1
|
MacKinnon C, McLean R, Pritchard AL. Lymphoblastoid cell lines do not recapitulate physiological circulating B cell subtypes. CURRENT RESEARCH IN IMMUNOLOGY 2024; 5:100079. [PMID: 38910966 PMCID: PMC11192983 DOI: 10.1016/j.crimmu.2024.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Lymphoblastoid cell lines (LCLs) are immortalised peripheral B lymphocytes, transformed via infection with Epstein Barr virus (EBV). The use of LCLs to study B cell function remains controversial and core markers to define physiological B cell populations are not consistent between studies of physiological B cells and LCLs. A consensus on the nature of these commonly used cell lines has not been reached. Recently, a core set of markers to subtype peripheral B cells was proposed, addressing the lack of agreed markers for B cell characterisation. In this present study, the consensus panel was applied to describe the B cell subtypes in LCLs. We found that LCLs were generally not physiologically representative of B cells, with most cells harbouring marker combinations absent on peripheral B cells. Some B cell subtyping markers were fundamentally altered during EBV transformation to LCLs (e.g. CD19, CD21). Notably, most LCLs secreted IgG but the associated marker combinations were predominantly only present in vitro following EBV transformation. This study therefore informs interpretation of past investigations, and planning of future studies using LCLs, as these cells are unlikely to behave like their pre-transformed B cell subtype.
Collapse
Affiliation(s)
- Connie MacKinnon
- Genetics and Immunology Department, Division of Medical Science, Institute of Health Research and Innovation, University of the Highlands and Islands, An Lochran, 10 Inverness Campus, IV2 5NA, UK
| | - Ryan McLean
- Genetics and Immunology Department, Division of Medical Science, Institute of Health Research and Innovation, University of the Highlands and Islands, An Lochran, 10 Inverness Campus, IV2 5NA, UK
| | - Antonia L. Pritchard
- Genetics and Immunology Department, Division of Medical Science, Institute of Health Research and Innovation, University of the Highlands and Islands, An Lochran, 10 Inverness Campus, IV2 5NA, UK
- Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| |
Collapse
|
2
|
Development of Cancer Immunotherapies. Cancer Treat Res 2022; 183:1-48. [PMID: 35551655 DOI: 10.1007/978-3-030-96376-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cancer immunotherapy, or the utilization of components of the immune system to target and eliminate cancer, has become a highly active area of research in the past several decades and a common treatment strategy for several cancer types. The concept of harnessing the immune system for this purpose originated over 100 years ago when a physician by the name of William Coley successfully treated several of his cancer patients with a combination of live and attenuated bacteria, later known as "Coley's Toxins", after observing a subset of prior patients enter remission following their diagnosis with the common bacterial infection, erysipelas. However, it was not until late in the twentieth century that cancer immunotherapies were developed for widespread use, thereby transforming the treatment landscape of numerous cancer types. Pivotal studies elucidating molecular and cellular functions of immune cells, such as the discovery of IL-2 and production of monoclonal antibodies, fostered the development of novel techniques for studying the immune system and ultimately the development and approval of several cancer immunotherapies by the United States Food and Drug Association in the 1980s and 1990s, including the tuberculosis vaccine-Bacillus Calmette-Guérin, IL-2, and the CD20-targeting monoclonal antibody. Approval of the first therapeutic cancer vaccine, Sipuleucel-T, for the treatment of metastatic castration-resistant prostate cancer and the groundbreaking success and approval of immune checkpoint inhibitors and chimeric antigen receptor T cell therapy in the last decade, have driven an explosion of interest in and pursuit of novel cancer immunotherapy strategies. A broad range of modalities ranging from antibodies to adoptive T cell therapies is under investigation for the generalized treatment of a broad spectrum of cancers as well as personalized medicine. This chapter will focus on the recent advances, current strategies, and future outlook of immunotherapy development for the treatment of cancer.
Collapse
|
3
|
Masterman KA, Haigh OL, Tullett KM, Leal-Rojas IM, Walpole C, Pearson FE, Cebon J, Schmidt C, O'Brien L, Rosendahl N, Daraj G, Caminschi I, Gschweng EH, Hollis RP, Kohn DB, Lahoud MH, Radford KJ. Human CLEC9A antibodies deliver NY-ESO-1 antigen to CD141 + dendritic cells to activate naïve and memory NY-ESO-1-specific CD8 + T cells. J Immunother Cancer 2021; 8:jitc-2020-000691. [PMID: 32737142 PMCID: PMC7394304 DOI: 10.1136/jitc-2020-000691] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background Dendritic cells (DCs) are crucial for the efficacy of cancer vaccines, but current vaccines do not harness the key cDC1 subtype required for effective CD8+ T-cell-mediated tumor immune responses. Vaccine immunogenicity could be enhanced by specific delivery of immunogenic tumor antigens to CD141+ DCs, the human cDC1 equivalent. CD141+ DCs exclusively express the C-type-lectin-like receptor CLEC9A, which is important for the regulation of CD8+ T cell responses. This study developed a new vaccine that harnesses a human anti-CLEC9A antibody to specifically deliver the immunogenic tumor antigen, NY-ESO-1 (New York esophageal squamous cell carcinoma 1), to human CD141+ DCs. The ability of the CLEC9A-NY-ESO-1 antibody to activate NY-ESO-1-specific naïve and memory CD8+ T cells was examined and compared with a vaccine comprised of a human DEC-205-NY-ESO-1 antibody that targets all human DCs. Methods Human anti-CLEC9A, anti-DEC-205 and isotype control IgG4 antibodies were genetically fused to NY-ESO-1 polypeptide. Cross-presentation to NY-ESO-1-epitope-specific CD8+ T cells and reactivity of T cell responses in patients with melanoma were assessed by interferon γ (IFNγ) production following incubation of CD141+ DCs and patient peripheral blood mononuclear cells with targeting antibodies. Humanized mice containing human DC subsets and a repertoire of naïve NY-ESO-1-specific CD8+ T cells were used to investigate naïve T cell priming. T cell effector function was measured by expression of IFNγ, MIP-1β, tumor necrosis factor and CD107a and by lysis of target tumor cells. Results CLEC9A-NY-ESO-1 antibodies (Abs) were effective at mediating delivery and cross-presentation of multiple NY-ESO-1 epitopes by CD141+ DCs for activation of NY-ESO-1-specific CD8+ T cells. When benchmarked to NY-ESO-1 conjugated to an untargeted control antibody or to anti-human DEC-205, CLEC9A-NY-ESO-1 was superior at ex vivo reactivation of NY-ESO-1-specific T cell responses in patients with melanoma. Moreover, CLEC9A-NY-ESO-1 induced priming of naïve NY-ESO-1-specific CD8+ T cells with polyclonal effector function and potent tumor killing capacity in vitro. Conclusions These data advocate human CLEC9A-NY-ESO-1 Ab as an attractive strategy for specific targeting of CD141+ DCs to enhance tumor immunogenicity in NY-ESO-1-expressing malignancies.
Collapse
Affiliation(s)
- Kelly-Anne Masterman
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Oscar L Haigh
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Kirsteen M Tullett
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Ingrid M Leal-Rojas
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Carina Walpole
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Frances E Pearson
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Jonathon Cebon
- Department of Hematology and Oncology, Olivia Newton John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Christopher Schmidt
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Liam O'Brien
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Nikita Rosendahl
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Ghazal Daraj
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Irina Caminschi
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Eric H Gschweng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Roger P Hollis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Mireille H Lahoud
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Kristen J Radford
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
4
|
Alasady MJ, Terry AR, Pierce AD, Cavalier MC, Blaha CS, Adipietro KA, Wilder PT, Weber DJ, Hay N. The calcium-binding protein S100B reduces IL6 production in malignant melanoma via inhibition of RSK cellular signaling. PLoS One 2021; 16:e0256238. [PMID: 34411141 PMCID: PMC8376063 DOI: 10.1371/journal.pone.0256238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022] Open
Abstract
S100B is frequently elevated in malignant melanoma. A regulatory mechanism was uncovered here in which elevated S100B lowers mRNA and secreted protein levels of interleukin-6 (IL6) and inhibits an autocrine loop whereby IL6 activates STAT3 signaling. Our results showed that S100B affects IL6 expression transcriptionally. S100B was shown to form a calcium-dependent protein complex with the p90 ribosomal S6 kinase (RSK), which in turn sequesters RSK into the cytoplasm. Consistently, S100B inhibition was found to restore phosphorylation of a nuclear located RSK substrate, CREB, which is a potent transcription factor for IL6 expression. Thus, elevated S100B reduces IL6-STAT3 signaling via RSK signaling pathway in malignant melanoma. Indeed, the elevated S100B levels in malignant melanoma cell lines correspond to low levels of IL6 and p-STAT3.
Collapse
Affiliation(s)
- Milad J. Alasady
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Alexander R. Terry
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Adam D. Pierce
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Michael C. Cavalier
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Catherine S. Blaha
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Kaylin A. Adipietro
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Paul T. Wilder
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States of America
| | - David J. Weber
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States of America
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| |
Collapse
|
5
|
Kelly GM, Al-Ejeh F, McCuaig R, Casciello F, Ahmad Kamal N, Ferguson B, Pritchard AL, Ali S, Silva IP, Wilmott JS, Long GV, Scolyer RA, Rao S, Hayward NK, Gannon F, Lee JS. G9a Inhibition Enhances Checkpoint Inhibitor Blockade Response in Melanoma. Clin Cancer Res 2021; 27:2624-2635. [PMID: 33589432 DOI: 10.1158/1078-0432.ccr-20-3463] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/24/2020] [Accepted: 02/05/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE G9a histone methyltransferase exerts oncogenic effects in several tumor types and its inhibition promotes anticancer effects. However, the impact on checkpoint inhibitor blockade response and the utility of G9a or its target genes as a biomarker is poorly studied. We aimed to examine whether G9a inhibition can augment the efficacy of checkpoint inhibitor blockade and whether LC3B, a G9a target gene, can predict treatment response. EXPERIMENTAL DESIGN Clinical potential of LC3B as a biomarker of checkpoint inhibitor blockade was assessed using patient samples including tumor biopsies and circulating tumor cells from liquid biopsies. Efficacy of G9a inhibition to enhance checkpoint inhibitor blockade was examined using a mouse model. RESULTS Patients with melanoma who responded to checkpoint inhibitor blockade were associated with not only a higher level of tumor LC3B but also a higher proportion of cells expressing LC3B. A higher expression of MAP1LC3B or LC3B protein was associated with longer survival and lower incidence of acquired resistance to checkpoint inhibitor blockade, suggesting LC3B as a potential predictive biomarker. We demonstrate that G9a histone methyltransferase inhibition is able to not only robustly induce LC3B level to augment the efficacy of checkpoint inhibitor blockade, but also induces melanoma cell death. CONCLUSIONS Checkpoint inhibitor blockade response is limited to a subset of the patient population. These results have implications for the development of LC3B as a predictive biomarker of checkpoint inhibitor blockade to guide patient selection, as well as G9a inhibition as a strategy to extend the proportion of patients responding to immunotherapy.
