1
|
Rzetecka N, Matysiak J, Matysiak J, Sobkowiak P, Wojsyk-Banaszak I, Bręborowicz A, Packi K, Klupczyńska-Gabryszak A. Metabolomics in Childhood Asthma - a Promising Tool to Meet Various Clinical Needs. Curr Allergy Asthma Rep 2025; 25:24. [PMID: 40341431 PMCID: PMC12062110 DOI: 10.1007/s11882-025-01198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 05/10/2025]
Abstract
PURPOSE OF REVIEW The aim of our review is to summarize the available literature where metabolomics was used in studies on childhood asthma, and to find metabolites that are diagnostic biomarker candidates in childhood asthma. Moreover, the review also describes studies related to metabo-endotypes and heterogeneity of childhood asthma, severity of the disease, and response to drug treatment. RECENT FINDINGS Metabolomics has opened up new perspectives in childhood asthma investigation. Based on the available literature, we found nine metabolites that demonstrated the highest diagnostic potential for differentiation between children with asthma and healthy controls: adenine, adenosine, benzoic acid, hypoxanthine, p-cresol, taurocholate, threonine, tyrosine, and 1-methyl nicotinamide. Many of the identified metabolites are closely associated with inflammatory processes responsible for asthma. Metabolomic analysis also contributed to characterizing new asthma endotypes highlighting the heterogeneity of pediatric asthma. Metabolomics can bring about valuable insights, which, when integrated with other omic disciplines, can facilitate the diagnosis and management of childhood asthma and the search for new biomarkers of the disease. Improvements in the detection of asthma in preschool children, including asthma endotypes, will ease application of proper treatment and enable elimination of unnecessary test treatment of corticosteroids in young patients.
Collapse
Affiliation(s)
- Natalia Rzetecka
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Matysiak
- Faculty of Health Sciences, Calisia University, Kalisz, Poland
| | - Paulina Sobkowiak
- Department of Pulmonology, Pediatric Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Irena Wojsyk-Banaszak
- Department of Pulmonology, Pediatric Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Bręborowicz
- Department of Pulmonology, Pediatric Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kacper Packi
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Lodz, Poland
- AllerGen Center of Personalized Medicine, Piotrkow Trybunalski, Poland
- Wladyslaw Bieganski Collegium Medicum, Jan Dlugosz University in Czestochowa, Częstochowa, Poland
| | | |
Collapse
|
2
|
BharathwajChetty B, Kumar A, Deevi P, Abbas M, Alqahtani A, Liang L, Sethi G, Liu L, Kunnumakkara AB. Gut microbiota and their influence in brain cancer milieu. J Neuroinflammation 2025; 22:129. [PMID: 40312370 PMCID: PMC12046817 DOI: 10.1186/s12974-025-03434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/01/2025] [Indexed: 05/03/2025] Open
Abstract
Microbial communities are not simply remnants of the past but dynamic entities that continuously evolve under the selective pressures of nature, reflecting the intricate and adaptive processes of evolution. The microbiota residing in the various regions of the human body has numerous roles in different physiological processes such as nutrition, metabolism, immune regulation, etc. In the zeal of achieving empirical insights into the ambit of the gut microbiome, the research over the years led to the revelation of reciprocal interaction between the gut microbiome and the cognitive functioning of the human body. Dysbiosis in the gut microbial composition disturbs the homeostatic cognitive functioning of the human body. This dysbiosis has been associated with various chronic diseases, including brain cancer, such as glioma, glioblastoma, etc. This review explores the mechanistic role of dysbiosis-mediated progression of brain cancers and their subtypes. Moreover, it demonstrates the regulatory role of microbial metabolites produced by the gut microbiota, such as short-chain fatty acids, amino acids, lipids, etc., in the tumour progression. Further, we also provide valuable insights into the microbiota mediating the efficiency of therapeutic regimens, thereby leveraging gut microbiota as potential biomarkers and targets for improved treatment outcomes.
Collapse
Affiliation(s)
- Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Pranav Deevi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
- International Joint M. Tech Degree in Food Science and Technology, Department of Chemical Engineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City, Riyadh, 11525, Saudi Arabia
| | - Liping Liang
- Guangzhou Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin Scool of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Le Liu
- Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China.
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
- International Joint M. Tech Degree in Food Science and Technology, Department of Chemical Engineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
3
|
Lian S, Lu M, Jiajing L, Zhang B, Fang Y, Wang X, Zheng M, Ni Y, Xu G, Yang Y, Jiang R. Conjugated Lithocholic Acid Activates Hepatic TGR5 to Promote Lipotoxicity and MASLD-MASH Transition by Disrupting Carnitine Biosynthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410602. [PMID: 40344326 PMCID: PMC12120702 DOI: 10.1002/advs.202410602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Conjugated lithocholic acid (LCA) plays a critical role in the development of metabolic dysfunction-associated steatotic liver disease (MASLD). In this process, hepatocyte inflammation-caused upregulation of its receptor, Takeda G protein-coupled receptor 5 (TGR5) is a crucial factor. Serum bile acid profiling shows an increase in conjugated LCA, which correlates with disease severity. Depletion of Gpbar1 in hepatocytes significantly protects against the progression from MASLD to metabolic dysfunction-associated steatohepatitis (MASH) that is related to conjugated LCA. In vivo and in vitro experiments indicate that TGR5 activation in hepatocytes promotes lipotoxicity-induced cell death and inflammation by suppressing de novo carnitine biosynthesis. Mechanistically, TGR5 binding to CD36 facilitates E3 ubiquitin ligase TRIM21 recruitment, leading to the degradation of BBOX1, a crucial enzyme in de novo carnitine biosynthesis. Targeting TGR5 therapeutically can restore carnitine biosynthesis, which may offer a potent strategy to prevent or reverse the transition from MASLD to MASH.
Collapse
Affiliation(s)
- Senlin Lian
- Department of Lab MedicineThe First Affiliated Hospital of Anhui Medical University. MOE Innovation Center for Basic Research in Tumor Immunotherapyand Anhui Province Key Laboratory of Tumor Immune Microenvironment and ImmunotherapyHefeiAnhui230022China
| | - Meixi Lu
- Medical School of Nanjing UniversityNanjingJiangsu Province210993China
| | - Luo Jiajing
- Medical School of Nanjing UniversityNanjingJiangsu Province210993China
| | - Bin Zhang
- Department of GastroenterologyAffiliated Nanjing Drum Tower Hospitaland Medical School of Nanjing UniversityNanjingJiangsu Province210008China
| | - Yi Fang
- Department of GastroenterologyAffiliated Nanjing Drum Tower Hospitaland Medical School of Nanjing UniversityNanjingJiangsu Province210008China
| | - Xuran Wang
- Medical School of Nanjing UniversityNanjingJiangsu Province210993China
| | - Minghua Zheng
- NAFLD Research CenterDepartment of Hepatologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325035China
| | - Yan Ni
- The Children's HospitalNational Clinical Research Center for Child HealthZhejiang University School of MedicineHangzhou310052China
| | - Guifang Xu
- Department of GastroenterologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230022China
| | - Yonglin Yang
- Department of Infectious DiseasesThe Affiliated Taizhou People's Hospital of Nanjing Medical UniversityTaizhou225300China
| | - Runqiu Jiang
- Department of Lab MedicineThe First Affiliated Hospital of Anhui Medical University. MOE Innovation Center for Basic Research in Tumor Immunotherapyand Anhui Province Key Laboratory of Tumor Immune Microenvironment and ImmunotherapyHefeiAnhui230022China
| |
Collapse
|
4
|
Buchynskyi M, Kamyshna I, Halabitska I, Petakh P, Kunduzova O, Oksenych V, Kamyshnyi O. Unlocking the gut-liver axis: microbial contributions to the pathogenesis of metabolic-associated fatty liver disease. Front Microbiol 2025; 16:1577724. [PMID: 40351307 PMCID: PMC12061941 DOI: 10.3389/fmicb.2025.1577724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a complex metabolic disorder characterized by hepatic lipid accumulation and subsequent inflammation. This condition is closely linked to metabolic syndrome and obesity, with its prevalence rising due to sedentary lifestyles and high-calorie diets. The pathogenesis of MAFLD involves multiple factors, including insulin resistance, lipotoxicity, oxidative stress, and inflammatory responses. The gut microbiota plays a crucial role in MAFLD development, with dysbiosis contributing to liver inflammation through various mechanisms, such as enhanced intestinal permeability and the translocation of bacterial products like lipopolysaccharide (LPS). Microbial metabolites, including short-chain fatty acids (SCFAs) and bile acids, influence hepatic function and immune responses, with potential implications for disease progression. Specific gut microbiome signatures have been identified in MAFLD patients, offering potential diagnostic and therapeutic targets. Moreover, gut-derived toxins, such as endotoxins, lipopolysaccharides, trimethylamine-N-oxide and bacterial metabolites, significantly influence liver damage and inflammation, highlighting the complex interplay between the gut microbiome and hepatic health. This review comprehensively examines the complex interplay between the gut microbiota and MAFLD, focusing on underlying pathogenic mechanisms, potential biomarkers, and emerging microbiome-targeted therapeutic strategies for disease management.
Collapse
Affiliation(s)
- Mykhailo Buchynskyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
| | - Oksana Kunduzova
- Institute of Metabolic and Cardiovascular Diseases (I2MC), National Institute of Health and Medical Research (INSERM) 1297, Toulouse III University, Toulouse, France
| | - Valentyn Oksenych
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|
5
|
Liu J, Guo M, Yuan X, Fan X, Wang J, Jiao X. Gut Microbiota and Their Metabolites: The Hidden Driver of Diabetic Nephropathy? Unveiling Gut Microbe's Role in DN. J Diabetes 2025; 17:e70068. [PMID: 40189872 PMCID: PMC11973130 DOI: 10.1111/1753-0407.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/21/2025] [Accepted: 02/17/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a severe microvascular complication of diabetes with a complex pathogenesis. METHODS Recent studies were reviewed to explore the role of gut microbiota and its metabolites in DN development. RESULTS Dysbiosis of gut bacteria contributes to pathological changes such as glomerular sclerosis and renal tubule injury. Microbial metabolites are involved in DN through immune and inflammatory pathways. CONCLUSIONS Understanding the relationship between gut microbiota, its metabolites, and DN may offer potential implications for DN diagnosis, prevention, and treatment. Translating this knowledge into clinical practice presents challenges and opportunities.
Collapse
Affiliation(s)
- Jinzhou Liu
- Department of PhysiologyThe Key Laboratory of Physiology of Shanxi Province, the Key Laboratory of Cellular Physiology of Ministry of Education, Shanxi Medical UniversityTaiyuanChina
| | - Min Guo
- Department of PhysiologyThe Key Laboratory of Physiology of Shanxi Province, the Key Laboratory of Cellular Physiology of Ministry of Education, Shanxi Medical UniversityTaiyuanChina
| | - Xiaobin Yuan
- Department of UrologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Xiao Fan
- Department of UrologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Jin Wang
- Department of PhysiologyThe Key Laboratory of Physiology of Shanxi Province, the Key Laboratory of Cellular Physiology of Ministry of Education, Shanxi Medical UniversityTaiyuanChina
| | - Xiangying Jiao
- Department of PhysiologyThe Key Laboratory of Physiology of Shanxi Province, the Key Laboratory of Cellular Physiology of Ministry of Education, Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
6
|
Gupta V, Sehrawat TS, Pinzani M, Strazzabosco M. Portal Fibrosis and the Ductular Reaction: Pathophysiological Role in the Progression of Liver Disease and Translational Opportunities. Gastroenterology 2025; 168:675-690. [PMID: 39251168 PMCID: PMC11885590 DOI: 10.1053/j.gastro.2024.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/27/2024] [Accepted: 07/20/2024] [Indexed: 09/11/2024]
Abstract
A consistent feature of chronic liver diseases and the hallmark of pathologic repair is the so-called "ductular reaction." This is a histologic abnormality characterized by an expansion of dysmorphic cholangiocytes inside and around portal spaces infiltrated by inflammatory, mesenchymal, and vascular cells. The ductular reaction is a highly regulated response based on the reactivation of morphogenetic signaling mechanisms and a complex crosstalk among a multitude of cell types. The nature and mechanism of these exchanges determine the difference between healthy regenerative liver repair and pathologic repair. An orchestrated signaling among cell types directs mesenchymal cells to deposit a specific extracellular matrix with distinct physical and biochemical properties defined as portal fibrosis. Progression of fibrosis leads to vast architectural and vascular changes known as "liver cirrhosis." The signals regulating the ecology of this microenvironment are just beginning to be addressed. Contrary to the tumor microenvironment, immune modulation inside this "benign" microenvironment is scarcely known. One of the reasons for this is that both the ductular reaction and portal fibrosis have been primarily considered a manifestation of cholestatic liver disease, whereas this phenomenon is also present, albeit with distinctive features, in all chronic human liver diseases. Novel human-derived cellular models and progress in "omics" technologies are increasing our knowledge at a fast pace. Most importantly, this knowledge is on the edge of generating new diagnostic and therapeutic advances. Here, we will critically review the latest advances, in terms of mechanisms, pathophysiology, and treatment prospects. In addition, we will delineate future avenues of research, including innovative translational opportunities.
