1
|
Kim DH. Personalized Medical Approach in Gastrointestinal Surgical Oncology: Current Trends and Future Perspectives. J Pers Med 2025; 15:175. [PMID: 40423047 DOI: 10.3390/jpm15050175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/28/2025] Open
Abstract
Advances in artificial intelligence (AI), multi-omic profiling, and sophisticated imaging technologies have significantly advanced personalized medicine in gastrointestinal surgical oncology. These technological innovations enable precise patient stratification, tailored surgical strategies, and individualized therapeutic approaches, thereby significantly enhancing clinical outcomes. Despite remarkable progress, challenges persist, including the standardization and integration of diverse data types, ethical concerns regarding patient privacy, and rigorous clinical validation of predictive models. Addressing these challenges requires establishing international standards for data interoperability, such as Fast Healthcare Interoperability Resources, and adopting advanced security methods, such as homomorphic encryption, to facilitate secure multi-institutional data sharing. Moreover, ensuring model transparency and explainability through techniques such as explainable AI is critical for fostering trust among clinicians and patients. The successful integration of these advanced technologies necessitates strong multidisciplinary collaboration among surgeons, radiologists, geneticists, pathologists, and oncologists. Ultimately, the continued development and effective implementation of these personalized medical strategies complemented by human expertise promise a transformative shift toward patient-centered care, improving long-term outcomes for patients with gastrointestinal cancer.
Collapse
Affiliation(s)
- Dae Hoon Kim
- Department of Surgery, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
- Department of Surgery, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
| |
Collapse
|
2
|
Wu F, Zhang L, Sun Y, Mo Y, Nichols TE, Papiez BW. MT-CooL: Multi-Task Cooperative Learning via Flat Minima Searching. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:1648-1658. [PMID: 40030504 DOI: 10.1109/tmi.2024.3512173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
While multi-task learning (MTL) has been widely developed for natural image analysis, its potential for enhancing performance in medical imaging remains relatively unexplored. Most methods formulate MTL as a multi-objective problem, inherently forcing all tasks to compete with each other during optimization. In this work, we propose a novel approach by formulating MTL as a multi-level optimization problem, in which the features learned from one task are optimized by benefiting from the other tasks. Specifically, we advocate for a cooperative approach where each task considers the features of others, enabling individual performance enhancement without detriment to others. To achieve this objective, we introduce a novel optimization strategy aimed at seeking flat minima for each sub-problem, fostering the learning of robust sub-models resilient to changes in other sub-models. We demonstrate the advantages of our proposed method through comprehensive parameter and comparison studies on the OrganCMNIST dataset. Additionally, we evaluate its efficacy on three eye-related medical image datasets, comparing its performance against other state-of-the-art MTL approaches. The results highlight the superiority of our method over existing approaches, showcasing its potential for training multi-purpose models in medical image analysis.
Collapse
|
3
|
Huang X, Qin M, Fang M, Wang Z, Hu C, Zhao T, Qin Z, Zhu H, Wu L, Yu G, De Cobelli F, Xie X, Palumbo D, Tian J, Dong D. The application of artificial intelligence in upper gastrointestinal cancers. JOURNAL OF THE NATIONAL CANCER CENTER 2025; 5:113-131. [PMID: 40265096 PMCID: PMC12010392 DOI: 10.1016/j.jncc.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/17/2024] [Accepted: 12/20/2024] [Indexed: 04/24/2025] Open
Abstract
Upper gastrointestinal cancers, mainly comprising esophageal and gastric cancers, are among the most prevalent cancers worldwide. There are many new cases of upper gastrointestinal cancers annually, and the survival rate tends to be low. Therefore, timely screening, precise diagnosis, appropriate treatment strategies, and effective prognosis are crucial for patients with upper gastrointestinal cancers. In recent years, an increasing number of studies suggest that artificial intelligence (AI) technology can effectively address clinical tasks related to upper gastrointestinal cancers. These studies mainly focus on four aspects: screening, diagnosis, treatment, and prognosis. In this review, we focus on the application of AI technology in clinical tasks related to upper gastrointestinal cancers. Firstly, the basic application pipelines of radiomics and deep learning in medical image analysis were introduced. Furthermore, we separately reviewed the application of AI technology in the aforementioned aspects for both esophageal and gastric cancers. Finally, the current limitations and challenges faced in the field of upper gastrointestinal cancers were summarized, and explorations were conducted on the selection of AI algorithms in various scenarios, the popularization of early screening, the clinical applications of AI, and large multimodal models.
Collapse
Affiliation(s)
- Xiaoying Huang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Minghao Qin
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- University of Science and Technology Beijing, Beijing, China
| | - Mengjie Fang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Zipei Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Chaoen Hu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Tongyu Zhao
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- University of Science and Technology of China, Hefei, China
| | - Zhuyuan Qin
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | | | - Ling Wu
- KiangWu Hospital, Macau, China
| | | | | | | | - Diego Palumbo
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Wu YP, Wu L, Ou J, Tang S, Cao JM, Fu MY, Chen TW. Preoperative identification of small metastatic lymph nodes in esophageal squamous cell carcinoma using CT radiomics of lymph nodes. Abdom Radiol (NY) 2025; 50:1123-1132. [PMID: 39305294 DOI: 10.1007/s00261-024-04585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE To propose and validate a CT radiomics model utilizing radiomic features from lymph nodes (LNs) with maximum short axis diameter (MSAD) < 1 cm for predicting small metastatic LN (sMLN) in patients with resectable esophageal squamous cell carcinoma (ESCC). METHODS A total of 196 resectable patients with ESCC undergoing surgery were retrospectively enrolled, among whom 25% had sMLN. 146 out of 196 patients (from hospital 1) were randomly divided into the training (n = 116) and testing cohorts (n = 30) at an 8:2 ratio, while the remaining 50 patients from hospital 2 constituted the external validation cohort. Least absolute shrinkage and selection operator binary logistic regression was employed for radiomics feature dimensionality reduction and selection, and multivariable logistic regression analysis was used to construct the radiomics prediction model. The clinical features were statistically selected to develop the clinical model. And both the selected radiomics and clinical features were used to develop the combined model. The predictive value of models was assessed using the area under the receiver operating characteristic curves (AUC). RESULTS The LN radiomics model was constructed with 9 radiomics features, the clinical model was developed with 3 clinical features, and the combined model was developed using both the LN radiomics and clinical features. However, no statistical radiomics features from ESCC were extracted in dimensionality reduction. Compared to the clinical model, the combined model exhibited superior predictive ability (AUC: 0.893 vs. 0.766, P = 0.003), and the LN radiomics model showed slightly better predictive ability (AUC: 0.860 vs. 0.766, P = 0.153). It was validated in the test and external validation cohorts. CONCLUSION The combined model could assist in preoperatively identifying sMLN in resectable ESCC. It is beneficial for more accurate N staging and clinical comprehensive staging of ESCC, thereby facilitating the clinical physician to make more personalized and standardized treatment strategies.
Collapse
Affiliation(s)
- Yu-Ping Wu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lan Wu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Ou
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Sun Tang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jin-Ming Cao
- Department of Radiology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Mao-Yong Fu
- Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tian-Wu Chen
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Zhou YH, Chen XL, Zhang X, Pu H, Li H. Dual-phase contrast-enhanced CT-based intratumoral and peritumoral radiomics for preoperative prediction of lymph node metastasis in gastric cancer. BMC Gastroenterol 2025; 25:123. [PMID: 40021977 PMCID: PMC11869644 DOI: 10.1186/s12876-025-03728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025] Open
Abstract
OBJECTIVE To determine whether intratumoral and peritumoral radiomics derived from dual-phase contrast-enhanced CT imaging could predict lymph node metastasis (LNM) in gastric cancer. METHODS Patients with gastric cancer from January 2017 to January 2022 were retrospectively collected and were randomly divided into training cohort (n = 287) and test cohort (n = 121) with a ratio of 7: 3. Clinical features and traditional radiological features were analyzed to construct clinical model. Radiomics features based on intratumoral (ITV) and peritumoral volumetric (PTV) regions of the tumor were extracted and screened to construct radiomics models. Clinical-radiomics combined model was constructed by the most predictive radiomics features and clinical independent predictors. The correlation between LNM predicted by the best model and 2-year disease-free survival (DFS) was evaluated by the Kaplan-Meier analysis. RESULTS CT-LNM and CT-T stage were independent predictors of LNM. Compared with other radiomics models, ITV + PTV on atrial and venous phase (ITV + PTV-AP + VP) radiomics model presented moderate AUCs of 0.679 and 0.670 in the training cohort and validation cohort, respectively. Among the models, clinical-radiomics combined model achieved the highest AUC of 0.894 and 0.872 in the training and test cohorts, and 0.744 and 0.784 in the T1-2 and T3-4 subgroups, respectively. Clinical-radiomics combined model based LNM could stratify patients into high-risk and low-risk groups, and 2-year DFS of high-risk group was significantly lower than that of low-risk group (p < 0.001). CONCLUSION Clinical-radiomics combined model integrating CT-LNM, CT-T stage, and ITV-PTV-AP + VP radiomics features could predict LNM, and this combined model based LNM was associated with 2-year DFS.
Collapse
Affiliation(s)
- Yun-Hui Zhou
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# Second Section of First Ring Road, Qingyang District, Chengdu, Sichuan, 610072, China
- Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College•Chengdu pidu District People's Hospital, 666# Second Section of Deyuan North Road, Pidu District, Chengdu, Sichuan, 611730, China
| | - Xiao-Li Chen
- Department of Radiology, Affiliated Cancer Hospital of Medical School, University of Electronic Science and Technology of China, Sichuan Cancer Hospital, Chengdu, 610000, China
| | - Xin Zhang
- GE Healthcare (China), 1# Tongji South Road, Daxing District, Beijing, 100176, China
| | - Hong Pu
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# Second Section of First Ring Road, Qingyang District, Chengdu, Sichuan, 610072, China
| | - Hang Li
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# Second Section of First Ring Road, Qingyang District, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
6
|
Tan MJT, Lichlyter DA, Maravilla NMAT, Schrock WJ, Ting FIL, Choa-Go JM, Francisco KK, Byers MC, Abdul Karim H, AlDahoul N. The data scientist as a mainstay of the tumor board: global implications and opportunities for the global south. Front Digit Health 2025; 7:1535018. [PMID: 39981102 PMCID: PMC11839724 DOI: 10.3389/fdgth.2025.1535018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Affiliation(s)
- Myles Joshua Toledo Tan
- Department of Electrical and Computer Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, United States
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL, United States
- Biology Program, College of Arts and Sciences, University of St. La Salle, Bacolod, Philippines
- Department of Natural Sciences, College of Arts and Sciences, University of St. La Salle, Bacolod, Philippines
- Department of Chemical Engineering, College of Engineering and Technology, University of St. La Salle, Bacolod, Philippines
- Department of Electronics Engineering, College of Engineering and Technology, University of St. La Salle, Bacolod, Philippines
- Yo-Vivo Corporation, Bacolod, Philippines
| | | | | | - Weston John Schrock
- College of Pharmacy, University of Florida, Gainesville, FL, United States
- VA North Florida/South Georgia Veterans Health System, Gainesville, FL, United States
| | - Frederic Ivan Leong Ting
- Department of Clinical Sciences, College of Medicine, University of St. La Salle, Bacolod, Philippines
- Division of Oncology, Department of Internal Medicine, Corazon Locsin Montelibano Memorial Regional Hospital, Bacolod, Philippines
- Department of Internal Medicine, Dr. Pablo O. Torre Memorial Hospital, Bacolod, Philippines
| | - Joanna Marie Choa-Go
- Department of Clinical Sciences, College of Medicine, University of St. La Salle, Bacolod, Philippines
- Department of Radiology, The Doctors’ Hospital, Inc., Bacolod, Philippines
- Department of Diagnostic Imaging and Radiologic Sciences, Corazon Locsin Montelibano Memorial Regional Hospital, Bacolod, Philippines
| | - Kishi Kobe Francisco
- Biology Program, College of Arts and Sciences, University of St. La Salle, Bacolod, Philippines
| | - Mickael Cavanaugh Byers
- Department of Civil and Coastal Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, United States
| | - Hezerul Abdul Karim
- Faculty of Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya, Malaysia
| | - Nouar AlDahoul
- Department of Computer Science, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Li X, Tang Z, Liu Y, Du Y, Xing Y, Zhang Z, Xie R. Value of enhanced CT machine learning models combined with clinicoradiological characteristics in predicting lymphatic tissue metastasis in colon cancer. RADIOLOGIE (HEIDELBERG, GERMANY) 2025:10.1007/s00117-024-01412-y. [PMID: 39903282 DOI: 10.1007/s00117-024-01412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/12/2024] [Indexed: 02/06/2025]
Abstract
This study aimed to assess the effectiveness of various machine learning models in identifying lymph node metastasis in colon cancer patients and to explore the potential benefits of combining clinicoradiological and radiomics features for improved diagnosis. A total of 260 patients with pathologically confirmed colon cancer were retrospectively included in study center 1 and study center 2 from January 2015 to August 2024. A total of 198 patients with colon cancer in center 1 were randomly divided into a training set (n = 138) and an internal testing set (n = 60) at a ratio of 7:3. Patients in center 2 were included in the external testing set (n = 62). Five clinical radiological features were used to establish a clinical model. Radiomics features were extracted from the computed tomography venous phase images, and four classifiers, including logistic regression, support vector machine, decision tree, and k‑nearest neighbor, were used to build machine learning models. In addition, a combined model was constructed by joining clinical, radiological, and radiogenomic features. The performance of these models was evaluated in terms of accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), receiver operating curve (ROC) and calibration curves in the training set, internal testing set, and external testing set to determine the diagnostic model with the highest predictive efficiency and to evaluate the stability of the model. Among the four machine learning models, the SVM model had the best predictive performance, with an area under the ROC (AUC) of 0.813, 0.724, and 0.721 for the training set, internal testing set, and external testing set, respectively. The clinical model, radiomics model, and combined model had an AUC of 0.823, 0.813, 0.817, 0.508, 0.724, 0.751, 0.582, 0.721, and 0.744 in the training set, internal testing set, and external testing set, respectively. In conclusion, the combined model performed significantly better than the clinical model (p = 0.017, 0.038), but there was no significant difference between the radiomics model and the combined model (p = 0.556, 0.614).
Collapse
Affiliation(s)
- Xinyi Li
- Department of Radiology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshun East Street, 100015, Beijing, Chaoyang District, China
| | - Ziwei Tang
- Department of Radiology, Changde Hospital, Xiangya School of Medicine, Central South University, 415000, Changde, China
| | - Yong Liu
- Department of Forensic Medicine, Tongji Medical College, Hua Zhong University of Science and Technology, 430030, Wuhan, China
| | - Yanni Du
- Department of Radiology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshun East Street, 100015, Beijing, Chaoyang District, China
| | - Yuxue Xing
- Department of Radiology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshun East Street, 100015, Beijing, Chaoyang District, China
| | - Zixin Zhang
- Department of Radiology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshun East Street, 100015, Beijing, Chaoyang District, China
| | - Ruming Xie
- Department of Radiology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshun East Street, 100015, Beijing, Chaoyang District, China.
| |
Collapse
|
8
|
Yang L, Ding Y, Zhang D, Yang G, Dong X, Zhang Z, Zhang C, Zhang W, Dai Y, Li Z. Predictive value of enhanced CT and pathological indicators in lymph node metastasis in patients with gastric cancer based on GEE model. BMC Med Imaging 2025; 25:36. [PMID: 39894837 PMCID: PMC11789337 DOI: 10.1186/s12880-025-01577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/28/2025] [Indexed: 02/04/2025] Open
Abstract
OBJECTIVES A predictive model was developed based on enhanced computed tomography (CT), laboratory test results, and pathological indicators to achieve the convenient and effective prediction of single lymph node metastasis (LNM) in gastric cancer. METHODS Sixty-six consecutive patients (235 regional lymph nodes) with pathologically confirmed gastric cancer who underwent surgery at our hospital between December 2020 and November 2021 were retrospectively reviewed. They were randomly allocated to training (n = 38, number of lymph nodes = 119) and validation (n = 28, number of lymph nodes = 116) datasets. The clinical data, laboratory test results, enhanced CT characteristics, and pathological indicators from gastroscopy-guided needle biopsies were obtained. Multivariable logistic regression with generalised estimation equations (GEEs) was used to develop a predictive model for LNM in gastric cancer. The predictive performance of the model developed using the training and validation datasets was validated using receiver operating characteristic curves. RESULTS Lymph node enhancement pattern, Ki67 level, and lymph node long-axis diameter were independent predictors of LNM in gastric cancer (p < 0.01). The GEE-logistic model was associated with LNM (p = 0.001). The area under the curve and accuracy of the model, with 95% confidence intervals, were 0.944 (0.890-0.998) and 0.897 (0.813-0.952), respectively, in the training dataset and 0.836 (0.751-0.921) and 0.798 (0.699-0.876), respectively, in the validation dataset. CONCLUSION The predictive model constructed based on lymph node enhancement pattern, Ki67 level, and lymph node long-axis diameter exhibited good performance in predicting LNM in gastric cancer and should aid the lymph node staging of gastric cancer and clinical decision-making.
