach to a TFBS of HOXB9 were examined by Q-PCR, electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), and mutation analysis. A HOXB9 promoter region from -404 to -392 was identified as TFBS, and E2F1 was a potential binding candidate in this region. The induction of HOXB9 expression by E2F1 was observed by Q-PCR in several breast cancer cell lines overexpressing E2F1. The stimulatory effect of E2F1 on HOXB9 transcription and its ability to bind the TFBS were confirmed by luciferase, EMSA and ChIP assay. Immunohistochemical analysis of 139 breast cancer tissue samples revealed a significant correlation between E2F1 and HOXB9 expression (p<0.001). Furthermore, a CDK4/6 inhibitor suppressed E2F1 expression and also reduced expression of HOXB9 and its downstream target genes. Our in vitro analysis identified the TFBS of the HOXB9 promoter region and suggested that E2F1 is a direct regulator of HOXB9 expression; these data support the strong correlation we found between E2F1 and HOXB9 in clinical breast cancer samples. These results suggest that targeting the E2F1/HOXB9 axis may be a novel strategy for the control or prevention of cancer progression and metastasis.
Collapse
|
20
|
Evangelou K, Havaki S, Kotsinas A. E2F transcription factors and digestive system malignancies: How much do we know? World J Gastroenterol 2014; 20:10212-10216. [PMID: 25110451 PMCID: PMC4123353 DOI: 10.3748/wjg.v20.i29.10212] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 02/22/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
The E2F proteins comprise a family of 8 members that function as transcription factors. They are key targets of the retinoblastoma protein (RB) and were initially divided into groups of activators and repressors. Accumulating data suggest that there is no specific role for each individual E2F member. Instead, each E2F can exert a variety of cellular effects, some of which represent opposing ones. For instance, specific E2Fs can activate transcription and repression, promote or hamper cell proliferation, augment or inhibit apoptosis, all being dependent on the cellular context. This complexity reflects the importance that these transcription factors have on a cell’s fate. Thus, delineating the specific role for each E2F member in specific malignancies, although not easy, is a challenging and continuously pursued task, especially in view of potential E2F targeted therapies. Therefore, several reviews are continuously trying to evaluate available data on E2F status in various malignancies. Such reviews have attempted to reach a consensus, often in the simplistic form of oncogenes or tumor suppressor genes for the E2Fs. However they frequently miss spatial and temporal alterations of these factors during tumor development, which should also be considered in conjunction with the status of the regulatory networks that these factors participate in. In the current ‘‘Letter to the Editor’’, we comment on the flaws, misinterpretations and omissions in one such review article published recently in the World Journal of Gastroenterology regarding the role of E2Fs in digestive system malignancies.
Collapse
|
21
|
Meng P, Ghosh R. Transcription addiction: can we garner the Yin and Yang functions of E2F1 for cancer therapy? Cell Death Dis 2014; 5:e1360. [PMID: 25101673 PMCID: PMC4454301 DOI: 10.1038/cddis.2014.326] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 12/29/2022]
Abstract
Classically, as a transcription factor family, the E2Fs are known to regulate the expression of various genes whose products are involved in a multitude of biological functions, many of which are deregulated in diseases including cancers. E2F is deregulated and hyperactive in most human cancers with context dependent, dichotomous and contradictory roles in almost all cancers. Cancer cells have an insatiable demand for transcription to ensure that gene products are available to sustain various biological processes that support their rapid growth and survival. In this context, cutting-off hyperactivity of transcription factors that support transcription dependence could be a valuable therapeutic strategy. However, one of the greatest challenges of targeting a transcription factor is the global effects on non-cancerous cells given that they control cellular functions in general. Recently, there is growing realization regarding the possibility to target the oncogenic activation of transcription factors to modulate transcription addiction without affecting the normal activity required for cell functions. In this review, we used E2F1 as a prototype transcription factor to address transcription factor activity in cancer cell functions. We focused on melanoma considering that E2F1 executes critical functions in response to UV, an etiological factor of cutaneous melanoma and lies immediately downstream of the CDKN2A/pRb axis, which is frequently deregulated in melanoma. Further, activation of E2F1 in melanomas can also occur independent of loss of CDKN2A. Given its activated status and the ability to transcriptionally control a plethora of genes involved in regulating melanoma development and progression, we review the current literature on its differential role in controlling signaling pathways involved in melanoma as well as therapeutic resistance, and discuss the practical value of weaning melanoma cells from E2F1-mediated transcription dependence for melanoma management.