Collapse
Affiliation(s)
- Vikas Gupta
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Tejasav S Sehrawat
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Massimo Pinzani
- UCL Institute for Liver & Digestive Health, Royal Free Hospital, London, United Kingdom; University of Pittsburgh Medical Center-Mediterranean Institute for Transplantation and Highly Specialized Therapies, Palermo, Italy
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut.
| |
Collapse
|
7
|
Xiao W, Li Z, Wang Y, Yongbo X, Li W, Li J, He M, Feng Y. Multiomics combined analysis reveals protective effect of 7-O-α-L-rhamnopyranosyl-kaempferol-3-O-β-D-glucopyranoside on autoimmune hepatitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156460. [PMID: 39923428 DOI: 10.1016/j.phymed.2025.156460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/03/2024] [Accepted: 02/01/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Autoimmune hepatitis (AIH) seriously endangers human health. Therefore, it is urgent to find new therapeutic drugs and targets for AIH. In this context, 7-O-α-L-rhamnopyranosyl-kaempferol-3-O-β-D-glucopyranoside (KGR), a flavonoid compound found in Embelia laeta (L.) Mez, has not been evaluated for its efficacy. OBJECTIVE This study aimed to investigate the therapeutic effect and mechanisms of KGR on AIH. RESEARCH DESIGN Concanavalin A (Con A) was used to establish a mouse AIH model. Molecular biology methods were used to evaluate the efficacy of KGR and transcriptomics, proteomics, and metabolomics were innovatively combined to revel the mechanism of action of KGR against AIH, which was verified by experiments. RESULTS Mouse liver sections demonstrated that KGR reduced the degree of degeneration and necrosis in liver cells in mice. Compared with the Con A group, KGR significantly reduced serum aminotransferase levels, inhibited the release of proinflammatory cytokines in the liver tissue, and inhibited oxidative stress (OS) by reducing malondialdehyde level and enhancing superoxide dismutase activity. Finally, multiomics revealed that primary bile acids synthesis and the FXR-TLR4/MYD88/JNK signaling pathway may be the regulatory targets of KGR. CONCLUSION The study results demonstrated that KGR inhibited OS and inflammatory responses by regulating primary bile acid synthesis and thereby inhibiting the FXR-TLR4/MYD88/JNK signaling pathway, and had a protective effect on Con A-induced AIH.
Collapse
Affiliation(s)
- Wei Xiao
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Zhiqiang Li
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Yilei Wang
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Xizi Yongbo
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Wanting Li
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Junmao Li
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, No. 56 Yangming Road, Nanchang 330006, Jiangxi, PR China
| | - Mingzhen He
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, No. 56 Yangming Road, Nanchang 330006, Jiangxi, PR China.
| | - Yulin Feng
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, No. 56 Yangming Road, Nanchang 330006, Jiangxi, PR China.
| |
Collapse
|
8
|
Zhang P, Li X, Liang J, Zheng Y, Tong Y, Shen J, Chen Y, Han P, Chu S, Liu R, Zheng M, Zhai Y, Tang X, Zhang C, Qu H, Mi P, Chai J, Yuan D, Li S. Chenodeoxycholic acid modulates cholestatic niche through FXR/Myc/P-selectin axis in liver endothelial cells. Nat Commun 2025; 16:2093. [PMID: 40025016 PMCID: PMC11873286 DOI: 10.1038/s41467-025-57351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
Cholestatic liver diseases are characterized by excessive bile acid accumulation in the liver. Endothelial cells (ECs) shape the local microenvironment in both normal conditions and liver injury, yet their role in cholestasis is unclear. Through a comparative analysis of single-cell RNA sequencing data from various murine models of liver injury, we identify distinctive Myc activation within ECs during obstructive cholestasis resulting from bile duct ligation (BDL). Myc overexpression in ECs significantly upregulates P-selectin, increasing neutrophil infiltration and worsening cholestatic liver injury. This process occurs through the FXR, activated by chenodeoxycholic acid (CDCA) and its conjugate TCDCA. Inhibiting P-selectin with PSI-697 reduces neutrophil recruitment and alleviates injury. Cholestatic patient liver samples also show elevated Myc and P-selectin in ECs, along with increased neutrophils. The findings identify ECs as key drivers of cholestatic liver injury through a Myc-driven program and suggest that targeting the CDCA/FXR/Myc/P-selectin axis may offer a therapeutic approach.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinying Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinyuan Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanwen Zheng
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Tong
- School of Medicine, Chongqing University, Chongqing, China
| | - Jing Shen
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Yatai Chen
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Penghu Han
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Shuzheng Chu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruirui Liu
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengqi Zheng
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Yunjiao Zhai
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Xiaolong Tang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Qu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China.
| | - Ping Mi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Jin Chai
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center and Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD) Medical Research Center, The First Affiliated Hospital (Southwest Hospital) of Third Military Medical University (Army Medical University), Chongqing, China.
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Shiyang Li
- Advanced Medical Research Institute, Shandong University, Jinan, China.
| |
Collapse
|
9
|
Anderson L, Hukkinen M, Nyholm I, Niemi M, Pakarinen MP. Serum bile acids early after portoenterostomy are predictive for native liver survival and portal hypertension in biliary atresia. J Pediatr Gastroenterol Nutr 2025; 80:462-470. [PMID: 40028801 PMCID: PMC11874233 DOI: 10.1002/jpn3.12451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/31/2024] [Accepted: 12/06/2024] [Indexed: 03/05/2025]
Abstract
OBJECTIVES To compare the predictive value of serum bile acids on native liver survival (NLS) and portal hypertension (PH) at various time points early after portoenterostomy (PE) in biliary atresia (BA). METHODS This was a retrospective observational study. Serum bilirubin and bile acid concentrations were defined by enzymatic spectrophotometry 1, 3, and 6 months after PE. After defining optimal bilirubin and bile acids cutoffs by area under the receiver operating characteristic (AUROC) curves, cutoffs were compared with other predictors of NLS and PH in Cox regression. RESULTS Out of 56 patients, 42 (75%) achieved clearance of jaundice (COJ, bilirubin <20 µmol/L at 6 months). Both bilirubin and bile acids at 3 and 6 months were accurate predictors of NLS among all patients (AUROC 0.82-0.91, p < 0.001). In COJ patients, bile acids (AUROC 0.82, p = 0.003), but not bilirubin, at 1 month also predicted NLS. Among all patients, the strongest predictors of NLS were bilirubin >18.5 µmol/L and bile acids >150 µmol/L at 3 months, increasing the risk of transplantation/death seven- and eightfold, respectively (p < 0.001 for both). In COJ patients, the strongest predictor of NLS was bile acids >119 µmol/L at 3 months, increasing the risk of transplantation/death 12-fold (p = 0.014). Bile acids and bilirubin at 3 and 6 months predicted PH development in COJ patients with moderate accuracy (AUROC 0.72-0.78, p = 0.004-0.019). Bilirubin >8.5 µmol/L and bile acids >78 µmol/L at 6 months increased PH risk 13-fold (p < 0.001) and 4-fold (p = 0.006). CONCLUSIONS Serum bile acids offer a simple and useful additional tool to predict PE outcomes in BA, particularly after COJ.
Collapse
Affiliation(s)
- Linda Anderson
- Section of Pediatric Surgery, Pediatric Liver and Gut Research Group, New Children's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Maria Hukkinen
- Section of Pediatric Surgery, Pediatric Liver and Gut Research Group, New Children's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Iiris Nyholm
- Section of Pediatric Surgery, Pediatric Liver and Gut Research Group, New Children's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Pediatric Research Center, Children's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Mikko Niemi
- Department of Clinical PharmacologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Department of Clinical Pharmacology, HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Mikko P. Pakarinen
- Section of Pediatric Surgery, Pediatric Liver and Gut Research Group, New Children's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Pediatric Research Center, Children's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Department of Women's and Children's HealthKarolinska InstituteStockholmSweden
| |
Collapse
|
10
|
Wang Y, Deng K, Lin P, Huang L, Hu L, Ye J, Liang J, Ni Y, Tan L. Elevated total bile acid levels as an independent predictor of mortality in pediatric sepsis. Pediatr Res 2025; 97:1114-1121. [PMID: 39266629 PMCID: PMC12055603 DOI: 10.1038/s41390-024-03438-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The close relationship between bile acid (BA) metabolism and sepsis has been investigated in recent years, as knowledge of the role of the gut microbiome and metabolomics in sepsis has grown and become more comprehensive. METHODS Patients with sepsis who were admitted to the PICU of the Children's Hospital, Zhejiang University School of Medicine from January 2016 to December 2021 were enrolled in this study. Preoperative non-infectious pediatric patients undergoing elective surgeries in our hospital's department of surgery were recruited as controls during the same period. Clinical data were collected and analyzed. RESULTS 702 children were enrolled, comprising 538 sepsis survivors, 164 sepsis fatalities, and 269 non-infected controls. Statistical analysis revealed that total BA (TBA) increased in both the early and severe stages of pediatric sepsis. In the severe stage, TBA (OR = 2.898, 95% CI 1.946-4.315, p < 0.05) was identified as a risk factor for sepsis. A clinical model identified TBA (the cut-off value is >17.95 µmol/L) as an independent predictor of sepsis mortality with an AUC of 0.842 (95% CI 0.800-0.883), sensitivity of 54.9%, specificity of 96.6%, and HR = 7.658 (95% CI 5.575-10.520). CONCLUSIONS The study showed that elevated TBA was associated with a heightened risk of mortality in pediatric sepsis. IMPACT Many clinical indicators show differences between children with sepsis and the control group, among which the difference in serum total bile acid levels is the most significant. During the hospitalization of the patients, the overall bile acid levels in the sepsis death group were higher and exhibited greater fluctuations compared to the survival group, with significant differences. Serum total bile acid levels can serve as effective biomarker for predicting the prognosis of children with sepsis.
Collapse
Affiliation(s)
- Yanfei Wang
- Department of Surgical ICU, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Kelei Deng
- Department of Surgical ICU, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Peiquan Lin
- Department of Surgical ICU, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Limin Huang
- Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lei Hu
- Department of Surgical ICU, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jing Ye
- Department of Surgical ICU, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianfeng Liang
- Department of Medical Statistics, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Ni
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| | - Linhua Tan
- Department of Surgical ICU, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
11
|
Wang B, Wu X, Cheng J, Ye J, Zhu H, Liu X. Regulatory role of S1P and its receptors in sepsis-induced liver injury. Front Immunol 2025; 16:1489015. [PMID: 39935473 PMCID: PMC11811114 DOI: 10.3389/fimmu.2025.1489015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
As an immune and metabolic organ, the liver affects the progression and prognosis of sepsis. Despite the severe adverse effects of sepsis liver injury on the body, treatment options remain limited. Sphingosine-1-phosphate (S1P) is a widely distributed lipid signaling molecule that binds to five sphingosine-1-phosphate receptors (S1PR) to regulate downstream signaling pathways involved in the pathophysiological processes of sepsis, including endothelial permeability, cytokine release, and vascular tone. This review summarizes current research on the role of S1P in normal liver biology and describes the mechanisms by which changes in S1P/S1PR affect the development of liver-related diseases. At the same time, the pathological processes underlying liver injury, as evidenced by clinical manifestations during sepsis, were comprehensively reviewed. This paper focused on the mechanistic pathways through which S1P and its receptors modulate immunity, bile acid metabolism, and liver-intestinal circulation in septic liver injury. Finally, the relationships between S1P and its receptors with liver inflammation and metabolism and the use of related drugs for the treatment of liver injury were examined. By elucidating the role of S1P and its receptor in the pathogenesis of sepsis liver injury, this review established a molecular targeting framework, providing novel insights into clinical and drug development.
Collapse
Affiliation(s)
- Bin Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaoyu Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiangfeng Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Ye
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Hongquan Zhu
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaofeng Liu
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
12
|
Li L, Ren J, Guo M, An Z, Duan W, Lv J, Tan Z, Yang J, Zhu Y, Yang H, Liu Y, Ma Y, Guo H. SAP130 mediates crosstalk between hepatocyte ferroptosis and M1 macrophage polarization in PFOS-induced hepatotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175612. [PMID: 39163934 DOI: 10.1016/j.scitotenv.2024.175612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant widely utilized in industrial manufacturing and daily life, leading to significant environmental accumulation and various public health issues. This study aims to characterize spliceosome-associated protein 130 (SAP130) as a key mediator of crosstalk between hepatocytes and macrophages, elucidating its role in PFOS-induced liver inflammation. The data demonstrate that PFOS exposure induces ferroptosis in mouse liver and AML12 cells. During ferroptosis, SAP130 is released from injured hepatocytes into the microenvironment, binding to macrophage-inducible C-type lectin (Mincle) and activating the Mincle/Syk signaling pathway in macrophages, ultimately promoting M1 polarization and exacerbating liver injury. Treatment with the ferroptosis inhibitor Ferrostatin-1 reduces SAP130 release, inhibits Mincle/Syk signaling activation, and mitigates inflammatory response. Furthermore, siSAP130 suppresses the activation of the Mincle signaling pathway and M1 polarization in BMDM cells. Conversely, treatment with the ferroptosis agonist Erastin enhances paracrine secretion of SAP130 and exacerbates inflammation. These findings emphasize the significance of hepatocyte-macrophage crosstalk as a critical pathway for PFOS-induced liver injury in mice while highlighting SAP130 as a pivotal regulator of ferroptosis and inflammation, thereby elucidating the potential mechanism of PFOS-induced liver injury.