Collapse
Affiliation(s)
- Gregory M Kelly
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Fares Al-Ejeh
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Robert McCuaig
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Francesco Casciello
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Blake Ferguson
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Sayed Ali
- Faculty of Education, Science, Technology & Mathematics, University of Canberra, Canberra, Australia
- St John of God Midland Public and Private Hospitals, Midland, Western Australia, Australia
| | - Ines P Silva
- Melanoma Institute Australia, University of Sydney, Wollstonecraft, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
| | - James S Wilmott
- Melanoma Institute Australia, University of Sydney, Wollstonecraft, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, University of Sydney, Wollstonecraft, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Mater Hospital, North Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, University of Sydney, Wollstonecraft, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Sudha Rao
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Nicholas K Hayward
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Frank Gannon
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jason S Lee
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
- School of Medicine, University of Queensland, Herston, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Yazdani M, Jaafari MR, Verdi J, Alani B, Noureddini M, Badiee A. Ex vivo-generated dendritic cell-based vaccines in melanoma: the role of nanoparticulate delivery systems. Immunotherapy 2020; 12:333-349. [DOI: 10.2217/imt-2019-0173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Melanoma is a poor immunogenic cancer and many treatment strategies have been used to enhance specific or nonspecific immunity against it. Dendritic cell (DC)-based cancer vaccine is the most effective therapies that have been used so far. Meanwhile, the efficacy of DC-based immunotherapy relies on critical factors relating to DCs such as the state of maturation and proper delivery of antigens. In this regard, the use of nanoparticulate delivery systems for effective delivery of antigen to ex vivo-generated DC-based vaccines that also poses adjuvanticity would be an ideal approach. In this review article, we attempt to summarize the role of different types of nanoparticulate antigen delivery systems used in the development of ex vivo-generated DC-based vaccines against melanoma and describe their adjuvanticity in mediation of DC maturation, cytoplasmic presentation of antigens to MHC class I molecules, which led to potent antigen-specific immune responses. As were represented, cationic liposomes were the most used approach, which suggest its potential applicability as delivery systems for further experiments in combination with either adjuvants or monoclonal antibodies.
Collapse
Affiliation(s)
- Mona Yazdani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan 91778-99191, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan 91778-99191, Iran
| | - Behrang Alani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan 91778-99191, Iran
| | - Mahdi Noureddini
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan 91778-99191, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran
| |
Collapse
|
7
|
Therapeutic Cancer Vaccination with Ex Vivo RNA-Transfected Dendritic Cells-An Update. Pharmaceutics 2020; 12:pharmaceutics12020092. [PMID: 31979205 PMCID: PMC7076681 DOI: 10.3390/pharmaceutics12020092] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/18/2020] [Indexed: 12/19/2022] Open
Abstract
Over the last two decades, dendritic cell (DC) vaccination has been studied extensively as active immunotherapy in cancer treatment and has been proven safe in all clinical trials both with respect to short and long-term side effects. For antigen-loading of dendritic cells (DCs) one method is to introduce mRNA coding for the desired antigens. To target the whole antigenic repertoire of a tumor, even the total tumor mRNA of a macrodissected biopsy sample can be used. To date, reports have been published on a total of 781 patients suffering from different tumor entities and HIV-infection, who have been treated with DCs loaded with mRNA. The majority of those were melanoma patients, followed by HIV-infected patients, but leukemias, brain tumors, prostate cancer, renal cell carcinomas, pancreatic cancers and several others have also been treated. Next to antigen-loading, mRNA-electroporation allows a purposeful manipulation of the DCs’ phenotype and function to enhance their immunogenicity. In this review, we intend to give a comprehensive summary of what has been published regarding clinical testing of ex vivo generated mRNA-transfected DCs, with respect to safety and risk/benefit evaluations, choice of tumor antigens and RNA-source, and the design of better DCs for vaccination by transfection of mRNA-encoded functional proteins.
Collapse
|
8
|
Han P, Hanlon D, Sobolev O, Chaudhury R, Edelson RL. Ex vivo dendritic cell generation-A critical comparison of current approaches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:251-307. [PMID: 31759433 DOI: 10.1016/bs.ircmb.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, required for the initiation of naïve and memory T cell responses and regulation of adaptive immunity. The discovery of DCs in 1973, which culminated in the Nobel Prize in Physiology or Medicine in 2011 for Ralph Steinman and colleagues, initially focused on the identification of adherent mononuclear cell fractions with uniquely stellate dendritic morphology, followed by key discoveries of their critical immunologic role in initiating and maintaining antigen-specific immunity and tolerance. The medical promise of marshaling these key capabilities of DCs for therapeutic modulation of antigen-specific immune responses has guided decades of research in hopes to achieve genuine physiologic partnership with the immune system. The potential uses of DCs in immunotherapeutic applications include cancer, infectious diseases, and autoimmune disorders; thus, methods for rapid and reliable large-scale production of DCs have been of great academic and clinical interest. However, difficulties in obtaining DCs from lymphoid and peripheral tissues, low numbers and poor survival in culture, have led to advancements in ex vivo production of DCs, both for probing molecular details of DC function as well as for experimenting with their clinical utility. Here, we review the development of a diverse array of DC production methodologies, ranging from cytokine-based strategies to genetic engineering tools devised for enhancing DC-specific immunologic functions. Further, we explore the current state of DC therapies in clinic, as well as emerging insights into physiologic production of DCs inspired by existing therapies.
Collapse
Affiliation(s)
- Patrick Han
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Douglas Hanlon
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Olga Sobolev
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Rabib Chaudhury
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Richard L Edelson
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
9
|
Uslu U, Erdmann M, Wiesinger M, Schuler G, Schuler-Thurner B. Automated Good Manufacturing Practice–compliant generation of human monocyte-derived dendritic cells from a complete apheresis product using a hollow-fiber bioreactor system overcomes a major hurdle in the manufacture of dendritic cells for cancer vaccines. Cytotherapy 2019; 21:1166-1178. [DOI: 10.1016/j.jcyt.2019.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
|
10
|
Daßler-Plenker J, Paschen A, Putschli B, Rattay S, Schmitz S, Goldeck M, Bartok E, Hartmann G, Coch C. Direct RIG-I activation in human NK cells induces TRAIL-dependent cytotoxicity toward autologous melanoma cells. Int J Cancer 2019; 144:1645-1656. [PMID: 30230526 DOI: 10.1002/ijc.31874] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/30/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022]
Abstract
Activation of the innate immune receptor retinoic acid-inducible gene I (RIG-I) by its specific ligand 5'-triphosphate RNA (3pRNA) triggers anti-tumor immunity, which is dependent on natural killer (NK) cell activation and cytokine induction. However, to date, RIG-I expression and the functional consequences of RIG-I activation in NK cells have not been examined. Here, we show for the first time the expression of RIG-I in human NK cells and their activation upon RIG-I ligand (3pRNA) transfection. 3pRNA-activated NK cells killed melanoma cells more efficiently than NK cells activated by type I interferon. Stimulation of RIG-I in NK cells specifically increased the surface expression of membrane-bound TNF-related apoptosis-inducing ligand (TRAIL) on NK cells, while activated NK cell receptors were not affected. RIG-I-induced membrane-bound TRAIL initiated death-receptor-pathway-mediated apoptosis not only in allogeneic but also in autologous human leukocyte antigen (HLA) class I-positive and HLA class I-negative melanoma cells. These results identify the direct activation of RIG-I in NK cells as a novel mechanism for how RIG-I can trigger enhanced NK cell killing of tumor cells, underscoring the potential of RIG-I activation for tumor immunotherapy.
Collapse
Affiliation(s)
- Juliane Daßler-Plenker
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Annette Paschen
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University of Duisburg-Essen, 45112, Essen, Germany
| | - Bastian Putschli
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Stephanie Rattay
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Saskia Schmitz
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Marion Goldeck
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Eva Bartok
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Christoph Coch
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| |
Collapse
|
11
|
Lee HM, Okuda KS, González FE, Patel V. Current Perspectives on Nasopharyngeal Carcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1164:11-34. [PMID: 31576537 DOI: 10.1007/978-3-030-22254-3_2] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Of the ~129,079 new cases of nasopharyngeal carcinoma (NPC) and 72,987 associated deaths estimated for 2018, the majority will be geographically localized to South East Asia, and likely to show an upward trend annually. It is thought that disparities in dietary habits, lifestyle, and exposures to harmful environmental factors are likely the root cause of NPC incidence rates to differ geographically. Genetic differences due to ethnicity and the Epstein Barr virus (EBV) are likely contributing factors. Pertinently, NPC is associated with poor prognosis which is largely attributed to lack of awareness of the salient symptoms of NPC. These include nose hemorrhage and headaches and coupled with detection and the limited therapeutic options. Treatment options include radiotherapy or chemotherapy or combination of both. Surgical excision is generally the last option considered for advanced and metastatic disease, given the close proximity of nasopharynx to brain stem cell area, major blood vessels, and nerves. To improve outcome of NPC patients, novel cellular and in vivo systems are needed to allow an understanding of the underling molecular events causal for NPC pathogenesis and for identifying novel therapeutic targets and effective therapies. While challenges and gaps in current NPC research are noted, some advances in targeted therapies and immunotherapies targeting EBV NPCs are discussed in this chapter, which may offer improvements in outcome of NPC patients.
Collapse
Affiliation(s)
- Hui Mei Lee
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Kazuhida Shaun Okuda
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Fermín E González
- Laboratory of Experimental Immunology and Cancer, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Vyomesh Patel
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
12
|
Erdmann M, Uslu U, Wiesinger M, Brüning M, Altmann T, Strasser E, Schuler G, Schuler-Thurner B. Automated closed-system manufacturing of human monocyte-derived dendritic cells for cancer immunotherapy. J Immunol Methods 2018; 463:89-96. [PMID: 30266448 DOI: 10.1016/j.jim.2018.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
Abstract
Dendritic cell (DC)-based vaccines have been successfully used for immunotherapy of cancer and infections. A major obstacle is the need for high-level class A cleanroom cGMP facilities for DC generation. The CliniMACS Prodigy® (Prodigy) represents a new platform integrating all GMP-compliant manufacturing steps in a closed system for automated production of various cellular products, notably T cells, NK cells and CD34+ cells. We now systematically tested its suitability for producing human mature monocyte-derived DCs (Mo-DCs), and optimized it by directly comparing the Prodigy approach to our established standard production of Mo-DCs from elutriated monocytes in dishes or bags. Upon step-by-step identification of an optimal cell concentration for the Prodigy's CentriCult culture chamber, the total yield (% of input CD14+ monocytes), phenotype, and functionality of mature Mo-DCs were equivalent to those generated by the standard protocol. Technician's labor time was comparable for both methods, but the Prodigy approach significantly reduced hands-on time and high-level clean room resources. In summary, using our optimized conditions for the CliniMACS Prodigy, human Mo-DCs for clinical application can be generated almost automatically in a fully closed system. A significant drawback of the Prodigy approach was, however, that due to the limited size of the CentriCult culture chamber, in contrast to our standard semi-closed elutriation approach, only one fourth of an apheresis could be processed at once.