Collapse
Affiliation(s)
- P Meng
- Department of Urology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - R Ghosh
- 1] Department of Urology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA [2] Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA [3] Department of Molecular Medicine, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA [4] Cancer Therapy and Research Center, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
22
|
Yan Y, Xu Y, Zhao Y, Li L, Sun P, Liu H, Fan Q, Liang K, Liang W, Sun H, Du X, Li R. Combination of E2F-1 promoter-regulated oncolytic adenovirus and cytokine-induced killer cells enhances the antitumor effects in an orthotopic rectal cancer model. Tumour Biol 2014; 35:1113-1122. [PMID: 24037896 DOI: 10.1007/s13277-013-1149-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/26/2013] [Indexed: 12/14/2022] Open
Abstract
Due to the anatomical structure of the rectum, the treatment of rectal cancer remains challenging. Ad-E2F, an oncolytic adenovirus containing the E2F-1 promoter, can selectively replicate within and kill cancer cells derived from solid tumors. Thus, this virus provides a novel approach for the treatment of rectal cancer. Given the poor efficacy and possible adverse reactions that arise from the use of oncolytic virus alone and the results of our analysis of the efficacy of Ad-E2F in the treatment of rectal cancer, we investigated the use of oncolytic adenovirus in combination with adoptive immunotherapy using cytokine-induced killer (CIK) cells as a therapeutic treatment for rectal cancer. Our results illustrated that E2F-1 gene expression is higher in rectal cancer tissue than in normal tissue. Furthermore, the designed oncolytic adenovirus Ad-E2F is capable of selectively killing colorectal cell lines but has no significant effect on CIK cells. The results of in vitro and in vivo experiments demonstrated that combined therapy with Ad-E2F and CIK cells produce stronger antitumor effects than the administration of Ad-E2F or CIK cells alone. For low rectal cancers that are suitable for intratumoral injection, local injections of oncolytic viruses in combination with CIK cell-based adoptive immunotherapy may be suitable as a novel comprehensive therapeutic approach.
Collapse
Affiliation(s)
- Yang Yan
- Institute of General Surgery, Chinese PLA General Hospital, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Luisier R, Unterberger EB, Goodman JI, Schwarz M, Moggs J, Terranova R, van Nimwegen E. Computational modeling identifies key gene regulatory interactions underlying phenobarbital-mediated tumor promotion. Nucleic Acids Res 2014; 42:4180-95. [PMID: 24464994 PMCID: PMC3985636 DOI: 10.1093/nar/gkt1415] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gene regulatory interactions underlying the early stages of non-genotoxic carcinogenesis are poorly understood. Here, we have identified key candidate regulators of phenobarbital (PB)-mediated mouse liver tumorigenesis, a well-characterized model of non-genotoxic carcinogenesis, by applying a new computational modeling approach to a comprehensive collection of in vivo gene expression studies. We have combined our previously developed motif activity response analysis (MARA), which models gene expression patterns in terms of computationally predicted transcription factor binding sites with singular value decomposition (SVD) of the inferred motif activities, to disentangle the roles that different transcriptional regulators play in specific biological pathways of tumor promotion. Furthermore, transgenic mouse models enabled us to identify which of these regulatory activities was downstream of constitutive androstane receptor and β-catenin signaling, both crucial components of PB-mediated liver tumorigenesis. We propose novel roles for E2F and ZFP161 in PB-mediated hepatocyte proliferation and suggest that PB-mediated suppression of ESR1 activity contributes to the development of a tumor-prone environment. Our study shows that combining MARA with SVD allows for automated identification of independent transcription regulatory programs within a complex in vivo tissue environment and provides novel mechanistic insights into PB-mediated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Raphaëlle Luisier
