1
|
Li FKK, Peters SC, Worrall LJ, Sun T, Hu J, Vuckovic M, Farha M, Palacios A, Caveney NA, Brown ED, Strynadka NCJ. Cryo-EM analyses unveil details of mechanism and targocil-II mediated inhibition of S. aureus WTA transporter TarGH. Nat Commun 2025; 16:3224. [PMID: 40185711 PMCID: PMC11971408 DOI: 10.1038/s41467-025-58202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/12/2025] [Indexed: 04/07/2025] Open
Abstract
Wall teichoic acid (WTA) is a polyol phosphate polymer that covalently decorates peptidoglycan of gram-positive bacteria, including Staphylococcus aureus. Central to WTA biosynthesis is flipping of lipid-linked precursors across the cell membrane by TarGH, a type V ABC transporter. Here, we present cryo-EM structures of S. aureus TarGH in the presence of targocil-II, a promising small-molecule lead with β-lactam antibiotic synergistic action. Targocil-II binds to the extracellular dimerisation interface of TarG, we suggest mimicking flipped but not yet released substrate. In absence of targocil-II and in complex with ATP analogue ATPγS, determined at 2.3 Å resolution, the ATPase active site is allosterically inhibited. This is due to a so far undescribed D-loop conformation, potentially minimizing spurious ATP hydrolysis in the absence of substrate. Targocil-II binding comparatively causes local and remote conformational changes through to the TarH active site, with the D-loop now optimal for ATP hydrolysis. These structures suggest an ability to modulate ATP hydrolysis in a WTA substrate dependent manner and a jammed ATPase cycle as the basis of the observed inhibition by targocil-II. The molecular insights provide an unprecedented basis for development of TarGH targeted therapeutics for treatment of multidrug-resistant S. aureus and other gram-positive bacterial infections.
Collapse
Affiliation(s)
- Franco K K Li
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Shaun C Peters
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Liam J Worrall
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- High Resolution Macromolecular Cryo-Electron Microscopy (HRMEM) Facility, University of British Columbia, Vancouver, BC, Canada
| | - Tianjun Sun
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Jinhong Hu
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Marija Vuckovic
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Maya Farha
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Armando Palacios
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Nathanael A Caveney
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- High Resolution Macromolecular Cryo-Electron Microscopy (HRMEM) Facility, University of British Columbia, Vancouver, BC, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.
- High Resolution Macromolecular Cryo-Electron Microscopy (HRMEM) Facility, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Kesuma S, Raras TYM, Winarsih S, Shimosato T, Yurina V. Lactococcus lactis as an Effective Mucosal Vaccination Carrier: a Systematic Literature Review. J Microbiol Biotechnol 2025; 35:e2411036. [PMID: 40081887 PMCID: PMC11925755 DOI: 10.4014/jmb.2411.11036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/30/2024] [Accepted: 01/12/2025] [Indexed: 03/16/2025]
Abstract
Lactococcus lactis has potential as a mucosal vaccine delivery system. L. lactis can express antigens from bacteria or viruses, which are tightly controlled using nisin. Although L. lactis-based vaccine shows great promise, no product is ready for human use. Several studies have been conducted to develop L. lactis-based vaccine, and the efficacy of these vaccines has been evaluated in many scientific articles. This paper aims to review key aspects of current knowledge on the promising characteristics of L. lactis and to suggest its implications for vaccine design. Articles were obtained online using inclusion and exclusion criteria through Harzing's Publish or Perish. The article assessment used the Joanna Briggs Institute critical appraisal checklist for quasi-experimental studies. The efficacy evaluation of 24 articles showed that L. lactis-based vaccine can induce IgA and IgG as humoral immune responses; T CD4, T CD8, and B cells as cellular immune responses; and various proinflammatory cytokines such as IFN-γ, TNF-α, IL-2, IL-4, IL-8, IL-10, IL-12, IL-17. L. lactis is suitable as a vector carrier for oral or nasal mucosal vaccines targeting bacterial and viral infections. The development of L. lactis as a vaccine delivery system is promising.
Collapse
Affiliation(s)
- Suryanata Kesuma
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, East Java 65145, Indonesia
- Departement of Medical Laboratory Technology, Poltekkes Kemenkes Kalimantan Timur, Samarinda, East Borneo
| | - Tri Yudani Mardining Raras
- Departement of Biochemistry and Molecular Biology, Medical Faculty, Universitas Brawijaya, Malang 65145, Indonesia
| | - Sri Winarsih
- Department of Pharmacy, Medical Faculty, Universitas Brawijaya, Malang 65145, Indonesia
| | - Takeshi Shimosato
- Department of Pharmacy, Medical Faculty, Universitas Brawijaya, Malang 65145, Indonesia
- Institute for Aqua Regeneration, Shinshu University, Nagano, Japan
| | - Valentina Yurina
- Department of Pharmacy, Medical Faculty, Universitas Brawijaya, Malang 65145, Indonesia
| |
Collapse
|
3
|
Wang B, Tian M, Yang Y, Jia Z, Anjum FR, Ma C, Ma D. Effect of microencapsulated Fiber2-displaying probiotics loaded with inulin nanoparticles on immunity against fowl adenovirus serotype 4 in chickens. Poult Sci 2025; 104:104762. [PMID: 39778367 PMCID: PMC11761919 DOI: 10.1016/j.psj.2024.104762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
In this study, phthalate inulin nanoparticles (PINs) were chemically modified and characterized. The internalization of PINs into the probiotic E. faecalis, which delivering Fiber2 protein of fowl adenovirus serotype 4 (FAdV-4), was investigated. The expression of the Fiber2 protein in E. faecalis was detected using western blot analysis. To protect recombinant E. faecalis from degradation of in the gastric acid environment, sodium alginate was used to encapsulate the bacteria. The survival ratio and release of E. faecalis in simulated gastrointestinal fluid was assessed. Oral administration of microencapsulated E. faecalis loaded with PINs (Micro-E/Fiber2-PINs) or inulin (Micro-E/Fiber2-inulin) was conducted, followed by an experimental challenge with FAdV-4 in chickens to evaluate immune responses and protection. The results showed the internalization of PINs into the bacteria promoted bacteria growth, and significantly improved the expression level of Fiber2. After incubation in simulated gastric fluid, the number of viable bacteria from the Micro-E/Fiber2-PINs group was significantly higher than that from the E. faecalis/Fiber2 group. The release of bacteria from the microcapsules was completed within 30 min. Animal experiments demonstrated that oral immunization with Micro-E/Fiber2-PINs significantly enhanced humoral and cellular immune responses, relieved inflammatory injury in FAdV-targeted organs, and improved survival rate of challenged chickens. This study presents promising potential for developing oral vaccines against pathogen infection.
Collapse
Affiliation(s)
- Biao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Meiyuan Tian
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yashu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhipeng Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Faisal R Anjum
- Bristol Veterinary School, University of Bristol, Langford, Bristol, BS40 7DU, United Kingdom
| | - Chunli Ma
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
4
|
Zhao R, Li J, Li Y, Pei X, Di J, Xie Z, Liu H, Gao W. Inducible engineering precursor metabolic flux for synthesizing hyaluronic acid of customized molecular weight in Streptococcus zooepidemicus. Microb Cell Fact 2025; 24:24. [PMID: 39825423 PMCID: PMC11748608 DOI: 10.1186/s12934-024-02624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Hyaluronic acid (HA) is extensively employed in various fields such as medicine, cosmetics, food, etc. The molecular weight (MW) of HA is crucial for its biological functions. Streptococcus zooepidemicus, a prominent HA industrial producer, naturally synthetizes HA with high MW. Currently, few effective approaches exist for the direct and precise regulation of HA MW through a one-step fermentation process, and S. zooepidemicus lacks metabolic regulatory elements with varying intensities. The ratio of HA's precursors, UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-glucuronic acid (UDP-GlcA), is critical for the extension and release of HA. An imbalance in the precursor proportions for HA synthesis leads to a significant decrease in HA MW, indicating that controlling the precursor ratio may serve as a potential method for regulating HA MW. RESULTS In this study, the type and concentration of carbon sources were manipulated to disrupt the balance of precursor supply. Based on the results, it was speculated that the transcription level of hasE, which may connect the two HA synthesis precursors, is positively correlated with HA MW. Consequently, an endogenous expression component library for S. zooepidemicus was constructed, comprising 32 constitutive and 4 inducible expression elements. The expression of hasE was subsequently regulated in strain SE0 (S12 ΔhasE) using two constitutive promoters of differing strengths. The recombinant strain SE1, in which hasE was controlled by the stronger promoter PR31, produced HA with a MW of 1.96 MDa. In contrast, SE2, utilizing the weaker promoter PR22, synthesized shorter HA with a MW of 1.63 MDa, thereby verifying the hypothesis. Finally, to precisely regulate HA MW according to specific demands, an efficient sucrose-induced expression system was screened and employed to control the transcription level of hasE, obtaining recombinant strain SE3. When induced with sucrose concentrations of 3, 5-10 g/L, the HA MW of SE3 reached 0.78 to 1.77 MDa, respectively. CONCLUSIONS Studies on regulating the balance of the HA precursor substances indicate that an oversupply of either UDP-GlcNAc or UDP-GlcUA can reduce HA MW. The hasE gene serves as a crucial regulator for maintaining this balance. Precise regulation of hasE transcription was achieved through an efficient inducible expression system, enabling the customized production of HA with specific MW. The HA MW of strain SE3 can be accurately manipulated by adjusting sucrose concentration, establishing a novel strategy for customized HA fermentation.
Collapse
Affiliation(s)
- Rui Zhao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Jun Li
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yingtian Li
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Xujuan Pei
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Jingyi Di
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
| | - Weixia Gao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
| |
Collapse
|
5
|
Plavec TV, Žagar Soderžnik K, Della Pelle G, Zupančič Š, Vidmar R, Berlec A. Incorporation of recombinant proteins into extracellular vesicles by Lactococcus cremoris. Sci Rep 2025; 15:1768. [PMID: 39815011 PMCID: PMC11736121 DOI: 10.1038/s41598-025-86492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025] Open
Abstract
Extracellular vesicles (EVs) are nanosized lipid bilayer particles released by various cellular organisms that carry an array of bioactive molecules. EVs have diagnostic potential, as they play a role in intercellular interspecies communication, and could be applied in drug delivery. In contrast to mammalian cell-derived EVs, the study of EVs from bacteria, particularly Gram-positive bacteria, received less research attention. This study aimed to investigate the production of EVs by lactic acid bacterium Lactococcus cremoris NZ9000 and to examine the impact of recombinant protein expression on their formation and protein content. Four different recombinant proteins were expressed in L. cremoris NZ9000, in different forms of expression and combinations, and the produced EVs were isolated using the standard ultracentrifugation method. The presence of vesicular structures (50-200 nm) in the samples was confirmed by transmission electron microscopy and by flow cytometry using membrane-specific stain. Mass spectrometry analyses confirmed the presence of recombinant proteins in the EVs fraction, with amounts ranging from 13.17 to 100%, highlighting their significant incorporation into the vesicles, together with intrinsic L. cremoris NZ9000 proteins that were either more abundant in the cytoplasm (ribosomal proteins, metabolic enzymes) or present in the membrane. The presence of the most abundant lactococcal proteins in EVs fraction suggests that protein cargo-loading of EVs in L. cremoris NZ9000 is not regulated. However, our data suggests that L. cremoris NZ9000 genetically engineered to express recombinant proteins can produce EVs containing these proteins in scalable manner. As L. cremoris NZ9000 is considered safe bacterium, EVs from L. cremoris NZ9000 could have several advantages over EVs from other bacteria, implying possible biotechnological applications, e.g. in therapeutic protein delivery.