Collapse
Affiliation(s)
- Michael Erdmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Dermatology, Germany.
| | - Ugur Uslu
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Dermatology, Germany
| | - Manuel Wiesinger
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Dermatology, Germany
| | | | | | - Erwin Strasser
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Transfusion Medicine and Haemostaseology, Erlangen, Germany
| | - Gerold Schuler
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Dermatology, Germany
| | - Beatrice Schuler-Thurner
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Dermatology, Germany
| |
Collapse
|
13
|
Abstract
This review discusses the rapidly evolving field of immunotherapy research, focusing on the types of cancer antigens that can be recognised by the immune system and potential methods by which neoantigens can be exploited clinically to successfully target and clear tumour cells. Recent studies suggest that the likelihood of successful immunotherapeutic targeting of cancer will be reliant on immune response to neoantigens. This type of cancer-specific antigen arises from somatic variants that result in alteration of the expressed protein sequence. Massively parallel sequencing techniques now allow the rapid identification of these genomic mutations, and algorithms can be used to predict those that will be processed by the proteasome, bind to the transporter complex and encode peptides that bind strongly to individual MHC molecules. The emerging data from assessment of the immunogenicity of neoantigens suggests that only a minority of mutations will form targetable epitopes and therefore the potential for immunotherapeutic targeting will be greater in cancers with a higher frequency of protein-altering somatic variants. It is evident that neoantigens contribute to the success of some immunotherapeutic interventions and that there is significant scope for specific targeting of these antigens to develop new treatment approaches.
Collapse
Affiliation(s)
- Antonia L Pritchard
- Genetics and Immunology Research Group, An Lòchran, 10 Inverness Campus, Inverness, IV2 5NA, Scotland, UK.
| |
Collapse
|
14
|
Hutchison S, Pritchard AL. Identifying neoantigens for use in immunotherapy. Mamm Genome 2018; 29:714-730. [PMID: 30167844 PMCID: PMC6267674 DOI: 10.1007/s00335-018-9771-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
This review focuses on the types of cancer antigens that can be recognised by the immune system and form due to alterations in the cancer genome, including cancer testis, overexpressed and neoantigens. Specifically, neoantigens can form when cancer cell-specific mutations occur that result in alterations of the protein from ‘self’. This type of antigen can result in an immune response sufficient to clear tumour cells when activated. Furthermore, studies have reported that the likelihood of successful immunotherapeutic targeting of cancer by many different methods was reliant on immune response to neoantigens. The recent resurgence of interest in the immune response to tumour cells, in conjunction with technological advances, has resulted in a large increase in the predicted, identified and functionally confirmed neoantigens. This growth in identified neoantigen sequences has increased the contents of training sets for algorithms, which in turn improves the prediction of which genetic mutations may form neoantigens. Additionally, algorithms predicting how proteins will be processed into peptide epitopes by the proteasome and which peptides bind to the transporter complex are also improving with this research. Now that large screens of all the tumour-specific protein altering mutations are possible, the emerging data from assessment of the immunogenicity of neoantigens suggest that only a minority of variants will form targetable epitopes. The potential for immunotherapeutic targeting of neoantigens will therefore be greater in cancers with a higher frequency of protein altering somatic variants. There is considerable potential in the use of neoantigens to treat patients, either alone or in combination with other immunotherapies and with continued advancements, these potentials will be realised.
Collapse
Affiliation(s)
- Sharon Hutchison
- Genetics and Immunology Research Group, University of the Highlands and Islands, An Lòchran, 10 Inverness Campus, Inverness, IV2 5NA, Scotland, UK
| | - Antonia L Pritchard
- Genetics and Immunology Research Group, University of the Highlands and Islands, An Lòchran, 10 Inverness Campus, Inverness, IV2 5NA, Scotland, UK.
| |
Collapse
|
15
|
Skewing effect of sulprostone on dendritic cell maturation compared with dinoprostone. Cytotherapy 2018; 20:851-860. [DOI: 10.1016/j.jcyt.2018.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/27/2018] [Accepted: 04/09/2018] [Indexed: 02/03/2023]
|
16
|
García-Salum T, Villablanca A, Matthäus F, Tittarelli A, Baeza M, Pereda C, Gleisner MA, González FE, López MN, Hoheisel JD, Norgauer J, Gebicke-Haerter PJ, Salazar-Onfray F. Molecular signatures associated with tumor-specific immune response in melanoma patients treated with dendritic cell-based immunotherapy. Oncotarget 2018; 9:17014-17027. [PMID: 29682201 PMCID: PMC5908302 DOI: 10.18632/oncotarget.24795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/26/2018] [Indexed: 01/18/2023] Open
Abstract
Purpose We previously showed that autologous dendritic cells (DCs) loaded with an allogeneic heat shock (HS)-conditioned melanoma cell-derived lysate, called TRIMEL, induce T-cell-mediated immune responses in stage IV melanoma patients. Importantly, a positive delayed-type hypersensitivity (DTH) reaction against TRIMEL after vaccination, correlated with patients prolonged survival. Furthermore, we observed that DTH reaction was associated with a differential response pattern reflected in the presence of distinct cell subpopulations in peripheral blood. Detected variations in patient responses encouraged molecular studies aimed to identify gene expression profiles induced after vaccination in treated patients, allowing the identification of new molecular predictive markers. Methods Gene expression patterns were analyzed by microarrays during vaccination, and some of them confirmed by quantitative real-time reverse transcriptase PCR (qRT-PCR) in the total leukocyte population of a representative group of responder and non-responder patients. New candidates for biomarkers with predictive value were identified using bioinformatics, molecular analysis, and flow cytometry. Results Seventeen genes overexpressed in responder patients after vaccination respect to non-responders were identified after a mathematical analysis, from which ten were linked to immune responses and five related to cell cycle control and signal transduction. In immunological responder patients, increased protein levels of the chemokine receptor CXCR4 and the Fc-receptor CD32 were observed on cell membranes of CD8+ T and B cells and the monocyte population, respectively, confirming gene expression results. Conclusions Our study contributes to finding new molecular markers associated with clinical outcome and better understanding of clinically relevant immunological responses induced by anti-tumor DC-vaccines.
Collapse
Affiliation(s)
- Tamara García-Salum
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, 8380453 Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, 8380453 Santiago, Chile
| | - Andrea Villablanca
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, 8380453 Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, 8380453 Santiago, Chile
| | - Franziska Matthäus
- Faculty of Biological Sciences and FIAS, University of Frankfurt, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany
| | - Andrés Tittarelli
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, 8380453 Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, 8380453 Santiago, Chile
| | - Mauricio Baeza
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, 8380492 Santiago, Chile
| | - Cristián Pereda
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, 8380453 Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, 8380453 Santiago, Chile
| | - M Alejandra Gleisner
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, 8380453 Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, 8380453 Santiago, Chile
| | - Fermín E González
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, 8380453 Santiago, Chile.,Laboratory of Experimental Immunology and Cancer, Faculty of Dentistry, Universidad de Chile, 8380492 Santiago, Chile
| | - Mercedes N López
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, 8380453 Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, 8380453 Santiago, Chile
| | - Jörg D Hoheisel
- Functional Genome Analysis, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Johannes Norgauer
- Department of Dermatology, Jena University Hospital D-07743 Jena, Germany
| | - Peter J Gebicke-Haerter
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, 8380453 Santiago, Chile.,Institute of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, 8380453 Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, 8380453 Santiago, Chile
| |
Collapse
|
17
|
McEvoy AC, Calapre L, Pereira MR, Giardina T, Robinson C, Khattak MA, Meniawy TM, Pritchard AL, Hayward NK, Amanuel B, Millward M, Ziman M, Gray ES. Sensitive droplet digital PCR method for detection of TERT promoter mutations in cell free DNA from patients with metastatic melanoma. Oncotarget 2017; 8:78890-78900. [PMID: 29108273 PMCID: PMC5668006 DOI: 10.18632/oncotarget.20354] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/25/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Currently mainly BRAF mutant circulating tumor DNA (ctDNA) is utilized to monitor patients with melanoma. TERT promoter mutations are common in various cancers and found in up to 70% of melanomas, including half of BRAF wild-type cases. Therefore, a sensitive method for detection of TERT promoter mutations would increase the number of patients that could be monitored through ctDNA analysis. METHODS A droplet digital PCR (ddPCR) assay was designed for the concurrent detection of chr5:1,295,228 C>T and chr5:1,295,250 C>T TERT promoter mutations. The assay was validated using 39 melanoma cell lines and 22 matched plasma and tumor samples. In addition, plasma samples from 56 metastatic melanoma patients and 56 healthy controls were tested for TERT promoter mutations. RESULTS The established ddPCR assay detected TERT promoter mutations with a lower limit of detection (LOD) of 0.17%. Total concordance was demonstrated between ddPCR and Sanger sequencing in all cell lines except one, which carried a second mutation within the probe binding-site. Concordance between matched plasma and tumor tissue was 68% (15/22), with a sensitivity of 53% (95% CI, 27%-79%) and a specificity of 100% (95% CI, 59%-100%). A significantly longer PFS (p=0.028) was evident in ctDNA negative patients. Importantly, our TERT promoter mutations ddPCR assay allowed detection of ctDNA in 11 BRAF wild-type cases. CONCLUSIONS The TERT promoter mutation ddPCR assay offers a sensitive test for molecular analysis of melanoma tumors and ctDNA, with the potential to be applied to other cancers.