Collapse
Affiliation(s)
- Ling Yang
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, 650118, China
| | - Yingying Ding
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, 650118, China
| | - Dafu Zhang
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, 650118, China
| | - Guangjun Yang
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, 650118, China
| | - Xingxiang Dong
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, 650118, China
| | - Zhiping Zhang
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, 650118, China
| | - Caixia Zhang
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, 650118, China
| | - Wenjie Zhang
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| | - Youguo Dai
- Department of Gastrointestinal Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, 650118, China.
| | - Zhenhui Li
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, 650118, China.
| |
Collapse
|
9
|
Zhang HY, Aimaiti M, Bai L, Yuan MQ, Zhu CC, Yan JJ, Cai JH, Dong ZY, Zhang ZZ. Bi-phase CT radiomics nomogram for the preoperative prediction of pylorus lymph node metastasis in non-pyloric gastric cancer patients. Abdom Radiol (NY) 2025; 50:608-618. [PMID: 39225717 DOI: 10.1007/s00261-024-04537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The expansion of function-preserving surgery became possible due to a more profound understanding of gastric cancer (GC), and T1N + or T2N + gastric cancer patients might be potential beneficiaries. However, ways to evaluate the possibility of function-preserving pylorus surgery are still unknown. METHODS A total of 288 patients at Renji Hospital and 58 patients at Huadong Hospital, pathologically diagnosed with gastric cancer staging at T1 and T2 with tumors located in the upper two-thirds of the stomach, were retrospectively enrolled from March 2015 to October 2022. Tumor regions of interest (ROIs) were manually delineated on bi-phase CT images, and a nomogram was built and evaluated. RESULTS The radiomic features distributed differently between positive and negative pLNm groups. Two radiomic signatures (RS1 and RS2) and one clinical signature were constructed. The radiomic signatures exhibited good performance for discriminating pLNm status in the test set. The three signatures were then combined into an integrated nomogram (IN). The IN showed good discrimination of pLNm in the Renji cohort (AUC 0.918) and the Huadong cohort (AUC 0.649). The verification models showed high values. CONCLUSION For GC patients with T1 and T2 tumors located in the upper two-thirds of the stomach, a nomogram was successfully built for predicting pylorus lymph node metastasis, which would guide the surgical indication extension of conservative gastrectomies.
Collapse
Affiliation(s)
- Hao-Yu Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Muerzhate Aimaiti
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Long Bai
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng-Qing Yuan
- The Hongkong University of Science and Technology, Hongkong, China
| | - Chun-Chao Zhu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Jun Yan
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Hua Cai
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| | - Zhong-Yi Dong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Zi-Zhen Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Zhou P, Qian H, Zhu P, Ben J, Chen G, Chen Q, Chen L, Chen J, He Y. Machine learning for predicting neoadjuvant chemotherapy effectiveness using ultrasound radiomics features and routine clinical data of patients with breast cancer. Front Oncol 2025; 14:1485681. [PMID: 39927116 PMCID: PMC11803464 DOI: 10.3389/fonc.2024.1485681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/26/2024] [Indexed: 02/11/2025] Open
Abstract
Background This study explores the clinical value of a machine learning (ML) model based on ultrasound radiomics features of primary foci, combined with clinicopathologic factors to predict the pathological complete response (pCR) of neoadjuvant chemotherapy (NAC) for patients with breast cancer (BC). Method We retrospectively analyzed ultrasound images and clinical information from 231 participants with BC who received NAC. These patients were randomly assigned to training and validation cohorts. Tumor regions of interest (ROI) were delineated, and radiomics features were extracted. Z-score normalization, Pearson correlation analysis, and the least absolute shrinkage selection operator (LASSO) were utilized for further screening ultrasound radiomics and clinical features. Univariate and multivariate logistic regression analysis were performed to identify the CFs that were independently associated with pCR. We compared 10 ML models based on radiomics features: support vector machine (SVM), logistic regression (LR), random forest, extra trees (ET), naïve Bayes (NB), k-nearest neighbor (KNN), multilayer perceptron (MLP), gradient boosting ML (GBM), light GBM (LGBM), and adaptive boost (AB). Diagnostic performance was evaluated using the receiver operating characteristic (ROC) area under the curve (AUC), accuracy, sensitivity, and specificity, and the Rad score was calculated. Subsequently, construction of clinical predictive models and Rad score joint clinical predictive models using ML algorithms for optimal diagnostic performance. The diagnostic process of the ML model was visualized and analyzed using SHapley Additive exPlanation (SHAP). Results Out of 231 participants with BC, 98 (42.42%) achieved pCR, and 133 (57.58%) did not. Twelve radiomics features were identified, with the GBM model demonstrating the best predictive performance (AUC of 0.851, accuracy of 0.75, sensitivity of 0.821, and specificity of 0.698). The clinical feature prediction model using the GBM algorithm had an AUC of 0.819 and an accuracy of 0.739. Combining the Rad score with clinical features in the GBM model resulted in superior predictive performance (AUC of 0.939 and an accuracy of 0.87). SHAP analysis indicated that participants with a high Rad score, PR-negative, ER-negative and human epidermal growth factor receptor-2 (HER-2) positive were more possibly to reach pCR. Based on the decision curve analysis, it was shown that the combined model of GBM provided higher clinical benefits. Conclusion The GBM model based on ultrasound radiomics features and routine clinical date of BC patients had high performance in predicting pCR. SHAP analysis provided a clear explanation for the prediction results of the GBM model, revealing that patients with a high Rad score, PR-negative status, ER-negative status and HER-2-positive status are more likely to achieve pCR.
Collapse
Affiliation(s)
- Pu Zhou
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, and Medical School of Nantong University, Nantong, China
- Department of Ultrasound, Affiliated Tumor Hospital of Nantong University, Jiangsu, Nantong, China
| | - Hongyan Qian
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, and Medical School of Nantong University, Nantong, China
| | - Pengfei Zhu
- Department of Ultrasound, Affiliated Tumor Hospital of Nantong University, Jiangsu, Nantong, China
| | - Jiangyuan Ben
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, and Medical School of Nantong University, Nantong, China
- Department of Ultrasound, Affiliated Tumor Hospital of Nantong University, Jiangsu, Nantong, China
| | - Guifang Chen
- Department of Ultrasound, Affiliated Tumor Hospital of Nantong University, Jiangsu, Nantong, China
| | - Qiuyi Chen
- Department of Ultrasound, Affiliated Tumor Hospital of Nantong University, Jiangsu, Nantong, China
| | - Lingli Chen
- Department of Surgery, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jia Chen
- Department of Oncology Internal Medicine, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Ying He
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, and Medical School of Nantong University, Nantong, China
- Department of Ultrasound, Affiliated Tumor Hospital of Nantong University, Jiangsu, Nantong, China
| |
Collapse
|
11
|
Zhang Y, Zhao F, Guo J, Liu Y, Cai M, Ding X, Li B, Zhang L, Zhang R, Deng J. The clinical significance assessment of the transverse lymph node metastasis in gastric cancer: The establishment and validation of nomogram from a single clinical medical center. Dig Liver Dis 2025; 57:125-133. [PMID: 39034188 DOI: 10.1016/j.dld.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/22/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Lymph node metastasis is an important route for gastric cancer metastasis. The clinical significance of transverse lymph node metastasis (TLNM) is still unclear. AIMS This study investigates effects of TLNM on the prognosis of GC patients and establishes two nomograms for evaluating the prognosis of GC patients and for predicting the risk clinicopathological factors to TLNM based on a Chinese medical database. METHODS A total of 902 GC patients with lymph node metastasis (LNM) who underwent R0 gastrectomy was included in this study. According to results of Cox proportional hazards analyses and logistic regression analyses, the prognostic and the predictive nomograms were established and validated. RESULTS The overall survival of patients with TLNM was significantly worse than those without TLNM (P < 0.001) and similar to patients with extra-gastric LNM (P > 0.05). TLNM independently influenced prognosis of GC patients. Prognostic and predictive nomograms were established and validated. Both nomograms were proven that have high accuracy by calculating each AUC (Area Under Cure) value. Calibration curves aligned well with actual outcomes. DCA (Decision Curve Analyses) analyses indicated the high clinical utility. CONCLUSION These nomograms offer precise survival and TLNM occurrence predictions, which may aid clinical decisions.
Collapse
Affiliation(s)
- Yizhao Zhang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy at Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fucheng Zhao
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy at Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jiamei Guo
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy at Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yong Liu
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy at Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Mingzhi Cai
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy at Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xuewei Ding
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy at Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bin Li
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy at Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Li Zhang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy at Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Rupeng Zhang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy at Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jingyu Deng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy at Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
12
|
Xu Y, Lin J, Gao JM, Yuan Y. Ultrasonographic assessment of the risk of free-floating thrombus detachment in the lower extremity deep veins in patients with fracture. Clin Imaging 2024; 115:110302. [PMID: 39317115 DOI: 10.1016/j.clinimag.2024.110302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVE To explore the ultrasonographic features and influencing factors of free-floating thrombus (FFT) detachment in the lower extremity deep veins (LEDVs) of patients with fractures. METHODS Clinical data of patients diagnosed with FFT in the LEDVs and implanted with an inferior vena cava filter (IVCF) in our hospital between July 2021 and August 2023 were retrospectively analysed. The patients were divided into the thrombus detachment group (the experimental group, n = 92) and the non-thrombus detachment group (the control group, n = 103) based on the presence of detached thrombus in the IVCF. The effects of thrombus echogenicity, floating degree, thrombus location, thrombin time, D-dimer and fibrinogen on thrombus shedding were analysed. The nomogram method was used to establish the model and predict the probability of delayed postoperative recovery. RESULTS The proportions of patients with extremely hypoechoic thrombus and medium and high floating degrees increased in the experimental group compared with those in the control group, and the differences between the two groups were statistically significant (P < 0.05). Extremely hypoechoic thrombus (P = 0.021, 95 % CI: 1.109-13.748) and high (P = 0.001, 95 % CI: 3.854-28.573) and medium floating degrees (P = 0.004, 95 % CI: 1.792-13.453) were risk factors for deep veins FFT (DV FFT) detachment. The results of receiver operating characteristic curve analysis showed that the area under the curve of the model was 0.893, with a 95 % CI of 0.856-0.937, indicating a high prediction accuracy. CONCLUSION Ultrasonographic parameters, including thrombus echogenicity and floating degree, are valuable in predicting DV FFT detachment in patients with traumatic fractures, providing references for IVCF implantation.
Collapse
Affiliation(s)
- Yang Xu
- Department of Ultrasound, Tianjin Hospital, Tianjin 300211, China
| | - Jing Lin
- Department of Oncology, Xinjiang Medical University Affiliated Cancer Hospital, Urumqi 830017, China
| | - Jin-Mei Gao
- Department of Ultrasound, Tianjin Hospital, Tianjin 300211, China
| | - Yu Yuan
- Department of Ultrasound, Tianjin Hospital, Tianjin 300211, China.
| |
Collapse
|
13
|
Zong R, Ma X, Shi Y, Geng L. Can Machine Learning Models Based on Computed Tomography Radiomics and Clinical Characteristics Provide Diagnostic Value for Epstein-Barr Virus-Associated Gastric Cancer? J Comput Assist Tomogr 2024; 48:859-867. [PMID: 38924393 DOI: 10.1097/rct.0000000000001636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
OBJECTIVE The aim of this study was to explore whether machine learning model based on computed tomography (CT) radiomics and clinical characteristics can differentiate Epstein-Barr virus-associated gastric cancer (EBVaGC) from non-EBVaGC. METHODS Contrast-enhanced CT images were collected from 158 patients with GC (46 EBV-positive, 112 EBV-negative) between April 2018 and February 2023. Radiomics features were extracted from the volumes of interest. A radiomics signature was built based on radiomics features by the least absolute shrinkage and selection operator logistic regression algorithm. Multivariate analyses were used to identify significant clinicoradiological variables. We developed 6 ML models for EBVaGC, including logistic regression, Extreme Gradient Boosting, random forest (RF), support vector machine, Gaussian Naive Bayes, and K-nearest neighbor algorithm. The area under the receiver operating characteristic curve (AUC), the area under the precision-recall curves (AP), calibration plots, and decision curve analysis were applied to assess the effectiveness of each model. RESULTS Six ML models achieved AUC of 0.706-0.854 and AP of 0.480-0.793 for predicting EBV status in GC. With an AUC of 0.854 and an AP of 0.793, the RF model performed the best. The forest plot of the AUC score revealed that the RF model had the most stable performance, with a standard deviation of 0.003 for AUC score. RF also performed well in the testing dataset, with an AUC of 0.832 (95% confidence interval: 0.679-0.951), accuracy of 0.833, sensitivity of 0.857, and specificity of 0.824, respectively. CONCLUSIONS The RF model based on clinical variables and Rad_score can serve as a noninvasive tool to evaluate the EBV status of gastric cancer.
Collapse
Affiliation(s)
- Ruilong Zong
- From the Department of Radiology, Xuzhou Central Hospital, Xuzhou, China
| | - Xijuan Ma
- From the Department of Radiology, Xuzhou Central Hospital, Xuzhou, China
| | - Yibing Shi
- From the Department of Radiology, Xuzhou Central Hospital, Xuzhou, China
| | - Li Geng
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University
| |
Collapse
|
14
|
Li J, Yin H, Zhang H, Wang Y, Ma F, Li L, Gao J, Qu J. Preoperative Risk Stratification for Gastric Cancer: The Establishment of Dual-Energy CT-Based Radiomics Using Prospective Datasets at Two Centers. Acad Radiol 2024; 31:4466-4477. [PMID: 38734580 DOI: 10.1016/j.acra.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
RATIONALE AND OBJECTIVES To evaluate the performance of dual-energy CT (DECT)-based radiomics models for identifying high-risk histopathologic phenotypes-serosal invasion (pT4a), lymph node metastasis (LNM), lymphovascular invasion (LVI) and perineural invasion (PNI) in gastric cancer. MATERIAL AND METHODS This prospective bi-center study recruited histologically confirmed gastric adenocarcinoma patients who underwent triple-phase enhanced DECT before gastrectomy between January 2021 and July 2023. Radiomics features were extracted from polychromatic/monochromatic (40 keV, 100 keV)/iodine images at arterial/venous/delay phase, respectively. Predictive features were selected in the training dataset using logistic regression classifier, and trained models were applied to the external validation dataset. Performances of clinical models, conventional contrast enhanced CT (CECT) models and DECT models were evaluated using areas under the receiver operating characteristic curve (AUCs). RESULTS In total, 503 patients were recruited: 396 at training dataset (60.1 ± 10.8 years, 110 females, 286 males) and 107 at validation dataset (61.4 ± 9.5 years, 29 females, 78 males). DECT models dichotomizing pT4a, LNM, LVI, and PNI achieved AUCs of 0.891, 0.817, 0.834, and 0.889, respectively, in the validation dataset, similar with the CECT models. In the training dataset, compared to the CECT model, the DECT model provided increased performance for identifying pT4a, LNM, LVI (all P<0.05), and similar performance for stratifying PNI (P = 0.104). The DECT models was associated with patient disease-free survival (all P<0.05). CONCLUSION DECT radiomics can stratify patients preoperatively according to high-risk histopathologic phenotypes for gastric cancer and are associated with patient disease-free survival in the training dataset.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Hongkun Yin
- Infervision Medical Technology Co., Ltd, Beijing 100025, China
| | - Huiling Zhang
- Infervision Medical Technology Co., Ltd, Beijing 100025, China
| | - Yi Wang
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Fei Ma
- Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Liming Li
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jinrong Qu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| |
Collapse
|
15
|
Zhan W, Luo Y, Luo H, Zhou Z, Yin N, Li Y, Feng X, Yang Y. Predicting major adverse cardiovascular events in angina patients using radiomic features of pericoronary adipose tissue based on CCTA. Front Cardiovasc Med 2024; 11:1462451. [PMID: 39544308 PMCID: PMC11560751 DOI: 10.3389/fcvm.2024.1462451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Objective This study aims to evaluate whether radiomic features of pericoronary adipose tissue (PCAT) derived from coronary computed tomography angiography (CCTA) can better predict major adverse cardiovascular events (MACE) in patients with angina pectoris. Methods A single-center retrospective study included 239 patients with angina pectoris who underwent coronary CT examinations. Participants were divided into MACE (n = 46) and non-MACE (n = 193) groups based on the occurrence of MACE during follow-up, and further allocated into a training cohort (n = 167) and a validation cohort (n = 72) at a 7:3 ratio. Automatic segmentation of PCAT surrounding the proximal segments of the left anterior descending artery (LAD), left circumflex coronary artery (LCX), and right coronary artery (RCA) was performed for all patients. Radiomic features of the coronary arteries were extracted, screened, and integrated while quantifying the fat attenuation index (FAI) for the three vessels. Univariate and multivariate logistic regression analyses were utilized to select clinical predictors of adverse cardiovascular events. Subsequently, machine learning techniques were employed to construct models based on FAI, clinical features, and radiomic characteristics. The predictive performance of each model was assessed and compared using receiver operating characteristic (ROC) curves, calibration plots, and decision curve analysis for clinical utility. Results The radiomics model demonstrated superior performance in predicting MACE in patients with angina pectoris within both the training and validation cohorts, yielding areas under the curve (AUC) of 0.83 and 0.71, respectively, which significantly outperformed the FAI model (AUC = 0.71, 0.54) and the clinical model (AUC = 0.81, 0.67), with statistically significant differences in AUC (p < 0.05). Calibration curves for all three predictive models exhibited good fit (all p > 0.05). Decision curve analysis indicated that the radiomics model provided higher clinical benefit than the traditional clinical and FAI models. Conclusion The CCTA-based PCAT radiomics model is an effective tool for predicting MACE in patients with angina pectoris, assisting clinicians in optimizing risk stratification for individual patients. The CCTA-based radiomics model significantly surpasses traditional FAI and clinical models in predicting major adverse cardiovascular events in patients with angina pectoris.