Collapse
Affiliation(s)
- Tina Vida Plavec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | | - Giulia Della Pelle
- Department for Nanostructured Materials, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Stojanov S, Plavec TV, Zupančič Š, Berlec A. Modified vaginal lactobacilli expressing fluorescent and luminescent proteins for more effective monitoring of their release from nanofibers, safety and cell adhesion. Microb Cell Fact 2024; 23:333. [PMID: 39696572 DOI: 10.1186/s12934-024-02612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024] Open
Abstract
Electrospun nanofibers offer a highly promising platform for the delivery of vaginal lactobacilli, providing an innovative approach to preventing and treating vaginal infections. To advance the application of nanofibers for the delivery of lactobacilli, tools for studying their safety and efficacy in vitro need to be established. In this study, fluorescent (mCherry and GFP) and luminescent (NanoLuc luciferase) proteins were expressed in three vaginal lactobacilli (Lactobacillus crispatus, Lactobacillus gasseri and Lactobacillus jensenii) and a control Lactiplantibacillus plantarum with the aim to use this technology for close tracking of lactobacilli release from nanofibers and their adhesion on epithelial cells. The recombinant proteins influenced the growth of the bacteria, but not their ability to produce hydrogen peroxide. Survival of lactobacilli in nanofibers immediately after electrospinning varied among species. Bacteria retained fluorescence upon incorporation into PEO nanofibers, which was vital for evaluation of their rapid release. In addition, fluorescent labelling facilitated efficient tracking of bacterial adhesion to Caco-2 epithelial cells, while luminescence provided important quantitative insights into bacterial attachment, which varied from 0.5 to 50% depending on the species. The four lactobacilli in dispersion or in nanofibers were not detrimental for the viability of Caco-2 cells, and did not demonstrate hemolytic activity highlighting the safety profiles of both bacteria and PEO nanofibers. To summarize, this study contributes to the development of a promising delivery system, tailored for local administration of safe vaginal lactobacilli.
Collapse
Affiliation(s)
- Spase Stojanov
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia
| | - Tina Vida Plavec
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana, Slovenia
| | - Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia.
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Haghighi FH, Farsiani H. Is Lactococcus lactis a Suitable Candidate for Use as a Vaccine Delivery System Against Helicobacter pylori? Curr Microbiol 2024; 82:30. [PMID: 39643816 DOI: 10.1007/s00284-024-03994-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024]
Abstract
Helicobacter pylori was described in 1979. This bacterium, which thrives in the harsh conditions of the stomach, is typically acquired during childhood and can remain colonized for life. Approximately, 90% of the global population is affected, and H. pylori is linked to various conditions, including gastritis, peptic ulcers, lymphoproliferative gastric lymphoma, and even gastric cancer. Currently, antibiotics are the primary treatment method, but the associated challenges of antibiotic use have led to the consideration of oral vaccination as a viable preventive measure against this infection. However, the stomach's harsh environment characterized by its acidic conditions and numerous proteolytic enzymes poses significant obstacles to the development and effectiveness of oral vaccines. To address these challenges, researchers have proposed and evaluated several delivery systems. One of the most promising options is the use of probiotics. Among the various probiotics, Lactococcus lactis stands out as a suitable candidate for oral vaccine delivery against H. pylori due to the advancements in genetic engineering that have been applied to it. This review article discusses the limitations of current treatment strategies and rationalizes the shift toward vaccination, particularly oral vaccination for this infection. It also explores the advantages and challenges of using probiotic bacteria, with a focus on L. lactis as a delivery system. Ultimately, despite the existing challenges, L. lactis continues to be recognized as a promising delivery system. Nonetheless, further research is essential to fully assess its effectiveness and address the challenges associated with this approach.
Collapse
Affiliation(s)
- Faria Hasanzadeh Haghighi
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran.
| |
Collapse
|
8
|
Baltà-Foix R, Garcia-Fruitós E, Arís A. Time to consider ruling out inclusion bodies denaturing protocols for spontaneous solubilization of biologically active proteins. Sci Rep 2024; 14:26061. [PMID: 39472505 PMCID: PMC11522400 DOI: 10.1038/s41598-024-77899-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024] Open
Abstract
The formation of inclusion bodies (IBs) in microbial cell factories is a very common process occurring during recombinant protein production. Different protocols have been developed for the extraction of soluble proteins from IBs using several strategies, ranging from the use of harsh denaturing and high concentrations of chaotropic agents and reducing agents to the use of mild protocols based on the use of non-denaturing detergents. However, in recent years, the biological vision of IBs has changed and research studies have demonstrated that these protein aggregates contain biologically active and properly folded recombinant proteins. This drives us to redefine the methodologies currently used to obtain soluble protein using IB as a protein source. Hence, we propose the extraction of IB protein via the simple spontaneous solubilization of IB as a strategy broadly applicable to all kinds of recombinant proteins without the negative effects of detergents and chaotropic agents on final biological activity. We prove the wide applicability of spontaneous solubilization processes to different types of IBs and that protocols can be easily customized for each protein in terms of timing and incubation temperature by monitoring the protein activity of the solubilized fraction.
Collapse
Affiliation(s)
- Ricardo Baltà-Foix
- Ruminant Production, IRTA, Torre Marimon, 08140, Caldes de Montbui, Catalonia, Spain
| | - Elena Garcia-Fruitós
- Ruminant Production, IRTA, Torre Marimon, 08140, Caldes de Montbui, Catalonia, Spain.
| | - Anna Arís
- Ruminant Production, IRTA, Torre Marimon, 08140, Caldes de Montbui, Catalonia, Spain.
| |
Collapse
|
9
|
Sun Y, Song W, Gao C, Guo T, Jiang Y, Li J, Cui W, Ding G, Li Y, Wang L. Orally administered recombinant Lactobacillus expressing PEDV neutralizing antibody protects piglets against PEDV infection. Int J Biol Macromol 2024; 282:137006. [PMID: 39476883 DOI: 10.1016/j.ijbiomac.2024.137006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/07/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus, causing fatal acute diarrhea in suckling pigs, with mortality rates as high as 100 % in 7-day-old piglets. Due to the challenge of quickly establishing effective active immunity, the main strategy for protecting piglets from PEDV infection relies on antibodies, particularly neutralizing antibodies, to provide passive immune protection. In this study, a recombinant Lactobacillus strain for secreting the Fab fragment of neutralizing antibody against PEDV was constructed (pPG-Fab/J31). The results showed that the Fab antibody was stably expressed by pPG-Fab/J31, and exhibit specific neutralizing effect against PEDV. Then, pPG-Fab/J31 was used for the oral administration of newborn piglets to test the protective effect against PEDV challenge. The findings demonstrated that piglets in the antibody administration group exhibited an alleviation of clinical symptoms, a smaller decrease in weight, significant reduction in viral shedding, and attenuation of intestinal lesions. Additionally, the survival rate of piglets orally administered pPG-Fab/J31 was 100 %. Thus, PEDV neutralizing antibody expressed by recombinant Lactobacillus hold promise as a passive protective candidate, providing a new idea for the prevention and treatment of viral infections.
Collapse
Affiliation(s)
- Yu Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wenqi Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Chong Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tiantian Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin 150030, China
| | - Guojie Ding
- Harbin Vikeses Biological Technology Co., Ltd., Harbin 150030, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin 150030, China.
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin 150030, China.
| |
Collapse
|
10
|
Yoda M, Takase S, Suzuki K, Murakami A, Namai F, Sato T, Fujii T, Tochio T, Shimosato T. Development of engineered IL-36γ-hypersecreting Lactococcus lactis to improve the intestinal environment. World J Microbiol Biotechnol 2024; 40:363. [PMID: 39446273 PMCID: PMC11502612 DOI: 10.1007/s11274-024-04157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
Interleukin (IL) 36 is a member of the IL-1-like proinflammatory cytokine family that has a protective role in mucosal immunity. We hypothesized that mucosal delivery of IL-36γ to the intestine would be a very effective way to prevent intestinal diseases. Here, we genetically engineered a lactic acid bacterium, Lactococcus lactis, to produce recombinant mouse IL-36γ (rmIL-36γ). Western blotting and enzyme-linked immunosorbent assay results showed that the engineered strain (NZ-IL36γ) produced and hypersecreted the designed rmIL-36γ in the presence of nisin, which induces the expression of the recombinant gene. We administered NZ-IL36γ to mice via oral gavage, and collected the ruminal contents and rectal tissues. Colony PCR using primers specific for NZ-IL36γ, and enzyme-linked immunosorbent assay to measure the rmIL-36γ concentrations of the ruminal contents showed that NZ-IL36γ colonized the mouse intestines and secreted rmIL-36γ. A microbiota analysis revealed increased abundances of bacteria of the genera Acetatifactor, Eubacterium, Monoglobus, and Roseburia in the mouse intestines. Real-time quantitative PCR of the whole colon showed increased Muc2 expression. An in vitro assay using murine colorectal epithelial cells and human colonic cells showed that purified rmIL-36γ promoted Muc2 gene expression. Taken together, these data suggest that NZ-IL36γ may be an effective and attractive tool for delivering rmIL-36γ to improve the intestinal environment.
Collapse
Affiliation(s)
- Masahiro Yoda
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, 399-4598, Japan
| | - Shogo Takase
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, 399-4598, Japan
| | - Kaho Suzuki
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, 399-4598, Japan
| | - Aito Murakami
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, 399-4598, Japan
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Takashi Sato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, 399-4598, Japan
| | - Tadashi Fujii
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, 470-1101, Japan
| | - Takumi Tochio
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, 470-1101, Japan
| | - Takeshi Shimosato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, 399-4598, Japan.
