1
|
Bentsen S, Jensen JK, Christensen E, Petersen LR, Grandjean CE, Follin B, Madsen JS, Christensen C, Clemmensen A, Binderup T, Hasbak P, Ripa RS, Kjaer A. [ 68Ga]Ga-NODAGA-E[(cRGDyK)] 2 angiogenesis PET following myocardial infarction in an experimental rat model predicts cardiac functional parameters and development of heart failure. J Nucl Cardiol 2023; 30:2073-2084. [PMID: 37127725 PMCID: PMC10558373 DOI: 10.1007/s12350-023-03265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/11/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Angiogenesis has increasingly been a target for imaging and treatment over the last decade. The integrin αvβ3 is highly expressed in cells during angiogenesis and are therefore a promising target for imaging. In this study, we aimed to investigate the PET tracer [68Ga]Ga-RGD as a marker of angiogenesis following MI and its ability to predict cardiac functional parameters. METHODS First, the real-time interaction between [68Ga]Ga-RGD and integrin αvβ3 was investigated using surface plasmon resonance (SPR). Second, an animal study was performed to investigate the [68Ga]Ga-RGD uptake in the infarcted area after one and four weeks following MI in a rat model (MI = 68, sham surgery = 36). Finally, the specificity of the [68Ga]Ga-RGD tracer was evaluated ex vivo using histology, autoradiography, gamma counting and flow cytometry. RESULTS SPR showed that [68Ga]Ga-RGD has a high affinity for integrin αvβ3, forming a strong and stable binding. PET/CT showed a significantly higher uptake of [68Ga]Ga-RGD in the infarcted area compared to sham one week (p < 0.001) and four weeks (p < 0.001) after MI. The uptake of [68Ga]Ga-RGD after one week correlated to end diastolic volume (r = 0.74, p < 0.001) and ejection fraction (r = - 0.71, p < 0.001) after four weeks. CONCLUSION This study demonstrates that [68Ga]Ga-RGD has a high affinity for integrin αvβ3, which enables the evaluation of angiogenesis and remodeling. The [68Ga]Ga-RGD uptake after one week indicates that [68Ga]Ga-RGD may be used as an early predictor of cardiac functional parameters and possible development of heart failure after MI. These encouraging data supports the clinical translation and future use in MI patients.
Collapse
Affiliation(s)
- Simon Bentsen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Jacob Kildevang Jensen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Esben Christensen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
- Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Copenhagen, Denmark
| | - Lars Ringgaard Petersen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
- Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Copenhagen, Denmark
| | - Constance Eline Grandjean
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Bjarke Follin
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Straarup Madsen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Camilla Christensen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Andreas Clemmensen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Tina Binderup
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Philip Hasbak
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Sejersten Ripa
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Qi YM, Xiao EH. Advances in application of novel magnetic resonance imaging technologies in liver disease diagnosis. World J Gastroenterol 2023; 29:4384-4396. [PMID: 37576700 PMCID: PMC10415971 DOI: 10.3748/wjg.v29.i28.4384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
Liver disease is a major health concern globally, with high morbidity and mor-tality rates. Precise diagnosis and assessment are vital for guiding treatment approaches, predicting outcomes, and improving patient prognosis. Magnetic resonance imaging (MRI) is a non-invasive diagnostic technique that has been widely used for detecting liver disease. Recent advancements in MRI technology, such as diffusion weighted imaging, intravoxel incoherent motion, magnetic resonance elastography, chemical exchange saturation transfer, magnetic resonance spectroscopy, hyperpolarized MR, contrast-enhanced MRI, and ra-diomics, have significantly improved the accuracy and effectiveness of liver disease diagnosis. This review aims to discuss the progress in new MRI technologies for liver diagnosis. By summarizing current research findings, we aim to provide a comprehensive reference for researchers and clinicians to optimize the use of MRI in liver disease diagnosis and improve patient prognosis.