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, 4057 Basel, Switzerland, Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, 72074 Tübingen, Germany, Department of Pharmacology and Toxicology, Michigan State University, MI 48824, USA and Biozentrum, University of Basel and Swiss Institute of Bioinformatics, 4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
24
|
Baiz D, Dapas B, Farra R, Scaggiante B, Pozzato G, Zanconati F, Fiotti N, Consoloni L, Chiaretti S, Grassi G. Bortezomib effect on E2F and cyclin family members in human hepatocellular carcinoma cell lines. World J Gastroenterol 2014; 20:795-803. [PMID: 24574752 PMCID: PMC3921488 DOI: 10.3748/wjg.v20.i3.795] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 11/11/2013] [Accepted: 12/03/2013] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the effects of the proteasome inhibitor bortezomib (BZB) on E2Fs and related genes in hepatocellular carcinoma (HCC) cells. METHODS The mRNA levels of the E2F family members (pro-proliferative: E2F1-3 and anti-proliferative: E2F4-8) and of their related genes cyclins and cyclin-dependent kinases (cdks) were evaluated in two HCC cell lines following a single BZB administration. mRNA levels of the epithelial-mesenchymal transition (EMT) genes were also measured in both cell lines after BZB treatment. The BZB concentration (40 nmol/L) used was chosen to stay well below the maximal amount/cm² recommended for in vivo application, and 2 d incubation was chosen as this time point has been found optimal to detect BZB effects in our previous studies. The HCC cell lines, HepG2 and JHH6, were chosen as they display different phenotypes, hepatocyte-like for HepG2 and undifferentiated for JHH6, thus representing an in vitro model of low and high aggressive forms of HCC, respectively. The mRNA levels of the target genes were measured by two-color microarray-based gene expression analysis, performed according to Agilent Technologies protocol and using an Agilent Scan B. For the E2F family members, mRNA levels were quantified by real-time reverse transcription polymerase chain reaction (RT-PCR). Using small interfering RNA's, the effects of E2F8 depletion on cell number was also evaluated. RESULTS After BZB treatment, microarray analysis of the undifferentiated JHH6 revealed a significant decrease in the expression of the pro-proliferative E2F member E2F2. Quantitative RT-PCR data were in keeping with the microarray analysis, and showed a significant increase and decrease in E2F8 and E2F2 mRNA levels, respectively. In contrast, BZB treatment of the hepatocyte-like HCC cell line HepG2 had a significant impact on mRNA levels of 5 of the 8 E2F members. In particular, mRNA levels of the pro-proliferative E2F members E2F1, E2F2, and of the anti-proliferative member E2F8, decreased over 80%. Notably, a reduction in E2F8 expression in HepG2 and JHH6 cells following siRNA treatment had no impact on cell proliferation. As observed with JHH6, BZB treatment of HepG2 cells induced a significant increase in mRNA levels of an anti-proliferative E2F member, E2F6 in this case. As was observed with E2F's, more dramatic changes in mRNA levels of the E2F related genes cyclins and Cdks and EMT genes were observed after BZB treatment of HepG2 compared to JHH6. CONCLUSION The differential expression of E2Fs and related genes induced by BZB in diverse HCC cell phenotypes contribute to bortezomib's mechanism of action in hepatocellular carcinoma.