- Institute for Aqua Regeneration, Shinshu University, Nagano, 399-4598, Japan.
- Department of Pharmacy, Medical Faculty, Universitas Brawijaya, Malang, 65145, Indonesia.
| |
Collapse
|
11
|
Sanchez-Gallardo R, Bottacini F, O’Neill IJ, Esteban-Torres M, Moore R, McAuliffe FM, Cotter PD, van Sinderen D. Selective human milk oligosaccharide utilization by members of the Bifidobacterium pseudocatenulatum taxon. Appl Environ Microbiol 2024; 90:e0064824. [PMID: 39315793 PMCID: PMC11497806 DOI: 10.1128/aem.00648-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are essentially unaffected by the digestive enzymes of the nursling and are known for their ability to enrich certain microbial species in the infant gut microbiota, in particular bifidobacteria. HMO metabolism has been studied in various bifidobacterial species such as B. breve, B. bifidum, and B. longum subsp. infantis. In the current study, we describe differential growth abilities elicited by twenty-three newly isolated Bifidobacterium pseudocatenulatum strains on particular HMOs, such as 2'-fucosyllactose (2'FL), 3-fucosyllactose (3FL), lacto-N-tetraose (LNT), and lacto-N-neotetraose (LNnT). Through gene-trait matching and comparative genome analysis, we identified genes involved in the degradation of fucosylated HMOs in this strain set, while we employed a transcriptomic approach to facilitate the identification and characterization of genes and associated enzymes involved in LNT metabolism by strain B. pseudocatenulatum MM0196. A total of 252 publicly available genomes of the B. pseudocatenulatum taxon were screened for homologs of the glycosyl hydrolases (GHs) identified here as being required for selected HMO metabolism. From this analysis, it is clear that all members of this species possess homologs of the genes involved in LNT degradation, while genes required for degradation of fucosylated HMOs are variably present.IMPORTANCEOur findings allow a better understanding of the complex interaction between Bifidobacterium and its host and provide a roadmap toward future applications of B. pseudocatenulatum as a probiotic with a focus on infant health. Furthermore, our investigations have generated information on the role of HMOs in shaping the infant gut microbiota, thus also facilitating applications of HMOs in infant nutrition, with potential extension into the mature or adult gut microbiota. Supplementation of HMOs is known to result in the modulation of bacterial communities toward a higher relative abundance of bifidobacteria, which in turn enforces their ability to modulate particular immune functions and strengthen the intestinal barrier. This work may therefore inspire future studies to improve the formulation of neonatal nutritional products, aimed at facilitating the development of a healthy digestive and immune system and reducing the differences in gut microbiota composition observed between breastfed and formula-fed babies or full-term and preterm infants.
Collapse
Affiliation(s)
- Rocio Sanchez-Gallardo
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Biological Sciences and ADAPT, Munster Technological University, Cork, Ireland
| | - Ian J. O’Neill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Maria Esteban-Torres
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Rebecca Moore
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Fionnuala M. McAuliffe
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre Moorepark, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Lee MF, Wang NM, Chu YW, Wu CS, Lin WW. The Anti-Inflammatory Effect of Lactococcus lactis-Ling-Zhi 8 on Ameliorating Atherosclerosis and Nonalcoholic Fatty Liver in High-Fat Diet Rabbits. Int J Mol Sci 2024; 25:11278. [PMID: 39457059 PMCID: PMC11508337 DOI: 10.3390/ijms252011278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Inflammation plays a crucial role in atherosclerosis and nonalcoholic fatty liver disease (NAFLD). We previously engineered a recombinant Lactococcus lactis strain expressing the Ling-Zhi immunomodulatory protein (L. lactis-LZ8). This study investigated the anti-atherosclerotic effects of L. lactis-LZ8 in rabbits fed a high-fat diet (HFD). Changes in body weight, serum lipid profiles, and liver function were monitored. The aorta and liver tissues were analyzed for gross pathology and histopathology. Eight-week administration of L. lactis-LZ8 with HFD ameliorated atherosclerosis by downregulating protein and gene expression associated with lipid metabolism and inflammation in the aortas. The rabbits receiving L. lactis-LZ8 exhibited a significant dose-dependent reduction in hepatic fat accumulation. RNA sequencing of the livers revealed that inflammatory genes in the L. lactis-LZ8 groups were downregulated compared to the HFD group. Disease ontology enrichment analysis indicated that these genes were involved in atherosclerosis. Gene set enrichment analysis plots revealed significant enrichment in the gene sets related to cholesterol homeostasis. CIBERSORT immune cell fraction analysis indicated significant infiltration by regulatory T cells, CD8+ T cells, activated dendritic cells, and natural killer cells in the L. lactis-LZ8 group. Our studies underscore LZ8's role in precision nutrition, providing a potential solution to the current challenges in modifying atherosclerosis and NAFLD.
Collapse
Affiliation(s)
- Mey-Fann Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (M.-F.L.); (C.-S.W.)
| | - Nancy M. Wang
- Department of Biology, National Changhua University of Education, Changhua 50007, Taiwan;
| | - Yu-Wen Chu
- Department of Pharmacy, Taichung Veterans General Hospital, Taichung 407219, Taiwan;
| | - Chi-Sheng Wu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (M.-F.L.); (C.-S.W.)
| | - Wei-Wen Lin
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung 407219, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| |
Collapse
|
13
|
Jain PM, Nellikka A, Kammara R. Understanding bacteriocin heterologous expression: A review. Int J Biol Macromol 2024; 277:133916. [PMID: 39033897 DOI: 10.1016/j.ijbiomac.2024.133916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Bacteriocins are a diverse group of ribosomally synthesised antimicrobial peptides/proteins that play an important role in self-defence. They are widely used as bio-preservatives and effective substitutes for disease eradication. They can be used in conjunction with or as an alternative to antibiotics to minimize the risk of resistance development. There are remarkably few reports indicating resistance to bacteriocins. Although there are many research reports that emphasise heterologous expression of bacteriocin, there are no convincing reports on the significant role that intrinsic and extrinsic factors play in overexpression. A coordinated and cooperative expression system works in concert with multiple genetic elements encoding native proteins, immunoproteins, exporters, transporters and enzymes involved in the post-translational modification of bacteriocins. The simplest way could be to utilise the existing E. coli expression system, which is conventional, widely used for heterologous expression and has been further extended for bacteriocin expression. In this article, we will review the intrinsic and extrinsic factors, advantages, disadvantages and major problems associated with bacteriocin overexpression in E. coli. Finally, we recommend the most effective strategies as well as numerous bacteriocin expression systems from E. coli, Lactococcus, Kluveromyces lactis, Saccharomyces cerevisiae and Pichia pastoris for their suitability for successful overexpression.
Collapse
Affiliation(s)
- Priyanshi M Jain
- Department of Microbiology and Fermentation Technology, CSIR-CFTRI, AcSIR, Mysore, India
| | - Anagha Nellikka
- Department of Microbiology and Fermentation Technology, CSIR-CFTRI, AcSIR, Mysore, India
| | - Rajagopal Kammara
- Department of Microbiology and Fermentation Technology, CSIR-CFTRI, AcSIR, Mysore, India.
| |
Collapse
|
14
|
Sugrue I, Ross RP, Hill C. Bacteriocin diversity, function, discovery and application as antimicrobials. Nat Rev Microbiol 2024; 22:556-571. [PMID: 38730101 PMCID: PMC7616364 DOI: 10.1038/s41579-024-01045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 05/12/2024]
Abstract
Bacteriocins are potent antimicrobial peptides that are produced by bacteria. Since their discovery almost a century ago, diverse peptides have been discovered and described, and some are currently used as commercial food preservatives. Many bacteriocins exhibit extensively post-translationally modified structures encoded on complex gene clusters, whereas others have simple linear structures. The molecular structures, mechanisms of action and resistance have been determined for a number of bacteriocins, but most remain incompletely characterized. These gene-encoded peptides are amenable to bioengineering strategies and heterologous expression, enabling metagenomic mining and modification of novel antimicrobials. The ongoing global antimicrobial resistance crisis demands that novel therapeutics be developed to combat infectious pathogens. New compounds that are target-specific and compatible with the resident microbiota would be valuable alternatives to current antimicrobials. As bacteriocins can be broad or narrow spectrum in nature, they are promising tools for this purpose. However, few bacteriocins have gone beyond preclinical trials and none is currently used therapeutically in humans. In this Review, we explore the broad diversity in bacteriocin structure and function, describe identification and optimization methods and discuss the reasons behind the lack of translation beyond the laboratory of these potentially valuable antimicrobials.
Collapse
Affiliation(s)
- Ivan Sugrue
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
15
|
Silvestre D, Moreno G, Argüelles MH, Tomás Fariña J, Biedma ME, Peri Ibáñez ES, Mandile MG, Glikmann G, Rumbo M, Castello AA, Temprana CF. Display of FliC131 on the Surface of Lactococcus lactis as a Strategy to Increase its Adjuvanticity for Mucosal Immunization. J Pharm Sci 2024; 113:1794-1803. [PMID: 38522753 DOI: 10.1016/j.xphs.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
Research on innovative mucosal adjuvants is essential to develop new vaccines for safe mucosal application. In this work, we propose the development of a Lactococcus lactis that expresses a variant of flagellin on its surface (FliC131*), to increase the adjuvanticity of the living cell and cell wall-derived particles (CWDP). We optimized the expression of FliC131*, and confirmed its identity and localization by Western blot and flow cytometry. We also generated CWDP containing FliC131* (CDWP-FliC131*) and evaluated their storage stability. Lastly, we measured the human TLR5 stimulating activity in vitro and assessed the adjuvanticity in vivo using ovalbumin (OVA) as a model antigen. As a result, we generated L. lactis/pCWA-FliC131*, that expresses and displays FliC131* on its surface, obtained the corresponding CWDP-FliC131*, and showed that both activated hTLR5 in vitro in a dose-dependent manner. Furthermore, CWDP-FliC131* retained this biological activity after being lyophilized and stored for a year. Finally, intranasal immunization of mice with OVA plus live L. lactis/pCWA-FliC131* or CWDP-FliC131* induced OVA-specific IgG and IgA in serum, intestinal lavages, and bronchoalveolar lavages. Our work demonstrates the potential of this recombinant L. lactis with an enhanced adjuvant effect, prompting its further evaluation for the design of novel mucosal vaccines.