Collapse
Affiliation(s)
- Longfei Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Wenjing Duan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Junli Lv
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Zhenzhen Tan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jing Yang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yiming Zhu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Huiling Yang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, PR China.
| |
Collapse
|
13
|
Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX. Milk-Derived Extracellular Vesicles: A Novel Perspective on Comparative Therapeutics and Targeted Nanocarrier Application. Vaccines (Basel) 2024; 12:1282. [PMID: 39591185 PMCID: PMC11599128 DOI: 10.3390/vaccines12111282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Milk-derived extracellular vesicles (mEVs) are emerging as promising therapeutic candidates due to their unique properties and versatile functions. These vesicles play a crucial role in immunomodulation by influencing macrophage differentiation and cytokine production, potentially aiding in the treatment of conditions such as bone loss, fibrosis, and cancer. mEVs also have the capacity to modulate gut microbiota composition, which may alleviate the symptoms of inflammatory bowel diseases and promote intestinal barrier integrity. Their potential as drug delivery vehicles is significant, enhancing the stability, solubility, and bioavailability of anticancer agents while supporting wound healing and reducing inflammation. Additionally, bovine mEVs exhibit anti-aging properties and protect skin cells from UV damage. As vaccine platforms, mEVs offer advantages including biocompatibility, antigen protection, and the ability to elicit robust immune responses through targeted delivery to specific immune cells. Despite these promising applications, challenges persist, including their complex roles in cancer, effective antigen loading, regulatory hurdles, and the need for standardized production methods. Achieving high targeting specificity and understanding the long-term effects of mEV-based therapies are essential for clinical translation. Ongoing research aims to optimize mEV production methods, enhance targeting capabilities, and conduct rigorous preclinical and clinical studies. By addressing these challenges, mEVs hold the potential to revolutionize vaccine development and targeted drug delivery, ultimately improving therapeutic outcomes across various medical fields.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| |
Collapse
|
14
|
Toniutto P, Falleti E, Cmet S, Cussigh A, Degasperi E, Anolli MP, Sambarino D, Facchetti F, Borghi M, Perbellini R, Monico S, Lampertico P. Sodium taurocholate cotransporting polypeptide (NTCP) polymorphisms may influence HDV RNA load and early response to bulevirtide. J Hepatol 2024; 81:819-826. [PMID: 38901675 DOI: 10.1016/j.jhep.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND & AIMS Genetic polymorphisms in the sodium taurocholate cotransporting peptide (NTCP encoded by SLC10A1) have been described, but their role in untreated and treated patients with chronic hepatitis delta (CHD) remains unknown. Virological response (VR) to the NTCP inhibitor bulevirtide (BLV) was achieved at week 48 by >70% of patients with CHD, but nearly 15% experienced virological non-response (VNR) or partial response (PR). This study aimed to evaluate whether NTCP genetic polymorphisms affect baseline HDV RNA load and response to BLV in patients with CHD. METHODS BLV-untreated and -treated patients were enrolled in a retrospective cross-sectional and longitudinal study. Clinical and virological characteristics were collected at baseline and up to 96 weeks in the BLV-treated patients. NTCP genetic polymorphisms were identified by Sanger sequencing. RESULTS Of the six NTCP polymorphisms studied in 209 untreated patients with CHD, carriers of the rs17556915 TT/CC (n = 142) compared to CT (n = 67) genotype presented with higher median HDV RNA levels (5.39 vs. 4.75 log10 IU/ml, p = 0.004). Of 209 patients receiving BLV monotherapy at 2 mg/day, 76 were evaluated at week 24 and 40 up to week 96. Higher mean baseline HDV RNA levels were confirmed in TT/CC (n = 43) compared to CT (n = 33) carriers (5.38 vs. 4.72 log10 IU/ml, p = 0.010). Although 24-week VR was comparable between TT/CC and CT carriers (25/43 vs. 17/33, p = 0.565), the former group presented VNR more often than PR (9/11 vs. 9/23, p = 0.02) at week 24. 7/9 TT/CC genotype carriers remained VNR at week 48 of BLV treatment. CONCLUSIONS The NTCP rs17556915 C>T genetic polymorphisms may influence baseline HDV RNA load both in BLV-untreated and -treated patients with CHD and may contribute to identifying patients with different early virological responses to BLV. IMPACT AND IMPLICATIONS Although several sodium taurocholate cotransporting polypeptide (NTCP) genetic polymorphisms have been described, no data are available on their potential role in modifying HDV RNA load or treatment response to bulevirtide (BLV) in patients with chronic hepatitis delta (CHD). In this study, we demonstrated that patients with CHD, either treated or untreated, carrying NTCP rs17556915 TT/CC, presented higher baseline HDV RNA levels compared to those with the CT genotype. Higher HDV RNA levels in TT/CC carriers compared to CT carriers were also confirmed in patients with CHD treated with BLV monotherapy up to 96 weeks. Furthermore, carriers of TT/CC, compared to CT genotype, more frequently showed viral non-response (VNR) than partial response (PR) at week 24 of BLV treatment, and 7/9 TT/CC genotype carriers remained VNR at week 48 of BLV treatment. This is the first study demonstrating a potential role of NTCP genetic polymorphisms in influencing HDV viral load and early virological response to BLV monotherapy. Since no direct HDV resistance to BLV has been described so far, if confirmed in larger studies, the genetic polymorphisms in NTCP may help identify patients with different patterns of early virological response to BLV.
Collapse
Affiliation(s)
| | - Edmondo Falleti
- Hepatology and Liver Transplantation Unit, University of Udine, Italy
| | - Sara Cmet
- Clinical Pathology, Azienda Ospedaliero Universitaria Friuli Centrale, Udine, Italy
| | - Annarosa Cussigh
- Clinical Pathology, Azienda Ospedaliero Universitaria Friuli Centrale, Udine, Italy
| | - Elisabetta Degasperi
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Paola Anolli
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dana Sambarino
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Floriana Facchetti
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marta Borghi
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Riccardo Perbellini
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Monico
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; CRC "A. M. and A. Migliavacca" Center for Liver Disease, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; D-SOLVE consortium, an EU Horizon Europe funded project (No 101057917)
| |
Collapse
|
15
|
Yang H, Yang T, Ding J, Wang X, Chen X, Liu J, Shu T, Wu Z, Sun L, Huang X, Jiang Z, Zhang L. Taurocholic acid represents an earlier and more sensitive biomarker and promotes cholestatic hepatotoxicity in ANIT-treated rats. J Appl Toxicol 2024; 44:1742-1760. [PMID: 39030796 DOI: 10.1002/jat.4669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/22/2024]
Abstract
Bile acid homeostasis is crucial for the normal physiological functioning of the liver. Disruptions in bile acid profiles are closely linked to the occurrence of cholestatic liver injury. As part of our diagnostic and therapeutic approach, we aimed to investigate the disturbance in bile acid profiles during cholestasis and its correlation with cholestatic liver injury. Before the occurrence of liver injury, alterations in bile acid profiles were detected in both plasma and liver between 8 and 16 h, persisting up to 96 h. TCA, TCDCA, and TUDCA in the plasma, as well as TCA, TUDCA, TCDCA, TDCA, TLCA, and THDCA in the liver, emerged as early sensitive and potential markers for diagnosing ANIT-induced cholestasis at 8-16 h. The distinguishing features of ANIT-induced liver injury were as follows: T-BAs exceeding G-BAs and serum biochemical indicators surpassing free bile acids. Notably, plasma T-BAs, particularly TCA, exhibited higher sensitivity to cholestatic hepatotoxicity compared with serum enzyme activity and liver histopathology. Further investigation revealed that TCA exacerbated ANIT-induced liver injury by elevating liver function enzyme activity, inflammation, and bile duct proliferation and promoting the migration of bile duct epithelial cell. Nevertheless, no morphological changes or alterations in transaminase activity indicative of liver damage were observed in the rats treated with TCA alone. Additionally, there were no changes in bile acid profiles or inflammatory responses under physiological conditions with maintained bile acid homeostasis. In summary, our findings suggest that taurine-conjugated bile acids in both plasma and liver, particularly TCA, can serve as early and sensitive markers for predicting intrahepatic cholestatic drugs and can act as potent exacerbators of cholestatic liver injury progression. However, exogenous TCA does not induce liver injury under physiological conditions where bile acid homeostasis is maintained.
Collapse
Affiliation(s)
- Hang Yang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Tingting Yang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jiaxin Ding
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Xue Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Xi Chen
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Jia Liu
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Ting Shu
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Ziteng Wu
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Lixin Sun
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Xin Huang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Zhenzhou Jiang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Luyong Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
16
|
Luo C, Yang Y, Jiang C, Lv A, Zuo W, Ye Y, Ke J. Influenza and the gut microbiota: A hidden therapeutic link. Heliyon 2024; 10:e37661. [PMID: 39315196 PMCID: PMC11417228 DOI: 10.1016/j.heliyon.2024.e37661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/31/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024] Open
Abstract
Background The extensive community of gut microbiota significantly influences various biological functions throughout the body, making its characterization a focal point in biomedicine research. Over the past few decades, studies have revealed a potential link between specific gut bacteria, their associated metabolic pathways, and influenza. Bacterial metabolites can communicate directly or indirectly with organs beyond the gut via the intestinal barrier, thereby impacting the physiological functions of the host. As the microbiota increasingly emerges as a 'gut signature' in influenza, gaining a deeper understanding of its role may offer new insights into its pathophysiological relevance and open avenues for novel therapeutic targets. In this Review, we explore the differences in gut microbiota between healthy individuals and those with influenza, the relationship between gut microbiota metabolites and influenza, and potential strategies for preventing and treating influenza through the regulation of gut microbiota and its metabolites, including fecal microbiota transplantation and microecological preparations. Methods We utilized PubMed and Web of Science as our search databases, employing keywords such as "influenza," "gut microbiota," "traditional Chinese medicine," "metabolites," "prebiotics," "probiotics," and "machine learning" to retrieve studies examining the potential therapeutic connections between the modulation of gut microbiota and its metabolites in the treatment of influenza. The search encompassed literature from the inception of the databases up to December 2023. Results Fecal microbiota transplantation (FMT), microbial preparations (probiotics and prebiotics), and traditional Chinese medicine have unique advantages in regulating intestinal microbiota and its metabolites to improve influenza outcomes. The primary mechanism involves increasing beneficial intestinal bacteria such as Bacteroidetes and Bifidobacterium while reducing harmful bacteria such as Proteobacteria. These interventions act directly or indirectly on metabolites such as short-chain fatty acids (SCFAs), amino acids (AAs), bile acids, and monoamines to alleviate lung inflammation, reduce viral load, and exert anti-influenza virus effects. Conclusion The gut microbiota and its metabolites have direct or indirect therapeutic effects on influenza, presenting broad research potential for providing new directions in influenza research and offering references for clinical prevention and treatment. Future research should focus on identifying key strains, specific metabolites, and immune regulation mechanisms within the gut microbiota to accurately target microbiota interventions and prevent respiratory viral infections such as influenza.
Collapse
Affiliation(s)
- Cheng Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Yi Yang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Cheng Jiang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Anqi Lv
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Wanzhao Zuo
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Yuanhang Ye
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Jia Ke
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430074, China
| |
Collapse
|
17
|
Tattoli I, Mathew AR, Verrienti A, Pallotta L, Severi C, Andreola F, Cavallucci V, Giorgi M, Massimi M, Bencini L, Fidaleo M. The Interplay between Liver and Adipose Tissue in the Onset of Liver Diseases: Exploring the Role of Vitamin Deficiency. Cells 2024; 13:1631. [PMID: 39404394 PMCID: PMC11475612 DOI: 10.3390/cells13191631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The deficiency of vitamins, a condition known as "hidden hunger", causes comprehensive pathological states. Research over the years has identified a relationship between liver diseases and hypovitaminosis or defects in vitamin metabolism. The exact mechanisms remain elusive; however, the crucial involvement of specific vitamins in metabolic functions, alongside the reclassification of liver disease as metabolic dysfunction-associated steatotic liver disease (MASLD), has prompted researchers to investigate the potential cause-effect dynamics between vitamin deficiency and liver disease. Moreover, scientists are increasingly investigating how the deficiency of vitamins might disrupt specific organ crosstalk, potentially contributing to liver disease. Although the concept of a dysmetabolic circuit linking adipose tissue and the liver, leading to liver disease, has been discussed, the possible involvement of vitamin deficiency in this axis is a relatively recent area of study, with numerous critical aspects yet to be fully understood. In this review, we examine research from 2019 to July 2024 focusing on the possible link between liver-adipose tissue crosstalk and vitamin deficiency involved in the onset and progression of non-alcoholic fatty liver disease (NAFLD). Studies report that vitamin deficiency can affect the liver-adipose tissue axis, mainly affecting the regulation of systemic energy balance and inflammation.