Collapse
Affiliation(s)
- Ashleigh C. McEvoy
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Leslie Calapre
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Michelle R. Pereira
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Tindaro Giardina
- Anatomical Pathology, PathWest, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Cleo Robinson
- Anatomical Pathology, PathWest, QEII Medical Centre, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | - Muhammad A. Khattak
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Tarek M. Meniawy
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | | | - Nicholas K. Hayward
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Benhur Amanuel
- Anatomical Pathology, PathWest, QEII Medical Centre, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Michael Millward
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Melanie Ziman
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | - Elin S. Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
18
|
Hamilton MJ, Huang QX, Li CL, Ellem KAO. The Development and Characterization of an HEK293-Derived Cell Line for Use in an Intratumoral Cytokine Delivery System. Cell Transplant 2017; 15:343-350. [DOI: 10.3727/000000006783981891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
As part of ongoing work to develop a method of cytokine delivery for use as an intratumoral depot, we noted that HEK293 cells, encapsulated in alginate, died within 24–48 h after in vivo, intratumoral implantation. We hypothesized that the highly hypoxic and acidic conditions found inside the tumor was the cause of the cells' premature demise. Therefore, we set out to develop a cell line, derived from HEK293, that would survive these hostile conditions. The HEK293 line was selected in 0.3–0.5% oxygen conditions over several weeks, followed by a further 6-week period of culture in alternating hypoxic and normoxic conditions. The most rapidly growing clones were selected and grown in normoxic conditions for several weeks to ensure their stability. The clones were then compared to the original line in terms of cell proliferation in normoxia and hypoxia, colony-forming efficiency, and morphological characteristics. The resulting line was able to proliferate in the harshest of conditions and continues to release its biological payload after alginate microencapsulation.
Collapse
Affiliation(s)
- M. J. Hamilton
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Q. X. Huang
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - C. L. Li
- Stem Cell Program, Institute of Zoology/Genomics Research Center, Academia Sinica, 129 Academia Rd Sec 2, Nankang, Taipei 11529, Taiwan
| | - K. A. O. Ellem
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| |
Collapse
|
19
|
Gross S, Erdmann M, Haendle I, Voland S, Berger T, Schultz E, Strasser E, Dankerl P, Janka R, Schliep S, Heinzerling L, Sotlar K, Coulie P, Schuler G, Schuler-Thurner B. Twelve-year survival and immune correlates in dendritic cell-vaccinated melanoma patients. JCI Insight 2017; 2:91438. [PMID: 28422751 DOI: 10.1172/jci.insight.91438] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/02/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Reports on long-term (≥10 years) effects of cancer vaccines are missing. Therefore, in 2002, we initiated a phase I/II trial in cutaneous melanoma patients to further explore the immunogenicity of our DC vaccine and to establish its long-term toxicity and clinical benefit after a planned 10-year followup. METHODS Monocyte-derived DCs matured by TNFα, IL-1β, IL-6, and PGE2 and then loaded with 4 HLA class I and 6 class II-restricted tumor peptides were injected intradermally in high doses over 2 years. We performed serial immunomonitoring in all 53 evaluable patients. RESULTS Vaccine-specific immune responses including high-affinity, IFNγ-producing CD4+ and lytic polyfunctional CD8+ T cells were de novo induced or boosted in most patients. Exposure of mature DCs to trimeric soluble CD40 ligand, unexpectedly, did not further enhance such immune responses, while keyhole limpet hemocyanin (KLH) pulsing to provide unspecific CD4+ help promoted CD8+ T cell responses - notably, their longevity. An unexpected 19% of nonresectable metastatic melanoma patients are still alive after 11 years, a survival rate similar to that observed in ipilimumab-treated patients and achieved without any major (>grade 2) toxicity. Survival correlated significantly with the development of intense vaccine injection site reactions, and with blood eosinophilia after the first series of vaccinations, suggesting that prolonged survival was a consequence of DC vaccination. CONCLUSIONS Long-term survival in advanced melanoma patients undergoing DC vaccination is similar to ipilimumab-treated patients and occurs upon induction of tumor-specific T cells, blood eosinophilia, and strong vaccine injection site reactions occurring after the initial vaccinations. TRIAL REGISTRATION ClinicalTrials.gov NCT00053391. FUNDING European Community, Sixth Framework Programme (Cancerimmunotherapy LSHC-CT-2006-518234; DC-THERA LSHB-CT-2004-512074), and German Research Foundation (CRC 643, C1, Z2).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peter Dankerl
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Rolf Janka
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | | | | | - Karl Sotlar
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Pierre Coulie
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
20
|
Daßler-Plenker J, Reiners KS, van den Boorn JG, Hansen HP, Putschli B, Barnert S, Schuberth-Wagner C, Schubert R, Tüting T, Hallek M, Schlee M, Hartmann G, Pogge von Strandmann E, Coch C. RIG-I activation induces the release of extracellular vesicles with antitumor activity. Oncoimmunology 2016; 5:e1219827. [PMID: 27853642 PMCID: PMC5087302 DOI: 10.1080/2162402x.2016.1219827] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 12/21/2022] Open
Abstract
Activation of the innate immune receptor retinoic acid-inducible gene I (RIG-I) by its specific ligand 5'-triphosphate-RNA (3pRNA) triggers antitumor immunity predominantly via NK cell activation and direct apoptosis induction in tumor cells. However, how NK cells are mobilized to attack the tumor cells remains elusive. Here, we show that RIG-I activation induced the secretion of extracellular vesicles (EVs) from melanoma cells, which by themselves revealed antitumor activity in vitro and in vivo. RIG-I-induced EVs from melanoma cells exhibited an increased expression of the NKp30-ligand (BAG6, BAT3) on their surface triggering NK cell-mediated lysis of melanoma cells via activation of the cytotoxicity NK cell-receptor NKp30. Moreover, systemic administration of RIG-I-induced melanoma-EVs showed a potent antitumor activity in a melanoma mouse model in vivo. In conclusion, our data establish a new RIG-I-dependent pathway leading to NK cell-mediated tumor cell killing.
Collapse
Affiliation(s)
- Juliane Daßler-Plenker
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn , Bonn, Germany
| | - Katrin S Reiners
- Clinic I for Internal Medicine, Innate immunity Group, University of Cologne , Cologne, Germany
| | - Jasper G van den Boorn
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn , Bonn, Germany
| | - Hinrich P Hansen
- Clinic I for Internal Medicine, Innate immunity Group, University of Cologne , Cologne, Germany
| | - Bastian Putschli
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn , Bonn, Germany
| | - Sabine Barnert
- Department of Pharmaceutical Technology and Biopharmacy, Albert-Ludwigs-University , Freiburg, Germany
| | | | - Rolf Schubert
- Department of Pharmaceutical Technology and Biopharmacy, Albert-Ludwigs-University , Freiburg, Germany
| | - Thomas Tüting
- Department of Dermatology and Allergy, University of Bonn , Bonn, Germany
| | - Michael Hallek
- Clinic I for Internal Medicine, Innate immunity Group, University of Cologne , Cologne, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn , Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn , Bonn, Germany
| | - Elke Pogge von Strandmann
- Clinic I for Internal Medicine, Innate immunity Group, University of Cologne, Cologne, Germany; Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology, and Immunology, Philipps University, Hans-Meerwein-Strasse 3, Marburg, Germany
| | - Christoph Coch
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn , Bonn, Germany
| |
Collapse
|
21
|
Sun X, Suo J, Yan J. Immunotherapy in human colorectal cancer: Challenges and prospective. World J Gastroenterol 2016; 22:6362-6372. [PMID: 27605872 PMCID: PMC4968118 DOI: 10.3748/wjg.v22.i28.6362] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/02/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Human colorectal cancer (CRC) is the third most commonly diagnosed malignancies and the prognosis for patients with recurrent or metastatic disease is extremely poor. Although new chemotherapeutic regimen improves survival rates, therapy with better efficacy and less adverse effects is drastically needed. Immunotherapy has been investigated in human CRC for decades with limited success. However, recent developments of immunotherapy, particularly immune checkpoint inhibitor therapy, have achieved promising clinical benefits in many types of cancer and revived the hope for utilizing such therapy in human CRC. In this review, we will discuss important immunological landscape within the CRC microenvironment and introduce immunoscore system to better describe immunophenotyping in CRC. We will also discuss different immunotherapeutic approaches currently utilized in different phases of clinical trials. Some of those completed or ongoing trials are summarized. Finally, we provide a brief prospective on the future human CRC immunotherapy.
Collapse
|
22
|
Kranz LM, Birtel M, Hilscher L, Grunwitz C, Petschenka J, Vascotto F, Vormehr M, Voss RH, Kreiter S, Diken M. CIMT 2016: Mechanisms of efficacy in cancer immunotherapy - Report on the 14th Annual Meeting of the Association for Cancer Immunotherapy May 10-12 2016, Mainz, Germany. Hum Vaccin Immunother 2016; 12:2805-2812. [PMID: 27435168 PMCID: PMC5137546 DOI: 10.1080/21645515.2016.1206677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Lena M Kranz
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany.,b Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University , Mainz , Germany
| | - Matthias Birtel
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany.,b Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University , Mainz , Germany
| | - Lina Hilscher
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany
| | - Christian Grunwitz
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany.,c BioNTech RNA Pharmaceuticals GmbH , Mainz , Germany
| | - Jutta Petschenka
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany
| | - Fulvia Vascotto
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany
| | - Mathias Vormehr
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany.,c BioNTech RNA Pharmaceuticals GmbH , Mainz , Germany
| | - Ralf-Holger Voss
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany
| | - Sebastian Kreiter
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany
| | - Mustafa Diken
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany
| |
Collapse
|
23
|
Zhu M, Xu W, Su H, Huang Q, Wang B. Addition of CpG ODN and Poly (I:C) to a standard maturation cocktail generates monocyte-derived dendritic cells and induces a potent Th1 polarization with migratory capacity. Hum Vaccin Immunother 2016; 11:1596-605. [PMID: 26039883 DOI: 10.1080/21645515.2015.1046659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Monocyte-derived dendritic cells (DCs) are used as immunoadjuvant cells in cancer vaccines and have made great progress. However, an optimal DCs subset is vital for this treatment effect, the current 'gold standard' cytokine cocktail DCs have a shortcoming in their cytokines secretion, especially IL-12p70, mainly because of the existence of PGE2. Therefore, it is necessary to find an appropriate DCs-based immunotherapeutic protocol. In this study, we compared a novel 'improved' maturation cytokine cocktail with the current 'gold standard' maturation cytokine cocktail used for generating standard DCs. The 'improved' maturation cytokine cocktail DCs showed a higher levels surface markers expression (CD80, CD83, CD86 and HLA-DR), the chemokine receptors CXCR4 and CCR7 and chemokine CCL19, CCL21 and CXCL21, whereas CCR5 expression was reduced. Most importantly, in contrast to 'gold standard' DCs, which secrete little IL-12p70 and as a result induce mainly Th2 immunity, 'improved' cytokine cocktail DCs secreted higher levels IL-12p70 and also secreted similar concentration IL-10. To removal of PGE2 from the 'improved' DCs did increase the IL-12p70 production. In conclusion, we here present the 'improved' DCs, as an optimal maturation cocktail protocol, can induce high migratory potential, generate immunostimulatory DCs, produce higher levels IL-12p70 with superior capacity to induce Th1 immunity, when compared with the 'gold standard' DCs.