Collapse
Affiliation(s)
- Dalila Silvestre
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, 1876, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, 1425, Argentina
| | - Griselda Moreno
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (UNLP-CONICET), Boulevard 120 1489, La Plata, 1900, Argentina
| | - Marcelo H Argüelles
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, 1876, Argentina
| | - Julieta Tomás Fariña
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, 1876, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, 1425, Argentina
| | - Marina E Biedma
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (UNLP-CONICET), Boulevard 120 1489, La Plata, 1900, Argentina
| | - Estefanía S Peri Ibáñez
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, 1876, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, 1425, Argentina
| | - Marcelo G Mandile
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, 1876, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, 1425, Argentina
| | - Graciela Glikmann
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, 1876, Argentina
| | - Martín Rumbo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (UNLP-CONICET), Boulevard 120 1489, La Plata, 1900, Argentina
| | - Alejandro A Castello
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, 1876, Argentina; Instituto de Ciencias de la Salud, Universidad Nacional Arturo Jauretche, Av. Calchaquí 6200, Florencio Varela, 1888, Buenos Aires, Argentina
| | - C Facundo Temprana
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, 1876, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, 1425, Argentina.
| |
Collapse
|
16
|
Monteiro MP, Kohl HM, Roullet JB, Gibson KM, Ochoa-Repáraz J, Castillo AR. Genetically engineered Lactococcus lactis strain constitutively expresses GABA-producing genes and produces high levels of GABA. Lett Appl Microbiol 2024; 77:ovae051. [PMID: 38816215 PMCID: PMC11187484 DOI: 10.1093/lambio/ovae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
γ-Aminobutyric acid (GABA) is an inhibitory neurotransmitter of the central nervous system that impacts physical and mental health. Low GABA levels have been documented in several diseases, including multiple sclerosis and depression, and studies suggest that GABA could improve disease outcomes in those conditions. Probiotic bacteria naturally produce GABA and have been engineered to enhance its synthesis. Strains engineered thus far use inducible expression systems that require the addition of exogenous molecules, which complicates their development as therapeutics. This study aimed to overcome this challenge by engineering Lactococcus lactis with a constitutive GABA synthesis gene cassette. GABA synthesizing and transport genes (gadB and gadC) were cloned onto plasmids downstream of constitutive L. lactis promoters [P2, P5, shortened P8 (P8s)] of different strengths and transformed into L. lactis. Fold increase in gadCB expression conferred by these promoters (P2, P5, and P8s) was 322, 422, and 627, respectively, compared to the unmodified strain (P = 0.0325, P8s). GABA synthesis in the highest gadCB expressing strain, L. lactis-P8s-glutamic acid decarboxylase (GAD), was dependent on media supplementation with glutamic acid and significantly higher than the unmodified strain (P < 0.0001, 125 mM, 200 mM glutamic acid). Lactococcus lactis-P8s-GAD is poised for therapeutic testing in animal models of low-GABA-associated disease.
Collapse
Affiliation(s)
- Marcos P Monteiro
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Road, RRC 3070, Atlanta, GA 30322, United States
| | - Hannah M Kohl
- Department of Biology, Eastern Washington University, 1175 Washington St. Science 226, Cheney, WA 99004, United States
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, Washington State University, 205 East Spokane Falls Boulevard, Spokane, WA 99202, United States
| | - K Michael Gibson
- Department of Pharmacotherapy, Washington State University, 205 East Spokane Falls Boulevard, Spokane, WA 99202, United States
| | - Javier Ochoa-Repáraz
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID 83725, United States
| | - Andrea R Castillo
- Department of Biology, Eastern Washington University, 1175 Washington St. Science 226, Cheney, WA 99004, United States
| |
Collapse
|
17
|
Di W, Zhang Y, Zhang X, Han L, Zhao L, Hao Y, Zhai Z. Heterologous expression of P9 from Akkermansia muciniphila increases the GLP-1 secretion of intestinal L cells. World J Microbiol Biotechnol 2024; 40:199. [PMID: 38727988 DOI: 10.1007/s11274-024-04012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/02/2024] [Indexed: 06/22/2024]
Abstract
Glucagon-like peptide-1(GLP-1) is an incretin hormone secreted primarily from the intestinal L-cells in response to meals. GLP-1 is a key regulator of energy metabolism and food intake. It has been proven that P9 protein from A. muciniphila could increase GLP-1 release and improve glucose homeostasis in HFD-induced mice. To obtain an engineered Lactococcus lactis which produced P9 protein, mature polypeptide chain of P9 was codon-optimized, fused with N-terminal signal peptide Usp45, and expressed in L. lactis NZ9000. Heterologous secretion of P9 by recombinant L. lactis NZP9 were successfully detected by SDS-PAGE and western blotting. Notably, the supernatant of L. lactis NZP9 stimulated GLP-1 production of NCI-H716 cells. The relative expression level of GLP-1 biosynthesis gene GCG and PCSK1 were upregulated by 1.63 and 1.53 folds, respectively. To our knowledge, this is the first report on the secretory expression of carboxyl-terminal processing protease P9 from A. muciniphila in L. lactis. Our results suggest that genetically engineered L. lactis which expressed P9 may have therapeutic potential for the treatment of diabetes, obesity and other metabolic disorders.
Collapse
Affiliation(s)
- Wenxuan Di
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuchen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xinyuan Zhang
- Department of Food Science, Beijing University of Agriculture, Beijing, China
| | - Luxuan Han
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Food Laboratory of Zhongyuan, Luohe, Henan, 462300, China
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100093, China
- Food Laboratory of Zhongyuan, Luohe, Henan, 462300, China
| | - Zhengyuan Zhai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
- Food Laboratory of Zhongyuan, Luohe, Henan, 462300, China.
| |
Collapse
|
18
|
Murali SK, Mansell TJ. Next generation probiotics: Engineering live biotherapeutics. Biotechnol Adv 2024; 72:108336. [PMID: 38432422 DOI: 10.1016/j.biotechadv.2024.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/10/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The population dynamics of the human microbiome have been associated with inflammatory bowel disease, cancer, obesity, autoimmune diseases, and many other human disease states. An emerging paradigm in treatment is the administration of live engineered organisms, also called next-generation probiotics. However, the efficacy of these microbial therapies can be limited by the organism's overall performance in the harsh and nutrient-limited environment of the gut. In this review, we summarize the current state of the art use of bacterial and yeast strains as probiotics, highlight the recent development of genetic tools for engineering new therapeutic functions in these organisms, and report on the latest therapeutic applications of engineered probiotics, including recent clinical trials. We also discuss the supplementation of prebiotics as a method of manipulating the microbiome and improving the overall performance of engineered live biotherapeutics.
Collapse
Affiliation(s)
- Sanjeeva Kumar Murali
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Thomas J Mansell
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
19
|
Xu X, Zhang L, Cui Y, Kong J, Guo T. Development of Zn 2+-controlled expression system for lactic acid bacteria and its application in engineered probiotics. Synth Syst Biotechnol 2024; 9:152-158. [PMID: 38328736 PMCID: PMC10847839 DOI: 10.1016/j.synbio.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Lactococcus lactis and Streptococcus thermophilus are considered as ideal chassis of engineered probiotics, while food-grade genetic tools are limited in those strains. Here, a Zn2+-controlled gene expression (ZICE) system was identified in the genome of S. thermophilus CGMCC7.179, including a transcriptional regulator sczAst and a promoter region of cation transporter czcD (PczcDst). Specific binding of the SczAst to the palindromic sequences in PczcDst was demonstrated by EMSA analysis, suggesting the regulation role of SczAst on PczcDst. To evaluate their possibility to control gene expression in vivo, the sczAst-PczcDst was employed to drive the expression of green fluorescence protein (GFP) gene in L. lactis NZ9000 and S. thermophilus CGMCC7.179, respectively. Both of the transformants could express GFP under Zn2+ induction, while no fluorescence without Zn2+ addition. For optimal conditions, Zn2+ was used at a final concentration of 0.8 mM in L. lactis and 0.16 mM in S. thermophilus at OD600 close to 0.4, and omitting yeast extract powder in the medium unexpectedly improved GFP expression level by 2.2-fold. With the help of the ZICE system, engineered L. lactis and S. thermophilus strains were constructed to secret cytokine interleukin-10 (IL-10) with immunogenicity, and the IL-10 content in the supernatant of the engineered L. lactis was 59.37 % of that under the nisin controlled expression system. This study provided a tightly controlled expression system by the food-grade inducer Zn2+, having potential in development of engineered probiotics.
Collapse
Affiliation(s)
| | | | - Yue Cui
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, PR China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, PR China
| | - Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, PR China
| |
Collapse
|
20
|
Zhang F, Ni L, Zhang Z, Luo X, Wang X, Zhou W, Chen J, Liu J, Qu Y, Liu K, Guo L. Recombinant L. lactis vaccine LL-plSAM-WAE targeting four virulence factors provides mucosal immunity against H. pylori infection. Microb Cell Fact 2024; 23:61. [PMID: 38402145 PMCID: PMC10893618 DOI: 10.1186/s12934-024-02321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) causes chronic gastric disease. An efficient oral vaccine would be mucosa-targeted and offer defense against colonization of invasive infection in the digestive system. Proteolytic enzymes and acidic environment in the gastrointestinal tract (GT) can, however, reduce the effectiveness of oral vaccinations. For the creation of an edible vaccine, L. lactis has been proposed as a means of delivering vaccine antigens. RESULTS We developed a plSAM (pNZ8148-SAM) that expresses a multiepitope vaccine antigen SAM-WAE containing Urease, HpaA, HSP60, and NAP extracellularly (named LL-plSAM-WAE) to increase the efficacy of oral vaccinations. We then investigated the immunogenicity of LL-plSAM-WAE in Balb/c mice. Mice that received LL-plSAM-WAE or SAM-WAE with adjuvant showed increased levels of antibodies against H. pylori, including IgG and sIgA, and resulted in significant reductions in H. pylori colonization. Furthermore, we show that SAM-WAE and LL-plSAM-WAE improved the capacity to target the vaccine to M cells. CONCLUSIONS These findings suggest that recombinant L. lactis could be a promising oral mucosa vaccination for preventing H. pylori infection.
Collapse
Affiliation(s)
- Furui Zhang
- College of First Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
- College of Laboratory Medicine , Ningxia Medical University, Yinchuan, 750004, China
| | - Linhan Ni
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Zhen Zhang
- Department of Geriatrics and Special Needs Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xuequan Wang
- Key Laboratory of Radiation Oncology of Taizhou, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, 317000, China
| | - Wenmiao Zhou
- College of First Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Jiale Chen
- College of First Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Jing Liu
- College of Laboratory Medicine , Ningxia Medical University, Yinchuan, 750004, China
| | - Yuliang Qu
- College of Laboratory Medicine , Ningxia Medical University, Yinchuan, 750004, China.
| | - Kunmei Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, 750004, China.
| | - Le Guo
- College of First Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China.
- College of Laboratory Medicine , Ningxia Medical University, Yinchuan, 750004, China.
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, 750004, China.