Collapse
Affiliation(s)
- Ivan Tattoli
- Oncology General Surgery, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (I.T.); (L.B.)
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
| | - Aimee Rachel Mathew
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; (A.V.); (L.P.); (C.S.)
| | - Lucia Pallotta
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; (A.V.); (L.P.); (C.S.)
| | - Carola Severi
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; (A.V.); (L.P.); (C.S.)
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK;
| | - Virve Cavallucci
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Mauro Giorgi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
| | - Mara Massimi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Lapo Bencini
- Oncology General Surgery, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (I.T.); (L.B.)
| | - Marco Fidaleo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
- Research Center for Nanotechnology for Engineering of Sapienza (CNIS), Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
18
|
Peiper AM, Morales Aparicio J, Hu Z, Phophi L, Helm EW, Rubinstein RJ, Phillips M, Williams CG, Subramanian S, Cross M, Iyer N, Nguyen Q, Newsome R, Jobin C, Langel SN, Bucardo F, Becker-Dreps S, Tan XD, Dawson PA, Karst SM. Metabolic immaturity and breastmilk bile acid metabolites are central determinants of heightened newborn vulnerability to norovirus diarrhea. Cell Host Microbe 2024; 32:1488-1501.e5. [PMID: 39214086 PMCID: PMC11392616 DOI: 10.1016/j.chom.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
The pathogenic outcome of enteric virus infections is governed by a complex interplay between the virus, intestinal microbiota, and host immune factors, with metabolites serving as a key mediator. Noroviruses bind bile acid metabolites, which are produced by the host and then modified by commensal bacteria. Paradoxically, bile acids can have both proviral and antiviral roles during norovirus infections. Working in an infant mouse model of norovirus infection, we demonstrate that microbiota and their bile acid metabolites protect from norovirus diarrhea, whereas host bile acids promote disease. We also find that maternal bile acid metabolism determines the susceptibility of newborn mice to norovirus diarrhea during breastfeeding. Finally, targeting maternal and neonatal bile acid metabolism can protect newborn mice from norovirus disease. In summary, neonatal metabolic immaturity and breastmilk bile acids are central determinants of heightened newborn vulnerability to norovirus disease.
Collapse
Affiliation(s)
- Amy M Peiper
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Joyce Morales Aparicio
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zhengzheng Hu
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Lufuno Phophi
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Emily W Helm
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rebecca J Rubinstein
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew Phillips
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Caroline G Williams
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Saravanan Subramanian
- Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Michael Cross
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Neha Iyer
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Quyen Nguyen
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rachel Newsome
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Christian Jobin
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Stephanie N Langel
- Department of Pathology, Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Filemon Bucardo
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sylvia Becker-Dreps
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiao-Di Tan
- Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Research & Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Paul A Dawson
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory School of Medicine, Atlanta, GA 30329, USA
| | - Stephanie M Karst
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
19
|
Jalan-Sakrikar N, Guicciardi ME, O’Hara SP, Azad A, LaRusso NF, Gores GJ, Huebert RC. Central role for cholangiocyte pathobiology in cholestatic liver diseases. Hepatology 2024:01515467-990000000-01022. [PMID: 39250501 PMCID: PMC11890218 DOI: 10.1097/hep.0000000000001093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Cholangiopathies comprise a spectrum of chronic intrahepatic and extrahepatic biliary tract disorders culminating in progressive cholestatic liver injury, fibrosis, and often cirrhosis and its sequela. Treatment for these diseases is limited, and collectively, they are one of the therapeutic "black boxes" in clinical hepatology. The etiopathogenesis of the cholangiopathies likely includes disease-specific mediators but also common cellular and molecular events driving disease progression (eg, cholestatic fibrogenesis, inflammation, and duct damage). The common pathways involve cholangiocytes, the epithelial cells lining the intrahepatic and extrahepatic bile ducts, which are central to the pathogenesis of these disorders. Current information suggests that cholangiocytes function as a signaling "hub" in biliary tract-associated injury. Herein, we review the pivotal role of cholangiocytes in cholestatic fibrogenesis, focusing on the crosstalk between cholangiocytes and portal fibroblasts and HSCs. The proclivity of these cells to undergo a senescence-associated secretory phenotype, which is proinflammatory and profibrogenic, and the intrinsic intracellular activation pathways resulting in the secretion of cytokines and chemokines are reviewed. The crosstalk between cholangiocytes and cells of the innate (neutrophils and macrophages) and adaptive (T cells and B cells) immune systems is also examined in detail. The information will help consolidate information on this topic and guide further research and potential therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Gastroenterology Research Unit, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Maria Eugenia Guicciardi
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Steven P. O’Hara
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Adiba Azad
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Gastroenterology Research Unit, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| |
Collapse
|
20
|
Zhou T, Wu J, Khan A, Hu T, Wang Y, Salama ES, Su S, Han H, Jin W, Li X. A probiotic Limosilactobacillus fermentum GR-3 mitigates colitis-associated tumorigenesis in mice via modulating gut microbiome. NPJ Sci Food 2024; 8:61. [PMID: 39242568 PMCID: PMC11379937 DOI: 10.1038/s41538-024-00307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Bacterial therapy for colorectal cancer (CRC) represents a burgeoning frontier. The probiotic Limosilactobacillus fermentum GR-3, derived from traditional food "Jiangshui", exhibited superior antioxidant capacity by producing indole derivatives ICA and IPA. In an AOM/DSS-induced CRC mouse model, GR-3 treatment alleviated weight loss, colon shortening, rectal bleeding and intestinal barrier disruption by reducing oxidative stress and inflammation. GR-3 colonization in distant colon induced apoptosis and reduced tumor incidence by 51.2%, outperforming the control strain and vitamin C. The beneficial effect of GR-3 on CRC was associated with gut microbiome modulation, increasing SCFA producer Lachnospiraceae NK4A136 group and suppressing pro-inflammatory strain Bacteroides. Metagenomic and metabolic analyses revealed that GR-3 intervention upregulated antioxidant genes (xseA, ALDH) and butyrate synthesis gene (bcd), while increasing beneficial metabolites (SCFAs, ICA, IPA, VB12 and VD3) and reducing harmful secondary bile acids. Overall, GR-3 emerges as a promising candidate in CRC therapy, offering effective gut microbiome remediation.
Collapse
Affiliation(s)
- Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China
| | - Jingyuan Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Tianxiang Hu
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Yiqing Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Shaochen Su
- Healthy Examination & Management Center, First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Huawen Han
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China.
| | - Weilin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
21
|
Su Y, Zhou Q, Wu Q, Ding Y, Jiang M, Zhang X, Wang J, Wang X, Ge C. Infection‑associated bile acid disturbance contributes to macrophage activation in patients with cirrhosis. Mol Med Rep 2024; 30:150. [PMID: 38963032 PMCID: PMC11234163 DOI: 10.3892/mmr.2024.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024] Open
Abstract
Cirrhosis impairs macrophage function and disrupts bile acid homeostasis. Although bile acids affect macrophage function in patients with sepsis, whether and how the bile acid profile is changed by infection in patients with cirrhosis to modulate macrophage function remains unclear. The present study aimed to investigate the changes in the bile acid profile of patients with cirrhosis and infection and their effects on macrophage function. Serum was collected from 20 healthy subjects, 18 patients with cirrhosis and 39 patients with cirrhosis and infection. Bile acid profiles were detected using high‑performance liquid chromatography‑triple time‑of‑flight mass spectrometer. The association between bile acid changes and infection was analysed using receiver operating characteristic (ROC) curves. Infection‑altered bile acids were used in combination with lipopolysaccharides (LPS) to stimulate RAW264.7/THP‑1 cells in vitro. The migratory capacity was evaluated using wound healing and Transwell migration assays. The expression of Arg‑1, iNOS, IκBα, phosphorylated (p‑)IκBα and p65 was examined with western blotting and immunofluorescence, Tnfα, Il1b and Il6 mRNA was examined with RT‑qPCR, and CD86, CD163 and phagocytosis was measured with flow cytometry. The ROC curves showed that decreased hyodeoxycholic acid (HDCA) and deoxycholic acid (DCA) levels were associated with infection. HDCA or DCA combined with LPS enhanced the phagocytic and migratory ability of macrophages, accompanied by upregulation of iNOS and CD86 protein expression as well as Tnfα, Il1b, and Il6 mRNA expression. However, neither HDCA nor DCA alone showed an effect on these phenotypes. In addition, DCA and HDCA acted synergistically with LPS to increase the expression of p‑IκBα and the intranuclear migration of p65. Infection changed the bile acid profile in patients with cirrhosis, among which the reduction of DCA and HDCA associated most strongly with infection. HDCA and DCA enhanced the sensitivity of macrophage function loss to LPS stimulation. These findings suggested a potential role for monitoring the bile acid profile that could help manage patients with cirrhosis and infection.
Collapse
Affiliation(s)
- Yong Su
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qiaoling Zhou
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qiong Wu
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yijie Ding
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Meijie Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Xiaoyu Zhang
- Health Management Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jia Wang
- Department of Pharmacy, Hefei First People's Hospital, Hefei, Anhui 230032, P.R. China
| | - Xinming Wang
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chaoliang Ge
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
22
|
Zhao M, Wang B, Zhou F, Fang C, Zhu B, Zhou M, Ye X, Chen Y, Ding Z. Modeling "Two-Hit" Severe Pneumonia in Mice: Pathological Characteristics and Mechanistic Studies. Inflammation 2024:10.1007/s10753-024-02136-w. [PMID: 39212889 DOI: 10.1007/s10753-024-02136-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Severe pneumonia is one of the most common critical diseases in clinical practice. Existing models for severe pneumonia have limitations, leading to limited clinical translation. In this study, a two-hit severe pneumonia mouse model was established by inducing primary pneumonia through intratracheal instillation of 800 μg lipopolysaccharide (LPS), followed by intraperitoneal injection of 10 mg/kg LPS. The effectiveness of various inflammatory indicators and the lung tissue damage during the time course of this model were confirmed and evaluated. At 3 h post two-hit, the IL-6, TNF-α levels in peripheral blood and bronchoalveolar lavage fluid (BALF), and the white blood cells, neutrophils, and lymphocytes in BALF notably exhibited the most pronounced elevation. At 12 h post two-hit, the white blood cells and neutrophils in peripheral blood significantly increased, accompanied by notable alterations in splenic immune cells and worsened pulmonary histopathological damage. Transcriptomics of lung tissue, microbiota analysis of lung and gut, as well as plasma metabolomics analyses further indicated changes in transcriptional profiles, microbial composition, and metabolites due to the two-hit modeling. These results validate that the two-hit model mimics the clinical presentation of severe pneumonia and serves as a robust experimental tool for studying the pathogenesis of severe pneumonia and developing and assessing treatment strategies.
Collapse
Affiliation(s)
- Mengjia Zhao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bixu Wang
- Ningbo Yinzhou Center for Disease Control and Prevention, Ningbo, 315199, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chengnan Fang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mingyuan Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuchi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
23
|
Liu R, Wang J, Liu Y, Gao Y, Yang R. Regulation of gut microbiota on immune cell ferroptosis: A novel insight for immunotherapy against tumor. Cancer Lett 2024; 598:217115. [PMID: 39025428 DOI: 10.1016/j.canlet.2024.217115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Gut microbiota contributes to the homeostasis of immune system and is related to various diseases such as tumorigenesis. Ferroptosis, a new type of cell death, is also involved in the disease pathogenesis. Recent studies have found the correlations of gut microbiota mediated ferroptosis and immune cell death. Gut microbiota derived immunosuppressive metabolites, which can promote differentiation and function of immune cells, tend to inhibit ferroptosis through their receptors, whereas inflammatory metabolites from gut microbiota also affect the differentiation and function of immune cells and their ferroptosis. Thus, it is possible for gut microbiota to regulate immune cell ferroptosis. Indeed, gut microbiota metabolite receptor aryl hydrocarbon receptor (AhR) can affect ferroptosis of intestinal intraepithelial lymphocytes, leading to disease pathogenesis. Since immune cell ferroptosis in tumor microenvironment (TME) affects the occurrence and development of tumor, the modulation of gut microbiota in these cell ferroptosis might influence on the tumorigenesis, and also immunotherapy against tumors. Here we will summarize the recent advance of ferroptosis mediated by gut microbiota metabolites, which potentially acts as regulator(s) on immune cells in TME for therapy against tumor.