Collapse
Affiliation(s)
- Mei Zhu
- a Department of Laboratory Medicine ; Affiliated Provincial Hospital of Anhui Medical University ; Hefei , Anhui , China
| | | | | | | | | |
Collapse
|
24
|
Cavalier MC, Ansari MI, Pierce AD, Wilder PT, McKnight LE, Raman EP, Neau DB, Bezawada P, Alasady MJ, Charpentier TH, Varney KM, Toth EA, MacKerell AD, Coop A, Weber DJ. Small Molecule Inhibitors of Ca(2+)-S100B Reveal Two Protein Conformations. J Med Chem 2016; 59:592-608. [PMID: 26727270 DOI: 10.1021/acs.jmedchem.5b01369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The drug pentamidine inhibits calcium-dependent complex formation with p53 ((Ca)S100B·p53) in malignant melanoma (MM) and restores p53 tumor suppressor activity in vivo. However, off-target effects associated with this drug were problematic in MM patients. Structure-activity relationship (SAR) studies were therefore completed here with 23 pentamidine analogues, and X-ray structures of (Ca)S100B·inhibitor complexes revealed that the C-terminus of S100B adopts two different conformations, with location of Phe87 and Phe88 being the distinguishing feature and termed the "FF-gate". For symmetric pentamidine analogues ((Ca)S100B·5a, (Ca)S100B·6b) a channel between sites 1 and 2 on S100B was occluded by residue Phe88, but for an asymmetric pentamidine analogue ((Ca)S100B·17), this same channel was open. The (Ca)S100B·17 structure illustrates, for the first time, a pentamidine analog capable of binding the "open" form of the "FF-gate" and provides a means to block all three "hot spots" on (Ca)S100B, which will impact next generation (Ca)S100B·p53 inhibitor design.
Collapse
Affiliation(s)
- Michael C Cavalier
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Mohd Imran Ansari
- Computer Aided Drug Design Center, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Adam D Pierce
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Paul T Wilder
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine , Baltimore, Maryland 21201, United States.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Laura E McKnight
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - E Prabhu Raman
- Computer Aided Drug Design Center, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | | | - Padmavani Bezawada
- Computer Aided Drug Design Center, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Milad J Alasady
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Thomas H Charpentier
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Kristen M Varney
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Eric A Toth
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine , Baltimore, Maryland 21201, United States.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States.,Institute for Bioscience and Biotechnology Research , 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| | - Alexander D MacKerell
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States.,Computer Aided Drug Design Center, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Andrew Coop
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States.,Computer Aided Drug Design Center, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - David J Weber
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine , Baltimore, Maryland 21201, United States.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| |
Collapse
|
25
|
González FE, Gleisner A, Falcón-Beas F, Osorio F, López MN, Salazar-Onfray F. Tumor cell lysates as immunogenic sources for cancer vaccine design. Hum Vaccin Immunother 2015; 10:3261-9. [PMID: 25625929 DOI: 10.4161/21645515.2014.982996] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Autologous dendritic cells (DCs) loaded with tumor-associated antigens (TAAs) are a promising immunological tool for cancer therapy. These stimulate the antitumor response and immunological memory generation. Nevertheless, many patients remain refractory to DC approaches. Antigen (Ag) delivery to DCs is relevant to vaccine success, and antigen peptides, tumor-associated proteins, tumor cells, autologous tumor lysates, and tumor-derived mRNA have been tested as Ag sources. Recently, DCs loaded with allogeneic tumor cell lysates were used to induce a potent immunological response. This strategy provides a reproducible pool of almost all potential Ags suitable for patient use, independent of MHC haplotypes or autologous tumor tissue availability. However, optimizing autologous tumor cell lysate preparation is crucial to enhancing efficacy. This review considers the role of cancer cell-derived lysates as a relevant source of antigens and as an activating factor for ex vivo therapeutic DCs capable of responding to neoplastic cells. These promising therapies are associated with the prolonged survival of advanced cancer patients.
Collapse
Key Words
- AM, Cytokine-activated monocytes
- Ags, Antigens
- CDAMs, Cell death-associated molecules
- CRT, Calreticulin
- CTLs, Cytotoxic T lymphocytes
- DAMPs
- DAMPs, Damage-associated molecular patterns
- DCs, Dendritic cells
- DTH, Delayed-type IV hypersensitivity
- GM-CSF, Granulocyte and macrophage colony stimulating factor
- HMGB1, High-mobility group box 1 protein
- HSPs, Heat shock proteins
- ICD, Immunogenic cell death
- MAAs, Melanoma-associated antigens
- MHC, Major histocompatibility complex
- MM, Malignant melanoma
- NKT, Natural killer T cell
- PAMPs, Pathogen-associated molecular patterns
- PBMCs, Peripheral blood mononuclear cells
- PCCL, Prostate cancer cell lysate
- PD1, Programmed cell death protein 1
- PRRs, Pattern recognition receptors
- PSA, Prostate specific antigen
- RAGE, Receptor for advanced glycation endproducts
- SNPs, Single nucleotide polymorphisms
- TAAs, Tumor-associated antigens
- TAPCells, Tumor antigen presenting cells
- TCRs, T cell receptors
- TLRs, Toll-like receptors
- TNF, Tumor necrosis factor
- TRIMEL, Allogeneic melanoma cell lysate
- TRIPRO, Allogeneic prostate cell lysate
- Toll-like receptors
- Tregs, Regulatory T lymphocytes
- cancer immunotherapy
- dendritic cells
- immunogenic cell death
Collapse
Affiliation(s)
- Fermín E González
- a Millennium Institute on Immunology and Immunotherapy; Institute of Biomedical Sciences; Faculty of Medicine ; University of Chile ; Santiago , Chile
| | | | | | | | | | | |
Collapse
|
26
|
Powell KL, Stephens AS, Ralph SJ. Development of a potent melanoma vaccine capable of stimulating CD8(+) T-cells independently of dendritic cells in a mouse model. Cancer Immunol Immunother 2015; 64:861-72. [PMID: 25893808 PMCID: PMC11028525 DOI: 10.1007/s00262-015-1695-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
Abstract
At present, there are no vaccines approved for the prevention or treatment of malignant melanoma, despite the amount of time and resources that has been invested. In this study, we aimed to develop a self-contained vaccine capable of directly stimulating anticancer CD8(+) T-cell immune responses. To achieve this, three whole-cell melanoma vaccines were developed expressing 4-1BBL or B7.1 T-cell co-stimulatory molecules individually or in combination. The ability of engineered vaccine cell lines to stimulate potent anticancer immune responses in C57BL/6 mice was assessed. Mice vaccinated with cells overexpressing both 4-1BBL and B7.1 (B16-F10-4-1BBL-B7.1-IFNγ/β anticancer vaccine) displayed the greatest increases in CD8(+) T-cell populations (1.9-fold increase versus control within spleens), which were efficiently activated following antigenic stimulation, resulting in a 10.7-fold increase in cancer cell cytotoxicity relative to control. The enhanced immune responses in B16-F10-4-1BBL-B7.1-IFNγ/β-vaccinated mice translated into highly efficient rejection of live tumour burdens and conferred long-term protection against repeated tumour challenges, which were likely due to enhanced effector memory T-cell populations. Similar results were observed when dendritic cell (DC)-deficient LTα(-/-) mice were treated with the B16-F10-4-1BBL-B7.1-IFNγ/β anticancer vaccine, suggesting that the vaccine can directly stimulate CD8(+) T-cell responses in the context of severely reduced DCs. This study shows that the B16-F10-4-1BBL-B7.1-IFNγ/β anticancer vaccine acted as a highly effective antigen-presenting cell and is likely to be able to directly stimulate CD8(+) T-cells, without requiring co-stimulatory signals from either CD4(+) T-cells or DCs, and warrants translation of this technology into the clinical setting.
Collapse
Affiliation(s)
- Katie L Powell
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia,
| | | | | |
Collapse
|
27
|
Pritchard AL, Burel JG, Neller MA, Hayward NK, Lopez JA, Fatho M, Lennerz V, Wölfel T, Schmidt CW. Exome Sequencing to Predict Neoantigens in Melanoma. Cancer Immunol Res 2015; 3:992-8. [PMID: 26048577 DOI: 10.1158/2326-6066.cir-15-0088] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/21/2015] [Indexed: 11/16/2022]
Abstract
The ability to use circulating peripheral blood cells and matched tumor sequencing data as a basis for neoantigen prediction has exciting possibilities for application in the personalized treatment of cancer patients. We have used a high-throughput screening approach, combining whole-exome sequence data, mRNA microarrays, and publicly available epitope prediction algorithm output to identify mutated proteins processed and displayed by patient tumors and recognized by circulating immune cells. Matched autologous melanoma cell lines and peripheral blood mononuclear cells were used to create mixed lymphocyte tumor cell cultures, resulting in an expansion of tumor-reactive T cells to use for mutated peptide screening. Five patients were investigated, three of whom had a durable complete response (CR; 15+ years) in an autologous melanoma-pulsed dendritic cell clinical trial. We identified seven mutated antigens in total that stimulated T-effector memory cells in two of the five patients. While the procedure did not result in clinically applicable neoantigens for all patients, those identified were likely important in tumor clearance, leading to durable CR. The nature of the screening process allows results to be obtained rapidly and is easily applicable to a wide variety of different tumor types.