Collapse
Affiliation(s)
- Yi-Ming Qi
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan Province, China
| | - En-Hua Xiao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan Province, China
| |
Collapse
|
3
|
Meng Y, Sun J, Zhang G, Yu T, Piao H. Imaging glucose metabolism to reveal tumor progression. Front Physiol 2023; 14:1103354. [PMID: 36818450 PMCID: PMC9932271 DOI: 10.3389/fphys.2023.1103354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Purpose: To analyze and review the progress of glucose metabolism-based molecular imaging in detecting tumors to guide clinicians for new management strategies. Summary: When metabolic abnormalities occur, termed the Warburg effect, it simultaneously enables excessive cell proliferation and inhibits cell apoptosis. Molecular imaging technology combines molecular biology and cell probe technology to visualize, characterize, and quantify processes at cellular and subcellular levels in vivo. Modern instruments, including molecular biochemistry, data processing, nanotechnology, and image processing, use molecular probes to perform real-time, non-invasive imaging of molecular and cellular events in living organisms. Conclusion: Molecular imaging is a non-invasive method for live detection, dynamic observation, and quantitative assessment of tumor glucose metabolism. It enables in-depth examination of the connection between the tumor microenvironment and tumor growth, providing a reliable assessment technique for scientific and clinical research. This new technique will facilitate the translation of fundamental research into clinical practice.
Collapse
Affiliation(s)
- Yiming Meng
- Central Laboratory, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jing Sun
- Central Laboratory, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Guirong Zhang
- Central Laboratory, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Tao Yu
- Department of Medical Image, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China,*Correspondence: Tao Yu, ; Haozhe Piao,
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China,*Correspondence: Tao Yu, ; Haozhe Piao,
| |
Collapse
|
4
|
Fu C, Yu L, Miao Y, Liu X, Yu Z, Wei M. Peptide-drug conjugates (PDCs): a novel trend of research and development on targeted therapy, hype or hope? Acta Pharm Sin B 2023; 13:498-516. [PMID: 36873165 PMCID: PMC9978859 DOI: 10.1016/j.apsb.2022.07.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 11/01/2022] Open
Abstract
Peptide-drug conjugates (PDCs) are the next generation of targeted therapeutics drug after antibody-drug conjugates (ADCs), with the core benefits of enhanced cellular permeability and improved drug selectivity. Two drugs are now approved for market by US Food and Drug Administration (FDA), and in the last two years, the pharmaceutical companies have been developing PDCs as targeted therapeutic candidates for cancer, coronavirus disease 2019 (COVID-19), metabolic diseases, and so on. The therapeutic benefits of PDCs are significant, but poor stability, low bioactivity, long research and development time, and slow clinical development process as therapeutic agents of PDC, how can we design PDCs more effectively and what is the future direction of PDCs? This review summarises the components and functions of PDCs for therapeutic, from drug target screening and PDC design improvement strategies to clinical applications to improve the permeability, targeting, and stability of the various components of PDCs. This holds great promise for the future of PDCs, such as bicyclic peptide‒toxin coupling or supramolecular nanostructures for peptide-conjugated drugs. The mode of drug delivery is determined according to the PDC design and current clinical trials are summarised. The way is shown for future PDC development.