Collapse
Affiliation(s)
- Weisheng Zhan
- Department of Cardiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yanfang Luo
- Department of Cardiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Hui Luo
- Department of Thoracic Surgery, Nan Chong Center Hospital, Nanchong, China
| | - Zheng Zhou
- Department of Cardiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Nianpei Yin
- Department of Cardiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yixin Li
- Department of Cardiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xinyi Feng
- Department of Cardiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ying Yang
- Department of Cardiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
16
|
Wang J, Liang JC, Lin FT, Ma J. Energy spectrum computed tomography multi-parameter imaging in preoperative assessment of vascular and neuroinvasive status in gastric cancer. World J Gastrointest Surg 2024; 16:2511-2520. [PMID: 39220074 PMCID: PMC11362936 DOI: 10.4240/wjgs.v16.i8.2511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Vascular and nerve infiltration are important indicators for the progression and prognosis of gastric cancer (GC), but traditional imaging methods have some limitations in preoperative evaluation. In recent years, energy spectrum computed tomography (CT) multiparameter imaging technology has been gradually applied in clinical practice because of its advantages in tissue contrast and lesion detail display. AIM To explore and analyze the value of multiparameter energy spectrum CT imaging in the preoperative assessment of vascular invasion (LVI) and nerve invasion (PNI) in GC patients. METHODS Data from 62 patients with GC confirmed by pathology and accompanied by energy spectrum CT scanning at our hospital between September 2022 and September 2023, including 46 males and 16 females aged 36-71 (57.5 ± 9.1) years, were retrospectively collected. The patients were divided into a positive group (42 patients) and a negative group (20 patients) according to the presence of LVI/PNI. The CT values (CT40 keV, CT70 keV), iodine concentration (IC), and normalized IC (NIC) of lesions in the upper energy spectrum CT images of the arterial phase, venous phase, and delayed phase 40 and 70 keV were measured, and the slopes of the energy spectrum curves [K (40-70)] from 40 to 70 keV were calculated. Arterial phase combined parameter, venous phase combined parameters (VP-ALLs), and delayed phase association parameters were calculated for patients with late-stage disease. The differences in the energy spectrum parameters between the positive and negative groups were compared, receiver operating characteristic (ROC) curves were plotted, and the area under the curve (AUC), sensitivity, specificity, and optimal threshold were calculated to measure the diagnostic efficiency of each parameter. RESULTS In the delayed phase, the CT40 keV, CT70 keV, K (40-70), IC, NIC, and CT70 keV and the NIC in the upper arterial and venous phases of energy spectrum CT were greater in the LVI/PNI-positive group than in the LVI-negative group. The representative parameters for the arterial phase NIC were 0.14 ± 0.04 in the positive group and 0.12 ± 0.04 in the negative group. The venous phase NIC was 0.5 (0.5, 0.6) in the positive group and 0.4 (0.4, 0.5) in the negative group. Last, for the delayed phase NIC, it was 0.6 ± 0.1 in the positive group and 0.5 ± 0.1 in the negative group (all P values are less than 0.05). ROC curve analysis demonstrated that the diagnostic efficacy of each parameter during the venous stage was superior to that during the arterial and delayed stages. Furthermore, the diagnostic efficacy of the combined parameter throughout all three stages was superior to that of any single parameter. The AUC, sensitivity, and specificity of the optimal parameter, VP-ALL, were 0.931 (95% confidence interval: 0.872-0.990), 80.95%, and 95.00%, respectively. CONCLUSION When assessing the condition of LVI and PNI (perineural invasion) in patients with GC prior to surgery, the ability to diagnose these conditions using venous stage parameters was superior to that using arterial stage and delayed stage parameters. Furthermore, the diagnostic accuracy of using a combination of parameters was better than that of using individual parameters alone.
Collapse
Affiliation(s)
- Jing Wang
- Department of Radiology, Pingluo County People's Hospital, Shizuishan 753400, Ningxia Hui Autonomous Region, China
| | - Jian-Cheng Liang
- Department of Radiology, Pingluo County People's Hospital, Shizuishan 753400, Ningxia Hui Autonomous Region, China
| | - Fa-Te Lin
- Department of Gastrointestinal Surgery, Jiangsu Provincial People's Hospital, Nanjing 210029, Jiangsu Province, China
| | - Jun Ma
- Department of Radiology, Pingluo County People's Hospital, Shizuishan 753400, Ningxia Hui Autonomous Region, China
| |
Collapse
|
17
|
Chen Z, Zhang G, Liu Y, Zhu K. Radiomics analysis in predicting vascular invasion in gastric cancer based on enhanced CT: a preliminary study. BMC Cancer 2024; 24:1020. [PMID: 39152398 PMCID: PMC11330039 DOI: 10.1186/s12885-024-12793-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Vascular invasion (VI) is closely related to the metastasis, recurrence, prognosis, and treatment of gastric cancer. Currently, predicting VI preoperatively using traditional clinical examinations alone remains challenging. This study aims to explore the value of radiomics analysis based on preoperative enhanced CT images in predicting VI in gastric cancer. METHODS We retrospectively analyzed 194 patients with gastric adenocarcinoma who underwent enhanced CT examination. Based on pathology analysis, patients were divided into the VI group (n = 43) and the non-VI group (n = 151). Radiomics features were extracted from arterial phase (AP) and portal venous phase (PP) CT images. The radiomics score (Rad-score) was then calculated. Prediction models based on image features, clinical factors, and a combination of both were constructed. The diagnostic efficiency and clinical usefulness of the models were evaluated using receiver operating characteristic (ROC) curves and decision curve analysis (DCA). RESULTS The combined prediction model included the Rad-score of AP, the Rad-score of PP, Ki-67, and Lauren classification. In the training group, the area under the curve (AUC) of the combined prediction model was 0.83 (95% CI 0.76-0.89), with a sensitivity of 64.52% and a specificity of 92.45%. In the validation group, the AUC was 0.80 (95% CI 0.67-0.89), with a sensitivity of 66.67% and a specificity of 88.89%. DCA indicated that the combined prediction model might have a greater net clinical benefit than the clinical model alone. CONCLUSION The integrated models, incorporating enhanced CT radiomics features, Ki-67, and clinical factors, demonstrate significant predictive capability for VI. Moreover, the radiomics model has the potential to optimize personalized clinical treatment selection and patient prognosis assessment.
Collapse
Affiliation(s)
- Zhicheng Chen
- Department of Radiology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 100004, China
- Department of Radiology, The First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Guangfeng Zhang
- Department of Radiology, Children's Hospital Affiliated to Shandong University, 23976 Jingshi road, Huaiyin District, Jinan, 250000, China
- Department of Radiology, The First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yi Liu
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| | - Kexin Zhu
- Department of Radiology, The First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
18
|
Zhi H, Xiang Y, Chen C, Zhang W, Lin J, Gao Z, Shen Q, Shao J, Yang X, Yang Y, Chen X, Zheng J, Lu M, Pan B, Dong Q, Shen X, Ma C. Development and validation of a machine learning-based 18F-fluorodeoxyglucose PET/CT radiomics signature for predicting gastric cancer survival. Cancer Imaging 2024; 24:99. [PMID: 39080806 PMCID: PMC11290137 DOI: 10.1186/s40644-024-00741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Survival prognosis of patients with gastric cancer (GC) often influences physicians' choice of their follow-up treatment. This study aimed to develop a positron emission tomography (PET)-based radiomics model combined with clinical tumor-node-metastasis (TNM) staging to predict overall survival (OS) in patients with GC. METHODS We reviewed the clinical information of a total of 327 patients with pathological confirmation of GC undergoing 18 F-fluorodeoxyglucose (18 F-FDG) PET scans. The patients were randomly classified into training (n = 229) and validation (n = 98) cohorts. We extracted 171 PET radiomics features from the PET images and determined the PET radiomics scores (RS) using the least absolute shrinkage and selection operator (LASSO) and random survival forest (RSF). A radiomics model, including PET RS and clinical TNM staging, was constructed to predict the OS of patients with GC. This model was evaluated for discrimination, calibration, and clinical usefulness. RESULTS On multivariate COX regression analysis, the difference between age, carcinoembryonic antigen (CEA), clinical TNM, and PET RS in GC patients was statistically significant (p < 0.05). A radiomics model was developed based on the results of COX regression. The model had the Harrell's concordance index (C-index) of 0.817 in the training cohort and 0.707 in the validation cohort and performed better than a single clinical model and a model with clinical features combined with clinical TNM staging. Further analyses showed higher PET RS in patients who were older (p < 0.001) and those who had elevated CEA (p < 0.001) and higher clinical TNM (p < 0.001). At different clinical TNM stages, a higher PET RS was associated with a worse survival prognosis. CONCLUSIONS Radiomics models based on PET RS, clinical TNM, and clinical features may provide new tools for predicting OS in patients with GC.
Collapse
Affiliation(s)
- Huaiqing Zhi
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yilan Xiang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chenbin Chen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Weiteng Zhang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jie Lin
- Department of PET/CT, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zekan Gao
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qingzheng Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiancan Shao
- Department of General Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xinxin Yang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yunjun Yang
- Department of PET/CT, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaodong Chen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jingwei Zheng
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Mingdong Lu
- Department of General Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Bujian Pan
- Department of General Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiantong Dong
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xian Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Chunxue Ma
- Department of Gastrointestinal Surgery Nursing Unit, Ward 443, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
19
|
Wu A, Luo L, Zeng Q, Wu C, Shu X, Huang P, Wang Z, Hu T, Feng Z, Tu Y, Zhu Y, Cao Y, Li Z. Comparative assessment of the capability of machine learning-based radiomic models for predicting omental metastasis in locally advanced gastric cancer. Sci Rep 2024; 14:16208. [PMID: 39003337 PMCID: PMC11246510 DOI: 10.1038/s41598-024-66979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024] Open
Abstract
The study aims to investigate the predictive capability of machine learning algorithms for omental metastasis in locally advanced gastric cancer (LAGC) and to compare the performance metrics of various machine learning predictive models. A retrospective collection of 478 pathologically confirmed LAGC patients was undertaken, encompassing both clinical features and arterial phase computed tomography images. Radiomic features were extracted using 3D Slicer software. Clinical and radiomic features were further filtered through lasso regression. Selected clinical and radiomic features were used to construct omental metastasis predictive models using support vector machine (SVM), decision tree (DT), random forest (RF), K-nearest neighbors (KNN), and logistic regression (LR). The models' performance metrics included accuracy, area under the curve (AUC) of the receiver operating characteristic curve, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). In the training cohort, the RF predictive model surpassed LR, SVM, DT, and KNN in terms of accuracy, AUC, sensitivity, specificity, PPV, and NPV. Compared to the other four predictive models, the RF model significantly improved PPV. In the test cohort, all five machine learning predictive models exhibited lower PPVs. The DT model demonstrated the most significant variation in performance metrics relative to the other models, with a sensitivity of 0.231 and specificity of 0.990. The LR-based predictive model had the lowest PPV at 0.210, compared to the other four models. In the external validation cohort, the performance metrics of the predictive models were generally consistent with those in the test cohort. The LR-based model for predicting omental metastasis exhibited a lower PPV. Among the machine learning algorithms, the RF predictive model demonstrated higher accuracy and improved PPV relative to LR, SVM, KNN, and DT models.
Collapse
Affiliation(s)
- Ahao Wu
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lianghua Luo
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
- General Surgery Department of Jiangxi Provincial People's Hospital, Nanchang, 330006, Jiangxi Province, China
| | - Qingwen Zeng
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Changlei Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xufeng Shu
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Pang Huang
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Zhonghao Wang
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Tengcheng Hu
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Zongfeng Feng
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yi Tu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yi Cao
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Zhengrong Li
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Department of Digestive Surgery, Digestive Disease Hospital, The Third Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
20
|
Ding XM, Zhou HY, Wang YS, Cao JM, Ou J, Zhang XM, Chen TW. CT radiomics based on the peritumoral adipose region of gastric adenocarcinoma for preoperative prediction of lymph node metastasis. Eur J Radiol 2024; 175:111479. [PMID: 38663124 DOI: 10.1016/j.ejrad.2024.111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Accepted: 04/21/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE To construct and validate CT radiomics model based on the peritumoral adipose region of gastric adenocarcinoma to preoperatively predict lymph node metastasis (LNM). METHODS AND METHODS 293 consecutive gastric adenocarcinoma patients receiving radical gastrectomy with lymph node dissection in two medical institutions were stratified into a development set (from Institution A, n = 237), and an external validation set (from Institution B, n = 56). Volume of interest of peritumoral adipose region was segmented on preoperative portal-phase CT images. The least absolute shrinkage and selection operator method and stepwise logistic regression were used to select features and build radiomics models. Manual classification was performed according to routine CT characteristics. A classifier incorporating the radiomics score and CT characteristics was developed for predicting LNM. Area under the receiver operating characteristic curve (AUC) was used to show discrimination between tumors with and without LNM, and the calibration curves and Brier score were used to evaluate the predictive accuracy. Violin plots were used to show the distribution of radiomics score. RESULTS AUC values of radiomics model to predict LNM were 0.938, 0.905, and 0.872 in the training, internal test, and external validation sets, respectively, higher than that of manual classification (0.674, all P values < 0.01). The radiomics score of the positive LNM group were higher than that of the negative group in all sets (both P-values < 0.001). The classifier showed no improved predictive power compared with the radiomics signature alone with AUC values of 0.916 and 0.872 in the development and external validation sets, respectively. Multivariate analysis showed that radiomics score was an independent predictor. CONCLUSIONS Radiomics model based on peritumoral adipose region could be a useful approach for preoperative LNM prediction in gastric adenocarcinoma.