Collapse
Affiliation(s)
- Ruobing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuqing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China.
| |
Collapse
|
24
|
Cheng W, Zhu N, Wang J, Yang R. A role of gut microbiota metabolites in HLA-E and NKG2 blockage immunotherapy against tumors: new insights for clinical application. Front Immunol 2024; 15:1331518. [PMID: 39229258 PMCID: PMC11368731 DOI: 10.3389/fimmu.2024.1331518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
One of major breakthroughs in immunotherapy against tumor is from blocking immune checkpoint molecules on tumor and reactive T cells. The development of CTLA-4 and PD-1 blockage antibodies has triggered to search for additional effective therapeutic strategies. This causes recent findings that blocking the interaction of checkpoint molecule NKG2A in NK and CD8 T cells with HLA-E in tumors is effective in defensing tumors. Interestingly, gut microbiota also affects this immune checkpoint immunotherapy against tumor. Gut microbiota such as bacteria can contribute to the regulation of host immune response and homeostasis. They not only promote the differentiation and function of immunosuppressive cells but also the inflammatory cells through the metabolites such as tryptophan (Trp) and bile acid (BA) metabolites as well as short chain fatty acids (SCFAs). These gut microbiota metabolites (GMMs) educated immune cells can affect the differentiation and function of effective CD8 and NK cells. Notably, these metabolites also directly affect the activity of CD8 and NK cells. Furthermore, the expression of CD94/NKG2A in the immune cells and/or their ligand HLA-E in the tumor cells is also regulated by gut microbiota associated immune factors. These findings offer new insights for the clinical application of gut microbiota in precise and/or personalized treatments of tumors. In this review, we will discuss the impacts of GMMs and GMM educated immune cells on the activity of effective CD8 and NK cells and the expression of CD94/NKG2A in immune cells and/or their ligand HLA-E in tumor cells.
Collapse
Affiliation(s)
- Wenyue Cheng
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Ningning Zhu
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Juanjuan Wang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
25
|
Gál E, Parvaneh S, Miklós V, Hegyi P, Kemény L, Veréb Z, Venglovecz V. Investigating the influence of taurochenodeoxycholic acid (TCDCA) on pancreatic cancer cell behavior: An RNA sequencing approach. J Biotechnol 2024; 391:20-32. [PMID: 38815810 DOI: 10.1016/j.jbiotec.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Pancreatic cancer (PC) poses a substantial global health challenge, ranking as the fourth leading cause of cancer-related deaths due to its high mortality rate. Late-stage diagnoses are common due to the absence of specific symptoms. Pancreatic ductal adenocarcinoma (PDAC) accounts for the majority of PC cases. Recent research has suggested a potential link between elevated serum levels of bile acids (BAs) and tumorigenesis of PDAC. This study aims to understand how taurochenodeoxycholic acid (TCDCA), a secondary BA, influences PDAC using RNA sequencing techniques on the Capan-1 cell line. We identified 2,950 differentially expressed genes (DEGs) following TCDCA treatment, with 1,597 upregulated and 1,353 downregulated genes. These DEGs were associated with critical PDAC pathways, including coagulation, angiogenesis, cell migration, and signaling regulation. Furthermore, we reviewed relevant literature highlighting genes like DKK-1, KRT80, UPLA, and SerpinB2, known for their roles in PDAC tumorigenesis and metastasis. Our study sheds light on the complex relationship between BAs and PDAC, offering insights into potential diagnostic markers and therapeutic targets. Further research is needed to unravel these findings' precise mechanisms and clinical implications, potentially improving PDAC diagnosis and treatment.
Collapse
Affiliation(s)
- Eleonóra Gál
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Shahram Parvaneh
- Regenerative Medicine and Cellular Pharmacology Research Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary; Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
| | - Vanda Miklós
- University Biobank, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Translational Pancreatology Research Group, Interdisciplinary Center of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary; Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute for Pancreatic Disorders, Semmelweis University, Budapest, Hungary
| | - Lajos Kemény
- Regenerative Medicine and Cellular Pharmacology Research Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary; Interdisciplinary Research Development and Innovation, Center of Excellence, University of Szeged, Szeged, Hungary; HCEMM-USZ Skin Research Group, HCEMM, Szeged, Hungary
| | - Zoltán Veréb
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary.
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Translational Pancreatology Research Group, Interdisciplinary Center of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
| |
Collapse
|
26
|
Unagolla JM, Das S, Flanagan R, Oehler M, Menon JU. Targeting chronic liver diseases: Molecular markers, drug delivery strategies and future perspectives. Int J Pharm 2024; 660:124381. [PMID: 38917958 PMCID: PMC11246230 DOI: 10.1016/j.ijpharm.2024.124381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/10/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Chronic liver inflammation, a pervasive global health issue, results in millions of annual deaths due to its progression from fibrosis to the more severe forms of cirrhosis and hepatocellular carcinoma (HCC). This insidious condition stems from diverse factors such as obesity, genetic conditions, alcohol abuse, viral infections, autoimmune diseases, and toxic accumulation, manifesting as chronic liver diseases (CLDs) such as metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction-associated steatohepatitis (MASH), alcoholic liver disease (ALD), viral hepatitis, drug-induced liver injury, and autoimmune hepatitis. Late detection of CLDs necessitates effective treatments to inhibit and potentially reverse disease progression. However, current therapies exhibit limitations in consistency and safety. A potential breakthrough lies in nanoparticle-based drug delivery strategies, offering targeted delivery to specific liver cell types, such as hepatocytes, Kupffer cells, and hepatic stellate cells. This review explores molecular targets for CLD treatment, ongoing clinical trials, recent advances in nanoparticle-based drug delivery, and the future outlook of this research field. Early intervention is crucial for chronic liver disease. Having a comprehensive understanding of current treatments, molecular biomarkers and novel nanoparticle-based drug delivery strategies can have enormous impact in guiding future strategies for the prevention and treatment of CLDs.
Collapse
Affiliation(s)
- Janitha M Unagolla
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Subarna Das
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Riley Flanagan
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Marin Oehler
- Department of Biomedical Engineering, College of Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
27
|
Sun D, Xie C, Zhao Y, Liao J, Li S, Zhang Y, Wang D, Hua K, Gu Y, Du J, Huang G, Huang J. The gut microbiota-bile acid axis in cholestatic liver disease. Mol Med 2024; 30:104. [PMID: 39030473 PMCID: PMC11265038 DOI: 10.1186/s10020-024-00830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/07/2024] [Indexed: 07/21/2024] Open
Abstract
Cholestatic liver diseases (CLD) are characterized by impaired normal bile flow, culminating in excessive accumulation of toxic bile acids. The majority of patients with CLD ultimately progress to liver cirrhosis and hepatic failure, necessitating liver transplantation due to the lack of effective treatment. Recent investigations have underscored the pivotal role of the gut microbiota-bile acid axis in the progression of hepatic fibrosis via various pathways. The obstruction of bile drainage can induce gut microbiota dysbiosis and disrupt the intestinal mucosal barrier, leading to bacteria translocation. The microbial translocation activates the immune response and promotes liver fibrosis progression. The identification of therapeutic targets for modulating the gut microbiota-bile acid axis represents a promising strategy to ameliorate or perhaps reverse liver fibrosis in CLD. This review focuses on the mechanisms in the gut microbiota-bile acids axis in CLD and highlights potential therapeutic targets, aiming to lay a foundation for innovative treatment approaches.
Collapse
Affiliation(s)
- Dayan Sun
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Chuanping Xie
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Yong Zhao
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Junmin Liao
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Shuangshuang Li
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Yanan Zhang
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Dingding Wang
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Kaiyun Hua
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Yichao Gu
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Jingbin Du
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Guoxian Huang
- Department of Pediatric Surgery, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Jinshi Huang
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China.
| |
Collapse
|
28
|
Tam PKH, Wells RG, Tang CSM, Lui VCH, Hukkinen M, Luque CD, De Coppi P, Mack CL, Pakarinen M, Davenport M. Biliary atresia. Nat Rev Dis Primers 2024; 10:47. [PMID: 38992031 PMCID: PMC11956545 DOI: 10.1038/s41572-024-00533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/13/2024]
Abstract
Biliary atresia (BA) is a progressive inflammatory fibrosclerosing disease of the biliary system and a major cause of neonatal cholestasis. It affects 1:5,000-20,000 live births, with the highest incidence in Asia. The pathogenesis is still unknown, but emerging research suggests a role for ciliary dysfunction, redox stress and hypoxia. The study of the underlying mechanisms can be conceptualized along the likely prenatal timing of an initial insult and the distinction between the injury and prenatal and postnatal responses to injury. Although still speculative, these emerging concepts, new diagnostic tools and early diagnosis might enable neoadjuvant therapy (possibly aimed at oxidative stress) before a Kasai portoenterostomy (KPE). This is particularly important, as timely KPE restores bile flow in only 50-75% of patients of whom many subsequently develop cholangitis, portal hypertension and progressive fibrosis; 60-75% of patients require liver transplantation by the age of 18 years. Early diagnosis, multidisciplinary management, centralization of surgery and optimized interventions for complications after KPE lead to better survival. Postoperative corticosteroid use has shown benefits, whereas the role of other adjuvant therapies remains to be evaluated. Continued research to better understand disease mechanisms is necessary to develop innovative treatments, including adjuvant therapies targeting the immune response, regenerative medicine approaches and new clinical tests to improve patient outcomes.
Collapse
Affiliation(s)
- Paul K H Tam
- Medical Sciences Division, Macau University of Science and Technology, Macau, China.
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Rebecca G Wells
- Division of Gastroenterology and Hepatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clara S M Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Vincent C H Lui
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Maria Hukkinen
- Section of Paediatric Surgery, Paediatric Liver and Gut Research Group, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Carlos D Luque
- Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Paolo De Coppi
- NIHR Biomedical Research Centre, Great Ormond Street Hospital for Children NHS Foundation Trust and Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Cara L Mack
- Department of Paediatrics, Division of Paediatric Gastroenterology, Hepatology and Nutrition, Medical College of Wisconsin, Children's Wisconsin, Milwaukee, WI, USA
| | - Mikko Pakarinen
- Section of Paediatric Surgery, Paediatric Liver and Gut Research Group, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Mark Davenport
- Department of Paediatric Surgery, King's College Hospital, London, UK
| |
Collapse
|
29
|
Long J, Xu Y, Zhang X, Wu B, Wang C. Role of FXR in the development of NAFLD and intervention strategies of small molecules. Arch Biochem Biophys 2024; 757:110024. [PMID: 38703803 DOI: 10.1016/j.abb.2024.110024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) remains a prevailing etiological agent behind hepatocyte diseases like chronic liver disease. The spectrum of processes involved in NAFLD stages includes hepatic steatosis, non-alcoholic fatty liver, and non-alcoholic steatohepatitis (NASH). Without intervention, the progression of NASH can further deteriorate into cirrhosis and ultimately, hepatocellular carcinoma. The cardinal features that characterize NAFLD are insulin resistance, lipogenesis, oxidative stress and inflammation, extracellular matrix deposition and fibrosis. Due to its complex pathogenesis, existing pharmaceutical agents fail to take a curative or ameliorative effect on NAFLD. Consequently, it is imperative to identify novel therapeutic targets and strategies for NAFLD, ideally to improve the aforementioned key features in patients. As an enterohepatic regulator of bile acid homeostasis, lipid metabolism, and inflammation, FarnesoidX receptor (FXR) is an important pharmacological target for the treatment of NAFLD. Manipulating FXR to regulate lipid metabolic signaling pathways is a potential mechanism to mitigate NAFLD. Therefore, elucidating the modulatory character of FXR in regulating lipid metabolism in NAFLD has the potential to yield groundbreaking perspectives for drug design. This review details recent advances in the regulation of lipid depletion in hepatocytes and investigates the pivotal function of FXR in the progress of NAFLD.
Collapse
Affiliation(s)
- Jiachan Long
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuanhang Xu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xuerong Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bingxing Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Caiyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
30
|
Bertolini A, Bloks VW, Wilmink M, Bos E, van de Peppel IP, Eilers R, Prins S, Thomas R, de Bruin A, Verkade H, Jonker JW. Treatment of intestinal and liver features in cystic fibrosis mice by the osmotic laxative polyethylene glycol. J Cyst Fibros 2024; 23:461-473. [PMID: 37775443 DOI: 10.1016/j.jcf.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/07/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Cystic Fibrosis (CF) is a genetic disease affecting multiple organs, primarily the lungs and digestive system. Improved pulmonary management significantly improved life expectancy of CF patients. As a result, extrapulmonary manifestations, including gastrointestinal and liver-related symptoms, have become more relevant. We previously reported that the osmotic laxative polyethylene glycol (PEG), which hydrates the CF gut, decreased fecal bile acid loss in a CF knockout mouse model. In the current study we investigated the effect of PEG on intestinal fat and cholesterol absorption and on CF-related liver features in a CF mouse model with the most common CF-causing mutation. METHODS CftrΔF508/ΔF508 (n=13) and wild-type (WT) (n=12) mice were treated with PEG for 2 weeks. The intestinal and hepatic effects of PEG were assessed by analysis of intestinal bile acid, cholesterol, and fat fluxes, transcriptome analysis as well as histology. RESULTS PEG improved intestinal malabsorption of bile acids, fat, and cholesterol in CftrΔF508/ΔF508 mice. Transcriptome analysis showed that PEG partially restored the intestinal signaling of nuclear receptors RXR, FXR, and CAR/PXR, which are involved in bile acid and xenobiotic metabolism. PEG also reduced liver inflammation in CF mice as assessed by transcriptome and histological analyses. CONCLUSIONS PEG, a non-absorbable osmotic laxative, improved intestinal nutrient absorption, intestinal bile acid and xenobiotic signaling, as well as CF-related liver features. These findings highlight the potential for osmotic laxation to improve gastrointestinal complications of CF in humans.