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
21
|
Mokhtari S, Saris PEJ, Takala TM. Heterologous expression and purification of the phage lysin-like bacteriocin LysL from Lactococcus lactis LAC460. FEMS Microbiol Lett 2024; 371:fnae065. [PMID: 39153967 PMCID: PMC11370637 DOI: 10.1093/femsle/fnae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/12/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024] Open
Abstract
The wild-type Lactococcus lactis strain LAC460 produces two bacteriocin-like phage lysins, LysL and LysP. This study aimed to produce and secrete LysL in various heterologous hosts and an in vitro cell-free expression system for further functional studies. Initially, the lysL gene from L. lactis LAC460 was cloned into Lactococcus cremoris NZ9000 and L. lactis N8 strains, with and without the usp45 signal sequence (SSusp45), under a nisin-inducible promoter. Active LysL was primarily produced intracellularly in recombinant L. lactis N8, with some secretion into the supernatant. Recombinant L. cremoris NZ9000 lysed upon nisin induction, indicating successful lysL expression. However, fusion with Usp45 signal peptide (SPUsp45-LysL) weakened LysL activity, likely due to incomplete signal peptide cleavage during secretion. Active LysL was also produced in vitro, and analysed in SDS-PAGE, giving a 42-kDa band. However, the yield of LysL protein was still low when produced from recombinant lactococci or by in vitro expression system. Therefore, His-tagged LysL was produced in Escherichia coli BL21(DE3). Western blot confirmed the intracellular production of about 44-kDa His-tagged LysL in E. coli. His-tagged active LysL was then purified by Ni-NTA affinity chromatography yielding sufficient 4.34 mg of protein to be used in future functional studies.
Collapse
Affiliation(s)
- Samira Mokhtari
- Department of Microbiology, University of Helsinki, PO Box 56, FI-00014 Helsinki, Finland
| | - Per E J Saris
- Department of Microbiology, University of Helsinki, PO Box 56, FI-00014 Helsinki, Finland
| | - Timo M Takala
- Department of Microbiology, University of Helsinki, PO Box 56, FI-00014 Helsinki, Finland
| |
Collapse
|
22
|
Sanchez-Gallardo R, O’Connor PM, O’Neill IJ, McDonnell B, Lee C, Moore RL, McAuliffe FM, Cotter PD, van Sinderen D. Pseudocin 196, a novel lantibiotic produced by Bifidobacterium pseudocatenulatum elicits antimicrobial activity against clinically relevant pathogens. Gut Microbes 2024; 16:2387139. [PMID: 39106231 PMCID: PMC11305057 DOI: 10.1080/19490976.2024.2387139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/29/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024] Open
Abstract
Bacteriocins are broad or narrow-spectrum antimicrobial compounds that have received significant scientific attention due to their potential to treat infections caused by antibiotic-resistant pathogenic bacteria. The genome of Bifidobacterium pseudocatenulatum MM0196, an antimicrobial-producing, fecal isolate from a healthy pregnant woman, was shown to contain a gene cluster predicted to encode Pseudocin 196, a novel lantibiotic, in addition to proteins involved in its processing, transport and immunity. Following antimicrobial assessment against various indicator strains, protease-sensitive Pseudocin 196 was purified to homogeneity from cell-free supernatant. MALDI TOF mass spectrometry confirmed that the purified antimicrobial compound corresponds to a molecular mass of 2679 Da, which is consistent with that deduced from its genetic origin. Pseudocin 196 is classified as a lantibiotic based on its similarity to lacticin 481, a lanthionine ring-containing lantibiotic produced by Lactococcus lactis. Pseudocin 196, the first reported bacteriocin produced by a B. pseudocatenulatum species of human origin, was shown to inhibit clinically relevant pathogens, such as Clostridium spp. and Streptococcus spp. thereby highlighting the potential application of this strain as a probiotic to treat and prevent bacterial infections.
Collapse
Affiliation(s)
- Rocio Sanchez-Gallardo
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paula M. O’Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Food Biosciences, Teagasc Food Research Centre Moorepark, Cork, Ireland
| | - Ian J. O’Neill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Brian McDonnell
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Ciaran Lee
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Rebecca L. Moore
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Fionnuala M. McAuliffe
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Food Biosciences, Teagasc Food Research Centre Moorepark, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
23
|
Oshima S, Namai F, Sato T, Shimosato T. Development of a Single-Chain Fragment Variable that Binds to the SARS-CoV-2 Spike Protein Produced by Genetically Modified Lactic Acid Bacteria. Mol Biotechnol 2024; 66:151-160. [PMID: 37060514 PMCID: PMC10105526 DOI: 10.1007/s12033-023-00741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
SARS-CoV-2 enters cells via binding of the surface-exposed spike protein RBD to host cell ACE2 receptors. Therefore, in this study, we designed a scFv (single-chain fragment variable) based on the amino acid sequence of CC12.1, a neutralizing antibody found in the serum of patients with COVID-19. scFv is a low-molecular-weight antibody designed based on the antibody-antigen recognition site. Compared with the original antibody, scFv has the advantages of high tissue penetration and low production cost. In this study, we constructed gmLAB (genetically modified lactic acid bacteria) by incorporating the designed scFv into a gene expression vector and introducing it into lactic acid bacteria, aiming to develop microbial therapeutics against COVID-19. In addition, gmLAB were also constructed to produce GFP-fused scFv as a means of visualizing scFv. Expression of each scFv was confirmed by Western blotting, and the ability to bind to the RBD was investigated by ELISA. This study is the first to design a scFv against the RBD of SARS-CoV-2 using gmLAB and could be applied in the future.
Collapse
Affiliation(s)
- Suzuka Oshima
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan
| | - Fu Namai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan
| | - Takashi Sato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan.
| | - Takeshi Shimosato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan.
| |
Collapse
|
24
|
Kazemi D, Doosti A, Shakhsi-Niaei M. Immunization of BALB/c mice with BAB1-0278: An initial investigation of a novel potential vaccine for brucellosis based on Lactococcus Lactis vector. Microb Pathog 2023; 185:106417. [PMID: 37866552 DOI: 10.1016/j.micpath.2023.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
The gram-negative intracellular bacterium Brucella abortus causes bovine brucellosis, a zoonotic disease that costs a lot of money. This work developed a vector vaccine against brucellosis utilizing recombinant L. lactis expressing Brucella outer membrane protein BAB1-0278. Gene sequences were obtained from GenBank. The proteins' immunogenicity was tested with Vaxijen. The target vector was converted into L. lactis after enzymatic digestion and PCR validated the BAB1-0278 gene cloning in the pNZ8148 vector. The target protein was extracted using a Ni-NTA column and confirmed using SDS-PAGE and western blot. After vaccination with the target vaccine, the expression of IgG subclasses was evaluated by the ELISA method. Cytokine production was also measured by the qPCR method in the small intestine and spleen. Lymphocyte proliferation and innate immune response (NLR, CRP, and PLR) were also assessed. Finally, after the challenge test, the spleen tissue was examined by H&E staining. BAB1-0278 was chosen because of its antigenicity score of 0.5614. A 237-bp gene fragment was discovered using enzymatic digestion and PCR. The presence of a 13 kDa protein band was confirmed by SDS-PAGE and western blot. In comparison to the PBS group, mice given the L. lactis-pNZ8148-BAB1-0278-Usp45 vaccine 14 days after priming had substantially greater levels of total IgG, IgG1, and IgG2a (P < 0.001). Also, the production of cytokines (IFN-γ, TNFα, IL-4, and IL-10) indicating cellular immunity increased compared to the control group (P < 0.001). The target group had a lower inflammatory response, morphological impairment, alveolar edema, and lymphocyte infiltration. An efficient probiotic-based oral brucellosis vaccination was created. These studies have proven that the recommended immunization gives the best protection, which supports its promotion.
Collapse
Affiliation(s)
- Donya Kazemi
- Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mostafa Shakhsi-Niaei
- Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
25
|
Plavec TV, Klemenčič K, Kuchař M, Malý P, Berlec A. Secretion and surface display of binders of IL-23/IL-17 cytokines and their receptors in Lactococcus lactis as a therapeutic approach against inflammation. Eur J Pharm Sci 2023; 190:106568. [PMID: 37619953 DOI: 10.1016/j.ejps.2023.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The cytokine IL-23 activates the IL-23 receptor (IL-23R) and stimulates the differentiation of naïve T helper (Th) cells into a Th17 cell population that secretes inflammatory cytokines and chemokines. This IL-23/Th17 proinflammatory axis drives inflammation in Crohn's disease and ulcerative colitis and represents a therapeutic target of monoclonal antibodies. Non-immunoglobulin binding proteins based on the Streptococcus albumin-binding domain (ABD) provide a small protein alternative to monoclonal antibodies. They can be readily expressed in bacteria. Lactococcus lactis is a safe lactic acid bacterium that has previously been engineered as a vector for the delivery of recombinant therapeutic proteins to mucosal surfaces. Here, L. lactis was engineered to display or secrete ABD-variants against the IL-17 receptor (IL-17R). Its expression and functionality were confirmed with flow cytometry using specific antibody and recombinant IL-17R, respectively. In addition, L. lactis were engineered into multifunctional bacteria that simultaneously express two binders from pNBBX plasmid. First, binders of IL-17R were combined with binder of IL-17. Second, binders of IL-23R were combined with binders of IL-23. The dual functionality of the bacteria was confirmed by flow cytometry using corresponding targets, namely the recombinant receptors IL-17R and IL-23R or the p19 subunit of IL-23. Binding of IL-17 was confirmed by ELISA. With the latter, 97% of IL-17 was removed from solution by 2 × 109 recombinant bacteria. Moreover, multifunctional bacteria targeting IL-17/IL-17R prevented IL-17A-mediated activation of downstream signaling pathways in HEK-Blue IL-17 cell model. Thus, we have developed several multifunctional L. lactis capable of targeting multiple factors of the IL-23/Th17 proinflammatory axis. This represents a novel therapeutic strategy with synergistic potential for the treatment of intestinal inflammations.