Collapse
Affiliation(s)
- Xue-Mei Ding
- The First Clinical College of Jinan University, Guangzhou 510630, China; Department of Radiology, The Second Clinical Medical School of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan 637000, China
| | - Hai-Ying Zhou
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Yue-Su Wang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Jin-Ming Cao
- Department of Radiology, The Second Clinical Medical School of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan 637000, China
| | - Jing Ou
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Xiao-Ming Zhang
- The First Clinical College of Jinan University, Guangzhou 510630, China; Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China.
| | - Tian-Wu Chen
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
21
|
He Y, Yang M, Hou R, Ai S, Nie T, Chen J, Hu H, Guo X, Liu Y, Yuan Z. Preoperative prediction of perineural invasion and lymphovascular invasion with CT radiomics in gastric cancer. Eur J Radiol Open 2024; 12:100550. [PMID: 38314183 PMCID: PMC10837067 DOI: 10.1016/j.ejro.2024.100550] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Objectives To determine whether contrast-enhanced CT radiomics features can preoperatively predict lymphovascular invasion (LVI) and perineural invasion (PNI) in gastric cancer (GC). Methods A total of 148 patients were included in the LVI group, and 143 patients were included in the PNI group. Three predictive models were constructed, including clinical, radiomics, and combined models. A nomogram was developed with clinical risk factors to predict LVI and PNI status. The predictive performance of the three models was mainly evaluated using the mean area under the curve (AUC). The performance of three predictive models was assessed concerning calibration and clinical usefulness. Results In the LVI group, the predictive power of the combined model (AUC=0.871, 0.822) outperformed the clinical model (AUC=0.792, 0.728) and the radiomics model (AUC=0.792, 0.728) in both the training and testing cohorts. In the PNI group, the combined model (AUC=0.834, 0.828) also had better predictive power than the clinical model (AUC=0.764, 0.632) and the radiomics model (AUC=0.764, 0.632) in both the training and testing cohorts. The combined models also showed good calibration and clinical usefulness for LVI and PNI prediction. Conclusion CECT-based radiomics analysis might serve as a non-invasive method to predict LVI and PNI status in GC.
Collapse
Affiliation(s)
- Yaoyao He
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Miao Yang
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Rong Hou
- Department of Patholoogy, Suizhou Hospital Affiliated to Hubei Medical College, 441300, PR China
| | - Shuangquan Ai
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Tingting Nie
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jun Chen
- Bayer Healthcare, Wuhan, PR China
| | - Huaifei Hu
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, PR China
| | - Xiaofang Guo
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yulin Liu
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zilong Yuan
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
22
|
Yuan N, Zhang Y, Lv K, Liu Y, Yang A, Hu P, Yu H, Han X, Guo X, Li J, Wang T, Lei B, Ma G. HCA-DAN: hierarchical class-aware domain adaptive network for gastric tumor segmentation in 3D CT images. Cancer Imaging 2024; 24:63. [PMID: 38773670 PMCID: PMC11107051 DOI: 10.1186/s40644-024-00711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/11/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Accurate segmentation of gastric tumors from CT scans provides useful image information for guiding the diagnosis and treatment of gastric cancer. However, automated gastric tumor segmentation from 3D CT images faces several challenges. The large variation of anisotropic spatial resolution limits the ability of 3D convolutional neural networks (CNNs) to learn features from different views. The background texture of gastric tumor is complex, and its size, shape and intensity distribution are highly variable, which makes it more difficult for deep learning methods to capture the boundary. In particular, while multi-center datasets increase sample size and representation ability, they suffer from inter-center heterogeneity. METHODS In this study, we propose a new cross-center 3D tumor segmentation method named Hierarchical Class-Aware Domain Adaptive Network (HCA-DAN), which includes a new 3D neural network that efficiently bridges an Anisotropic neural network and a Transformer (AsTr) for extracting multi-scale context features from the CT images with anisotropic resolution, and a hierarchical class-aware domain alignment (HCADA) module for adaptively aligning multi-scale context features across two domains by integrating a class attention map with class-specific information. We evaluate the proposed method on an in-house CT image dataset collected from four medical centers and validate its segmentation performance in both in-center and cross-center test scenarios. RESULTS Our baseline segmentation network (i.e., AsTr) achieves best results compared to other 3D segmentation models, with a mean dice similarity coefficient (DSC) of 59.26%, 55.97%, 48.83% and 67.28% in four in-center test tasks, and with a DSC of 56.42%, 55.94%, 46.54% and 60.62% in four cross-center test tasks. In addition, the proposed cross-center segmentation network (i.e., HCA-DAN) obtains excellent results compared to other unsupervised domain adaptation methods, with a DSC of 58.36%, 56.72%, 49.25%, and 62.20% in four cross-center test tasks. CONCLUSIONS Comprehensive experimental results demonstrate that the proposed method outperforms compared methods on this multi-center database and is promising for routine clinical workflows.
Collapse
Affiliation(s)
- Ning Yuan
- Department of Medical Imaging, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Yongtao Zhang
- School of Biomedical Engineering, Health Science Centers, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Kuan Lv
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yiyao Liu
- School of Biomedical Engineering, Health Science Centers, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Pianpian Hu
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Hongwei Yu
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Xiaowei Han
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xing Guo
- Department of Medical Imaging, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Junfeng Li
- Department of Medical Imaging, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Tianfu Wang
- School of Biomedical Engineering, Health Science Centers, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Baiying Lei
- School of Biomedical Engineering, Health Science Centers, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
- AI Research Center for Medical Image Analysis and Diagnosis, Shenzhen University, Guangdong, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
23
|
Tan Y, Feng LJ, Huang YH, Xue JW, Feng ZB, Long LL. Development and validation of a Radiopathomics model based on CT scans and whole slide images for discriminating between Stage I-II and Stage III gastric cancer. BMC Cancer 2024; 24:368. [PMID: 38519974 PMCID: PMC10960497 DOI: 10.1186/s12885-024-12021-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/18/2024] [Indexed: 03/25/2024] Open
Abstract
OBJECTIVE This study aimed to develop and validate an artificial intelligence radiopathological model using preoperative CT scans and postoperative hematoxylin and eosin (HE) stained slides to predict the pathological staging of gastric cancer (stage I-II and stage III). METHODS This study included a total of 202 gastric cancer patients with confirmed pathological staging (training cohort: n = 141; validation cohort: n = 61). Pathological histological features were extracted from HE slides, and pathological models were constructed using logistic regression (LR), support vector machine (SVM), and NaiveBayes. The optimal pathological model was selected through receiver operating characteristic (ROC) curve analysis. Machine learnin algorithms were employed to construct radiomic models and radiopathological models using the optimal pathological model. Model performance was evaluated using ROC curve analysis, and clinical utility was estimated using decision curve analysis (DCA). RESULTS A total of 311 pathological histological features were extracted from the HE images, including 101 Term Frequency-Inverse Document Frequency (TF-IDF) features and 210 deep learning features. A pathological model was constructed using 19 selected pathological features through dimension reduction, with the SVM model demonstrating superior predictive performance (AUC, training cohort: 0.949; validation cohort: 0.777). Radiomic features were constructed using 6 selected features from 1834 radiomic features extracted from CT scans via SVM machine algorithm. Simultaneously, a radiopathomics model was built using 17 non-zero coefficient features obtained through dimension reduction from a total of 2145 features (combining both radiomics and pathomics features). The best discriminative ability was observed in the SVM_radiopathomics model (AUC, training cohort: 0.953; validation cohort: 0.851), and clinical decision curve analysis (DCA) demonstrated excellent clinical utility. CONCLUSION The radiopathomics model, combining pathological and radiomic features, exhibited superior performance in distinguishing between stage I-II and stage III gastric cancer. This study is based on the prediction of pathological staging using pathological tissue slides from surgical specimens after gastric cancer curative surgery and preoperative CT images, highlighting the feasibility of conducting research on pathological staging using pathological slides and CT images.
Collapse
Affiliation(s)
- Yang Tan
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Li-Juan Feng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ying-He Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jia-Wen Xue
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Li-Ling Long
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, China.
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China.
| |
Collapse
|
24
|
Zhang W, Wang S, Dong Q, Chen W, Wang P, Zhu G, Chen X, Cai Y. Predictive nomogram for lymph node metastasis and survival in gastric cancer using contrast-enhanced computed tomography-based radiomics: a retrospective study. PeerJ 2024; 12:e17111. [PMID: 38525272 PMCID: PMC10960528 DOI: 10.7717/peerj.17111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Background Lymph node involvement significantly impacts the survival of gastric cancer patients and is a crucial factor in determining the appropriate treatment. This study aimed to evaluate the potential of enhanced computed tomography (CT)-based radiomics in predicting lymph node metastasis (LNM) and survival in patients with gastric cancer before surgery. Methods Retrospective analysis of clinical data from 192 patients diagnosed with gastric carcinoma was conducted. The patients were randomly divided into a training cohort (n = 128) and a validation cohort (n = 64). Radiomic features of CT images were extracted using the Pyradiomics software platform, and distinctive features were further selected using a Lasso Cox regression model. Features significantly associated with LNM were identified through univariate and multivariate analyses and combined with radiomic scores to create a nomogram model for predicting lymph node involvement before surgery. The predictive performance of radiomics features, CT-reported lymph node status, and the nomogram model for LNM were compared in the training and validation cohorts by plotting receiver operating characteristic (ROC) curves. High-risk and low-risk groups were identified in both cohorts based on the cut-off value of 0.582 within the radiomics evaluation scheme, and survival rates were compared. Results Seven radiomic features were identified and selected, and patients were stratified into high-risk and low-risk groups using a 0.582 cut-off radiomics score. Univariate and multivariate analyses revealed that radiomics features, diabetes mellitus, Nutrition Risk Screening (NRS) 2002 score, and CT-reported lymph node status were significant predictors of LNM in patients with gastric cancer. A predictive nomogram model was developed by combining these predictors with the radiomics score, which accurately predicted LNM in gastric cancer patients before surgery and outperformed other models in terms of accuracy and sensitivity. The AUC values for the training and validation cohorts were 0.82 and 0.722, respectively. The high-risk and low-risk groups in both the training and validation cohorts showed significant differences in survival rates. Conclusion The radiomics nomogram, based on contrast-enhanced computed tomography (CECT ), is a promising non-invasive tool for preoperatively predicting LNM in gastric cancer patients and postoperative survival.
Collapse
Affiliation(s)
- Weiteng Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sujun Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiantong Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenjing Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pengfei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guanbao Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaolei Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiqi Cai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Liu J, Leng X, Liu W, Ma Y, Qiu L, Zumureti T, Zhang H, Mila Y. An ultrasound-based nomogram model in the assessment of pathological complete response of neoadjuvant chemotherapy in breast cancer. Front Oncol 2024; 14:1285511. [PMID: 38500656 PMCID: PMC10946249 DOI: 10.3389/fonc.2024.1285511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction We aim to predict the pathological complete response (pCR) of neoadjuvant chemotherapy (NAC) in breast cancer patients by constructing a Nomogram based on radiomics models, clinicopathological features, and ultrasound features. Methods Ultrasound images of 464 breast cancer patients undergoing NAC were retrospectively analyzed. The patients were further divided into the training cohort and the validation cohort. The radiomics signatures (RS) before NAC treatment (RS1), after 2 cycles of NAC (RS2), and the different signatures between RS2 and RS1 (Delta-RS/RS1) were obtained. LASSO regression and random forest analysis were used for feature screening and model development, respectively. The independent predictors of pCR were screened from clinicopathological features, ultrasound features, and radiomics models by using univariate and multivariate analysis. The Nomogram model was constructed based on the optimal radiomics model and clinicopathological and ultrasound features. The predictive performance was evaluated with the receiver operating characteristic (ROC) curve. Results We found that RS2 had better predictive performance for pCR. In the validation cohort, the area under the ROC curve was 0.817 (95%CI: 0.734-0.900), which was higher than RS1 and Delta-RS/RS1. The Nomogram based on clinicopathological features, ultrasound features, and RS2 could accurately predict the pCR value, and had the area under the ROC curve of 0.897 (95%CI: 0.866-0.929) in the validation cohort. The decision curve analysis showed that the Nomogram model had certain clinical practical value. Discussion The Nomogram based on radiomics signatures after two cycles of NAC, and clinicopathological and ultrasound features have good performance in predicting the NAC efficacy of breast cancer.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Ultrasound, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong, China
| | - Xiaoling Leng
- Department of Ultrasound, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong, China
| | - Wen Liu
- Artificial Intelligence and Smart Mine Engineering Technology Center, Xinjiang Institute of Engineering, Urumqi, China
| | - Yuexin Ma
- Department of Ultrasound, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Lin Qiu
- Department of Ultrasound, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tuerhong Zumureti
- Department of Ultrasound, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Haijian Zhang
- Department of Ultrasound, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yeerlan Mila
- Department of Ultrasound, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
26
|
You Y, Wang Y, Yu X, Gao F, Li M, Li Y, Wang X, Jia L, Shi G, Yang L. Prediction of lymph node metastasis in advanced gastric adenocarcinoma based on dual-energy CT radiomics: focus on the features of lymph nodes with a short axis diameter ≥6 mm. Front Oncol 2024; 14:1369051. [PMID: 38496754 PMCID: PMC10940341 DOI: 10.3389/fonc.2024.1369051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
Objective To explore the value of the features of lymph nodes (LNs) with a short-axis diameter ≥6 mm in predicting lymph node metastasis (LNM) in advanced gastric adenocarcinoma (GAC) based on dual-energy CT (DECT) radiomics. Materials and methods Data of patients with GAC who underwent radical gastrectomy and LN dissection were retrospectively analyzed. To ensure the correspondence between imaging and pathology, metastatic LNs were only selected from patients with pN3, nonmetastatic LNs were selected from patients with pN0, and the short-axis diameters of the enrolled LNs were all ≥6 mm. The traditional features of LNs were recorded, including short-axis diameter, long-axis diameter, long-to-short-axis ratio, position, shape, density, edge, and the degree of enhancement; univariate and multivariate logistic regression analyses were used to establish a clinical model. Radiomics features at the maximum level of LNs were extracted in venous phase equivalent 120 kV linear fusion images and iodine maps. Intraclass correlation coefficients and the Boruta algorithm were used to screen significant features, and random forest was used to build a radiomics model. To construct a combined model, we included the traditional features with statistical significance in univariate analysis and radiomics scores (Rad-score) in multivariate logistic regression analysis. Receiver operating curve (ROC) curves and the DeLong test were used to evaluate and compare the diagnostic performance of the models. Decision curve analysis (DCA) was used to evaluate the clinical benefits of the models. Results This study included 114 metastatic LNs from 36 pN3 cases and 65 nonmetastatic LNs from 28 pN0 cases. The samples were divided into a training set (n=125) and a validation set (n=54) at a ratio of 7:3. Long-axis diameter and LN shape were independent predictors of LNM and were used to establish the clinical model; 27 screened radiomics features were used to build the radiomics model. LN shape and Rad-score were independent predictors of LNM and were used to construct the combined model. Both the radiomics model (area under the curve [AUC] of 0.986 and 0.984) and the combined model (AUC of 0.970 and 0.977) outperformed the clinical model (AUC of 0.772 and 0.820) in predicting LNM in both the training and validation sets. DCA showed superior clinical benefits from radiomics and combined models. Conclusion The models based on DECT LN radiomics features or combined traditional features have high diagnostic performance in determining the nature of each LN with a short-axis diameter of ≥6 mm in advanced GAC.
Collapse
Affiliation(s)
- Yang You
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Wang
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xianbo Yu
- CT Collaboration, Siemens Healthineers Ltd., Beijing, China
| | - Fengxiao Gao
- Department of Computed Tomography and Magnetic Resonance, Xing Tai People’s Hospital, Xingtai, China
| | - Min Li
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Li
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangming Wang
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Litao Jia
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gaofeng Shi
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Yang
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
27
|
Geng X, Zhang Y, Li Y, Cai Y, Liu J, Geng T, Meng X, Hao F. Radiomics-clinical nomogram for preoperative lymph node metastasis prediction in esophageal carcinoma. Br J Radiol 2024; 97:652-659. [PMID: 38268475 PMCID: PMC11027331 DOI: 10.1093/bjr/tqae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/10/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
OBJECTIVES This research aimed to develop a radiomics-clinical nomogram based on enhanced thin-section CT radiomics and clinical features for the purpose of predicting the presence or absence of metastasis in lymph nodes among patients with resectable esophageal squamous cell carcinoma (ESCC). METHODS This study examined the data of 256 patients with ESCC, including 140 cases with lymph node metastasis. Clinical information was gathered for each case, and radiomics features were derived from thin-section contrast-enhanced CT with the help of a 3D slicer. To validate risk factors that are independent of the clinical and radiomics models, least absolute shrinkage and selection operator logistic regression analysis was used. A nomogram pattern was constructed based on the radiomics features and clinical characteristics. The receiver operating characteristic curve and Brier Score were used to evaluate the model's discriminatory ability, the calibration plot to evaluate the model's calibration, and the decision curve analysis to evaluate the model's clinical utility. The confusion matrix was used to evaluate the applicability of the model. To evaluate the efficacy of the model, 1000 rounds of 5-fold cross-validation were conducted. RESULTS The clinical model identified esophageal wall thickness and clinical T (cT) stage as independent risk factors, whereas the radiomics pattern was built based on 4 radiomics features chosen at random. Area under the curve (AUC) values of 0.684 and 0.701 are observed for the radiomics approach and clinical model, respectively. The AUC of nomogram combining radiomics and clinical features was 0.711. The calibration plot showed good agreement between the incidence of lymph node metastasis predicted by the nomogram and the actual probability of occurrence. The nomogram model displayed acceptable levels of performance. After 1000 rounds of 5-fold cross-validation, the AUC and Brier score had median values of 0.702 (IQR: 0.65, 7.49) and 0.21 (IQR: 0.20, 0.23), respectively. High-risk patients (risk point >110) were found to have an increased risk of lymph node metastasis [odds ratio (OR) = 5.15, 95% CI, 2.95-8.99] based on the risk categorization. CONCLUSION A successful preoperative prediction performance for metastasis to the lymph nodes among patients with ESCC was demonstrated by the nomogram that incorporated CT radiomics, wall thickness, and cT stage. ADVANCES IN KNOWLEDGE This study demonstrates a novel radiomics-clinical nomogram for lymph node metastasis prediction in ESCC, which helps physicians determine lymph node status preoperatively.