Collapse
Affiliation(s)
- Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China.,Liaoning Medical Diagnosis and Treatment Center, Shenyang 110000, China
| | - Xinli Liu
- Department of Digestive Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China.,Liaoning Medical Diagnosis and Treatment Center, Shenyang 110000, China
| |
Collapse
|
5
|
Laursen JC, Rasmussen IKB, Zobel EH, Hasbak P, Holmvang L, Hansen CS, von Scholten BJ, Frimodt-Møller M, Rossing P, Hansen TW, Kjaer A, Ripa RS. In vivo molecular imaging of cardiac angiogenesis in persons with and without type 2 diabetes: A cross-sectional 68 Ga-RGD-PET study. Diabet Med 2023; 40:e14960. [PMID: 36135822 DOI: 10.1111/dme.14960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
Abstract
AIMS To assess cardiac angiogenesis in type 2 diabetes by positron emission tomography (PET) tracer [68 Ga]Ga-NODAGA-E[(cRGDyK)]2 (68 Ga-RGD) imaging. METHODS Cross-sectional study including 20 persons with type 2 diabetes and 10 non-diabetic controls (CONs). Primary prespecified outcome was difference in cardiac angiogenesis (cardiac 68 Ga-RGD mean target-to-background ratio [TBRmean ]) between type 2 diabetes and CONs. Secondary outcome was to investigate associations between cardiac angiogenesis and kidney function and other risk factors. RESULTS Participants with type 2 diabetes had a mean ± SD age of 61 ± 9 years, 30% were women, median (IQR) diabetes duration of 11 (6-19) years and 3 (15%) had a history of cardiovascular disease. The CONs had comparable age and sex distribution to the participants with type 2 diabetes, and none had a history of coronary artery disease. Myocardial flow reserve was lower in type 2 diabetes (2.7 ± 0.6) compared with CONs (3.4 ± 1.2) ( p = 0.03) and coronary artery calcium score was higher (562 [142-905] vs. 1 [0-150] p = 0.04). Cardiac 68 Ga-RGD TBRmean was similar in participants with type 2 diabetes (0.89 ± 0.09) and CONs (0.89 ± 0.10) ( p = 0.92). Cardiac 68 Ga-RGD TBRmean was not associated with estimated glomerular filtration rate, urine albumin creatinine ratio, cardiovascular disease, coronary artery calcium score or baroreflex sensitivity, neither in pooled analyses nor in type 2 diabetes. CONCLUSIONS Cardiac angiogenesis, evaluated with 68 Ga-RGD PET, was similar in type 2 diabetes and CONs. Cardiac angiogenesis was not associated with kidney function or other risk markers in pooled analyses or in analyses restricted to type 2 diabetes.
Collapse
Affiliation(s)
| | | | - Emilie Hein Zobel
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Novo Nordisk, Bagsvaerd, Denmark
| | - Philip Hasbak
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lene Holmvang
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Bernt Johan von Scholten
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
6
|
von Morze C, Blazey T, Baeza R, Garipov R, Whitehead T, Reed GD, Garbow JR, Shoghi KI. Multi-band echo-planar spectroscopic imaging of hyperpolarized 13 C probes in a compact preclinical PET/MR scanner. Magn Reson Med 2022; 87:2120-2129. [PMID: 34971459 DOI: 10.1002/mrm.29145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 11/06/2022]
Abstract
PURPOSE Hyperpolarized (HP) 13 C MRI has enabled real-time imaging of specific enzyme-catalyzed metabolic reactions, but advanced pulse sequences are necessary to capture the dynamic, localized metabolic information. Herein we describe the design, implementation, and testing of a rapid and efficient HP 13 C pulse sequence strategy on a cryogen-free simultaneous positron emission tomography/MR molecular imaging platform with compact footprint. METHODS We developed an echo planar spectroscopic imaging pulse sequence incorporating multi-band spectral-spatial radiofrequency (SSRF) pulses for spatially coregistered excitation of 13 C metabolites with differential individual flip angles. Excitation profiles were measured in phantoms, and the SSRF-echo planar spectroscopic imaging sequence was tested in rats in vivo and compared to conventional echo planar spectroscopic imaging. The new sequence was applied for 2D dynamic metabolic imaging of HP [1-13 C]pyruvate and its molecular analog [1-13 C] α -ketobutyrate at a spatial resolution of 5 mm × 5 mm × 20 mm and temporal resolution of 4 s. We also obtained simultaneous 18 F-fluorodeoxyglucose positron emission tomography data for comparison with HP [1-13 C]pyruvate data acquired during the same scan session. RESULTS Measured SSRF excitation profiles corresponded well to Bloch simulations. Multi-band SSRF excitation facilitated efficient sampling of the multi-spectral kinetics of [1-13 C]pyruvate and [1-13 C] α - ketobutyrate . Whereas high pyruvate to lactate conversion was observed in liver, corresponding reduction of α -ketobutyrate to [1-13 C] α -hydroxybutyrate ( α HB) was largely restricted to the kidneys and heart, consistent with the known expression pattern of lactate dehydrogenase B. CONCLUSION Advanced 13 C SSRF imaging approaches are feasible on our compact positron emission tomography/MR platform, maximizing the potential of HP 13 C technology and facilitating direct comparison with positron emission tomography.