Collapse
Affiliation(s)
- Antonia L Pritchard
- Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Julie G Burel
- Molecular Vaccinology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michelle A Neller
- Cancer Immunotherapy, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicholas K Hayward
- Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - J Alejandro Lopez
- Cancer Immunotherapy, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. School of Natural Sciences, Griffith University, Brisbane, Queensland, Australia
| | - Martina Fatho
- Third Medical Clinic (Hematology/Oncology/Pneumology), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Volker Lennerz
- Third Medical Clinic (Hematology/Oncology/Pneumology), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Wölfel
- Third Medical Clinic (Hematology/Oncology/Pneumology), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Christopher W Schmidt
- Cancer Immunotherapy, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
28
|
Enhanced protective immunity derived from dendritic cells with phagocytosis of CD40 ligand transgene-engineered apoptotic tumor cells via increased dendritic cell maturation. TUMORI JOURNAL 2015; 101:637-43. [PMID: 25983089 DOI: 10.5301/tj.5000297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 01/01/2023]
Abstract
AIMS AND BACKGROUND Dendritic cells (DCs) play a pivotal role in regulating CD8+ cytotoxic T-lymphocyte (CTL) responses. Currently, DC vaccines have been used in experimental animal models and clinical trials for evaluation of antitumor immunity. However, their efficacy is limited, warranting the improvement of DC-based cancer vaccines. CD40 ligand (CD40L) stimulates DC activation and maturation via CD40-CD40L interaction. We demonstrated that DCs that had phagocytized apoptotic tumor cells induced antitumor immunity. METHODS We generated CD40L-expressing (EG7-CD40L) and the control (EG7-Null) EG7 tumor cells by transfection of EG7 tumor cells with CD40L-expressing adenoviral vector AdVCD40L and the control vector AdV(pLpA), respectively. We also generated DC vaccines (DC-EG7/CD40L and the control DC-EG7/Null) using DCs with phagocytosis of irradiated EG7-CD40L and EG7-Null tumor cells, and assessed their phenotype and immunogenicity by flow cytometry and animal studies in C57BL/6 mice. RESULTS We demonstrate that an irradiation of 9000-rad induced Annexin V-expressing cell apoptosis in most (~75%) tumor cells, and provide evidence for phagocytosis of apoptotic tumor cells by flow cytometry and confocal microscopy. The DC-EG7/CD40L cells showed higher expression of DC maturation markers (Ia(b), CD40, CD80, and CD86) and peptide/major histocompatibility complex I than the control DC-EG7/Null cells. In addition, DC-EG7/CD40L vaccine stimulates more efficient (0.97%) tumor-specific CTL responses than DC-EG7/Null cells (0.31%). Furthermore, 80% (4/5) of mice immunized with DC-EG7/CD40L vaccine become tumor-free after EG7 tumor cell challenge, whereas DC-EG7/Null vaccine only delays immunized mouse death. CONCLUSIONS Dendritic cells that have phagocytized CD40L-expressing apoptotic tumor cells appear to offer new strategies in DC cancer vaccines.
Collapse
|
29
|
Pritchard AL, Hastie ML, Neller M, Gorman JJ, Schmidt CW, Hayward NK. Exploration of peptides bound to MHC class I molecules in melanoma. Pigment Cell Melanoma Res 2015; 28:281-94. [PMID: 25645385 DOI: 10.1111/pcmr.12357] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/27/2015] [Indexed: 12/16/2022]
Abstract
Advancements in high-resolution HPLC and mass spectrometry have reinvigorated the application of this technology to identify peptides eluted from immunopurified MHC class I molecules. Three melanoma cell lines were assessed using w6/32 isolation, peptide elution and HPLC purification; peptides were identified by mass spectrometry. A total of 13,829 peptides were identified; 83-87% of these were 8-11 mers. Only approximately 15% have been described before. Subcellular locations of the source proteins showed even sampling; mRNA expression and total protein length were predictive of the number of peptides detected from a single protein. HLA-type binding prediction for 10,078 9/10 mer peptides assigned 88-95% to a patient-specific HLA subtype, revealing a disparity in strength of predicted binding. HLA-B*27-specific isolation successfully identified some peptides not found using w6/32. Sixty peptides were selected for immune screening, based on source protein and predicted HLA binding; no new peptides recognized by antimelanoma T cells were discovered. Additionally, mass spectrometry was unable to identify several epitopes targeted ex vivo by one patient's T cells.
Collapse
Affiliation(s)
- Antonia L Pritchard
- Oncogenomics Research Group, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Qld, Australia
| | | | | | | | | | | |
Collapse
|
30
|
High efficiency ex vivo cloning of antigen-specific human effector T cells. PLoS One 2014; 9:e110741. [PMID: 25368986 PMCID: PMC4219695 DOI: 10.1371/journal.pone.0110741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/14/2014] [Indexed: 12/03/2022] Open
Abstract
While cloned T cells are valuable tools for the exploration of immune responses against viruses and tumours, current cloning methods do not allow inferences to be made about the function and phenotype of a clone's in vivo precursor, nor can precise cloning efficiencies be calculated. Additionally, there is currently no general method for cloning antigen-specific effector T cells directly from peripheral blood mononuclear cells, without the need for prior expansion in vitro. Here we describe an efficient method for cloning effector T cells ex vivo. Functional T cells are detected using optimised interferon gamma capture following stimulation with viral or tumour cell-derived antigen. In combination with multiple phenotypic markers, single effector T cells are sorted using a flow cytometer directly into multi-well plates, and cloned using standard, non antigen-specific expansion methods. We provide examples of this novel technology to generate antigen-reactive clones from healthy donors using Epstein-Barr virus and cytomegalovirus as representative viral antigen sources, and from two melanoma patients using autologous melanoma cells. Cloning efficiency, clonality, and retention/loss of function are described. Ex vivo effector cell cloning provides a rapid and effective method of deriving antigen-specific T cells clones with traceable in vivo precursor function and phenotype.
Collapse
|
31
|
Hunn MK, Bauer E, Wood CE, Gasser O, Dzhelali M, Ancelet LR, Mester B, Sharples KJ, Findlay MP, Hamilton DA, Hermans IF. Dendritic cell vaccination combined with temozolomide retreatment: results of a phase I trial in patients with recurrent glioblastoma multiforme. J Neurooncol 2014; 121:319-29. [DOI: 10.1007/s11060-014-1635-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 10/18/2014] [Indexed: 12/21/2022]
|
32
|
Cavalier MC, Pierce AD, Wilder PT, Alasady MJ, Hartman KG, Neau DB, Foley TL, Jadhav A, Maloney DJ, Simeonov A, Toth EA, Weber DJ. Covalent small molecule inhibitors of Ca(2+)-bound S100B. Biochemistry 2014; 53:6628-40. [PMID: 25268459 PMCID: PMC4211652 DOI: 10.1021/bi5005552] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elevated levels of the tumor marker S100B are observed in malignant melanoma, and this EF-hand-containing protein was shown to directly bind wild-type (wt) p53 in a Ca(2+)-dependent manner, dissociate the p53 tetramer, and inhibit its tumor suppression functions. Likewise, inhibiting S100B with small interfering RNA (siRNA(S100B)) is sufficient to restore wild-type p53 levels and its downstream gene products and induce the arrest of cell growth and UV-dependent apoptosis in malignant melanoma. Therefore, it is a goal to develop S100B inhibitors (SBiXs) that inhibit the S100B-p53 complex and restore active p53 in this deadly cancer. Using a structure-activity relationship by nuclear magnetic resonance approach (SAR by NMR), three persistent binding pockets are found on S100B, termed sites 1-3. While inhibitors that simultaneously bind sites 2 and 3 are in place, no molecules that simultaneously bind all three persistent sites are available. For this purpose, Cys84 was used in this study as a potential means to bridge sites 1 and 2 because it is located in a small crevice between these two deeper pockets on the protein. Using a fluorescence polarization competition assay, several Cys84-modified S100B complexes were identified and examined further. For five such SBiX-S100B complexes, crystallographic structures confirmed their covalent binding to Cys84 near site 2 and thus present straightforward chemical biology strategies for bridging sites 1 and 3. Importantly, one such compound, SC1982, showed an S100B-dependent death response in assays with WM115 malignant melanoma cells, so it will be particularly useful for the design of SBiX molecules with improved affinity and specificity.
Collapse
Affiliation(s)
- Michael C Cavalier
- Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rosenblatt J, Avigan D. Can leukemia-derived dendritic cells generate antileukemia immunity? Expert Rev Vaccines 2014; 5:467-72. [PMID: 16989627 DOI: 10.1586/14760584.5.4.467] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Tumor vaccines are being explored as a means of generating antitumor immune responses in patients with cancer. Based on the efficacy of allogeneic transplantation, acute myelogenous leukemia appears to be susceptible to cellular immune-based therapy. Dendritic cells (DCs) are the most potent antigen-presenting cells and, as such, are being studied as a platform for the design of cancer vaccines. In acute leukemia, a promising approach involves the generation of DCs from leukemic blasts via cytokine exposure ex vivo. Leukemia-derived DCs potentially retain the tumor-associated antigens of the leukemic clone, which are presented in the context of the immune stimulating machinery of the mature DC. However, the efficacy of this approach may be limited by intrinsic abnormalities in the malignant clone that prevent differentiation towards a normal DC phenotype.
Collapse
Affiliation(s)
- Jacalyn Rosenblatt
- Beth Israel Deaconess Medical Center, Hematologic Malignancy Bone Marrow Transplant Program, 330 Brookline Avenue, KS 121, Boston, MA 02215, USA.
| | | |
Collapse
|
34
|
Ridolfi R, Ridolfi L, Petrini M, Fiammenghi L, Riccobon A. Dendritic cell vaccination and immunostimulation in advanced melanoma. Expert Rev Vaccines 2014; 2:825-33. [PMID: 14711365 DOI: 10.1586/14760584.2.6.825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The most recent advances in immunology bear witness to the fact that tumors, in particular melanoma, escape recognition by the host's immune system and can locally inactivate its effectors, T-cells and antigen presenting cells. There is, however, preclinical evidence that the immune system, opportunely stimulated, is capable of recognizing and killing tumor cells. It has been verified that the activation of autologous dendritic cells, derived from peripheral blood and pulsed with tumor antigens, results in the specific stimulation of T-cells against the tumor. Preliminary data from dendritic cell vaccination trials, mainly of advanced melanoma, show unequivocal evidence of immunization and of the first clinical responses. Many questions remain to be answered before more effective and widespread use of this type of vaccination is possible, especially in the early stages of the disease.
Collapse
Affiliation(s)
- Ruggero Ridolfi
- Dept. of Medical Oncology, Pierantoni Hospital, Via Forlanini 34, 47100 Forlì, Italy.
| | | | | | | | | |
Collapse
|
35
|
Olin MR, Pluhar GE, Andersen BM, Shaver R, Waldron NN, Moertel CL. Victory and defeat in the induction of a therapeutic response through vaccine therapy for human and canine brain tumors: a review of the state of the art. Crit Rev Immunol 2014; 34:399-432. [PMID: 25404047 PMCID: PMC4485925 DOI: 10.1615/critrevimmunol.2014011577] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Anti-tumor immunotherapy using tumor lysate-based vaccines has made great advances over recent decades. Cancer vaccines aim to elicit adaptive immune responses through various pathways by providing tumor and tumor-associated antigens with an immune stimulant or adjuvant. These anti-tumor vaccines are therefore developed as personalized treatments. Utilizing tumors as a source of vaccine antigens in immunotherapy has demonstrated promising results with minimal toxicity. However, to date, researchers have failed to overcome the overpowering immune suppressive effects within the tumor microenvironment. Immune suppression occurs naturally via multiple mechanisms. These mechanisms serve an important homeostatic role restoring a normal tissue microenvironment following an inflammatory response. Due to these suppressive mechanisms and the inherent heterogeneity of tumors, it is imperative to then elicit and maintain a specific tumoricidal response if vaccine therapy or some other combination of reagents is chosen. In this review, we focus on the historical use of tumors as a source of antigens to elicit a tumoricidal response and the limitations encountered that prevent greater success in immunotherapy. We describe the advantages and disadvantages of various vaccines and their ineffectiveness due to tumor-induced immune suppression.