Collapse
Affiliation(s)
- Xiaotao Geng
- Shandong University Cancer Center, Shandong University, 440 Jiyan Road, Jinan, 250117, China
- Department of Radiation Oncology, Weifang People’s Hospital, 151 Guangwen Street, Weifang, 261000, China
| | - Yaping Zhang
- Department of Radiology, Weifang People’s Hospital, 151 Guangwen Street, Weifang, 261000, China
| | - Yang Li
- Department of Radiation Oncology, Weifang People’s Hospital, 151 Guangwen Street, Weifang, 261000, China
| | - Yuanyuan Cai
- Department of Radiation Oncology, Weifang People’s Hospital, 151 Guangwen Street, Weifang, 261000, China
| | - Jie Liu
- Department of Radiation Oncology, Weifang People’s Hospital, 151 Guangwen Street, Weifang, 261000, China
| | - Tianxiang Geng
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, 0455, Norway
| | - Xiangdi Meng
- Department of Radiation Oncology, Weifang People’s Hospital, 151 Guangwen Street, Weifang, 261000, China
| | - Furong Hao
- Department of Radiation Oncology, Weifang People’s Hospital, 151 Guangwen Street, Weifang, 261000, China
| |
Collapse
|
28
|
Ge HT, Chen JW, Wang LL, Zou TX, Zheng B, Liu YF, Xue YJ, Lin WW. Preoperative prediction of lymphovascular and perineural invasion in gastric cancer using spectral computed tomography imaging and machine learning. World J Gastroenterol 2024; 30:542-555. [PMID: 38463023 PMCID: PMC10921149 DOI: 10.3748/wjg.v30.i6.542] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 01/15/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Lymphovascular invasion (LVI) and perineural invasion (PNI) are important prognostic factors for gastric cancer (GC) that indicate an increased risk of metastasis and poor outcomes. Accurate preoperative prediction of LVI/PNI status could help clinicians identify high-risk patients and guide treatment decisions. However, prior models using conventional computed tomography (CT) images to predict LVI or PNI separately have had limited accuracy. Spectral CT provides quantitative enhancement parameters that may better capture tumor invasion. We hypothesized that a predictive model combining clinical and spectral CT parameters would accurately preoperatively predict LVI/PNI status in GC patients. AIM To develop and test a machine learning model that fuses spectral CT parameters and clinical indicators to predict LVI/PNI status accurately. METHODS This study used a retrospective dataset involving 257 GC patients (training cohort, n = 172; validation cohort, n = 85). First, several clinical indicators, including serum tumor markers, CT-TN stages and CT-detected extramural vein invasion (CT-EMVI), were extracted, as were quantitative spectral CT parameters from the delineated tumor regions. Next, a two-step feature selection approach using correlation-based methods and information gain ranking inside a 10-fold cross-validation loop was utilized to select informative clinical and spectral CT parameters. A logistic regression (LR)-based nomogram model was subsequently constructed to predict LVI/PNI status, and its performance was evaluated using the area under the receiver operating characteristic curve (AUC). RESULTS In both the training and validation cohorts, CT T3-4 stage, CT-N positive status, and CT-EMVI positive status are more prevalent in the LVI/PNI-positive group and these differences are statistically significant (P < 0.05). LR analysis of the training group showed preoperative CT-T stage, CT-EMVI, single-energy CT values of 70 keV of venous phase (VP-70 keV), and the ratio of standardized iodine concentration of equilibrium phase (EP-NIC) were independent influencing factors. The AUCs of VP-70 keV and EP-NIC were 0.888 and 0.824, respectively, which were slightly greater than those of CT-T and CT-EMVI (AUC = 0.793, 0.762). The nomogram combining CT-T stage, CT-EMVI, VP-70 keV and EP-NIC yielded AUCs of 0.918 (0.866-0.954) and 0.874 (0.784-0.936) in the training and validation cohorts, which are significantly higher than using each of single independent factors (P < 0.05). CONCLUSION The study found that using portal venous and EP spectral CT parameters allows effective preoperative detection of LVI/PNI in GC, with accuracy boosted by integrating clinical markers.
Collapse
Affiliation(s)
- Hui-Ting Ge
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou 350001, Fujian Province, China
- Digestive, Hematological and Breast Malignancies, Clinical Research Center for Radiology and Radiotherapy of Fujian Province, Fuzhou 350001, Fujian Province, China
| | - Jian-Wu Chen
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou 350001, Fujian Province, China
- Digestive, Hematological and Breast Malignancies, Clinical Research Center for Radiology and Radiotherapy of Fujian Province, Fuzhou 350001, Fujian Province, China
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Li-Li Wang
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou 350001, Fujian Province, China
- Digestive, Hematological and Breast Malignancies, Clinical Research Center for Radiology and Radiotherapy of Fujian Province, Fuzhou 350001, Fujian Province, China
- Department of Diagnostic Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Tian-Xiu Zou
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Bin Zheng
- School of Electrical and Computer Engineering, University of Oklahoma, Oklahoma, OK 73019, United States
| | - Yuan-Fen Liu
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Yun-Jing Xue
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Wei-Wen Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
29
|
Zhang C, Wang C, Mao G, Cheng G, Ji H, He L, Yang Y, Hu H, Wang J. Radiomics analysis of contrast-enhanced computerized tomography for differentiation of gastric schwannomas from gastric gastrointestinal stromal tumors. J Cancer Res Clin Oncol 2024; 150:87. [PMID: 38336926 PMCID: PMC10858083 DOI: 10.1007/s00432-023-05545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/20/2023] [Indexed: 02/12/2024]
Abstract
PURPOSE To assess the performance of radiomics-based analysis of contrast-enhanced computerized tomography (CE-CT) images for distinguishing GS from gastric GIST. METHODS Forty-nine patients with GS and two hundred fifty-three with GIST were enrolled in this retrospective study. CT features were evaluated by two associate chief radiologists. Radiomics features were extracted from portal venous phase images using Pyradiomics software. A non-radiomics dataset (combination of clinical characteristics and radiologist-determined CT features) and a radiomics dataset were used to build stepwise logistic regression and least absolute shrinkage and selection operator (LASSO) logistic regression models, respectively. Model performance was evaluated according to sensitivity, specificity, accuracy, and receiver operating characteristic (ROC) curve, and Delong's test was applied to compare the area under the curve (AUC) between different models. RESULTS A total of 1223 radiomics features were extracted from portal venous phase images. After reducing dimensions by calculating Pearson correlation coefficients (PCCs), 20 radiomics features, 20 clinical characteristics + CT features were used to build the models, respectively. The AUC values for the models using radiomics features and those using clinical features were more than 0.900 for both the training and validation groups. There were no significant differences in predictive performance between the radiomic and clinical data models according to Delong's test. CONCLUSION A radiomics-based model applied to CE-CT images showed comparable predictive performance to senior physicians in the differentiation of GS from GIST.
Collapse
Affiliation(s)
- Cui Zhang
- Department of Radiology, TongDe Hospital of ZheJiang Province, No. 234, Gucui Road, Hangzhou, 310013, Zhejiang, China
| | - Chongwei Wang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guoqun Mao
- Department of Radiology, TongDe Hospital of ZheJiang Province, No. 234, Gucui Road, Hangzhou, 310013, Zhejiang, China
| | | | - Hongli Ji
- Jianpei Technology, Hangzhou, Zhejiang, China
| | - Linyang He
- Jianpei Technology, Hangzhou, Zhejiang, China
| | - Yang Yang
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Wang
- Department of Radiology, TongDe Hospital of ZheJiang Province, No. 234, Gucui Road, Hangzhou, 310013, Zhejiang, China.
| |
Collapse
|
30
|
Tan Y, Feng LJ, Huang YH, Xue JW, Long LL, Feng ZB. A comprehensive radiopathological nomogram for the prediction of pathological staging in gastric cancer using CT-derived and WSI-based features. Transl Oncol 2024; 40:101864. [PMID: 38141376 PMCID: PMC10788295 DOI: 10.1016/j.tranon.2023.101864] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023] Open
Abstract
OBJECTIVE This study aims to develop and validate an innovative radiopathomics model that combines radiomics and pathomics features to effectively differentiate between stages I-II and stage III gastric cancer (pathological staging). METHODS Our study included 200 patients with well-defined stages of gastric cancer divided into a training cohort (n = 140) and a test cohort (n = 60). Radiomics features were extracted from contrast-enhanced CT images using PyRadiomics, while pathomics features were obtained from whole slide images of pathological specimens through a fine-tuned deep learning model (ResNet-18). After rigorous feature dimensionality reduction and selection, we constructed radiomics models (SVM_rad, LR_rad, and MLP_rad) and pathomics models (SVM_path, LR_path, and MLP_path) utilizing support vector machine (SVM), logistic regression (LR), and multilayer perceptron (MLP) algorithms. The optimal radiomics and pathomics models were chosen based on comprehensive evaluation criteria such as ROC curves, Hosmer‒Lemeshow tests, and calibration curve tests. Feature patterns extracted from the best-performing radiomics model (MLP_rad) and pathomics model (SVM_rad) were integrated to create a powerful radiopathomics nomogram. RESULTS From a pool of 1834 radiomics features extracted from CT images, 14 were selected to construct radiomics models. Among these, the MLP_rad model exhibited the most robust predictive performance (AUC, training cohort: 0.843; test cohort: 0.797). Likewise, 10 pathomics features were chosen from 512 extracted from whole slide images to build pathomics models, with the SVM_path model demonstrating the highest predictive efficiency (AUC, training cohort: 0.937; test cohort: 0.792). The combined radiopathomics nomogram model exhibited optimal discriminative ability (AUC, training cohort: 0.951; test cohort: 0.837), as confirmed by decision curve analysis (DCA), which indicated superior clinical effectiveness. CONCLUSION This study presents a cutting-edge radiopathomics nomogram model designed to predict pathological staging in gastric cancer, distinguishing between stages I-II and stage III. Our research leverages preoperative CT images and histopathological slides to forecast gastric cancer staging accurately, potentially facilitating the estimation of staging before radical gastric cancer surgery in the future.
Collapse
Affiliation(s)
- Yang Tan
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Li-Juan Feng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Ying-He Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, PR China
| | - Jia-Wen Xue
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Li-Ling Long
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, PR China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, PR China.
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| |
Collapse
|
31
|
Miura Y, Ohgi K, Ashida R, Yamada M, Otsuka S, Sasaki K, Uesaka K, Sugiura T. Efficacy of lymph node dissection for duodenal cancer according to the lymph node station. Ann Gastroenterol Surg 2024; 8:51-59. [PMID: 38250683 PMCID: PMC10797846 DOI: 10.1002/ags3.12731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 01/23/2024] Open
Abstract
Background Lymph node metastasis (LNM) is associated with poor prognosis in patients with duodenal cancer (DC). However, the efficacy and optimal extent of lymph node (LN) dissection have not been thoroughly discussed. Methods A total of 98 consecutive patients with DC who underwent surgical resection (pancreatoduodenectomy, n = 55; partial resection, n = 32; pancreas-sparing total duodenectomy, n = 9) were retrospectively analyzed. The LN stations located upstream of the lymphatic flow were defined as Np stations according to tumor location, whereas the others were defined as Nd stations. The association between the dissection of each LN station and survival outcome was investigated using the efficacy index (EI; percentage of metastases to lymph nodes in each station multiplied by the 5-year survival rate of metastatic cases). Results The survival of patients with LNM at the Nd stations (n = 6) was significantly worse than that of patients with LNM only at the Np stations (n = 20) (relapse-free survival, median survival time [MST], 6.0 vs. 48.4 months, p < 0.001; overall survival, MST, 15.1 vs. 96.0 months, p < 0.001). Multivariate analysis identified LNM at Nd stations as an independent prognostic factor for overall survival (hazard ratio 9.92; p = 0.015). The Np stations had a high EI (range, 8.34-20.88), whereas the Nd stations had an EI of 0, regardless of the tumor location. Conclusions LN dissection of the Np stations contributed to acceptable survival, whereas LNM of the Nd stations led to poor survival, possibly reflecting advanced tumor progression to systemic disease in patients with DC.
Collapse
Affiliation(s)
- Yuya Miura
- Division of Hepato‐Biliary‐Pancreatic SurgeryShizuoka Cancer CenterShizuokaJapan
| | - Katsuhisa Ohgi
- Division of Hepato‐Biliary‐Pancreatic SurgeryShizuoka Cancer CenterShizuokaJapan
| | - Ryo Ashida
- Division of Hepato‐Biliary‐Pancreatic SurgeryShizuoka Cancer CenterShizuokaJapan
| | - Mihoko Yamada
- Division of Hepato‐Biliary‐Pancreatic SurgeryShizuoka Cancer CenterShizuokaJapan
| | - Shimpei Otsuka
- Division of Hepato‐Biliary‐Pancreatic SurgeryShizuoka Cancer CenterShizuokaJapan
| | - Keiko Sasaki
- Division of Diagnostic PathologyShizuoka Cancer CenterShizuokaJapan
| | - Katsuhiko Uesaka
- Division of Hepato‐Biliary‐Pancreatic SurgeryShizuoka Cancer CenterShizuokaJapan
| | - Teiichi Sugiura
- Division of Hepato‐Biliary‐Pancreatic SurgeryShizuoka Cancer CenterShizuokaJapan
| |
Collapse
|
32
|
Lu T, Fang Y, Liu H, Chen C, Li T, Lu M, Song D. Comparison of Machine Learning and Logic Regression Algorithms for Predicting Lymph Node Metastasis in Patients with Gastric Cancer: A two-Center Study. Technol Cancer Res Treat 2024; 23:15330338231222331. [PMID: 38190617 PMCID: PMC10775719 DOI: 10.1177/15330338231222331] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024] Open
Abstract
OBJECTIVES This two-center study aimed to establish a model for predicting the risk of lymph node metastasis in gastric cancer patients using machine learning (ML) and logistic regression (LR) algorithms, and to evaluate its predictive performance in clinical practice. METHODS Data of a total of 369 patients who underwent radical gastrectomy in the Department of General Surgery of Affiliated Hospital of Xuzhou Medical University (Xuzhou, China) from March 2016 to November 2019 were collected and retrospectively analyzed as the training group. In addition, data of 123 patients who underwent radical gastrectomy in the Department of General Surgery of Jining First People's Hospital (Jining, China) were collected and analyzed as the verification group. Besides, 7 ML and logistic models were developed, including decision tree, random forest, support vector machine (SVM), gradient boosting machine (GBM), naive Bayes, neural network, and LR, in order to evaluate the occurrence of lymph node metastasis in patients with gastric cancer. The ML model was established following 10 cross-validation iterations within the training dataset, and subsequently, each model was assessed using the test dataset. The model's performance was evaluated by comparing the area under the receiver operating characteristic curve of each model. RESULTS Compared with the traditional logistic model, among the 7 ML algorithms, except for SVM, the other models exhibited higher accuracy and reliability, and the influences of various risk factors on the model were more intuitive. CONCLUSION For the prediction of lymph node metastasis in gastric cancer patients, the ML algorithm outperformed traditional LR, and the GBM algorithm exhibited the most robust predictive capability.