Collapse
Affiliation(s)
- Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Tyler Blazey
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | | | | | - Timothy Whitehead
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | | | - Joel R Garbow
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Kooresh I Shoghi
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Clausen MM, Carlsen EA, Christensen C, Madsen J, Brandt-Larsen M, Klausen TL, Holm S, Loft A, Berthelsen AK, Kroman N, Knigge U, Kjaer A. First-in-Human Study of [68Ga]Ga-NODAGA-E[c(RGDyK)]2 PET for Integrin αvβ3 Imaging in Patients with Breast Cancer and Neuroendocrine Neoplasms: Safety, Dosimetry and Tumor Imaging Ability. Diagnostics (Basel) 2022; 12:diagnostics12040851. [PMID: 35453899 PMCID: PMC9027224 DOI: 10.3390/diagnostics12040851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Arginine-Glycine-Aspartate (RGD)-recognizing cell surface integrins are involved in tumor growth, invasiveness/metastases, and angiogenesis, and are therefore an attractive treatment target in cancers. The subtype integrin αvβ3 is upregulated on endothelial cells during angiogenesis and on tumor cells. In vivo assessment of integrin αvβ3 is possible with positron emission tomography (PET). Preclinical data on radiochemical properties, tumor uptake and radiation exposure identified [68Ga]Ga-NODAGA-E[c(RGDyK)]2 as a promising candidate for clinical translation. In this first-in-human phase I study, we evaluate [68Ga]Ga-NODAGA-E[c(RGDyK)]2 PET in patients with neuroendocrine neoplasms (NEN) and breast cancer (BC). The aim was to investigate safety, biodistribution and dosimetry as well as tracer uptake in tumor lesions. A total of 10 patients (5 breast cancer, 5 neuroendocrine neoplasm) received a single intravenous dose of approximately 200 MBq [68Ga]Ga-NODAGA-E[c(RGDyK)]2. Biodistribution profile and dosimetry were assessed by whole-body PET/CT performed at 10 min, 1 h and 2 h after injection. Safety assessment with vital parameters, electrocardiograms and blood tests were performed before and after injection. In vivo stability of [68Ga]Ga-NODAGA-E[c(RGDyK)]2 was determined by analysis of blood and urine. PET images were analyzed for tracer uptake in tumors and background organs. No adverse events or pharmacologic effects were observed in the 10 patients. [68Ga]Ga-NODAGA-E[c(RGDyK)]2 exhibited good in vivo stability and fast clearance, primarily by renal excretion. The effective dose was 0.022 mSv/MBq, equaling a radiation exposure of 4.4 mSv at an injected activity of 200 MBq. The tracer demonstrated stable tumor retention and good image contrast. In conclusion, this first-in-human phase I trial demonstrated safe use of [68Ga]Ga-NODAGA-E[c(RGDyK)]2 for integrin αvβ3 imaging in cancer patients, low radiation exposure and favorable uptake in tumors. Further studies are warranted to establish whether [68Ga]Ga-NODAGA-E[c(RGDyK)]2 may become a tool for early identification of patients eligible for treatments targeting integrin αvβ3 and for risk stratification of patients.
Collapse
Affiliation(s)
- Malene Martini Clausen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.M.C.); (E.A.C.); (C.C.); (J.M.); (M.B.-L.); (T.L.K.); (S.H.); (A.L.); (A.K.B.)
- Department of Oncology, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Esben Andreas Carlsen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.M.C.); (E.A.C.); (C.C.); (J.M.); (M.B.-L.); (T.L.K.); (S.H.); (A.L.); (A.K.B.)
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Camilla Christensen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.M.C.); (E.A.C.); (C.C.); (J.M.); (M.B.-L.); (T.L.K.); (S.H.); (A.L.); (A.K.B.)