Collapse
Affiliation(s)
- Michael R. Olin
- Department of Pediatrics. University of Minnesota, Minneapolis, MN 55445
| | - G. Elizabeth Pluhar
- Department of Veterinary Medicine, College of Veterinary Medicine. University of Minnesota, St. Paul, MN 55108
| | - Brian M. Andersen
- Department of Pediatrics. University of Minnesota, Minneapolis, MN 55445
| | - Rob Shaver
- Department of Pediatrics. University of Minnesota, Minneapolis, MN 55445
| | - Nate N. Waldron
- Department of Pediatrics. University of Minnesota, Minneapolis, MN 55445
| | | |
Collapse
|
36
|
Abstract
Advances in immunobiology knowledge as well as in cell culture processes that generate large numbers of purified and functionally mature dendritic cells (DCs) have raised the possibility that DCs might represent promising clinical agents to generate effective immune responses against cancer. Here, we discuss the present pitfalls of dendritic cell vaccines for the treatment of human cancer with regard to the most recent knowledge in the biology of DCs. In particular, we highlight the relevance of improving our current understanding of DC trafficking, functions and interactions with other cells of innate immunity for the development of more effective cancer vaccines.
Collapse
|
37
|
Adjuvant vaccination with melanoma antigen-pulsed dendritic cells in stage III melanoma patients. Med Oncol 2013; 29:2966-77. [PMID: 22302285 DOI: 10.1007/s12032-012-0168-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/14/2012] [Indexed: 12/27/2022]
Abstract
Dendritic cells may be successfully used to induce in vivo-specific anti-tumor responses when combined with the appropriate antigen in the appropriate context. The purpose of this study was to evaluate efficacy of peptide-loaded DC vaccine in high-risk stage III melanoma patients after lymph node dissection (LND). HLA-A2+, -A1+, or -A3+ melanoma patients (N=22), stage III, N1b-N3, received 5–16 (median: 11) DC vaccines loaded with MHC class-I-restricted melanoma peptides respective to the patient’s haplotype, and with autologous tumor lysate, if available. Vaccinated patients were matched to unvaccinated stage III controls (22 of 869) by sex, number of metastatic lymph nodes, extracapsular involvement, LND type, Breslow stage, and ulceration. Vaccination elicited cutaneous delayed-type hypersensitivity (DTH) or/and IFN-γ-producing CD8+ cell response to melanoma peptides in 15 of 22 patients. Three-year overall survival (OS) rate was 68.2% in the vaccinated group versus 25.7% in the control group, P value accounting for matching: 0.0290. In a Cox regression model, hazard ratio (HR) for death of vaccinated patients was 0.31 [95% confidence interval (CI): 0.10–0.94]. The corresponding values for 3-year disease-free survival rate were 40.9 versus 14.5%, P=0.1083; HR of recurrence for vaccinated, 0.46 (95% CI: 0.18–1.22). There was no grade>1 toxicity. The DC/peptide vaccine was well tolerated and elicited immune responses to melanoma antigens. Vaccinated patients had significantly longer OS after LND than the matched controls, but a significant improvement in the primary endpoint DFS was not achieved.
Collapse
|
38
|
Tüting T. T cell immunotherapy for melanoma from bedside to bench to barn and back: how conceptual advances in experimental mouse models can be translated into clinical benefit for patients. Pigment Cell Melanoma Res 2013; 26:441-56. [PMID: 23617831 DOI: 10.1111/pcmr.12111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/18/2013] [Indexed: 12/27/2022]
Abstract
A solid scientific basis now supports the concept that cytotoxic T lymphocytes can specifically recognize and destroy melanoma cells. Over the last decades, clinicians and basic scientists have joined forces to advance our concepts of melanoma immunobiology. This has catalyzed the rational development of therapeutic approaches to enforce melanoma-specific T cell responses. Preclinical studies in experimental mouse models paved the way for their successful translation into clinical benefit for patients with metastatic melanoma. A more thorough understanding of how melanomas develop resistance to T cell immunotherapy is necessary to extend this success. This requires a continued interdisciplinary effort of melanoma biologists and immunologists that closely connects clinical observations with in vitro investigations and appropriate in vivo mouse models: From bedside to bench to barn and back.
Collapse
Affiliation(s)
- Thomas Tüting
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
39
|
Wang J, Liao L, Tan J. Dendritic cell-based vaccination for renal cell carcinoma: challenges in clinical trials. Immunotherapy 2013; 4:1031-42. [PMID: 23148755 DOI: 10.2217/imt.12.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
After decades of research, dendritic cell (DC)-based vaccines for renal cell carcinoma have progressed from preclinical rodent models and safety assessments to Phase I/II clinical trials. DC vaccines represent a promising therapy that has produced measurable immunological responses and prolonged survival rates. However, there is still much room to improve in terms of therapeutic efficacy. The key issues that affect the efficiency and reliability of DC therapy include the selection of patients who will respond best to treatment, the proper preparation and administration of DC vaccines, and a combination of DC vaccination with other immune-enhancing therapies (e.g., removal of Tregs, CTLA-4 blockade and lymphodepletion). Additional antiangiogenic agents will hopefully lead to greater survival benefits for patients in early disease stages. This review focuses on the different approaches of DC-based vaccination against renal cell carcinoma and potential strategies to enhance the efficacy of DC vaccination.
Collapse
Affiliation(s)
- Jin Wang
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | | | | |
Collapse
|
40
|
Giannoukakis N, Trucco M. Dendritic cell therapy for Type 1 diabetes suppression. Immunotherapy 2013; 4:1063-74. [PMID: 23148758 DOI: 10.2217/imt.12.76] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
While dendritic cell-based therapy is a clinical reality for human malignancies, until now, some conceptual concerns have served to delay its consideration to treat human autoimmune diseases, even in light of almost two decades' worth of overwhelmingly supportive preclinical animal studies. This article provides an overview of the development of dendritic cell-based therapy for Type 1 diabetes mellitus, given that this is the best-studied autoimmune disorder and that there is a good understanding of the underlying immunology. This article also highlights data from the authors' pioneering Phase I clinical trial with tolerogenic dendritic cells, which hopes to motivate the clinical translation of other dendritic cell-based approaches, to one or more carefully selected Type 1 diabetic patient populations.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, Rangos Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | | |
Collapse
|
41
|
Dillman RO, Cornforth AN, Nistor G. Cancer stem cell antigen-based vaccines: the preferred strategy for active specific immunotherapy of metastatic melanoma? Expert Opin Biol Ther 2013; 13:643-56. [PMID: 23451922 DOI: 10.1517/14712598.2013.759556] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION There are now two chemotherapy agents, one tyrosine kinase inhibitor and three immunotherapy products approved for the treatment of metastatic melanoma, but an unmet need persists because these options are toxic and of limited therapeutic benefit. Active specific immunotherapy with therapeutic vaccines could be a useful addition to the therapeutic armamentarium, especially in patients whose tumor burden has been reduced by other treatment modalities. AREAS COVERED This article reviews various sources of melanoma antigens, such as peptides, gangliosides, autologous tumor and cancer stem cells including allogeneic and autologous cell lines. The advantages and disadvantages of various antigen sources and allogeneic and autologous approaches are discussed with an emphasis on the theoretical benefits of immunizing against cancer stem cells. The results from published randomized trials testing the benefit of various vaccine approaches are summarized, as well as promising results from three Phase II trials (one randomized) of patient-specific stem cell antigen-based products. EXPERT OPINION Immune responses directed toward the unique neoantigens and stem cell antigens expressed on continuously proliferating, self-renewing, autologous tumor cells could potentially overcome the limitations inherent in these other antigen-based approaches, that to date, have yielded disappointing results in randomized trials.
Collapse
Affiliation(s)
- Robert O Dillman
- Hoag Institute for Research and Education, Hoag Hospital, One Hoag Dr, Bldg 44 Suite 210, Newport Beach, California 92663, USA.
| | | | | |
Collapse
|
42
|
Radhakrishnan AK, Sim GC, Cheong SK. Comparing the ability of freshly generated and cryopreserved dendritic cell vaccines to inhibit growth of breast cancer in a mouse model. Biores Open Access 2012; 1:239-46. [PMID: 23515111 PMCID: PMC3559207 DOI: 10.1089/biores.2012.0229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Repetitive vaccinations with dendritic cell (DC)-based vaccines over long periods of time can break pre-existing tolerance to tumors and achieve clinically relevant immune response. This requires a large number of DCs to be generated under good manufacturing protocol, which is time- and cost intensive. Thus, producing a large numbers of DCs at one time point and cryopreserving these cells in ready-for-use aliquots for clinical application may overcome this constraint. This could also reduce batch-to-batch variations. In this study, we generated DCs from bone marrow obtained from BALB/c mice. Some of the generated DCs were cryopreserved before conducting various tests. There were no significant differences in the morphology and phenotype between cryopreserved and freshly generated DCs. Both types of DCs pulsed with tumor lysate (TL) from 4T1 murine mammary cancer cells (DC+TL) possessed a similar capacity to stimulate the proliferation of T-cells. In addition, cryopreserved and fresh DC pulsed with TL showed similar tumor growth inhibition patterns. Both DCs induced initial retardation of tumor growth (p<0.05) and prolonged the survival (p<0.05) of tumor-bearing mice treated with DC+TL as compared with nontreated control mice. Cryopreserved DCs shared similar therapeutic efficacy to fresh DCs, and this finding lends supports the routine use of cryopreserved DCs in future clinical trials.
Collapse
Affiliation(s)
- Ammu Kutty Radhakrishnan
- Pathology Division, Faculty of Medicine and Health, International Medical University, Kuala Lumpur, Malaysia
| | - Geok Choo Sim
- Pathology Division, Faculty of Medicine and Health, International Medical University, Kuala Lumpur, Malaysia
| | - Soon Keng Cheong
- Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, Kajang, Malaysia
| |
Collapse
|
43
|
Abstract
Dendritic cells (DCs) control the initiation and differentiation of T cells. In the steady state, DCs mediate tolerance. To achieve immunization, the tolerogenic function of DCs must be switched off by inducing their maturation with appropriate "adjuvants." Dendritic cells form a system composed of distinct subsets that differ in their expression of endocytic and signaling receptors. These subsets have different capacities to differentiate and polarize T cells and to cross-present antigen to expand CD8+ T cells. Optimization of vaccines is possible by exploiting the unique biological properties of DCs.