Collapse
Affiliation(s)
- Tina Vida Plavec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, Ljubljana SI-1000, Slovenia; Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana SI-1000, Slovenia
| | - Kaja Klemenčič
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, Ljubljana SI-1000, Slovenia
| | - Milan Kuchař
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, v. v. i., Průmyslová 595, Vestec 252 50, Czech Republic
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, v. v. i., Průmyslová 595, Vestec 252 50, Czech Republic
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, Ljubljana SI-1000, Slovenia; Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
26
|
Ma Y, Guo N, Li X, Jiang Z, Zhang D, Guo L, Wang Y. Development of an Efficient Recombinant Protein Expression System in Clostridium saccharoperbutylacetonicum Based on the Bacteriophage T7 System. ACS Synth Biol 2023; 12:3092-3105. [PMID: 37712503 DOI: 10.1021/acssynbio.3c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Recombinant proteins have broad applications. However, there is a lack of a recombinant protein expression system specifically for large-scale production in anaerobic hosts. Here, we developed a powerful and stringently inducible protein expression system based on the bacteriophage T7 system in the strictly anaerobic solvent-producing Clostridium saccharoperbutylacetonicum. With the integration of a codon optimized T7 RNA polymerase into the chromosome, a single plasmid carrying a T7 promoter could efficiently drive high-level expression of the target gene in an orthogonal manner, which was tightly regulated by a lactose-inducible system. Furthermore, by deleting beta-galactosidase genes involved in lactose metabolism, the transcriptional strength was further improved. In the ultimately optimized strain TM-07, the transcriptional strength of the T7 promoter showed 9.5-fold increase compared to the endogenous strong promoter Pthl. The heterologous NADP+-dependent 3-hydroxybutyryl-CoA dehydrogenase (Hbd1) from C. kluyveri was expressed in TM-07, and the yield of the recombinant protein reached 30.4-42.4% of the total cellular protein, surpassing the strong protein expression systems in other Gram-positive bacteria. The relative activity of Hbd1 in the crude enzyme was 198.0 U/mg, which was 8.3-fold higher than the natural activity in C. kluyveri. The relative activity of the purified enzyme reached 467.4 U/mg. To the best of our knowledge, this study represents the first application of the T7 expression system in Clostridium species, and this optimized expression system holds great potential for large-scale endotoxin-free recombinant protein production under strictly anaerobic conditions. This development paves the way for significant advancements in biotechnology and opens up new avenues for industrial applications.
Collapse
Affiliation(s)
- Yuechao Ma
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama 36849, United States
- Center for Bioenergy and Bioproducts, Auburn University, Auburn, Alabama 36849, United States
| | - Na Guo
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama 36849, United States
- Center for Bioenergy and Bioproducts, Auburn University, Auburn, Alabama 36849, United States
| | - Xiao Li
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, Alabama 36849, United States
| | - Zhihua Jiang
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Dunhua Zhang
- Aquatic Animal Health Research Unit, Agricultural Research Service, USDA, Auburn, Alabama 36832, United States
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama 36849, United States
- Center for Bioenergy and Bioproducts, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
27
|
Soumya MP, Parameswaran R, Madhavan Nampoothiri K. Nisin controlled homologous Over-expression of an exopolysaccharide biosynthetic glycosyltransferase gene for enhanced EPS production in Lactobacillus plantarum BR2. BIORESOURCE TECHNOLOGY 2023; 385:129387. [PMID: 37364650 DOI: 10.1016/j.biortech.2023.129387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Glycosyltransferases synthesize a variety of exopolysaccharides (EPS) with different properties by altering the type of glycosidic linkage, degree of branching, length, mass, and conformation of the polymers. The genome analysis of an EPS-producing, Lactobacillus plantarum BR2 (Accession No: MN176402) showed twelve glycosyltransferase genes, and the gene BR2gtf (1116 bp), annotated as an EPS biosynthetic glycosyltransferase was cloned into the pNZ8148 vector. The recombinant pNZ8148 vector along with pNZ9530, a regulatory plasmid, were electroporated to L. plantarum BR2 for the over-expression of gtf gene under a nisin-controlled expression system and the glycosyltransferase activity of the recombinant and the wild-type strains were analysed. The recombinant strain showed 54.4% increase in EPS production with the maximum EPS production of 23.2 ± 0.5 g/L in a 5 L bioreactor study after 72 h of fermentation. This study shows an effective molecular strategy possibly to be adopted in lactic acid bacteria to enhance exopolysaccharide production.
Collapse
Affiliation(s)
- M P Soumya
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, Kerala 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Reeba Parameswaran
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, Kerala 695 019, India
| | - K Madhavan Nampoothiri
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, Kerala 695 019, India.
| |
Collapse
|
28
|
Guo L, Wambui J, Wang C, Muchaamba F, Fernandez-Cantos MV, Broos J, Tasara T, Kuipers OP, Stephan R. Cesin, a short natural variant of nisin, displays potent antimicrobial activity against major pathogens despite lacking two C-terminal macrocycles. Microbiol Spectr 2023; 11:e0531922. [PMID: 37754751 PMCID: PMC10581189 DOI: 10.1128/spectrum.05319-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/06/2023] [Indexed: 09/28/2023] Open
Abstract
Nisin is a widely used lantibiotic owing to its potent antimicrobial activity and its food-grade status. Its mode of action includes cell wall synthesis inhibition and pore formation, which are attributed to the lipid II binding and pore-forming domains, respectively. We discovered cesin, a short natural variant of nisin, produced by the psychrophilic anaerobe Clostridium estertheticum. Unlike other natural nisin variants, cesin lacks the two terminal macrocycles constituting the pore-forming domain. The current study aimed at heterologous expression and characterization of the antimicrobial activity and physicochemical properties of cesin. Following the successful heterologous expression of cesin in Lactococcus lactis, the lantibiotic demonstrated a broad and potent antimicrobial profile comparable to that of nisin. Determination of its mode of action using lipid II and lipoteichoic acid binding assays linked the potent antimicrobial activity to lipid II binding and electrostatic interactions with teichoic acids. Fluorescence microscopy showed that cesin lacks pore-forming ability in its natural form. Stability tests have shown the lantibiotic is highly stable at different pH values and temperature conditions, but that it can be degraded by trypsin. However, a bioengineered analog, cesin R15G, overcame the trypsin degradation, while keeping full antimicrobial activity. This study shows that cesin is a novel (small) nisin variant that efficiently kills target bacteria by inhibiting cell wall synthesis without pore formation. IMPORTANCE The current increase in antibiotic-resistant pathogens necessitates the discovery and application of novel antimicrobials. In this regard, we recently discovered cesin, which is a short natural variant of nisin produced by the psychrophilic Clostridium estertheticum. However, its suitability as an antimicrobial compound was in doubt due to its structural resemblance to nisin(1-22), a bioengineered short variant of nisin with low antimicrobial activity. Here, we show by heterologous expression, purification, and characterization that the potency of cesin is not only much higher than that of nisin(1-22), but that it is even comparable to the full-length nisin, despite lacking two C-terminal rings that are essential for nisin's activity. We show that cesin is a suitable scaffold for bioengineering to improve its applicability, such as resistance to trypsin. This study demonstrates the suitability of cesin for future application in food and/or for health as a potent and stable antimicrobial compound.
Collapse
Affiliation(s)
- Longcheng Guo
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Chenhui Wang
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Maria Victoria Fernandez-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Jaap Broos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Guo L, Wang C, Broos J, Kuipers OP. Lipidated variants of the antimicrobial peptide nisin produced via incorporation of methionine analogs for click chemistry show improved bioactivity. J Biol Chem 2023; 299:104845. [PMID: 37209826 PMCID: PMC10404616 DOI: 10.1016/j.jbc.2023.104845] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/22/2023] Open
Abstract
The increase in antibiotic resistance calls for accelerated molecular engineering strategies to diversify natural products for drug discovery. The incorporation of non-canonical amino acids (ncAAs) is an elegant strategy for this purpose, offering a diverse pool of building blocks to introduce desired properties into antimicrobial lanthipeptides. We here report an expression system using Lactococcus lactis as a host for non-canonical amino acid incorporation with high efficiency and yield. We show that incorporating the more hydrophobic analog ethionine (instead of methionine) into nisin improves its bioactivity against several Gram-positive strains we tested. New-to-nature variants were further created by click chemistry. By azidohomoalanine (Aha) incorporation and subsequent click chemistry, we obtained lipidated variants at different positions in nisin or in truncated nisin variants. Some of them show improved bioactivity and specificity against several pathogenic bacterial strains. These results highlight the ability of this methodology for lanthipeptide multi-site lipidation, to create new-to-nature antimicrobial products with diverse features, and extend the toolbox for (lanthi)peptide drug improvement and discovery.
Collapse
Affiliation(s)
- Longcheng Guo
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Chenhui Wang
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Jaap Broos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
30
|
Markakiou S, Neves AR, Zeidan AA, Gaspar P. Development of a Tetracycline-Inducible System for Conditional Gene Expression in Lactococcus lactis and Streptococcus thermophilus. Microbiol Spectr 2023; 11:e0066823. [PMID: 37191512 PMCID: PMC10269922 DOI: 10.1128/spectrum.00668-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023] Open
Abstract
Inducible gene expression systems are invaluable tools for the functional characterization of genes and in the construction of protein overexpression hosts. Controllable expression is especially important for the study of essential and toxic genes or genes where the level of expression tightly influences their cellular effect. Here, we implemented the well-characterized tetracycline-inducible expression system in two industrially important lactic acid bacteria, Lactococcus lactis and Streptococcus thermophilus. Using a fluorescent reporter gene, we show that optimization of the repression level is necessary for efficient induction using anhydrotetracycline in both organisms. Random mutagenesis in the ribosome binding site of the tetracycline repressor TetR in Lactococcus lactis indicated that altering the expression levels of TetR was necessary for efficient inducible expression of the reporter gene. Through this approach, we achieved plasmid-based, inducer-responsive, and tight gene expression in Lactococcus lactis. We then verified the functionality of the optimized inducible expression system in Streptococcus thermophilus following its chromosomal integration using a markerless mutagenesis approach and a novel DNA fragment assembly tool presented herein. This inducible expression system holds several advantages over other described systems in lactic acid bacteria, although more efficient techniques for genetic engineering are still needed to realize these advantages in industrially relevant species, such as S. thermophilus. Our work expands the molecular toolbox of these bacteria, which can accelerate future physiological studies. IMPORTANCE Lactococcus lactis and Streptococcus thermophilus are two industrially important lactic acid bacteria globally used in dairy fermentations and, therefore, are of considerable commercial interest to the food industry. Moreover, due to their general history of safe usage, these microorganisms are increasingly being explored as hosts for the production of heterologous proteins and various chemicals. Development of molecular tools in the form of inducible expression systems and mutagenesis techniques facilitates their in-depth physiological characterization as well as their exploitation in biotechnological applications.