Collapse
|
25
|
Zhan L, Huang C, Meng XM, Song Y, Wu XQ, Miu CG, Zhan XS, Li J. Promising roles of mammalian E2Fs in hepatocellular carcinoma. Cell Signal 2014; 26:1075-81. [PMID: 24440307 DOI: 10.1016/j.cellsig.2014.01.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/09/2014] [Indexed: 02/07/2023]
Abstract
In mammalian cells, E2F family of transcription factors (E2Fs) traditionally modulates assorted cellular functions related to cell cycle progression, proliferation, apoptosis and differentiation. Eight members, E2F1 E2F8 have been recognized of this family so far, and the members of this family are generally divided into activator E2F (E2F1--E2F3a), repressor E2F (E2F3b--E2F5) and inhibitor E2F (E2F6--E2F8) subclasses based on their structur-e and function. Studies have showed that the mammalian E2F family members represent a recent evolutionary adaptation to malignancies besides hepatocellular carcinoma (HCC), and a growing body of evidence has validated that the individual members of the family develop a close relationship with HCC. E2F1 was identified to play overlapping roles in HCC, while E2F2--E2F8 (except E2F6 and E2F7) showed to be tumor-promoter in HCC. However, the mechanism underlying the mammalian E2Fs associated with HCC is still unknown and needs further research. The aim of this review is to sum up the collective knowledge of E2F family and the roles of each member of this family in HCC. Moreover, we will discuss some novel therapeutic target for HCC based on the complicated functions of mammalian E2Fs.
Collapse
Affiliation(s)
- Lei Zhan
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Xiao Ming Meng
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Yang Song
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Xiao Qin Wu
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Cheng Gui Miu
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Xiang Shu Zhan
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China.
| |
Collapse
|
26
|
Xanthoulis A, Tiniakos DG. E2F transcription factors and digestive system malignancies: How much do we know? World J Gastroenterol 2013; 19:3189-3198. [PMID: 23745020 PMCID: PMC3671070 DOI: 10.3748/wjg.v19.i21.3189] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/08/2013] [Accepted: 03/29/2013] [Indexed: 02/06/2023] Open
Abstract
E2F family of transcription factors regulates various cellular functions related to cell cycle and apoptosis. Its individual members have traditionally been classified into activators and repressors, based on in vitro studies. However their contribution in human cancer is more complicated and difficult to predict. We review current knowledge on the expression of E2Fs in digestive system malignancies and its clinical implications for patient prognosis and treatment. E2F1, the most extensively studied member and the only one with prognostic value, exhibits a tumor-suppressing activity in esophageal, gastric and colorectal adenocarcinoma, and in hepatocellular carcinoma (HCC), whereas in pancreatic ductal adenocarcinoma and esophageal squamous cell carcinoma may function as a tumor-promoter. In the latter malignancies, E2F1 immunohistochemical expression has been correlated with higher tumor grade and worse patient survival, whereas in esophageal, gastric and colorectal adenocarcinomas is a marker of increased patient survival. E2F2 has only been studied in colorectal cancer, where its role is not considered significant. E2F4’s role in colorectal, gastric and hepatic carcinogenesis is tumor-promoting. E2F8 is strongly upregulated in human HCC, thus possibly contributing to hepatocarcinogenesis. Adenoviral transfer of E2F as gene therapy to sensitize pancreatic cancer cells for chemotherapeutic agents has been used in experimental studies. Other therapeutic strategies are yet to be developed, but it appears that targeted approaches using E2F-agonists or antagonists should take into account the tissue-dependent function of each E2F member. Further understanding of E2Fs’ contribution in cellular functions in vivo would help clarify their role in carcinogenesis.
Collapse
|
27
|
Li CF, Chen LT, Lin CY, Huang HY, Hsing CH, Huang CT, Shiue YL. E2F transcription factor 1 overexpression as a poor prognostic factor in patients with nasopharyngeal carcinomas. BIOMARKERS AND GENOMIC MEDICINE 2013; 5:23-30. [DOI: 10.1016/j.gmbhs.2013.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
|