Collapse
Affiliation(s)
- Anna Bertolini
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, Groningen, the Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, Groningen, the Netherlands
| | - Marijn Wilmink
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, Groningen, the Netherlands
| | - Eline Bos
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, Groningen, the Netherlands
| | - Ivo P van de Peppel
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, Groningen, the Netherlands
| | - Roos Eilers
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, Groningen, the Netherlands
| | - Sake Prins
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, Groningen, the Netherlands
| | - Rachel Thomas
- Dutch Molecular Pathology Centre, Department of Pathobiology, Utrecht University, Utrecht, the Netherlands
| | - Alain de Bruin
- Dutch Molecular Pathology Centre, Department of Pathobiology, Utrecht University, Utrecht, the Netherlands
| | - Henkjan Verkade
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, Groningen, the Netherlands
| | - Johan W Jonker
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
31
|
Huang X, Liu X, Li Z. Bile acids and coronavirus disease 2019. Acta Pharm Sin B 2024; 14:1939-1950. [PMID: 38799626 PMCID: PMC11119507 DOI: 10.1016/j.apsb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/08/2023] [Accepted: 01/28/2024] [Indexed: 05/29/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been significantly alleviated. However, long-term health effects and prevention strategy remain unresolved. Thus, it is essential to explore the pathophysiological mechanisms and intervention for SARS-CoV-2 infection. Emerging research indicates a link between COVID-19 and bile acids, traditionally known for facilitating dietary fat absorption. The bile acid ursodeoxycholic acid potentially protects against SARS-CoV-2 infection by inhibiting the farnesoid X receptor, a bile acid nuclear receptor. The activation of G-protein-coupled bile acid receptor, another membrane receptor for bile acids, has also been found to regulate the expression of angiotensin-converting enzyme 2, the receptor through which the virus enters human cells. Here, we review the latest basic and clinical evidence linking bile acids to SARS-CoV-2, and reveal their complicated pathophysiological mechanisms.
Collapse
Affiliation(s)
- Xiaoru Huang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
| | - Xuening Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
| | - Zijian Li
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| |
Collapse
|
32
|
Peiper AM, Aparicio JM, Phophi L, Hu Z, Helm EW, Phillips M, Williams CG, Subramanian S, Cross M, Iyer N, Nguyen Q, Newsome R, Jobin C, Langel SN, Bucardo F, Becker-Dreps S, Tan XD, Dawson PA, Karst SM. Metabolic immaturity of newborns and breast milk bile acid metabolites are the central determinants of heightened neonatal vulnerability to norovirus diarrhea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592031. [PMID: 38746153 PMCID: PMC11092632 DOI: 10.1101/2024.05.01.592031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Noroviruses are the leading global cause of acute gastroenteritis, responsible for 685 million annual cases. While all age groups are susceptible to noroviruses, children are vulnerable to more severe infections than adults, underscored by 200 million pediatric cases and up to 200,000 deaths in children annually. Understanding the basis for the increased vulnerability of young hosts is critical to developing effective treatments. The pathogenic outcome of any enteric virus infection is governed by a complex interplay between the virus, intestinal microbiota, and host immune factors. A central mediator in these complex relationships are host- and microbiota-derived metabolites. Noroviruses bind a specific class of metabolites, bile acids, which are produced by the host and then modified by commensal bacterial enzymes. Paradoxically, bile acids can have both proviral and antiviral roles during norovirus infections. Considering these opposing effects, the microbiota-regulated balance of the bile acid pool may be a key determinant of the pathogenic outcome of a norovirus infection. The bile acid pool in newborns is unique due to immaturity of host metabolic pathways and developing gut microbiota, which could underlie the vulnerability of these hosts to severe norovirus infections. Supporting this concept, we demonstrate herein that microbiota and their bile acid metabolites protect from severe norovirus diarrhea whereas host-derived bile acids promote disease. Remarkably, we also report that maternal bile acid metabolism determines neonatal susceptibility to norovirus diarrhea during breastfeeding by delivering proviral bile acids to the newborn. Finally, directed targeting of maternal and neonatal bile acid metabolism can protect the neonatal host from norovirus disease. Altogether, these data support the conclusion that metabolic immaturity in newborns and ingestion of proviral maternal metabolites in breast milk are the central determinants of heightened neonatal vulnerability to norovirus disease.
Collapse
|
33
|
Zhang W, Wu H, Luo S, Lu X, Tan X, Wen L, Ma X, Efferth T. Molecular insights into experimental models and therapeutics for cholestasis. Biomed Pharmacother 2024; 174:116594. [PMID: 38615607 DOI: 10.1016/j.biopha.2024.116594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Cholestatic liver disease (CLD) is a range of conditions caused by the accumulation of bile acids (BAs) or disruptions in bile flow, which can harm the liver and bile ducts. To investigate its pathogenesis and treatment, it is essential to establish and assess experimental models of cholestasis, which have significant clinical value. However, owing to the complex pathogenesis of cholestasis, a single modelling method can merely reflect one or a few pathological mechanisms, and each method has its adaptability and limitations. We summarize the existing experimental models of cholestasis, including animal models, gene-knockout models, cell models, and organoid models. We also describe the main types of cholestatic disease simulated clinically. This review provides an overview of targeted therapy used for treating cholestasis based on the current research status of cholestasis models. In addition, we discuss the respective advantages and disadvantages of different models of cholestasis to help establish experimental models that resemble clinical disease conditions. In sum, this review not only outlines the current research with cholestasis models but also projects prospects for clinical treatment, thereby bridging basic research and practical therapeutic applications.
Collapse
Affiliation(s)
- Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hefei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiman Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
34
|
Kang N, Ji Z, Li Y, Gao J, Wu X, Zhang X, Duan Q, Zhu C, Xu Y, Wen L, Shi X, Liu W. Metabolite-derived damage-associated molecular patterns in immunological diseases. FEBS J 2024; 291:2051-2067. [PMID: 37432883 DOI: 10.1111/febs.16902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
Damage-associated molecular patterns (DAMPs) are typically derived from the endogenous elements of necrosis cells and can trigger inflammatory responses by activating DAMPs-sensing receptors on immune cells. Failure to clear DAMPs may lead to persistent inflammation, thereby contributing to the pathogenesis of immunological diseases. This review focuses on a newly recognized class of DAMPs derived from lipid, glucose, nucleotide, and amino acid metabolic pathways, which are then termed as metabolite-derived DAMPs. This review summarizes the reported molecular mechanisms of these metabolite-derived DAMPs in exacerbating inflammation responses, which may attribute to the pathology of certain types of immunological diseases. Additionally, this review also highlights both direct and indirect clinical interventions that have been explored to mitigate the pathological effects of these DAMPs. By summarizing our current understanding of metabolite-derived DAMPs, this review aims to inspire future thoughts and endeavors on targeted medicinal interventions and the development of therapies for immunological diseases.
Collapse
Affiliation(s)
- Na Kang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhenglin Ji
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Yuxin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Ji Gao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Xinfeng Wu
- Department of Rheumatology and Immunology, the First Affiliated Hospital, and College of Clinical Medical of Henan University of Science and Technology, Luoyang, China
| | - Xiaoyang Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Qinghui Duan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Can Zhu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Yue Xu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Luyao Wen
- Department of Rheumatology and Immunology, the First Affiliated Hospital, and College of Clinical Medical of Henan University of Science and Technology, Luoyang, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, the First Affiliated Hospital, and College of Clinical Medical of Henan University of Science and Technology, Luoyang, China
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
35
|
Dahmiwal T, Zade A, Tote D, Reddy S, Sudabattula K. Dietary Considerations in Cholecystectomy: Investigating the Impact of Various Dietary Factors on Symptoms and Outcomes. Cureus 2024; 16:e61183. [PMID: 38933619 PMCID: PMC11200314 DOI: 10.7759/cureus.61183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Cholecystectomy is commonly performed to address gallstone diseases, including the development of gallstones, which can lead to symptoms such as nausea, vomiting, and abdominal pain. Bile acids (BAs) produced by the liver are primarily stored and concentrated in the gallbladder (GB). After cholecystectomy, the body's ability to digest lipids is reduced due to the absence of the GB. Post-cholecystectomy syndrome (PCS) can occur when abdominal symptoms manifest after surgery. The purpose of this review is to look at the various effects of different dietary factors on patients undergoing cholecystectomy, how they affect their overall health after surgery, and how they contribute to symptoms of PCS. Some individuals may experience mild discomfort or alterations in bowel patterns, especially after consuming high-fat meals. The findings from the conducted studies suggest that, although dietary changes are a common recommendation, these measures are not sufficiently supported by evidence when it comes to alleviating symptoms and improving outcomes post-cholecystectomy. The studies found that subjects who consumed particular foods, such as processed meat and fried fatty foods, had exacerbated symptoms after cholecystectomy. Further studies are still required to understand the precise food factors that might affect post-surgical symptoms, as well as outcomes, and to develop tailored measures to enhance patient care and long-term prognosis after undergoing cholecystectomy.
Collapse
Affiliation(s)
- Tushar Dahmiwal
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anup Zade
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Darshana Tote
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Srinivasa Reddy
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Kesav Sudabattula
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
36
|
Wang K, Zhang Y, Wang G, Hao H, Wang H. FXR agonists for MASH therapy: Lessons and perspectives from obeticholic acid. Med Res Rev 2024; 44:568-586. [PMID: 37899676 DOI: 10.1002/med.21991] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023]
Abstract
Nonalcoholic fatty liver disease, also called metabolic dysfunction-associated steatotic liver disease, is the most common liver disease worldwide and has no approved pharmacotherapy. Due to its beneficial effects on metabolic regulation, inflammation suppression, cell death prevention, and fibrogenesis inhibition, farnesoid X receptor (FXR) is widely accepted as a promising therapeutic target for nonalcoholic steatosis (NASH) or called metabolic dysfunction-associated steatohepatitis (MASH). Many FXR agonists have been developed for NASH/MASH therapy. Obeticholic acid (OCA) is the pioneering frontrunner FXR agonist and the first demonstrating success in clinical trials. Unfortunately, OCA did not receive regulatory approval as a NASH pharmacotherapy because its moderate benefits did not outweigh its safety risks, which may cast a shadow over FXR-based drug development for NASH/MASH. This review summarizes the milestones in the development of OCA for NASH/MASH and discuss its limitations, including moderate hepatoprotection and the undesirable side effects of dyslipidemia, pruritus, cholelithiasis, and liver toxicity risk, in depth. More importantly, we provide perspectives on FXR-based therapy for NASH/MASH, hoping to support a successful bench-to-clinic transition.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuecan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hong Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
37
|
Xu N, He Y, Zhang C, Zhang Y, Cheng S, Deng L, Zhong Y, Liao B, Wei Y, Feng J. TGR5 signalling in heart and brain injuries: focus on metabolic and ischaemic mechanisms. Neurobiol Dis 2024; 192:106428. [PMID: 38307367 DOI: 10.1016/j.nbd.2024.106428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
The heart and brain are the core organs of the circulation and central nervous system, respectively, and play an important role in maintaining normal physiological functions. Early neuronal and cardiac damage affects organ function. The relationship between the heart and brain is being continuously investigated. Evidence-based medicine has revealed the concept of the "heart- brain axis," which may provide new therapeutic strategies for certain diseases. Takeda protein-coupled receptor 5 (TGR5) is a metabolic regulator involved in energy homeostasis, bile acid homeostasis, and glucose and lipid metabolism. Inflammation is critical for the development and regeneration of the heart and brain during metabolic diseases. Herein, we discuss the role of TGR5 as a metabolic regulator of heart and brain development and injury to facilitate new therapeutic strategies for metabolic and ischemic diseases of the heart and brain.