Collapse
Affiliation(s)
- Tong Lu
- Department of emergency medicine, Jining No.1 People's Hospital, Jining, China
| | - Yu Fang
- Jiangsu Normal University, Xuzhou, China
| | - Haonan Liu
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chong Chen
- Department of Gastroenterology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Taotao Li
- Department of emergency medicine, Jining No.1 People's Hospital, Jining, China
| | - Miao Lu
- Wuxi Mental Health Center, Wuxi, China
| | - Daqing Song
- Department of emergency medicine, Jining No.1 People's Hospital, Jining, China
| |
Collapse
|
33
|
Teng F, Fu YF, Wu AL, Xian YT, Lin J, Han R, Yin YF. Computed Tomography-Based Predictive Model for the Probability of Lymph Node Metastasis in Gastric Cancer: A Meta-analysis. J Comput Assist Tomogr 2024; 48:19-25. [PMID: 37551145 DOI: 10.1097/rct.0000000000001530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
OBJECTIVES Whether or not a gastric cancer (GC) patient exhibits lymph node metastasis (LNM) is critical to accurately guiding their treatment and prognostic evaluation, necessitating the ability to reliably predict preoperative LNM status. The present meta-analysis sought to examine the diagnostic value of computed tomography (CT)-based predictive models as a tool to gauge the preoperative LNM status of patients with GC. METHODS Relevant articles were identified in the PubMed, Web of Science, and Wanfang databases. These studies were used to conduct pooled analyses examining sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) values, and area under the curve values were computed for summary receiver operating characteristic curves. RESULTS The final meta-analysis incorporated data from 15 studies, all of which were conducted in China, enrolling 3,817 patients with GC (LNM+: 1790; LNM-: 2027). The developed CT-based predictive model exhibited respective pooled sensitivity, specificity, PLR, and NLR values of 84% (95% confidence interval [CI], 0.79-0.87), 81% (95% CI, 0.76-0.85), 4.39 (95% CI, 3.40-5.67), and 0.20 (95% CI, 0.16-0.26). The identified results were not associated with significant potential for publication bias ( P = 0.071). Similarly, CT-based analyses of LN status exhibited respective pooled sensitivity, specificity, PLR, and NLR values of 62% (95% CI, 0.53-0.70), 77% (95% CI, 0.72-0.81), 2.71 (95% CI, 2.20-3.33), and 0.49 (95% CI, 0.40-0.61), with no significant risk of publication bias ( P = 0.984). CONCLUSIONS Overall, the present meta-analysis revealed that a CT-based predictive model may outperform CT-based analyses alone when assessing the preoperative LNM status of patients with GC, offering superior diagnostic utility.
Collapse
Affiliation(s)
- Fei Teng
- From the Department of Interventional Radiology, Ningbo First Hospital, Ningbo
| | - Yu-Fei Fu
- Department of Radiology, Xuzhou Central Hospital, Xuzhou
| | - An-Le Wu
- From the Department of Interventional Radiology, Ningbo First Hospital, Ningbo
| | - Yu-Tao Xian
- From the Department of Interventional Radiology, Ningbo First Hospital, Ningbo
| | - Jia Lin
- From the Department of Interventional Radiology, Ningbo First Hospital, Ningbo
| | - Rui Han
- From the Department of Interventional Radiology, Ningbo First Hospital, Ningbo
| | - Yong-Fang Yin
- Department of Gastrointestinal Surgery, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
34
|
Ma S, Lu H, Jing G, Li Z, Zhang Q, Ma X, Chen F, Shao C, Lu Y, Wang H, Shen F. Deep learning-based clinical-radiomics nomogram for preoperative prediction of lymph node metastasis in patients with rectal cancer: a two-center study. Front Med (Lausanne) 2023; 10:1276672. [PMID: 38105891 PMCID: PMC10722265 DOI: 10.3389/fmed.2023.1276672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Background Precise preoperative evaluation of lymph node metastasis (LNM) is crucial for ensuring effective treatment for rectal cancer (RC). This research aims to develop a clinical-radiomics nomogram based on deep learning techniques, preoperative magnetic resonance imaging (MRI) and clinical characteristics, enabling the accurate prediction of LNM in RC. Materials and methods Between January 2017 and May 2023, a total of 519 rectal cancer cases confirmed by pathological examination were retrospectively recruited from two tertiary hospitals. A total of 253 consecutive individuals were selected from Center I to create an automated MRI segmentation technique utilizing deep learning algorithms. The performance of the model was evaluated using the dice similarity coefficient (DSC), the 95th percentile Hausdorff distance (HD95), and the average surface distance (ASD). Subsequently, two external validation cohorts were established: one comprising 178 patients from center I (EVC1) and another consisting of 88 patients from center II (EVC2). The automatic segmentation provided radiomics features, which were then used to create a Radscore. A predictive nomogram integrating the Radscore and clinical parameters was constructed using multivariate logistic regression. Receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA) were employed to evaluate the discrimination capabilities of the Radscore, nomogram, and subjective evaluation model, respectively. Results The mean DSC, HD95 and ASD were 0.857 ± 0.041, 2.186 ± 0.956, and 0.562 ± 0.194 mm, respectively. The nomogram, which incorporates MR T-stage, CEA, CA19-9, and Radscore, exhibited a higher area under the ROC curve (AUC) compared to the Radscore and subjective evaluation in the training set (0.921 vs. 0.903 vs. 0.662). Similarly, in both external validation sets, the nomogram demonstrated a higher AUC than the Radscore and subjective evaluation (0.908 vs. 0.735 vs. 0.640, and 0.884 vs. 0.802 vs. 0.734). Conclusion The application of the deep learning method enables efficient automatic segmentation. The clinical-radiomics nomogram, utilizing preoperative MRI and automatic segmentation, proves to be an accurate method for assessing LNM in RC. This approach has the potential to enhance clinical decision-making and improve patient care. Research registration unique identifying number UIN Research registry, identifier 9158, https://www.researchregistry.com/browse-the-registry#home/registrationdetails/648e813efffa4e0028022796/.
Collapse
Affiliation(s)
- Shiyu Ma
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Haidi Lu
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Guodong Jing
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Zhihui Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qianwen Zhang
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Xiaolu Ma
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Fangying Chen
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Yong Lu
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hao Wang
- Department of Colorectal Surgery, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Fu Shen
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| |
Collapse
|
35
|
Tian C, Ma X, Lu H, Wang Q, Shao C, Yuan Y, Shen F. Deep learning models for preoperative T-stage assessment in rectal cancer using MRI: exploring the impact of rectal filling. Front Med (Lausanne) 2023; 10:1326324. [PMID: 38105894 PMCID: PMC10722089 DOI: 10.3389/fmed.2023.1326324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
Background The objective of this study was twofold: firstly, to develop a convolutional neural network (CNN) for automatic segmentation of rectal cancer (RC) lesions, and secondly, to construct classification models to differentiate between different T-stages of RC. Additionally, it was attempted to investigate the potential benefits of rectal filling in improving the performance of deep learning (DL) models. Methods A retrospective study was conducted, including 317 consecutive patients with RC who underwent MRI scans. The datasets were randomly divided into a training set (n = 265) and a test set (n = 52). Initially, an automatic segmentation model based on T2-weighted imaging (T2WI) was constructed using nn-UNet. The performance of the model was evaluated using the dice similarity coefficient (DSC), the 95th percentile Hausdorff distance (HD95), and the average surface distance (ASD). Subsequently, three types of DL-models were constructed: Model 1 trained on the total training dataset, Model 2 trained on the rectal-filling dataset, and Model 3 trained on the non-filling dataset. The diagnostic values were evaluated and compared using receiver operating characteristic (ROC) curve analysis, confusion matrix, net reclassification index (NRI), and decision curve analysis (DCA). Results The automatic segmentation showed excellent performance. The rectal-filling dataset exhibited superior results in terms of DSC and ASD (p = 0.006 and 0.017). The DL-models demonstrated significantly superior classification performance to the subjective evaluation in predicting T-stages for all test datasets (all p < 0.05). Among the models, Model 1 showcased the highest overall performance, with an area under the curve (AUC) of 0.958 and an accuracy of 0.962 in the filling test dataset. Conclusion This study highlighted the utility of DL-based automatic segmentation and classification models for preoperative T-stage assessment of RC on T2WI, particularly in the rectal-filling dataset. Compared with subjective evaluation, the models exhibited superior performance, suggesting their noticeable potential for enhancing clinical diagnosis and treatment practices.
Collapse
Affiliation(s)
- Chang Tian
- School of Information Science and Technology and School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Xiaolu Ma
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Haidi Lu
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Qian Wang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Yuan Yuan
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Fu Shen
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| |
Collapse
|
36
|
Niu Y, Yu X, Wen L, Bi F, Jian L, Liu S, Yang Y, Zhang Y, Lu Q. Comparison of preoperative CT- and MRI-based multiparametric radiomics in the prediction of lymph node metastasis in rectal cancer. Front Oncol 2023; 13:1230698. [PMID: 38074652 PMCID: PMC10708912 DOI: 10.3389/fonc.2023.1230698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/08/2023] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE To compare computed tomography (CT)- and magnetic resonance imaging (MRI)-based multiparametric radiomics models and validate a multi-modality, multiparametric clinical-radiomics nomogram for individual preoperative prediction of lymph node metastasis (LNM) in rectal cancer (RC) patients. METHODS 234 rectal adenocarcinoma patients from our retrospective study cohort were randomly selected as the training (n = 164) and testing (n = 70) cohorts. The radiomics features of the primary tumor were extracted from the non-contrast enhanced computed tomography (NCE-CT), the enhanced computed tomography (CE-CT), the T2-weighted imaging (T2WI) and the gadolinium contrast-enhanced T1-weighted imaging (CE-TIWI) of each patient. Three kinds of models were constructed based on training cohort, including the Clinical model (based on the clinical features), the radiomics models (based on NCE-CT, CE-CT, T2WI, CE-T1WI, CT, MRI, CT combing with MRI) and the clinical-radiomics models (based on CT or MRI radiomics model combing with clinical data) and Clinical-IMG model (based on CT and MRI radiomics model combing with clinical data). The performances of the 11 models were evaluated via the area under the receiver operator characteristic curve (AUC), accuracy, sensitivity, and specificity in the training and validation cohort. Differences in the AUCs among the 11 models were compared using DeLong's test. Finally, the optimal model (Clinical-IMG model) was selected to create a radiomics nomogram. The performance of the nomogram to evaluate clinical efficacy was verified by ROC curves and decision curve analysis (DCA). RESULTS The MRI radiomics model in the validation cohort significantly outperformed than CT radiomics model (AUC, 0.785 vs. 0.721, p<0.05). The Clinical-IMG nomogram had the highest prediction efficiency than all other predictive models (p<0.05), of which the AUC was 0.947, the sensitivity was 0.870 and the specificity was 0.884. CONCLUSION MRI radiomics model performed better than both CT radiomics model and Clinical model in predicting LNM of RC. The clinical-radiomics nomogram that combines the radiomics features obtained from both CT and MRI along with preoperative clinical characteristics exhibits the best diagnostic performance.
Collapse
Affiliation(s)
- Yue Niu
- Department of Diagnostic Radiology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Diagnostic Radiology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaoping Yu
- Department of Diagnostic Radiology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Diagnostic Radiology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lu Wen
- Department of Diagnostic Radiology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Feng Bi
- Department of Diagnostic Radiology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lian Jian
- Department of Diagnostic Radiology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Siye Liu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yanhui Yang
- Department of Diagnostic Radiology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Diagnostic Radiology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yi Zhang
- Department of Diagnostic Radiology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Diagnostic Radiology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qiang Lu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
37
|
Ma ZJ, Ma ZX, Sun YL, Li DC, Jin L, Gao P, Li C, Li M. Prediction of subsolid pulmonary nodule growth rate using radiomics. BMC Med Imaging 2023; 23:177. [PMID: 37936095 PMCID: PMC10629176 DOI: 10.1186/s12880-023-01143-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Pulmonary nodule growth rate assessment is critical in the management of subsolid pulmonary nodules (SSNs) during clinical follow-up. The present study aimed to develop a model to predict the growth rate of SSNs. METHODS A total of 273 growing SSNs with clinical information and 857 computed tomography (CT) scans were retrospectively analyzed. The images were randomly divided into training and validation sets. All images were categorized into fast-growth (volume doubling time (VDT) ≤ 400 days) and slow-growth (VDT > 400 days) groups. Models for predicting the growth rate of SSNs were developed using radiomics and clinical features. The models' performance was evaluated using the area under the curve (AUC) values for the receiver operating characteristic curve. RESULTS The fast- and slow-growth groups included 108 and 749 scans, respectively, and 10 radiomics features and three radiographic features (nodule density, presence of spiculation, and presence of vascular changes) were selected to predict the growth rate of SSNs. The nomogram integrating radiomics and radiographic features (AUC = 0.928 and AUC = 0.905, respectively) performed better than the radiographic (AUC = 0.668 and AUC = 0.689, respectively) and radiomics (AUC = 0.888 and AUC = 0.816, respectively) models alone in both the training and validation sets. CONCLUSION The nomogram model developed by combining radiomics with radiographic features can predict the growth rate of SSNs more accurately than traditional radiographic models. It can also optimize clinical treatment decisions for patients with SSNs and improve their long-term management.
Collapse
Affiliation(s)
- Zong Jing Ma
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Zhuang Xuan Ma
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Ying Li Sun
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - De Chun Li
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Liang Jin
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Pan Gao
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Cheng Li
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Ming Li
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
38
|
Zhao Y, Li L, Han K, Li T, Duan J, Sun Q, Zhu C, Liang D, Chai N, Li ZC. A radio-pathologic integrated model for prediction of lymph node metastasis stage in patients with gastric cancer. Abdom Radiol (NY) 2023; 48:3332-3342. [PMID: 37716926 DOI: 10.1007/s00261-023-04037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Accurate prediction of lymph node metastasis stage (LNMs) facilitates precision therapy for gastric cancer. We aimed to develop and validate a deep learning-based radio-pathologic model to predict the LNM stage in patients with gastric cancer by integrating CT images and histopathological whole-slide images (WSIs). METHODS A total of 252 patients were enrolled and randomly divided into a training set (n = 202) and a testing set (n = 50). Both pretreatment contrast-enhanced abdominal CT and WSI of biopsy specimens were collected for each patient. The deep radiologic and pathologic features were extracted from CT and WSI using ResNet-50 and Vision Transformer (ViT) network, respectively. By fusing both radiologic and pathologic features, a radio-pathologic integrated model was constructed to predict the five LNM stages. For comparison, four single-modality models using CT images or WSIs were also constructed, respectively. All models were trained on the training set and validated on the testing set. RESULTS The radio-pathologic integrated mode achieved an overall accuracy of 84.0% and a kappa coefficient of 0.795 on the testing set. The areas under the curves (AUCs) of the integrated model in predicting the five LNM stages were 0.978 (95% Confidence Interval (CI 0.917-1.000), 0.946 (95% CI 0.867-1.000), 0.890 (95% CI 0.718-1.000), 0.971 (95% CI 0.920-1.000), and 0.982 (95% CI 0.911-1.000), respectively. Moreover, the integrated model achieved an AUC of 0.978 (95% CI 0.912-1.000) in predicting the binary status of nodal metastasis. CONCLUSION Our study suggests that radio-pathologic integrated model that combined both macroscale radiologic image and microscale pathologic image can better predict lymph node metastasis stage in patients with gastric cancer.
Collapse
Affiliation(s)
- Yuanshen Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Longsong Li
- Department of Gastroenterology, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Ke Han
- Department of Gastroenterology, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Tao Li
- Department of Radiology, The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Jingxian Duan
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qiuchang Sun
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chaofan Zhu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
- Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China
| | - Ningli Chai
- Department of Gastroenterology, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China.
| | - Zhi-Cheng Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- National Innovation Center for Advanced Medical Devices, Shenzhen, China.
- Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China.
| |
Collapse
|
39
|
Liu M, Chang N, Zhang S, Du Y, Zhang X, Ren W, Sun J, Bai J, Wang L, Zhang G. Identification of vulnerable carotid plaque with CT-based radiomics nomogram. Clin Radiol 2023; 78:e856-e863. [PMID: 37633746 DOI: 10.1016/j.crad.2023.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/08/2023] [Accepted: 07/26/2023] [Indexed: 08/28/2023]
Abstract
AIM To develop and validate a radiomics nomogram for identifying high-risk carotid plaques on computed tomography (CT) angiography (CTA). MATERIALS AND METHODS A total of 280 patients with symptomatic (n=131) and asymptomatic (n=139) carotid plaques were divided into a training set (n=135), validation set (n=58), and external test set (n=87). Radiomic features were extracted from CTA images. A radiomics model was constructed based on selected features and a radiomics score (rad-score) was calculated. A clinical factor model was constructed by demographics and CT findings. A radiomics nomogram combining independent clinical factors and the rad-score was constructed. The diagnostic performance of three models was evaluated and validated by region of characteristic curves. RESULTS Calcification and maximum plaque thickness were the independent clinical factors. Twenty-four features were used to build the radiomics signature. In the validation set, the nomogram (area under the curve [AUC], 0.977; 95% CI, 0.899-0.999) performed better (p=0.017 and p=0.031) than the clinical factor model (AUC, 0.862; 95% CI, 0.746-0.938) and radiomics signature (AUC, 0.944; 95% CI, 0.850-0.987). In external test set, the nomogram (AUC, 0.952; 95% CI, 0.884-0.987) and radiomics signature (AUC, 0.932; 95% CI, 0.857-0.975) showed better discrimination capability (p=0.002 and p=0.037) than clinical factor model (AUC, 0.818; 95% CI, 0.721-0.892). CONCLUSION The CT-based nomogram showed satisfactory performance in identification of high-risk plaques in carotid arteries, and it may serve as a potential non-invasive tool to identify carotid plaque vulnerability and risk stratification.
Collapse
Affiliation(s)
- M Liu
- Department of Health Management, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - N Chang
- Department of Medical Technology, Jinan Nursing Vocational College, No. 3636 Gangxi Road, Jinan 250021, Shandong, China
| | - S Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan China; Postgraduate Department, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, China
| | - Y Du
- Department of Health Management, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - X Zhang
- Postgraduate Department, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, China
| | - W Ren
- Postgraduate Department, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, China
| | - J Sun
- Postgraduate Department, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, China
| | - J Bai
- Department of Computed Tomography, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, China
| | - L Wang
- Physical Examination Centre, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - G Zhang
- Department of Health Management, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.
| |
Collapse
|
40
|
HajiEsmailPoor Z, Tabnak P, Baradaran B, Pashazadeh F, Aghebati-Maleki L. Diagnostic performance of CT scan-based radiomics for prediction of lymph node metastasis in gastric cancer: a systematic review and meta-analysis. Front Oncol 2023; 13:1185663. [PMID: 37936604 PMCID: PMC10627242 DOI: 10.3389/fonc.2023.1185663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/30/2023] [Indexed: 11/09/2023] Open
Abstract
Objective The purpose of this study was to evaluate the diagnostic performance of computed tomography (CT) scan-based radiomics in prediction of lymph node metastasis (LNM) in gastric cancer (GC) patients. Methods PubMed, Embase, Web of Science, and Cochrane Library databases were searched for original studies published until 10 November 2022, and the studies satisfying the inclusion criteria were included. Characteristics of included studies and radiomics approach and data for constructing 2 × 2 tables were extracted. The radiomics quality score (RQS) and Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) were utilized for the quality assessment of included studies. Overall sensitivity, specificity, diagnostic odds ratio (DOR), and area under the curve (AUC) were calculated to assess diagnostic accuracy. The subgroup analysis and Spearman's correlation coefficient was done for exploration of heterogeneity sources. Results Fifteen studies with 7,010 GC patients were included. We conducted analyses on both radiomics signature and combined (based on signature and clinical features) models. The pooled sensitivity, specificity, DOR, and AUC of radiomics models compared to combined models were 0.75 (95% CI, 0.67-0.82) versus 0.81 (95% CI, 0.75-0.86), 0.80 (95% CI, 0.73-0.86) versus 0.85 (95% CI, 0.79-0.89), 13 (95% CI, 7-23) versus 23 (95% CI, 13-42), and 0.85 (95% CI, 0.81-0.86) versus 0.90 (95% CI, 0.87-0.92), respectively. The meta-analysis indicated a significant heterogeneity among studies. The subgroup analysis revealed that arterial phase CT scan, tumoral and nodal regions of interest (ROIs), automatic segmentation, and two-dimensional (2D) ROI could improve diagnostic accuracy compared to venous phase CT scan, tumoral-only ROI, manual segmentation, and 3D ROI, respectively. Overall, the quality of studies was quite acceptable based on both QUADAS-2 and RQS tools. Conclusion CT scan-based radiomics approach has a promising potential for the prediction of LNM in GC patients preoperatively as a non-invasive diagnostic tool. Methodological heterogeneity is the main limitation of the included studies. Systematic review registration https://www.crd.york.ac.uk/Prospero/display_record.php?RecordID=287676, identifier CRD42022287676.
Collapse
Affiliation(s)
| | - Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Pashazadeh
- Research Center for Evidence-based Medicine, Iranian Evidence-Based Medicine (EBM) Centre: A Joanna Briggs Institute (JBI) Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Miccichè F, Rizzo G, Casà C, Leone M, Quero G, Boldrini L, Bulajic M, Corsi DC, Tondolo V. Role of radiomics in predicting lymph node metastasis in gastric cancer: a systematic review. Front Med (Lausanne) 2023; 10:1189740. [PMID: 37663653 PMCID: PMC10469447 DOI: 10.3389/fmed.2023.1189740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
INTRODUCTION Gastric cancer (GC) is an aggressive and clinically heterogeneous tumor, and better risk stratification of lymph node metastasis (LNM) could lead to personalized treatments. The role of radiomics in the prediction of nodal involvement in GC has not yet been systematically assessed. This study aims to assess the role of radiomics in the prediction of LNM in GC. METHODS A PubMed/MEDLINE systematic review was conducted to assess the role of radiomics in LNM. The inclusion criteria were as follows: i. original articles, ii. articles on radiomics, and iii. articles on LNM prediction in GC. All articles were selected and analyzed by a multidisciplinary board of two radiation oncologists and one surgeon, under the supervision of one radiation oncologist, one surgeon, and one medical oncologist. RESULTS A total of 171 studies were obtained using the search strategy mentioned on PubMed. After the complete selection process, a total of 20 papers were considered eligible for the analysis of the results. Radiomics methods were applied in GC to assess the LNM risk. The number of patients, imaging modalities, type of predictive models, number of radiomics features, TRIPOD classification, and performances of the models were reported. CONCLUSIONS Radiomics seems to be a promising approach for evaluating the risk of LNM in GC. Further and larger studies are required to evaluate the clinical impact of the inclusion of radiomics in a comprehensive decision support system (DSS) for GC.
Collapse
Affiliation(s)
- Francesco Miccichè
- U.O.C. di Radioterapia Oncologica, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Gianluca Rizzo
- U.O.C. di Chirurgia Digestiva e del Colon-Retto, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Calogero Casà
- U.O.C. di Radioterapia Oncologica, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Mariavittoria Leone
- U.O.C. di Radioterapia Oncologica, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Giuseppe Quero
- U.O.C. di Chirurgia Digestiva, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Boldrini
- U.O.C. di Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Milutin Bulajic
- U.O.C. di Endoscopia Digestiva, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | | | - Vincenzo Tondolo
- U.O.C. di Chirurgia Digestiva e del Colon-Retto, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| |
Collapse
|
42
|
Fu N, Fu W, Chen H, Chai W, Qian X, Wang W, Jiang Y, Shen B. A deep-learning radiomics-based lymph node metastasis predictive model for pancreatic cancer: a diagnostic study. Int J Surg 2023; 109:2196-2203. [PMID: 37216230 PMCID: PMC10442094 DOI: 10.1097/js9.0000000000000469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVES Preoperative lymph node (LN) status is essential in formulating the treatment strategy among pancreatic cancer patients. However, it is still challenging to evaluate the preoperative LN status precisely now. METHODS A multivariate model was established based on the multiview-guided two-stream convolution network (MTCN) radiomics algorithms, which focused on primary tumor and peri-tumor features. Regarding discriminative ability, survival fitting, and model accuracy, different models were compared. RESULTS Three hundred and sixty-three pancreatic cancer patients were divided in to train and test cohorts by 7:3. The modified MTCN (MTCN+) model was established based on age, CA125, MTCN scores, and radiologist judgement. The MTCN+ model outperformed the MTCN model and the artificial model in discriminative ability and model accuracy. [Train cohort area under curve (AUC): 0.823 vs. 0.793 vs. 0.592; train cohort accuracy (ACC): 76.1 vs. 74.4 vs. 56.7%; test cohort AUC: 0.815 vs. 0.749 vs. 0.640; test cohort ACC: 76.1 vs. 70.6 vs. 63.3%; external validation AUC: 0.854 vs. 0.792 vs. 0.542; external validation ACC: 71.4 vs. 67.9 vs. 53.5%]. The survivorship curves fitted well between actual LN status and predicted LN status regarding disease free survival and overall survival. Nevertheless, the MTCN+ model performed poorly in assessing the LN metastatic burden among the LN positive population. Notably, among the patients with small primary tumors, the MTCN+ model performed steadily as well (AUC: 0.823, ACC: 79.5%). CONCLUSIONS A novel MTCN+ preoperative LN status predictive model was established and outperformed the artificial judgement and deep-learning radiomics judgement. Around 40% misdiagnosed patients judged by radiologists could be corrected. And the model could help precisely predict the survival prognosis.
Collapse
Affiliation(s)
- Ningzhen Fu
- Department of General Surgery, Pancreatic Disease Center
- Research Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine
- Institute of Translational Medicine
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Wenli Fu
- School of Biomedical Engineering, Shanghai Jiao Tong University
| | - Haoda Chen
- Department of General Surgery, Pancreatic Disease Center
- Research Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine
- Institute of Translational Medicine
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | | | - Xiaohua Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University
| | - Weishen Wang
- Department of General Surgery, Pancreatic Disease Center
- Research Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine
- Institute of Translational Medicine
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Yu Jiang
- Department of General Surgery, Pancreatic Disease Center
- Research Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine
- Institute of Translational Medicine
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center
- Research Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine
- Institute of Translational Medicine
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| |
Collapse
|
43
|
Zhang QW, Yang PP, Gao YJY, Li ZH, Yuan Y, Li SJ, Duan SF, Shao CW, Hao Q, Lu Y, Chen Q, Shen F. Assessing synchronous ovarian metastasis in gastric cancer patients using a clinical-radiomics nomogram based on baseline abdominal contrast-enhanced CT: a two-center study. Cancer Imaging 2023; 23:71. [PMID: 37488597 PMCID: PMC10367237 DOI: 10.1186/s40644-023-00584-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/09/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND To build and validate a radiomics nomogram based on preoperative CT scans and clinical data for detecting synchronous ovarian metastasis (SOM) in female gastric cancer (GC) cases. METHODS Pathologically confirmed GC cases in 2 cohorts were retrospectively enrolled. All cases had presurgical abdominal contrast-enhanced CT and pelvis contrast-enhanced MRI and pathological examinations for any suspicious ovarian lesions detected by MRI. Cohort 1 cases (n = 101) were included as the training set. Radiomics features were obtained to develop a radscore. A nomogram combining the radscore and clinical factors was built to detect SOM. The bootstrap method was carried out in cohort 1 as internal validation. External validation was carried out in cohort 2 (n = 46). Receiver operating characteristic (ROC) curve analysis, decision curve analysis (DCA) and the confusion matrix were utilized to assess the performances of the radscore, nomogram and subjective evaluation model. RESULTS The nomogram, which combined age and the radscore, displayed a higher AUC than the radscore and subjective evaluation (0.910 vs 0.827 vs 0.773) in the training cohort. In the external validation cohort, the nomogram also had a higher AUC than the radscore and subjective evaluation (0.850 vs 0.790 vs 0.675). DCA and the confusion matrix confirmed the nomogram was superior to the radscore in both cohorts. CONCLUSIONS This pilot study showed that a nomogram model combining the radscore and clinical characteristics is useful in detecting SOM in female GC cases. It may be applied to improve clinical treatment and is superior to subjective evaluation or the radscore alone.
Collapse
Affiliation(s)
- Qian-Wen Zhang
- Department of Radiology, Changhai Hospital, The Navy Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Pan-Pan Yang
- Department of Radiology, Changhai Hospital, The Navy Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yong-Jun-Yi Gao
- Department of Emergency, the Eighth Medical Center of Chinese, PLA General Hospital, 17 Heishanhu Rd, Haidian District, Beijing, 100091, China
| | - Zhi-Hui Li
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan Yuan
- Department of Radiology, Changhai Hospital, The Navy Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Si-Jie Li
- Department of Radiology, Changhai Hospital, The Navy Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Shao-Feng Duan
- GE Healthcare China, Pudong New Town, No.1 Huatuo Road, Shanghai, 210000, China
| | - Cheng-Wei Shao
- Department of Radiology, Changhai Hospital, The Navy Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Qiang Hao
- Department of Radiology, Changhai Hospital, The Navy Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yong Lu
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Chen
- Department of Health Statistics, The Navy Medical University, Shanghai, 200433, China.
| | - Fu Shen
- Department of Radiology, Changhai Hospital, The Navy Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
44
|
Li M, Qin H, Yu X, Sun J, Xu X, You Y, Ma C, Yang L. Preoperative prediction of Lauren classification in gastric cancer: a radiomics model based on dual-energy CT iodine map. Insights Imaging 2023; 14:125. [PMID: 37454355 DOI: 10.1186/s13244-023-01477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
OBJECTIVE To investigate the value of a radiomics model based on dual-energy computed tomography (DECT) venous-phase iodine map (IM) and 120 kVp equivalent mixed images (MIX) in predicting the Lauren classification of gastric cancer. METHODS A retrospective analysis of 240 patients undergoing preoperative DECT and postoperative pathologically confirmed gastric cancer was done. Training sets (n = 168) and testing sets (n = 72) were randomly assigned with a ratio of 7:3. Patients are divided into intestinal and non-intestinal groups. Traditional features were analyzed by two radiologists, using logistic regression to determine independent predictors for building clinical models. Using the Radiomics software, radiomics features were extracted from the IM and MIX images. ICC and Boruta algorithm were used for dimensionality reduction, and a random forest algorithm was applied to construct the radiomics model. ROC and DCA were used to evaluate the model performance. RESULTS Gender and maximum tumor thickness were independent predictors of Lauren classification and were used to build a clinical model. Separately establish IM-radiomics (R-IM), mixed radiomics (R-MIX), and combined IM + MIX image radiomics (R-COMB) models. In the training set, each radiomics model performed better than the clinical model, and the R-COMB model showed the best prediction performance (AUC: 0.855). In the testing set also, the R-COMB model had better prediction performance than the clinical model (AUC: 0.802). CONCLUSION The R-COMB radiomics model based on DECT-IM and 120 kVp equivalent MIX images can effectively be used for preoperative noninvasive prediction of the Lauren classification of gastric cancer. CRITICAL RELEVANCE STATEMENT The radiomics model based on dual-energy CT can be used for Lauren classification prediction of preoperative gastric cancer and help clinicians formulate individualized treatment plans and assess prognosis.