Collapse
Affiliation(s)
- Sofia Markakiou
- R&D Department, Chr. Hansen A/S, Hørsholm, Denmark
- Department of Biochemistry, University of Groningen, Groningen, Netherlands
| | | | | | - Paula Gaspar
- R&D Department, Chr. Hansen A/S, Hørsholm, Denmark
| |
Collapse
|
31
|
Baltà-Foix R, Serrano-Adrover C, López-Cano A, Gifre-Renom L, Sanchez-Chardi A, Arís A, Garcia-Fruitós E. Lactiplantibacillus plantarum: a new example of inclusion body producing bacteria. Microb Cell Fact 2023; 22:111. [PMID: 37296442 PMCID: PMC10251561 DOI: 10.1186/s12934-023-02120-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Lactic Acid Bacteria such as Lactococcus lactis, Latilactobacillus sakei (basonym: Lactobacillus sakei) and Lactiplantibacillus plantarum (basonym: Lactobacillus plantarum) have gained importance as recombinant cell factories. Although it was believed that proteins produced in these lipopolysaccharides (LPS)-free microorganisms do not aggregate, it has been shown that L. lactis produce inclusion bodies (IBs) during the recombinant production process. These protein aggregates contain biologically active protein, which is slowly released, being a biomaterial with a broad range of applications including the obtainment of soluble protein. However, the aggregation phenomenon has not been characterized so far in L. plantarum. Thus, the current study aims to determine the formation of protein aggregates in L. plantarum and evaluate their possible applications. RESULTS To evaluate the formation of IBs in L. plantarum, the catalytic domain of bovine metalloproteinase 9 (MMP-9cat) protein has been used as model protein, being a prone-to-aggregate (PTA) protein. The electron microscopy micrographs showed the presence of electron-dense structures in L. plantarum cytoplasm, which were further purified and analyzed. The ultrastructure of the isolated protein aggregates, which were smooth, round and with an average size of 250-300 nm, proved that L. plantarum also forms IBs under recombinant production processes of PTA proteins. Besides, the protein embedded in these aggregates was fully active and had the potential to be used as a source of soluble protein or as active nanoparticles. The activity determination of the soluble protein solubilized from these IBs using non-denaturing protocols proved that fully active protein could be obtained from these protein aggregates. CONCLUSIONS These results proved that L. plantarum forms aggregates under recombinant production conditions. These aggregates showed the same properties as IBs formed in other expression systems such as Escherichia coli or L. lactis. Thus, this places this LPS-free microorganism as an interesting alternative to produce proteins of interest for the biopharmaceutical industry, which are obtained from the IBs in an important number of cases.
Collapse
Affiliation(s)
- Ricardo Baltà-Foix
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain
| | - Caterina Serrano-Adrover
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain
| | - Adrià López-Cano
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain
| | - Laia Gifre-Renom
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain
| | - Alejandro Sanchez-Chardi
- Departament de Biologia Evolutiva, Facultat de Biologia, Ecologia i Ciències Ambientals, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - Anna Arís
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain.
| | - Elena Garcia-Fruitós
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain.
| |
Collapse
|
32
|
Banerjee A, Somasundaram I, Das D, Jain Manoj S, Banu H, Mitta Suresh P, Paul S, Bisgin A, Zhang H, Sun XF, Duttaroy AK, Pathak S. Functional Foods: A Promising Strategy for Restoring Gut Microbiota Diversity Impacted by SARS-CoV-2 Variants. Nutrients 2023; 15:nu15112631. [PMID: 37299594 DOI: 10.3390/nu15112631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Natural herbs and functional foods contain bioactive molecules capable of augmenting the immune system and mediating anti-viral functions. Functional foods, such as prebiotics, probiotics, and dietary fibers, have been shown to have positive effects on gut microbiota diversity and immune function. The use of functional foods has been linked to enhanced immunity, regeneration, improved cognitive function, maintenance of gut microbiota, and significant improvement in overall health. The gut microbiota plays a critical role in maintaining overall health and immune function, and disruptions to its balance have been linked to various health problems. SARS-CoV-2 infection has been shown to affect gut microbiota diversity, and the emergence of variants poses new challenges to combat the virus. SARS-CoV-2 recognizes and infects human cells through ACE2 receptors prevalent in lung and gut epithelial cells. Humans are prone to SARS-CoV-2 infection because their respiratory and gastrointestinal tracts are rich in microbial diversity and contain high levels of ACE2 and TMPRSS2. This review article explores the potential use of functional foods in mitigating the impact of SARS-CoV-2 variants on gut microbiota diversity, and the potential use of functional foods as a strategy to combat these effects.
Collapse
Affiliation(s)
- Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Indumathi Somasundaram
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416012, Maharashtra, India
| | - Diptimayee Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Samatha Jain Manoj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Husaina Banu
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Pavane Mitta Suresh
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, San Pablo 76130, Mexico
| | - Atil Bisgin
- Department of Medical Genetics, Medical Faculty, Cukurova University, Adana 01250, Turkey
| | - Hong Zhang
- Department of Medical Sciences, School of Medicine, Orebro University, SE-701 82 Orebro, Sweden
| | - Xiao-Feng Sun
- Division of Ocology, Department of Biomedical and Clinical Sciences, Linkoping University, SE-581 83 Linkoping, Sweden
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| |
Collapse
|
33
|
Watthanasakphuban N, Srila P, Pinmanee P, Sompinit K, Rattanaporn K, Peterbauer C. Development of high cell density Limosilactobacillus reuteri KUB-AC5 for cell factory using oxidative stress reduction approach. Microb Cell Fact 2023; 22:86. [PMID: 37120528 PMCID: PMC10149017 DOI: 10.1186/s12934-023-02076-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/31/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Expression systems for lactic acid bacteria have been developed for metabolic engineering applications as well as for food-grade recombinant protein production. But the industrial applications of lactic acid bacteria as cell factories have been limited due to low biomass formation resulted in low efficiency of biomanufacturing process. Limosilactobacillus reuteri KUB-AC5 is a safe probiotic lactic acid bacterium that has been proven as a gut health enhancer, which could be developed as a mucosal delivery vehicle for vaccines or therapeutic proteins, or as expression host for cell factory applications. Similar to many lactic acid bacteria, its oxygen sensitivity is a key factor that limits cell growth and causes low biomass production. The aim of this study is to overcome the oxidative stress in L. reuteri KUB-AC5. Several genes involved in oxidative and anti-oxidative stress were investigated, and strain improvement for higher cell densities despite oxidative stress was performed using genetic engineering. RESULTS An in-silico study showed that L. reuteri KUB-AC5 genome possesses an incomplete respiratory chain lacking four menaquinone biosynthesis genes as well as a complete biosynthesis pathway for the production of the precursor. The presence of an oxygen consuming enzyme, NADH oxidase (Nox), leads to high ROS formation in aerobic cultivation, resulting in strong growth reduction to approximately 25% compared to anaerobic cultivation. Recombinant strains expressing the ROS scavenging enzymes Mn-catalase and Mn-superoxide dismutase were successfully constructed using the pSIP expression system. The Mn-catalase and Mn-SOD-expressing strains produced activities of 873 U/ml and 1213 U/ml and could minimize the ROS formation in the cell, resulting in fourfold and sevenfold higher biomass formation, respectively. CONCLUSIONS Expression of Mn-catalase and Mn-SOD in L. reuteri KUB-AC5 successfully reduced oxidative stress and enhanced growth. This finding could be applied for other lactic acid bacteria that are subject to oxidative stress and will be beneficial for applications of lactic acid bacteria for cell factory applications.
Collapse
Affiliation(s)
- Nisit Watthanasakphuban
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Pimsiriya Srila
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Phitsanu Pinmanee
- Enzyme Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, 12120, Thailand
| | - Kamonwan Sompinit
- Department of Food Sciences and Technology, BOKU-University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Kittipong Rattanaporn
- Fermentation Technology Research Center, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Clemens Peterbauer
- Department of Food Sciences and Technology, BOKU-University of Natural Resources and Life Sciences, 1190, Vienna, Austria.
| |
Collapse
|
34
|
Jeong Y, Irudayaraj J. Hierarchical encapsulation of bacteria in functional hydrogel beads for inter- and intra- species communication. Acta Biomater 2023; 158:203-215. [PMID: 36632875 DOI: 10.1016/j.actbio.2023.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/17/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
To sequester prokaryotic cells in a biofilm-like niche, the creation of a pertinent and reliable microenvironment that reflects the heterogeneous nature of biological systems is vital for sustenance. Design of a microenvironment that is conducive for growth and survival of organisms, should account for factors such as mass transport, porosity, stability, elasticity, size, functionality, and biochemical characteristics of the organisms in the confined architecture. In this work we present an artificial long-term confinement model fabricated by natural alginate hydrogels that are structurally stable and can host organisms for over 10 days in physiologically relevant conditions. A unique feature of the confinement platform is the development of stratified habitats wherein bacterial cells can be entrapped in the core as well as in the shell layers, wherein the thickness and the number of shell layers are tunable at fabrication. We show that the hydrogel microenvironment in the beads can host complex subpopulations of organisms similar to that in a biofilm. Dynamic interaction of bacterial colonies encapsulated in different beads or within the core and stratified layers of single beads was demonstrated to show intra- species communication. Inter- species communication between probiotic bacteria and human colorectal carcinoma cells was also demonstrated to highlight a possible bidirectional communication between the organisms in the beads and the environment. STATEMENT OF SIGNIFICANCE: Bacteria confinement in a natural soft hydrogel structure has always been a challenge due to the collapse of hydrogel architectures. Alternative methods have been attempted to encapsulate microorganisms by employing various processes to avoid/minimize rupturing of hydrogel structures. However, most of the past approaches have been unfavorable in balancing cell proliferation and functionality upon confinement. Our study addresses the fundamental gap in knowledge necessary to create favorable and complex 3D biofilm mimics utilizing natural hydrogel for microbial colonization for long-term studies. Our approach represents a cornerstone in the development of 3D functional architectures not only to advance studies in microbial communication, host-microbe interaction but also to address basic and fundamental questions in biology.