Collapse
Affiliation(s)
- Nan Xu
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, China
| | - Yufeng He
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Chunyu Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yongqiang Zhang
- Department of Cardiology, Hejiang County People's Hospital, Luzhou, China
| | - Shengjie Cheng
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, China
| | - Li Deng
- Department of Rheumatology, The Afliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
| | - Yan Wei
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
38
|
Atshan DA, Zalzala MH. Papaverine attenuates the progression of alpha naphthylisothiocyanate induce cholestasis in rats. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100177. [PMID: 38322817 PMCID: PMC10844674 DOI: 10.1016/j.crphar.2024.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Cholestasis is a hepatobiliary condition that manifests as acute or chronic and results from disruptions in the bile flow, formation, or secretion processes. The Farnesoid X receptor (FXR) is a vital target for the therapy of cholestasis since it regulates BA homeostasis. Despite the discovery of multiple active FXR agonists, there are still no effective treatments for cholestasis. Papaverine is identified as an FXR agonist.This study investigates papaverine's efficacy and probable mechanism in protecting against alpha naphthylisothiocyanate (ANIT) induced cholestasis. Thirty male albino rats were divided into three groups, each with ten rats. Group I (control) rats were administered 1 mL/kg corn oil 48 h before sacrifice; group II rats were orally administered 100 mg/kg ANIT. Group III received a 200 mg/kg dosage of papaverine over seven consecutive days. A single dose of ANIT at a concentration of 100 mg/kg was orally administered on the fifth day; group II and III animals were euthanized 48 h after inducing cholestasis, and serum concentrations of liver function tests and total bile acid (TBA) were measured. Besides measuring the inflammatory mediator's tumor necrosis factor-alpha (TNF-α) and interleukin 1 (IL-1β), antioxidant markers such as superoxide dismutase (SOD) and glutathione (GSH) were also assessed. The findings indicated the enhancement in the liver function test and total bile acids, as well as in liver histology; papaverine significantly lowered TNF-α and IL-1β while SOD and GSH significantly increased. Additionally, papaverine upregulates Fxr gene expression, bile salt export pump (Besp), small heterodimer partner (shp), hepatocyte nuclear factor 1α (Hnfα), nuclear factor erythroid 2-related factor (Nrf2), heme oxygenase (Ho-1), NAD(P)H quinone oxidoreductase 1 (Nqo1). Furthermore, papaverine increased protein expressions of Sirtuin1. (SIRT 1), FXR, HO-1, and BSEP levels in the rats' livers. The protective effects of papaverine may be attributed to the activation of FXR signaling pathways. These findings revealed that papaverine protects against ANIT-induced Cholestasis.
Collapse
Affiliation(s)
- Doaa Adnan Atshan
- Ministry Of Health And Environment, Alnuman Teaching Hospital, Baghdad, Iraq
| | - Munaf Hashim Zalzala
- University of Baghdad, College of Pharmacy, Department of Pharmacology and Toxicology, Baghdad, Iraq
| |
Collapse
|
39
|
Benjaskulluecha S, Boonmee A, Haque M, Wongprom B, Pattarakankul T, Pongma C, Sri-ngern-ngam K, Keawvilai P, Sukdee T, Saechue B, Kueanjinda P, Palaga T. O 6-methylguanine DNA methyltransferase regulates β-glucan-induced trained immunity of macrophages via farnesoid X receptor and AMPK. iScience 2024; 27:108733. [PMID: 38235325 PMCID: PMC10792243 DOI: 10.1016/j.isci.2023.108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/10/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Trained immunity is the heightened state of innate immune memory that enhances immune response resulting in nonspecific protection. Epigenetic changes and metabolic reprogramming are critical steps that regulate trained immunity. In this study, we reported the involvement of O6-methylguanine DNA methyltransferase (MGMT), a DNA repair enzyme of lesion induced by alkylating agents, in regulation the trained immunity induced by β-glucan (BG). Pharmacological inhibition or silencing of MGMT expression altered LPS stimulated pro-inflammatory cytokine productions in BG-trained bone marrow derived macrophages (BMMs). Targeted deletion of Mgmt in BMMs resulted in reduction of the trained responses both in vitro and in vivo models. The transcriptomic analysis revealed that the dampening trained immunity in MGMT KO BMMs is partially mediated by ATM/FXR/AMPK axis affecting the MAPK/mTOR/HIF1α pathways and the reduction in glycolysis function. Taken together, a failure to resolve a DNA damage may have consequences for innate immune memory.
Collapse
Affiliation(s)
- Salisa Benjaskulluecha
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atsadang Boonmee
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - MdFazlul Haque
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjawan Wongprom
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thitiporn Pattarakankul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chitsuda Pongma
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittitach Sri-ngern-ngam
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornlapat Keawvilai
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thadaphong Sukdee
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjawan Saechue
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- One Health Research Unit, Faculty of Veterinary Science, Mahasarakham University, Mahasarakham 44000, Thailand
| | - Patipark Kueanjinda
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
40
|
Wu J, Zhou T, Shen H, Jiang Y, Yang Q, Su S, Wu L, Fan X, Gao M, Wu Y, Cheng Y, Qi Y, Lei T, Xin Y, Han S, Li X, Wang Y. Mixed probiotics modulated gut microbiota to improve spermatogenesis in bisphenol A-exposed male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115922. [PMID: 38171106 DOI: 10.1016/j.ecoenv.2023.115922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/05/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Bisphenol A (BPA), an environmental endocrine disruptor (EDC), has been implicated in impairing intestinal and male reproductive dysfunction. The efficacy of gut microbiota modulation for BPA-exposed testicular dysfunction has yet to be verified through research. Therefore, this study explored the potential of mixed probiotics in restoring spermatogenesis damage through the gut-testis axis under BPA exposure. We selected two probiotics strains (Lactobacillus rhamnosus and Lactobacillus plantarum) with BPA removal properties in vitro and the BPA-exposed male mice model was established. The probiotics mixture effectively reduced BPA residue in the gut, serum, and testis in mice. Through 16 S rDNA-seq and metabolomics sequencing, we uncovered that vitamin D metabolism and bile acid levels in the gut was abolished under BPA exposure. This perturbation was linked to an increased abundance of Faecalibaculum and decreased abundance of Lachnospiraceae_NK4A136_group and Ligilactobacillus. The probiotics mixture restored this balance, enhancing intestinal barrier function and reducing oxidative stress. This improvement was accompanied by a restored balance of short-chain fatty acids (SCFAs). Remarkably, the probiotics ameliorated testicular dysfunction by repairing structures of seminiferous tubules and reversing arrested spermiogenesis. Further, the probiotics mixture enhanced testosterone-driven increases in spermatogonial stem cells and all stages of sperm cells. Testicular transcriptome profiling linked these improvements to fatty acid degradation and peroxisome pathways. These findings suggest a significant interplay between spermatogenesis and gut microbiota, demonstrating that probiotic intake could be a viable strategy for combating male subfertility issues caused by BPA exposure.
Collapse
Affiliation(s)
- Jingyuan Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, China
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Haofei Shen
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Yanbiao Jiang
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Qi Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Shaochen Su
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Luming Wu
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, Gansu Key Laboratory of Reproductive Medicine and Embryo, Lanzhou, China
| | - Xue Fan
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Min Gao
- The First Clinical Medical College of Lanzhou University, Lanzhou University, China
| | - Yang Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, China
| | - Yun Cheng
- The First Clinical Medical College of Lanzhou University, Lanzhou University, China
| | - Yuan Qi
- The First Clinical Medical College of Lanzhou University, Lanzhou University, China
| | - Ting Lei
- The First Clinical Medical College of Lanzhou University, Lanzhou University, China
| | - Yongan Xin
- Linxia Hui Autonomous Prefecture Maternity and Childcare Hospital, Linxia, China
| | - Shiqiang Han
- Linxia Hui Autonomous Prefecture Maternity and Childcare Hospital, Linxia, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Yiqing Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, China; Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, Gansu Key Laboratory of Reproductive Medicine and Embryo, Lanzhou, China.
| |
Collapse
|
41
|
Zhang M, Xiao B, Chen X, Ou B, Wang S. Physical exercise plays a role in rebalancing the bile acids of enterohepatic axis in non-alcoholic fatty liver disease. Acta Physiol (Oxf) 2024; 240:e14065. [PMID: 38037846 DOI: 10.1111/apha.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered as one of the most common diseases of lipid metabolism disorders, which is closely related to bile acids disorders and gut microbiota disorders. Bile acids are synthesized from cholesterol in the liver, and processed by gut microbiota in intestinal tract, and participate in metabolic regulation through the enterohepatic circulation. Bile acids not only promote the consumption and absorption of intestinal fat but also play an important role in biological metabolic signaling network, affecting fat metabolism and glucose metabolism. Studies have demonstrated that exercise plays an important role in regulating the composition and function of bile acid pool in enterohepatic axis, which maintains the homeostasis of the enterohepatic circulation and the health of the host gut microbiota. Exercise has been recommended by several health guidelines as the first-line intervention for patients with NAFLD. Can exercise alter bile acids through the microbiota in the enterohepatic axis? If so, regulating bile acids through exercise may be a promising treatment strategy for NAFLD. However, the specific mechanisms underlying this potential connection are largely unknown. Therefore, in this review, we tried to review the relationship among NAFLD, physical exercise, bile acids, and gut microbiota through the existing data and literature, highlighting the role of physical exercise in rebalancing bile acid and microbial dysbiosis.
Collapse
Affiliation(s)
- Minyu Zhang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Biyang Xiao
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Xiaoqi Chen
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Bingming Ou
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Songtao Wang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
42
|
Rosatelli E, Carotti A, Cerra B, De Franco F, Passeri D, Pellicciari R, Gioiello A. Chemical exploration of TGR5 functional hot-spots: Synthesis and structure-activity relationships of C7- and C23-Substituted cholic acid derivatives. Eur J Med Chem 2023; 261:115851. [PMID: 37813065 DOI: 10.1016/j.ejmech.2023.115851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
The activation of TGR5 bestows on bile acids the ability to modulate nongenomic signaling pathways, which are responsible of physiological actions including immunosuppressive and anti-inflammatory properties as well as the regulation of glucose metabolism and energy homeostasis. TGR5 agonists have therefore emerged in drug discovery and preclinical appraisals as promising compounds for the treatment of liver diseases and metabolic syndrome. In this study, we have been devising site-selected chemical modifications of the bile acid scaffold to provide novel chemical tools able to modulate the functions of TGR5 in different tissues. Biological results of the tested collection of semisynthetic cholic acid derivatives were used to extend the structure-activity relationships of TGR5 agonists and to clarify the molecular basis and functional role of TGR5 hot-spots in the receptor activation and selectivity. Some unexpected properties deriving from the molecular structure of bile acids have been unveiled as relevant to the receptor activation and may hence be used to design novel, selective and potent TGR5 agonists.
Collapse
Affiliation(s)
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, I-06122, Perugia, Italy
| | - Bruno Cerra
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, I-06122, Perugia, Italy
| | | | | | | | - Antimo Gioiello
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, I-06122, Perugia, Italy.
| |
Collapse
|
43
|
Jayachandran M, Qu S. Non-alcoholic fatty liver disease and gut microbial dysbiosis- underlying mechanisms and gut microbiota mediated treatment strategies. Rev Endocr Metab Disord 2023; 24:1189-1204. [PMID: 37840104 DOI: 10.1007/s11154-023-09843-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is by far the most prevalent form of liver disease worldwide. It's also the leading cause of liver-related hospitalizations and deaths. Furthermore, there is a link between obesity and NAFLD risk. A projected 25% of the world's population grieves from NAFLD, making it the most common chronic liver disorder. Several factors, such as obesity, oxidative stress, and insulin resistance, typically accompany NAFLD. Weight loss, lipid-lowering agents, thiazolidinediones, and metformin help prominently control NAFLD. Interestingly, pre-clinical studies demonstrate gut microbiota's potential causal role in NAFLD. Increased intestinal permeability and unhindered transport of microbial metabolites into the liver are the major disruptions due to gut microbiome dysbiosis, contributing to the development of NAFLD by dysregulating the gut-liver axis. Hence, altering the pathogenic bacterial population using probiotics, prebiotics, synbiotics, and fecal microbiota transplantation (FMT) could benefit patients with NAFLD. Therefore, it is crucial to acknowledge the importance of microbiota-mediated therapeutic approaches for NAFLD and comprehend the underlying mechanisms that establish a connection between NAFLD and gut microbiota. This review provides a comprehensive overview of the affiliation between dysbiosis of gut microbiota and the progress of NAFLD, as well as the potential benefits of prebiotic, probiotic, synbiotic supplementation, and FMT in obese individuals with NAFLD.
Collapse
Affiliation(s)
- Muthukumaran Jayachandran
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai center of Thyroid diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
44
|
Lan H, Zhang Y, Fan M, Wu B, Wang C. Pregnane X receptor as a therapeutic target for cholestatic liver injury. Drug Metab Rev 2023; 55:371-387. [PMID: 37593784 DOI: 10.1080/03602532.2023.2248680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
Cholestatic liver injury (CLI) is caused by toxic bile acids (BAs) accumulation in the liver and can lead to inflammation and liver fibrosis. The mechanisms underlying CLI development remain unclear, and this disease has no effective cure. However, regulating BA synthesis and homeostasis represents a promising therapeutic strategy for CLI treatment. Pregnane X receptor (PXR) plays an essential role in the metabolism of endobiotics and xenobiotics via the transcription of metabolic enzymes and transporters, which can ultimately modulate BA homeostasis and exert anticholestatic effects. Furthermore, recent studies have demonstrated that PXR exhibits antifibrotic and anti-inflammatory properties, providing novel insights into treating CLI. Meanwhile, several drugs have been identified as PXR agonists that improve CLI. Nevertheless, the precise role of PXR in CLI still needs to be fully understood. This review summarizes how PXR improves CLI by ameliorating cholestasis, inhibiting inflammation, and reducing fibrosis and discusses the progress of promising PXR agonists for treating CLI.