Collapse
|
44
|
Klein O, Schmidt C, Knights A, Davis ID, Chen W, Cebon J. Melanoma vaccines: developments over the past 10 years. Expert Rev Vaccines 2011; 10:853-73. [PMID: 21692705 DOI: 10.1586/erv.11.74] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Decades of preclinical evaluation and clinical trials into melanoma vaccines have yielded spectacular progress in our understanding of melanoma antigens and the immune mechanisms of tumor rejection. Key insights and the results of their clinical evaluation are reviewed in this article. Unfortunately, durable clinical benefit following vaccination remains uncommon. Two recent clinical advances that will impact on melanoma vaccine development are trials with inhibitors of CTLA-4 and oncogenic BRAF. Long-term therapeutic control of melanoma will require integration of specific active immunotherapy with these emerging successful therapies from the disparate fields of immune regulation and signal transduction.
Collapse
Affiliation(s)
- Oliver Klein
- Ludwig Institute for Cancer Research, Austin Branch, Austin Hospital, Studley Road, Heidelberg, Victoria, 3084, Australia
| | | | | | | | | | | |
Collapse
|
45
|
Futalan D, Huang CT, Schmidt-Wolf IGH, Larsson M, Messmer D. Effect of oxygen levels on the physiology of dendritic cells: implications for adoptive cell therapy. Mol Med 2011; 17:910-6. [PMID: 21647537 PMCID: PMC3188869 DOI: 10.2119/molmed.2011.00031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/19/2011] [Indexed: 12/31/2022] Open
Abstract
Dendritic cell (DC)-based adoptive tumor immunotherapy approaches have shown promising results, but the incidence of tumor regression is low and there is an evident call for identifying culture conditions that produce DCs with a more potent Th1 potential. Routinely, DCs are differentiated in CO(2) incubators under atmospheric oxygen conditions (21% O(2)), which differ from physiological oxygen levels of only 3-5% in tissue, where most DCs reside. We investigated whether differentiation and maturation of DCs under physiological oxygen levels could produce more potent T-cell stimulatory DCs for use in adoptive immunotherapy. We found that immature DCs differentiated under physiological oxygen levels showed a small but significant reduction in their endocytic capacity. The different oxygen levels did not influence their stimuli-induced upregulation of cluster of differentiation 54 (CD54), CD40, CD83, CD86, C-C chemokine receptor type 7 (CCR7), C-X-C chemokine receptor type 4 (CXCR4) and human leukocyte antigen (HLA)-DR or the secretion of interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-10 in response to lipopolysaccharide (LPS) or a cytokine cocktail. However, DCs differentiated under physiological oxygen level secreted higher levels of IL-12(p70) after exposure to LPS or CD40 ligand. Immature DCs differentiated at physiological oxygen levels caused increased T-cell proliferation, but no differences were observed for mature DCs with regard to T-cell activation. In conclusion, we show that although DCs generated under atmospheric or physiological oxygen conditions are mostly similar in function and phenotype, DCs differentiated under physiological oxygen secrete larger amounts of IL-12(p70). This result could have implications for the use of ex vivo-generated DCs for clinical studies, since DCs differentiated at physiological oxygen could induce increased Th1 responses in vivo.
Collapse
Affiliation(s)
- Diahnn Futalan
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Chien-Tze Huang
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Ingo G H Schmidt-Wolf
- Department of Internal Medicine, Rheinische Friedrich-Wilhelms Universitaet, Bonn, Germany
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Davorka Messmer
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
46
|
Fahrer AM. A proposal for a simple and inexpensive therapeutic cancer vaccine. Immunol Cell Biol 2011; 90:310-3. [DOI: 10.1038/icb.2011.42] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aude M Fahrer
- Biochemistry and Biomedical Sciences, Research School of Biology, College of Medicine Biology and Environment, The Australian National University Canberra Australian Capital Territory Australia
| |
Collapse
|
47
|
Lee H, Park HJ, Sohn HJ, Kim JM, Kim SJ. Combinatorial therapy for liver metastatic colon cancer: dendritic cell vaccine and low-dose agonistic anti-4-1BB antibody co-stimulatory signal. J Surg Res 2011; 169:e43-50. [PMID: 21571303 DOI: 10.1016/j.jss.2011.03.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/23/2011] [Accepted: 03/25/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND The combination of dendritic cell (DC) vaccine and 4-1BB ligation may be a suitable choice of immunotherapy for incurable cancer. However, at anti-tumor effector doses over 100 μg, 4-1BB Ab ligation is toxic to CD4(+) T cells, thus limiting its therapeutic use. MATERIALS AND METHODS A liver metastatic colon cancer model was established by hepatic injection of CT26 cells into Balb/c mice. Intraperitoneal administration of 1 × 10(6)/200 μL/mouse therapeutic-DCs (tumor lysate pulsed-DCs, P-DCs) began on d 7 after tumor cell inoculation. A P-DC injection was performed twice within a 1-wk interval. Agonistic anti 4-1BB Ab was intraperitoneally injected on d 7, 9, and 11 after tumor cell inoculation. Animals were sacrificed on d 21, and tumor growth was determined by weighing the liver with the tumor. RESULTS In the 20 μg 4-1BB ligation group, significant induction of CD3(+)CD8(+) T cells was observed without toxicity to CD3(+)CD4(+) T cells. DC vaccine treatment induced tumor antigen-specific Th1 cytokine (IL-2 and IFN-γ) secretion from the splenic lymphocytes. Ligation of 4-1BB reduced the DC vaccine-related IL-10 secretion and regulatory T cell population. Compared with anti-tumor effect of DC vaccine or 20 μg 4-1BB Ab alone, the combination therapy significantly increased the tumor rejection power to the level observed with higher doses of 4-1BB Ab alone. The combination therapy did not induce high-dose 4-1BB-related toxicity with CD4(+) T cell reduction, but did significantly induce tumor antigen-specific IFN-γ secreting effector CD8(+) cytotoxic T cells. CONCLUSIONS The data from our study reveal the value of using a DC vaccine combined with as little as 20 μg 4-1BB Ab as an improved immunotherapeutic for cancer.
Collapse
Affiliation(s)
- Hyunah Lee
- Office of Biomedical Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-dong, Gangnam-gu, Seoul, Korea
| | | | | | | | | |
Collapse
|
48
|
Roos WP, Jöst E, Belohlavek C, Nagel G, Fritz G, Kaina B. Intrinsic Anticancer Drug Resistance of Malignant Melanoma Cells Is Abrogated by IFN-β and Valproic Acid. Cancer Res 2011; 71:4150-60. [DOI: 10.1158/0008-5472.can-10-3498] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Pouniotis DS, Esparon S, Apostolopoulos V, Pietersz GA. Whole protein and defined CD8(+) and CD4(+) peptides linked to penetratin targets both MHC class I and II antigen presentation pathways. Immunol Cell Biol 2011; 89:904-13. [PMID: 21383765 DOI: 10.1038/icb.2011.13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cytoplasmic delivery and cross-presentation of proteins and peptides is necessary for processing and presentation of antigens for the generation of cytotoxic T cells. We previously described the use of the 16 amino acid peptide penetratin from the Drosophila Antennapedia homeodomain (penetratin, Antp) to transport cytotoxic T lymphocyte epitopes derived from ovalbumin (OVA) or the Mucin-1 tumor-associated antigen into cells. We have now shown that penetratin covalently conjugated to OVA protein and linked in tandem to CD4(+) and/or CD8(+) T-cell epitopes from OVA-stimulated T cells in vitro (B3Z T-cell hybridoma and OT-I and OT-II T cells). The induction of these responses was directly mediated by the penetratin peptide as linking a nonspecific 16-mer peptide to OVA or mixing did not induce CD8(+) or CD4(+) T-cell responses in vitro. Furthermore, interferon (IFN)-γ-secreting CD4(+) and CD8(+) T cells were induced which suppressed B16.OVA tumor growth in C57BL/6 mice. Tumor protection was mediated by a CD8(+) T-cell-dependent mechanism and did not require CD4(+) help to protect mice 7 days after a boost immunization. Alternatively, 40 days after a boost immunization, the presence of CD4(+) help enhanced antigen-specific IFN-γ-secreting CD8(+) T cells and tumor protection in mice challenged with B16.OVA. Long-term CD8 responses were equally enhanced by antigen-specific and universal CD4 help. In addition, immunization with AntpOVA significantly delayed growth of B16.OVA tumors in mice in a tumor therapy model.
Collapse
Affiliation(s)
- Dodie S Pouniotis
- Immunology and Vaccine Laboratory, Centre for Immunology, Burnet Institute, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
50
|
Rosenblatt J, Vasir B, Uhl L, Blotta S, Macnamara C, Somaiya P, Wu Z, Joyce R, Levine JD, Dombagoda D, Yuan YE, Francoeur K, Fitzgerald D, Richardson P, Weller E, Anderson K, Kufe D, Munshi N, Avigan D. Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. Blood 2011; 117:393-402. [PMID: 21030562 PMCID: PMC3031474 DOI: 10.1182/blood-2010-04-277137] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 10/13/2010] [Indexed: 12/14/2022] Open
Abstract
We have developed a tumor vaccine in which patient-derived myeloma cells are chemically fused with autologous dendritic cells (DCs) such that a broad spectrum of myeloma-associated antigens are presented in the context of DC-mediated costimulation. We have completed a phase 1 study in which patients with multiple myeloma underwent serial vaccination with the DC/multiple myeloma fusions in conjunction with granulocyte-macrophage colony-stimulating factor. DCs were generated from adherent mononuclear cells cultured with granulocyte-macrophage colony-stimulating factor, interleukin-4, and tumor necrosis factor-α and fused with myeloma cells obtained from marrow aspirates. Vaccine generation was successful in 17 of 18 patients. Successive cohorts were treated with 1 × 10(6), 2 × 10(6), and 4 × 10(6) fusion cells, respectively, with 10 patients treated at the highest dose level. Vaccination was well tolerated, without evidence of dose-limiting toxicity. Vaccination resulted in the expansion of circulating CD4 and CD8 lymphocytes reactive with autologous myeloma cells in 11 of 15 evaluable patients. Humoral responses were documented by SEREX (Serologic Analysis of Recombinant cDNA Expression Libraries) analysis. A majority of patients with advanced disease demonstrated disease stabilization, with 3 patients showing ongoing stable disease at 12, 25, and 41 months, respectively. Vaccination with DC/multiple myeloma fusions was feasible and well tolerated and resulted in antitumor immune responses and disease stabilization in a majority of patients.
Collapse
|