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Jacob Madsen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.M.C.); (E.A.C.); (C.C.); (J.M.); (M.B.-L.); (T.L.K.); (S.H.); (A.L.); (A.K.B.)
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Malene Brandt-Larsen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.M.C.); (E.A.C.); (C.C.); (J.M.); (M.B.-L.); (T.L.K.); (S.H.); (A.L.); (A.K.B.)
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Thomas Levin Klausen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.M.C.); (E.A.C.); (C.C.); (J.M.); (M.B.-L.); (T.L.K.); (S.H.); (A.L.); (A.K.B.)
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Søren Holm
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.M.C.); (E.A.C.); (C.C.); (J.M.); (M.B.-L.); (T.L.K.); (S.H.); (A.L.); (A.K.B.)
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Annika Loft
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.M.C.); (E.A.C.); (C.C.); (J.M.); (M.B.-L.); (T.L.K.); (S.H.); (A.L.); (A.K.B.)
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Anne Kiil Berthelsen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.M.C.); (E.A.C.); (C.C.); (J.M.); (M.B.-L.); (T.L.K.); (S.H.); (A.L.); (A.K.B.)
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Niels Kroman
- Department of Breast Surgery, Copenhagen University Hospital—Herlev/Gentofte Hospital, 2730 Herlev, Denmark;
| | - Ulrich Knigge
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
- Departments of Clinical Endocrinology and Surgical Gastroenterology, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.M.C.); (E.A.C.); (C.C.); (J.M.); (M.B.-L.); (T.L.K.); (S.H.); (A.L.); (A.K.B.)
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
- Correspondence:
| |
Collapse
|
8
|
Maués T, Oliveira TFD, El-Jaick KB, Figueiredo AMS, Ferreira MDLG, Ferreira AMR. PGAM1 and TP53 mRNA levels in canine mammary carcinomas - Short communication. Acta Vet Hung 2021; 69:50-54. [PMID: 33844639 DOI: 10.1556/004.2021.00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/24/2021] [Indexed: 11/19/2022]
Abstract
TP53 and PGAM1 genes play a key role in glycolysis which is an essential metabolic pathway of cancer cells for obtaining energy. The purpose of this work was to evaluate PGAM1 and TP53 mRNA expressions in canine mammary carcinomas (CMC) and to correlate them with animal data and tumour histological features. None of the nine samples analysed revealed PGAM1 DNA sequence variations. PGAM1 and TP53 RNA expressions from 21 CMC were analysed using a one-step reverse transcription-PCR kit and its platform system. Most CMC samples had low levels of PGAM1 mRNA (71.5%) and normal expression of TP53 mRNA (95.2%). Our results suggest a different feature of the Warburg effect on canine mammary cancer cells compared to human cells.
Collapse
Affiliation(s)
- Tábata Maués
- 1Department of Pathology and Veterinary Clinic, Faculty of Veterinary, Universidade Federal Fluminense, Av. Alm. Ary Parreiras, 507, Icaraí, 24220-000, Niterói, RJ, Brazil
| | - Táya Figueiredo de Oliveira
- 1Department of Pathology and Veterinary Clinic, Faculty of Veterinary, Universidade Federal Fluminense, Av. Alm. Ary Parreiras, 507, Icaraí, 24220-000, Niterói, RJ, Brazil
| | - Kênia Balbi El-Jaick
- 2Department of Genetics and Molecular Biology, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maria De Lourdes Gonçalves Ferreira
- 1Department of Pathology and Veterinary Clinic, Faculty of Veterinary, Universidade Federal Fluminense, Av. Alm. Ary Parreiras, 507, Icaraí, 24220-000, Niterói, RJ, Brazil
| | - Ana Maria Reis Ferreira
- 1Department of Pathology and Veterinary Clinic, Faculty of Veterinary, Universidade Federal Fluminense, Av. Alm. Ary Parreiras, 507, Icaraí, 24220-000, Niterói, RJ, Brazil
| |
Collapse
|