Collapse
Affiliation(s)
- Huan Lan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Ying Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Minqi Fan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Bingxin Wu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Caiyan Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|
45
|
Leonhardt J, Dorresteijn MJ, Neugebauer S, Mihaylov D, Kunze J, Rubio I, Hohberger FS, Leonhardt S, Kiehntopf M, Stahl K, Bode C, David S, Wagener FADTG, Pickkers P, Bauer M. Immunosuppressive effects of circulating bile acids in human endotoxemia and septic shock: patients with liver failure are at risk. Crit Care 2023; 27:372. [PMID: 37759239 PMCID: PMC10523742 DOI: 10.1186/s13054-023-04620-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Sepsis-induced immunosuppression is a frequent cause of opportunistic infections and death in critically ill patients. A better understanding of the underlying mechanisms is needed to develop targeted therapies. Circulating bile acids with immunosuppressive effects were recently identified in critically ill patients. These bile acids activate the monocyte G-protein coupled receptor TGR5, thereby inducing profound innate immune dysfunction. Whether these mechanisms contribute to immunosuppression and disease severity in sepsis is unknown. The aim of this study was to determine if immunosuppressive bile acids are present in endotoxemia and septic shock and, if so, which patients are particularly at risk. METHODS To induce experimental endotoxemia in humans, ten healthy volunteers received 2 ng/kg E. coli lipopolysaccharide (LPS). Circulating bile acids were profiled before and after LPS administration. Furthermore, 48 patients with early (shock onset within < 24 h) and severe septic shock (norepinephrine dose > 0.4 μg/kg/min) and 48 healthy age- and sex-matched controls were analyzed for circulating bile acids. To screen for immunosuppressive effects of circulating bile acids, the capability to induce TGR5 activation was computed for each individual bile acid profile by a recently published formula. RESULTS Although experimental endotoxemia as well as septic shock led to significant increases in total bile acids compared to controls, this increase was mild in most cases. By contrast, there was a marked and significant increase in circulating bile acids in septic shock patients with severe liver failure compared to healthy controls (61.8 µmol/L vs. 2.8 µmol/L, p = 0.0016). Circulating bile acids in these patients were capable to induce immunosuppression, as indicated by a significant increase in TGR5 activation by circulating bile acids (20.4% in severe liver failure vs. 2.8% in healthy controls, p = 0.0139). CONCLUSIONS Circulating bile acids capable of inducing immunosuppression are present in septic shock patients with severe liver failure. Future studies should examine whether modulation of bile acid metabolism can improve the clinical course and outcome of sepsis in these patients.
Collapse
Affiliation(s)
- Julia Leonhardt
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany.
- Center for Sepsis Control and Care (CSCC), Jena University Hospital-Friedrich Schiller University, Jena, Germany.
| | - Mirrin J Dorresteijn
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Intensive Care Medicine, Alrijne Hospital, Leiderdorp, the Netherlands
| | - Sophie Neugebauer
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena, Jena University Hospital, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Diana Mihaylov
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena, Jena University Hospital, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Julia Kunze
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena, Jena University Hospital, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital-Friedrich Schiller University, Jena, Germany
| | - Frank-Stephan Hohberger
- Department of Oral and Maxillofacial Surgery and Plastic Surgery, Jena University Hospital, Jena, Germany
| | - Silke Leonhardt
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Michael Kiehntopf
- Center for Sepsis Control and Care (CSCC), Jena University Hospital-Friedrich Schiller University, Jena, Germany
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena, Jena University Hospital, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Klaus Stahl
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Frank A D T G Wagener
- Department of Dentistry-Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital-Friedrich Schiller University, Jena, Germany
| |
Collapse
|
46
|
Xu F, Yu Z, Liu Y, Du T, Yu L, Tian F, Chen W, Zhai Q. A High-Fat, High-Cholesterol Diet Promotes Intestinal Inflammation by Exacerbating Gut Microbiome Dysbiosis and Bile Acid Disorders in Cholecystectomy. Nutrients 2023; 15:3829. [PMID: 37686860 PMCID: PMC10489946 DOI: 10.3390/nu15173829] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Patients with post-cholecystectomy (PC) often experience adverse gastrointestinal conditions, such as PC syndrome, colorectal cancer (CRC), and non-alcoholic fatty liver disease (NAFLD), that accumulate over time. An epidemiological survey further revealed that the risk of cholecystectomy is associated with high-fat and high-cholesterol (HFHC) dietary intake. Mounting evidence suggests that cholecystectomy is associated with disrupted gut microbial homeostasis and dysregulated bile acids (BAs) metabolism. However, the effect of an HFHC diet on gastrointestinal complications after cholecystectomy has not been elucidated. Here, we aimed to investigate the effect of an HFHC diet after cholecystectomy on the gut microbiota-BA metabolic axis and elucidate the association between this alteration and the development of intestinal inflammation. In this study, a mice cholecystectomy model was established, and the levels of IL-Iβ, TNF-α, and IL-6 in the colon were increased in mice fed an HFHC diet for 6 weeks. Analysis of fecal BA metabolism showed that an HFHC diet after cholecystectomy altered the rhythm of the BA metabolism by upregulating liver CPY7A1, CYP8B1, and BSEP and ileal ASBT mRNA expression levels, resulting in increased fecal BA levels. In addition, feeding an HFHC diet after cholecystectomy caused a significant dysbiosis of the gut microbiota, which was characterized by the enrichment of the metabolic microbiota involved in BAs; the abundance of pro-inflammatory gut microbiota and related pro-inflammatory metabolite levels was also significantly higher. In contrast, the abundance of major short-chain fatty acid (SCFA)-producing bacteria significantly decreased. Overall, our study suggests that an HFHC diet after cholecystectomy promotes intestinal inflammation by exacerbating the gut microbiome and BA metabolism dysbiosis in cholecystectomy. Our study also provides useful insights into the maintenance of intestinal health after cholecystectomy through dietary or probiotic intervention strategies.
Collapse
Affiliation(s)
- Fusheng Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Yu
- Wuxi People’s Hospital Afliated to Nanjing Medical University, Wuxi 214023, China;
| | - Yaru Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ting Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
47
|
Shu Y, Huang Y, Dong W, Fan X, Sun Y, Chen G, Zeng X, Ye H. The polysaccharides from Auricularia auricula alleviate non-alcoholic fatty liver disease via modulating gut microbiota and bile acids metabolism. Int J Biol Macromol 2023; 246:125662. [PMID: 37399869 DOI: 10.1016/j.ijbiomac.2023.125662] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
The polysaccharides from Auricularia auricula (AAPs), containing a large number of O-acetyl groups that are related to the physiological and biological properties, seem to be potential prebiotics like other edible fungus polysaccharides. In the present study, therefore, the alleviating effects of AAPs and deacetylated AAPs (DAAPs, prepared from AAPs by alkaline treatment) on nonalcoholic fatty liver disease (NAFLD) induced by high-fat and high-cholesterol diet combined with carbon tetrachloride were investigated. The results revealed that both AAPs and DAAPs could effectively relieve liver injury, inflammation and fibrosis, and maintain intestinal barrier function. Both AAPs and DAAPs could modulate the disorder of gut microbiota and altered the composition of gut microbiota with enrichment of Odoribacter, Lactobacillus, Dorea and Bifidobacterium. Further, the alteration of gut microbiota, especially enhancement of Lactobacillus and Bifidobacterium, was contributed to the changes of bile acids (BAs) profile with increased deoxycholic acid (DCA). Farnesoid X receptor could be activated by DCA and other unconjugated BAs, which participated the BAs metabolism and alleviated the cholestasis, then protected against hepatitis in NAFLD mice. Interestingly, it was found that the deacetylation of AAPs negatively affected the anti-inflammation, thereby reducing the health benefits of A. auricula-derived polysaccharides.
Collapse
Affiliation(s)
- Yifan Shu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yujie Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xia Fan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
48
|
Zhao H, Yang CE, Liu T, Zhang MX, Niu Y, Wang M, Yu J. The roles of gut microbiota and its metabolites in diabetic nephropathy. Front Microbiol 2023; 14:1207132. [PMID: 37577423 PMCID: PMC10413983 DOI: 10.3389/fmicb.2023.1207132] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes, which increases the risk of renal failure and causes a high global disease burden. Due to the lack of sustainable treatment, DN has become the primary cause of end-stage renal disease worldwide. Gut microbiota and its metabolites exert critical regulatory functions in maintaining host health and are associated with many pathogenesis of aging-related chronic diseases. Currently, the theory gut-kidney axis has opened a novel angle to understand the relationship between gut microbiota and multiple kidney diseases. In recent years, accumulating evidence has revealed that the gut microbiota and their metabolites play an essential role in the pathophysiologic processes of DN through the gut-kidney axis. In this review, we summarize the current investigations of gut microbiota and microbial metabolites involvement in the progression of DN, and further discuss the potential gut microbiota-targeted therapeutic approaches for DN.
Collapse
Affiliation(s)
- Hui Zhao
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Cheng-E Yang
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Tian Liu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Ming-Xia Zhang
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Yan Niu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Ming Wang
- College of Food Science and Engineering, Northwest University, Xi’an, Shaanxi, China
| | - Jun Yu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
49
|
Long XQ, Liu MZ, Liu ZH, Xia LZ, Lu SP, Xu XP, Wu MH. Bile acids and their receptors: Potential therapeutic targets in inflammatory bowel disease. World J Gastroenterol 2023; 29:4252-4270. [PMID: 37545642 PMCID: PMC10401658 DOI: 10.3748/wjg.v29.i27.4252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Chronic and recurrent inflammatory disorders of the gastrointestinal tract caused by a complex interplay between genetics and intestinal dysbiosis are called inflammatory bowel disease. As a result of the interaction between the liver and the gut microbiota, bile acids are an atypical class of steroids produced in mammals and traditionally known for their function in food absorption. With the development of genomics and metabolomics, more and more data suggest that the pathophysiological mechanisms of inflammatory bowel disease are regulated by bile acids and their receptors. Bile acids operate as signalling molecules by activating a variety of bile acid receptors that impact intestinal flora, epithelial barrier function, and intestinal immunology. Inflammatory bowel disease can be treated in new ways by using these potential molecules. This paper mainly discusses the increasing function of bile acids and their receptors in inflammatory bowel disease and their prospective therapeutic applications. In addition, we explore bile acid metabolism and the interaction of bile acids and the gut microbiota.
Collapse
Affiliation(s)
- Xiong-Quan Long
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Ming-Zhu Liu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Zi-Hao Liu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Lv-Zhou Xia
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Shi-Peng Lu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Xiao-Ping Xu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Ming-Hao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| |
Collapse
|
50
|
Deterding K, Xu C, Port K, Dietz-Fricke C, Xun J, Maasoumy B, Cornberg M, Wedemeyer H. Bile acid increase during bulevirtide treatment of hepatitis D is not associated with a decline in HDV RNA. J Viral Hepat 2023; 30:597-606. [PMID: 36924318 DOI: 10.1111/jvh.13831] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
Bulevirtide (BLV) is an entry inhibitor blocking entry of HBsAg into hepatocytes by interfering with the bile acid transporter Na+-taurocholate co-transporting polypeptide. We here investigated if bile acid levels before or during BLV treatment would correlate with HDV RNA declines. We studied 20 patients with compensated HDV infection receiving a daily dose of 2 mg bulevirtide subcutaneously qd for at least 24 weeks. ALT levels improved in all patients including 13/20 patients showing normal ALT values at treatment Week 24. An HDV RNA drop of at least 50% was evident in 20/20 patients at Week 24 including 10 patients showing a ≥ 2 log HDV RNA decline. Elevated bile acid levels were detected already before treatment in 10 patients and further increased during BLV administration with different kinetics. Baseline bile acids were associated with higher transient elastography values (p = .0029) and evidence of portal hypertension (p = .0004). Bile acid levels before treatment were associated with HDV RNA declines throughout therapy, but not at Week 24 (rho = -0.577; p = .0078; rho = -0.635, p = .0026; rho = -0.577, p = .0077; rho = -0.519, p = .0191; rho = -0.564, p = .0119 and rho = -0.393, p = .087 at treatment Weeks 2, 8, 12, 16, 20 and 24, respectively). However, bile acid increases during treatment were not associated with HDV RNA or ALT declines at any of the time points. BLV-induced increases in bile salts do not correlate with HDV RNA declines suggesting that the inhibitory effects of BLV on NTCP differ between blocking bile acid transport and hindering HBsAg entry. If baseline bile salt levels could be useful to predict virological response remains to be confirmed.
Collapse
Affiliation(s)
- Katja Deterding
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Chengjian Xu
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Center for Individualized Infection Medicine, CiiM, a joint venture between Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Kerstin Port
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Christopher Dietz-Fricke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jiang Xun
- Center for Individualized Infection Medicine, CiiM, a joint venture between Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Benjamin Maasoumy
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Center for Individualized Infection Medicine, CiiM, a joint venture between Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover-Braunschweig, Germany
- D-SOLVE consortium, an EU Horizon Europe funded project (No 101057917)
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- D-SOLVE consortium, an EU Horizon Europe funded project (No 101057917)
- Excellence Cluster Resist, Hannover Medical School, Hannover, Germany
| |
Collapse
|