Collapse
Affiliation(s)
- Min Li
- Department of Computed Tomography and Magnetic Resonance, Fourth Hospital of Hebei Medical University, No. 12, JianKang Road, Shijiazhuang, 050010, Hebei Province, People's Republic of China
| | - Hongtao Qin
- Department of Radiology and Nuclear Medicine, The First Hospital of Hebei Medical University, No. 89, Donggang Road, Shijiazhuang, 050031, Hebei Province, People's Republic of China
| | - Xianbo Yu
- Siemens Healthineers Ltd., 7, Wangjing Zhonghuan Nanlu, Beijing, 100102, People's Republic of China
| | - Junyi Sun
- Department of Computed Tomography and Magnetic Resonance, Fourth Hospital of Hebei Medical University, No. 12, JianKang Road, Shijiazhuang, 050010, Hebei Province, People's Republic of China
| | - Xiaosheng Xu
- Department of Computed Tomography and Magnetic Resonance, Fourth Hospital of Hebei Medical University, No. 12, JianKang Road, Shijiazhuang, 050010, Hebei Province, People's Republic of China
| | - Yang You
- Department of Computed Tomography and Magnetic Resonance, Fourth Hospital of Hebei Medical University, No. 12, JianKang Road, Shijiazhuang, 050010, Hebei Province, People's Republic of China
| | - Chongfei Ma
- Department of Computed Tomography and Magnetic Resonance, Fourth Hospital of Hebei Medical University, No. 12, JianKang Road, Shijiazhuang, 050010, Hebei Province, People's Republic of China
| | - Li Yang
- Department of Computed Tomography and Magnetic Resonance, Fourth Hospital of Hebei Medical University, No. 12, JianKang Road, Shijiazhuang, 050010, Hebei Province, People's Republic of China.
| |
Collapse
|
45
|
Liu Y, Zhao S, Wu Z, Liang H, Chen X, Huang C, Lu H, Yuan M, Xue X, Luo C, Liu C, Gao J. Virtual biopsy using CT radiomics for evaluation of disagreement in pathology between endoscopic biopsy and postoperative specimens in patients with gastric cancer: a dual-energy CT generalizability study. Insights Imaging 2023; 14:118. [PMID: 37405591 DOI: 10.1186/s13244-023-01459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/03/2023] [Indexed: 07/06/2023] Open
Abstract
PURPOSE To develop a noninvasive radiomics-based nomogram for identification of disagreement in pathology between endoscopic biopsy and postoperative specimens in gastric cancer (GC). MATERIALS AND METHODS This observational study recruited 181 GC patients who underwent pre-treatment computed tomography (CT) and divided them into a training set (n = 112, single-energy CT, SECT), a test set (n = 29, single-energy CT, SECT) and a validation cohort (n = 40, dual-energy CT, DECT). Radiomics signatures (RS) based on five machine learning algorithms were constructed from the venous-phase CT images. AUC and DeLong test were used to evaluate and compare the performance of the RS. We assessed the dual-energy generalization ability of the best RS. An individualized nomogram combined the best RS and clinical variables was developed, and its discrimination, calibration, and clinical usefulness were determined. RESULTS RS obtained with support vector machine (SVM) showed promising predictive capability with AUC of 0.91 and 0.83 in the training and test sets, respectively. The AUC of the best RS in the DECT validation cohort (AUC, 0.71) was significantly lower than that of the training set (Delong test, p = 0.035). The clinical-radiomic nomogram accurately predicted pathologic disagreement in the training and test sets, fitting well in the calibration curves. Decision curve analysis confirmed the clinical usefulness of the nomogram. CONCLUSION CT-based radiomics nomogram showed potential as a clinical aid for predicting pathologic disagreement status between biopsy samples and resected specimens in GC. When practicability and stability are considered, the SECT-based radiomics model is not recommended for DECT generalization. CRITICAL RELEVANCE STATEMENT Radiomics can identify disagreement in pathology between endoscopic biopsy and postoperative specimen.
Collapse
Affiliation(s)
- Yiyang Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Imaging Diagnosis and Treatment for Digestive System Tumor, Zhengzhou, 450052, China
| | - Shuai Zhao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Imaging Diagnosis and Treatment for Digestive System Tumor, Zhengzhou, 450052, China
| | - Zixin Wu
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hejun Liang
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Xingzhi Chen
- Department of Research Collaboration, R&D Center, Beijing Deepwise and League of PHD Technology Co., Ltd, Beijing, 100080, China
| | - Chencui Huang
- Department of Research Collaboration, R&D Center, Beijing Deepwise and League of PHD Technology Co., Ltd, Beijing, 100080, China
| | - Hao Lu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Imaging Diagnosis and Treatment for Digestive System Tumor, Zhengzhou, 450052, China
| | - Mengchen Yuan
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Imaging Diagnosis and Treatment for Digestive System Tumor, Zhengzhou, 450052, China
| | - Xiaonan Xue
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
| | - Chenglong Luo
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Imaging Diagnosis and Treatment for Digestive System Tumor, Zhengzhou, 450052, China
| | - Chenchen Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Imaging Diagnosis and Treatment for Digestive System Tumor, Zhengzhou, 450052, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Imaging Diagnosis and Treatment for Digestive System Tumor, Zhengzhou, 450052, China.
| |
Collapse
|
46
|
Zhang F, Wu G, Chen N, Li R. The predictive value of radiomics-based machine learning for peritoneal metastasis in gastric cancer patients: a systematic review and meta-analysis. Front Oncol 2023; 13:1196053. [PMID: 37465109 PMCID: PMC10352083 DOI: 10.3389/fonc.2023.1196053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
Background For patients with gastric cancer (GC), effective preoperative identification of peritoneal metastasis (PM) remains a severe challenge in clinical practice. Regrettably, effective early identification tools are still lacking up to now. With the popularization and application of radiomics method in tumor management, some researchers try to introduce it into the early identification of PM in patients with GC. However, due to the complexity of radiomics, the value of radiomics method in the early identification of PM in GC patients remains controversial. Therefore, this systematic review was conducted to explore the feasibility of radiomics in the early identification of PM in GC patients. Methods PubMed, Cochrane, Embase and the Web of Science were comprehensively and systematically searched up to 25 July, 2022 (CRD42022350512). The quality of the included studies was assessed using the radiomics quality score (RQS). To discuss the superiority in diagnostic accuracy of radiomics-based machine learning, a subgroup analysis was performed by machine learning (ML) based on clinical features, radiomics features, and radiomics + clinical features. Results Finally, 11 eligible original studies covering 78 models were included in this systematic review. According to the meta-analysis, the radiomics + clinical features model had a c-index of 0.919 (95% CI: 0.871-0.969), pooled sensitivity and specificity of 0.90 (0.83-0.94) and 0.87 (0.78-0.92), respectively, in the training set, and a c- index of 0.910 (95% CI: 0.886-0.934), pooled sensitivity and specificity of 0.78 (0.71-0.84) and 0.83 (0.74-0.89), respectively, in the validation set. Conclusions The ML methods based on radiomics + clinical features had satisfactory accuracy for the early diagnosis of PM in GC patients, and can be used as an auxiliary diagnostic tool for clinicians. However, the lack of guidelines for the proper operation of radiomics has led to the diversification of radiomics methods, which seems to limit the development of radiomics. Even so, the clinical application value of radiomics cannot be ignored. The standardization of radiomics research is required in the future for the wider application of radiomics by developing intelligent tools of radiomics. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=350512, identifier CRD42022350512.
Collapse
|
47
|
Lin JX, Wang FH, Wang ZK, Wang JB, Zheng CH, Li P, Huang CM, Xie JW. Prediction of the mitotic index and preoperative risk stratification of gastrointestinal stromal tumors with CT radiomic features. LA RADIOLOGIA MEDICA 2023; 128:644-654. [PMID: 37148481 DOI: 10.1007/s11547-023-01637-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
OBJECTIVE The objective is to develop a mitotic prediction model and preoperative risk stratification nomogram for gastrointestinal stromal tumor (GIST) based on computed tomography (CT) radiomic features. METHODS A total of 267 GIST patients from 2009.07 to 2015.09 were retrospectively collected and randomly divided into (6:4) training cohort and validation cohort. The 2D-tumor region of interest was delineated from the portal-phase images on contrast-enhanced (CE)-CT, and radiomic features were extracted. Lasso regression method was used to select valuable features to establish a radiomic model for predicting mitotic index in GIST. Finally, the nomogram of preoperative risk stratification was constructed by combining the radiomic features and clinical risk factors. RESULTS Four radiomic features closely related to the level of mitosis were obtained, and a mitotic radiomic model was constructed. The area under the curve (AUC) of the radiomics signature model used to predict mitotic levels in training and validation cohorts (training cohort AUC = 0.752; 95% confidence interval [95%CI] 0.674-0.829; validation cohort AUC = 0.764; 95% CI 0.667-0.862). Finally, the preoperative risk stratification nomogram combining radiomic features was equivalent to the clinically recognized gold standard AUC (0.965 vs. 0.983) (p = 0.117). The Cox regression analysis found that the nomogram score was one of the independent risk factors for the long-term prognosis of the patients. CONCLUSION Preoperative CT radiomic features can effectively predict the level of mitosis in GIST, and combined with preoperative tumor size, accurate preoperative risk stratification can be performed to guide clinical decision-making and individualized treatment.
Collapse
Affiliation(s)
- Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Provincial Minimally Invasive Medical Center, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fu-Hai Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Provincial Minimally Invasive Medical Center, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zu-Kai Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Provincial Minimally Invasive Medical Center, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Provincial Minimally Invasive Medical Center, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Provincial Minimally Invasive Medical Center, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Provincial Minimally Invasive Medical Center, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China.
- Fujian Provincial Minimally Invasive Medical Center, Fuzhou, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China.
- Fujian Provincial Minimally Invasive Medical Center, Fuzhou, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
48
|
Wu A, Wu C, Zeng Q, Cao Y, Shu X, Luo L, Feng Z, Tu Y, Jie Z, Zhu Y, Zhou F, Huang Y, Li Z. Development and validation of a CT radiomics and clinical feature model to predict omental metastases for locally advanced gastric cancer. Sci Rep 2023; 13:8442. [PMID: 37231100 DOI: 10.1038/s41598-023-35155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/13/2023] [Indexed: 05/27/2023] Open
Abstract
""We employed radiomics and clinical features to develop and validate a preoperative prediction model to estimate the omental metastases status of locally advanced gastric cancer (LAGC). A total of 460 patients (training cohort, n = 250; test cohort, n = 106; validation cohort, n = 104) with LAGC who were confirmed T3/T4 stage by postoperative pathology were continuously collected retrospectively, including clinical data and preoperative arterial phase computed tomography images (APCT). Dedicated radiomics prototype software was used to segment the lesions and extract features from the preoperative APCT images. The least absolute shrinkage and selection operator (LASSO) regression was used to select the extracted radiomics features, and a radiomics score model was constructed. Finally, a prediction model of omental metastases status and a nomogram were constructed combining the radiomics scores and selected clinical features. An area under the curve (AUC) of the receiver operating characteristic curve (ROC) was used to validate the capability of the prediction model and nomogram in the training cohort. Calibration curves and decision curve analysis (DCA) were used to evaluate the prediction model and nomogram. The prediction model was internally validated by the test cohort. In addition, 104 patients from another hospital's clinical and imaging data were gathered for external validation. In the training cohort, the combined prediction (CP) model (AUC 0.871, 95% CI 0.798-0.945) of the radiomics scores combined with the clinical features, compared with clinical features prediction (CFP) model (AUC 0.795, 95% CI 0.710-0.879) and radiomics scores prediction (RSP) model (AUC 0.805, 95% CI 0.730-0.879), had the better predictive ability. The Hosmer-Lemeshow test of the CP model showed that the prediction model did not deviate from the perfect fitting (p = 0.893). In the DCA, the clinical net benefit of the CP model was higher than that of the CFP model and RSP model. In the test and validation cohorts, the AUC values of the CP model were 0.836 (95% CI 0.726-0.945) and 0.779 (95% CI 0.634-0.923), respectively. The preoperative APCT-based clinical-radiomics nomogram showed good performance in predicting omental metastases status in LAGC, which may contribute to clinical decision-making.
Collapse
Affiliation(s)
- Ahao Wu
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Changlei Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Qingwen Zeng
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yi Cao
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xufeng Shu
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Lianghua Luo
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Zongfeng Feng
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yi Tu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Zhigang Jie
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Ya Huang
- Department of Radiology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Zhengrong Li
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
49
|
Pullen LCE, Noortman WA, Triemstra L, de Jongh C, Rademaker FJ, Spijkerman R, Kalisvaart GM, Gertsen EC, de Geus-Oei LF, Tolboom N, de Steur WO, Dantuma M, Slart RHJA, van Hillegersberg R, Siersema PD, Ruurda JP, van Velden FHP, Vegt E. Prognostic Value of [ 18F]FDG PET Radiomics to Detect Peritoneal and Distant Metastases in Locally Advanced Gastric Cancer-A Side Study of the Prospective Multicentre PLASTIC Study. Cancers (Basel) 2023; 15:cancers15112874. [PMID: 37296837 DOI: 10.3390/cancers15112874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/12/2023] Open
Abstract
AIM To improve identification of peritoneal and distant metastases in locally advanced gastric cancer using [18F]FDG-PET radiomics. METHODS [18F]FDG-PET scans of 206 patients acquired in 16 different Dutch hospitals in the prospective multicentre PLASTIC-study were analysed. Tumours were delineated and 105 radiomic features were extracted. Three classification models were developed to identify peritoneal and distant metastases (incidence: 21%): a model with clinical variables, a model with radiomic features, and a clinicoradiomic model, combining clinical variables and radiomic features. A least absolute shrinkage and selection operator (LASSO) regression classifier was trained and evaluated in a 100-times repeated random split, stratified for the presence of peritoneal and distant metastases. To exclude features with high mutual correlations, redundancy filtering of the Pearson correlation matrix was performed (r = 0.9). Model performances were expressed by the area under the receiver operating characteristic curve (AUC). In addition, subgroup analyses based on Lauren classification were performed. RESULTS None of the models could identify metastases with low AUCs of 0.59, 0.51, and 0.56, for the clinical, radiomic, and clinicoradiomic model, respectively. Subgroup analysis of intestinal and mixed-type tumours resulted in low AUCs of 0.67 and 0.60 for the clinical and radiomic models, and a moderate AUC of 0.71 in the clinicoradiomic model. Subgroup analysis of diffuse-type tumours did not improve the classification performance. CONCLUSION Overall, [18F]FDG-PET-based radiomics did not contribute to the preoperative identification of peritoneal and distant metastases in patients with locally advanced gastric carcinoma. In intestinal and mixed-type tumours, the classification performance of the clinical model slightly improved with the addition of radiomic features, but this slight improvement does not outweigh the laborious radiomic analysis.
Collapse
Affiliation(s)
- Lieke C E Pullen
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
| | - Wyanne A Noortman
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Radiology, Leiden University Medical Center, 2333 ZD Leiden, The Netherlands
| | - Lianne Triemstra
- Department of Surgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Cas de Jongh
- Department of Surgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Fenna J Rademaker
- TechMed Centre, University of Twente, 7522 NB Enschede, The Netherlands
| | - Romy Spijkerman
- TechMed Centre, University of Twente, 7522 NB Enschede, The Netherlands
| | - Gijsbert M Kalisvaart
- Department of Radiology, Leiden University Medical Center, 2333 ZD Leiden, The Netherlands
| | - Emma C Gertsen
- Department of Surgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Lioe-Fee de Geus-Oei
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Radiology, Leiden University Medical Center, 2333 ZD Leiden, The Netherlands
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Wobbe O de Steur
- Department of Surgery, Leiden University Medical Center, 2333 ZD Leiden, The Netherlands
| | - Maura Dantuma
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, 7522 NB Enschede, The Netherlands
| | - Riemer H J A Slart
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | | | - Peter D Siersema
- Department of Gastroenterology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jelle P Ruurda
- Department of Surgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Floris H P van Velden
- Department of Radiology, Leiden University Medical Center, 2333 ZD Leiden, The Netherlands
| | - Erik Vegt
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
50
|
Chen X, Wang W, Jiang Y, Qian X. A dual-transformation with contrastive learning framework for lymph node metastasis prediction in pancreatic cancer. Med Image Anal 2023; 85:102753. [PMID: 36682152 DOI: 10.1016/j.media.2023.102753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/23/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Pancreatic cancer is a malignant tumor, and its high recurrence rate after surgery is related to the lymph node metastasis status. In clinical practice, a preoperative imaging prediction method is necessary for prognosis assessment and treatment decision; however, there are two major challenges: insufficient data and difficulty in discriminative feature extraction. This paper proposed a deep learning model to predict lymph node metastasis in pancreatic cancer using multiphase CT, where a dual-transformation with contrastive learning framework is developed to overcome the challenges in fine-grained prediction with small sample sizes. Specifically, we designed a novel dynamic surface projection method to transform 3D data into 2D images for effectively using the 3D information, preserving the spatial correlation of the original texture information and reducing computational resources. Then, this dynamic surface projection was combined with the spiral transformation to establish a dual-transformation method for enhancing the diversity and complementarity of the dataset. A dual-transformation-based data augmentation method was also developed to produce numerous 2D-transformed images to alleviate the effect of insufficient samples. Finally, the dual-transformation-guided contrastive learning scheme based on intra-space-transformation consistency and inter-class specificity was designed to mine additional supervised information, thereby extracting more discriminative features. Extensive experiments have shown the promising performance of the proposed model for predicting lymph node metastasis in pancreatic cancer. Our dual-transformation with contrastive learning scheme was further confirmed on an external public dataset, representing a potential paradigm for the fine-grained classification of oncological images with small sample sizes. The code will be released at https://github.com/SJTUBME-QianLab/Dual-transformation.
Collapse
Affiliation(s)
- Xiahan Chen
- School of Biomedical Engineering, Shanghai JiaoTong University, Shanghai 200240, China
| | - Weishen Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaohua Qian
- School of Biomedical Engineering, Shanghai JiaoTong University, Shanghai 200240, China.
| |
Collapse
|