Collapse
Affiliation(s)
- Yoon Jeong
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle R. Woese Institute for Genomic Biology, Beckman Institute, Holonyak Micro and Nanotechnology Laboratory, Urbana, IL, USA; Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, USA.
| |
Collapse
|
35
|
Kuraji R, Shiba T, Dong TS, Numabe Y, Kapila YL. Periodontal treatment and microbiome-targeted therapy in management of periodontitis-related nonalcoholic fatty liver disease with oral and gut dysbiosis. World J Gastroenterol 2023; 29:967-996. [PMID: 36844143 PMCID: PMC9950865 DOI: 10.3748/wjg.v29.i6.967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
A growing body of evidence from multiple areas proposes that periodontal disease, accompanied by oral inflammation and pathological changes in the microbiome, induces gut dysbiosis and is involved in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). A subgroup of NAFLD patients have a severely progressive form, namely nonalcoholic steatohepatitis (NASH), which is characterized by histological findings that include inflammatory cell infiltration and fibrosis. NASH has a high risk of further progression to cirrhosis and hepatocellular carcinoma. The oral microbiota may serve as an endogenous reservoir for gut microbiota, and transport of oral bacteria through the gastro-intestinal tract can set up a gut microbiome dysbiosis. Gut dysbiosis increases the production of potential hepatotoxins, including lipopolysaccharide, ethanol, and other volatile organic compounds such as acetone, phenol and cyclopentane. Moreover, gut dysbiosis increases intestinal permeability by disrupting tight junctions in the intestinal wall, leading to enhanced translocation of these hepatotoxins and enteric bacteria into the liver through the portal circulation. In particular, many animal studies support that oral administration of Porphyromonas gingivalis, a typical periodontopathic bacterium, induces disturbances in glycolipid metabolism and inflammation in the liver with gut dysbiosis. NAFLD, also known as the hepatic phenotype of metabolic syndrome, is strongly associated with metabolic complications, such as obesity and diabetes. Periodontal disease also has a bidirectional relationship with metabolic syndrome, and both diseases may induce oral and gut microbiome dysbiosis with insulin resistance and systemic chronic inflammation cooperatively. In this review, we will describe the link between periodontal disease and NAFLD with a focus on basic, epidemiological, and clinical studies, and discuss potential mechanisms linking the two diseases and possible therapeutic approaches focused on the microbiome. In conclusion, it is presumed that the pathogenesis of NAFLD involves a complex crosstalk between periodontal disease, gut microbiota, and metabolic syndrome. Thus, the conventional periodontal treatment and novel microbiome-targeted therapies that include probiotics, prebiotics and bacteriocins would hold great promise for preventing the onset and progression of NAFLD and subsequent complications in patients with periodontal disease.
Collapse
Affiliation(s)
- Ryutaro Kuraji
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo 102-0071, Japan
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Takahiko Shiba
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, United States
- Department of Periodontology, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Tien S Dong
- The Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Department of Medicine, University of California David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Yukihiro Numabe
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo 102-8159, Japan
| | - Yvonne L Kapila
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94143, United States
- Sections of Biosystems and Function and Periodontics, Professor and Associate Dean of Research, Felix and Mildred Yip Endowed Chair in Dentistry, University of California Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
36
|
Nisin E Is a Novel Nisin Variant Produced by Multiple Streptococcus equinus Strains. Microorganisms 2023; 11:microorganisms11020427. [PMID: 36838392 PMCID: PMC9958725 DOI: 10.3390/microorganisms11020427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Nisin A, the prototypical lantibiotic, is an antimicrobial peptide currently utilised as a food preservative, with potential for therapeutic applications. Here, we describe nisin E, a novel nisin variant produced by two Streptococcus equinus strains, APC4007 and APC4008, isolated from sheep milk. Shotgun whole genome sequencing and analysis revealed biosynthetic gene clusters similar to nisin U, with a unique rearrangement of the core peptide encoding gene within the cluster. The 3100.8 Da peptide by MALDI-TOF mass spectrometry, is 75% identical to nisin A, with 10 differences, including 2 deletions: Ser29 and Ile30, and 8 substitutions: Ile4Lys, Gly18Thr, Asn20Pro, Met21Ile, His27Gly, Val32Phe, Ser33Gly, and Lys34Asn. Nisin E producing strains inhibited species of Lactobacillus, Bacillus, and Clostridiodes and were immune to nisin U. Sequence alignment identified putative promoter sequences across the nisin producer genera, allowing for the prediction of genes in Streptococcus to be potentially regulated by nisin. S. equinus pangenome BLAST analyses detected 6 nisin E operons across 44 publicly available genomes. An additional 20 genomes contained a subset of nisin E transport/immunity and regulatory genes (nseFEGRK), without adjacent peptide production genes. These genes suggest that nisin E response mechanisms, distinct from the canonical nisin immunity and resistance operons, are widespread across the S. equinus species. The discovery of this new nisin variant and its immunity determinants in S. equinus suggests a central role for nisin in the competitive nature of the species.
Collapse
|
37
|
Pan N, Liu Y, Zhang H, Xu Y, Bao X, Sheng S, Liang Y, Liu B, Lyu Y, Li H, Ma F, Pan H, Wang X. Oral Vaccination with Engineered Probiotic Limosilactobacillus reuteri Has Protective Effects against Localized and Systemic Staphylococcus aureus Infection. Microbiol Spectr 2023; 11:e0367322. [PMID: 36723073 PMCID: PMC10100842 DOI: 10.1128/spectrum.03673-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/14/2023] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium responsible for most hospital-acquired (nosocomial) and community-acquired infections worldwide. The only therapeutic strategy against S. aureus-induced infections, to date, is antibiotic treatment. A protective vaccine is urgently needed in view of the emergence of antibiotic-resistant strains associated with high-mortality cases; however, no such vaccine is currently available. In our previous work, the feasibility of implementing a Lactobacillus delivery system for development of S. aureus oral vaccine was first discussed. Here, we describe systematic screening and evaluation of protective effects of engineered Lactobacillus against S. aureus infection in terms of different delivery vehicle strains and S. aureus antigens and in localized and systemic infection models. Limosilactobacillus reuteri WXD171 was selected as the delivery vehicle strain based on its tolerance of the gastrointestinal environment, adhesion ability, and antimicrobial activities in vitro and in vivo. We designed, constructed, and evaluated engineered L. reuteri strains expressing various S. aureus antigens. Among these, engineered L. reuteri WXD171-IsdB displayed effective protection against S. aureus-induced localized infection (pneumonia and skin infection) and, furthermore, a substantial survival benefit in systemic infection (sepsis). WXD171-IsdB induced mucosal responses in gut-associated lymphoid tissues, as evidenced by increased production of secretory IgA and interleukin 17A (IL-17A) and proliferation of lymphocytes derived from Peyer's patches. The probiotic L. reuteri-based oral vaccine appears to have strong potential as a prophylactic agent against S. aureus infections. Our findings regarding utilization of Lactobacillus delivery system in S. aureus vaccine development support the usefulness of this live vaccination strategy and its potential application in next-generation vaccine development. IMPORTANCE We systematically screened and evaluated protective effects of engineered Lactobacillus against S. aureus infection in terms of differing delivery vehicle strains and S. aureus antigens and in localized and systemic infection models. Engineered L. reuteri was developed and showed strong protective effects against both types of S. aureus-induced infection. Our findings regarding the utilization of a Lactobacillus delivery system in S. aureus vaccine development support the usefulness of this live vaccination strategy and its potential application in next-generation vaccine development.
Collapse
Affiliation(s)
- Na Pan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haochi Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ying Xu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xuemei Bao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shouxin Sheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yanchen Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Bohui Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yueqing Lyu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haotian Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Fangfei Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haiting Pan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Basic Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
38
|
Recent advances in genetic tools for engineering probiotic lactic acid bacteria. Biosci Rep 2023; 43:232386. [PMID: 36597861 PMCID: PMC9842951 DOI: 10.1042/bsr20211299] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
Synthetic biology has grown exponentially in the last few years, with a variety of biological applications. One of the emerging applications of synthetic biology is to exploit the link between microorganisms, biologics, and human health. To exploit this link, it is critical to select effective synthetic biology tools for use in appropriate microorganisms that would address unmet needs in human health through the development of new game-changing applications and by complementing existing technological capabilities. Lactic acid bacteria (LAB) are considered appropriate chassis organisms that can be genetically engineered for therapeutic and industrial applications. Here, we have reviewed comprehensively various synthetic biology techniques for engineering probiotic LAB strains, such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 mediated genome editing, homologous recombination, and recombineering. In addition, we also discussed heterologous protein expression systems used in engineering probiotic LAB. By combining computational biology with genetic engineering, there is a lot of potential to develop next-generation synthetic LAB with capabilities to address bottlenecks in industrial scale-up and complex biologics production. Recently, we started working on Lactochassis project where we aim to develop next generation synthetic LAB for biomedical application.
Collapse
|
39
|
Alexander JAN, Worrall LJ, Hu J, Vuckovic M, Satishkumar N, Poon R, Sobhanifar S, Rosell FI, Jenkins J, Chiang D, Mosimann WA, Chambers HF, Paetzel M, Chatterjee SS, Strynadka NCJ. Structural basis of broad-spectrum β-lactam resistance in Staphylococcus aureus. Nature 2023; 613:375-382. [PMID: 36599987 PMCID: PMC9834060 DOI: 10.1038/s41586-022-05583-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/18/2022] [Indexed: 01/05/2023]
Abstract
Broad-spectrum β-lactam antibiotic resistance in Staphylococcus aureus is a global healthcare burden1,2. In clinical strains, resistance is largely controlled by BlaR13, a receptor that senses β-lactams through the acylation of its sensor domain, inducing transmembrane signalling and activation of the cytoplasmic-facing metalloprotease domain4. The metalloprotease domain has a role in BlaI derepression, inducing blaZ (β-lactamase PC1) and mecA (β-lactam-resistant cell-wall transpeptidase PBP2a) expression3-7. Here, overcoming hurdles in isolation, we show that BlaR1 cleaves BlaI directly, as necessary for inactivation, with no requirement for additional components as suggested previously8. Cryo-electron microscopy structures of BlaR1-the wild type and an autocleavage-deficient F284A mutant, with or without β-lactam-reveal a domain-swapped dimer that we suggest is critical to the stabilization of the signalling loops within. BlaR1 undergoes spontaneous autocleavage in cis between Ser283 and Phe284 and we describe the catalytic mechanism and specificity underlying the self and BlaI cleavage. The structures suggest that allosteric signalling emanates from β-lactam-induced exclusion of the prominent extracellular loop bound competitively in the sensor-domain active site, driving subsequent dynamic motions, including a shift in the sensor towards the membrane and accompanying changes in the zinc metalloprotease domain. We propose that this enhances the expulsion of autocleaved products from the active site, shifting the equilibrium to a state that is permissive of efficient BlaI cleavage. Collectively, this study provides a structure of a two-component signalling receptor that mediates action-in this case, antibiotic resistance-through the direct cleavage of a repressor.
Collapse
Affiliation(s)
- J Andrew N Alexander
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam J Worrall
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
- HRMEM Facility, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jinhong Hu
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Marija Vuckovic
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nidhi Satishkumar
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
- Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Raymond Poon
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
- Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Solmaz Sobhanifar
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Federico I Rosell
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua Jenkins
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Chiang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Wesley A Mosimann
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Henry F Chambers
- Division of Infectious Diseases, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Som S Chatterjee
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
- Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada.
- HRMEM Facility, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
40
|
Jeong Y, Kong W, Lu T, Irudayaraj J. Soft hydrogel-shell confinement systems as bacteria-based bioactuators and biosensors. Biosens Bioelectron 2023; 219:114809. [PMID: 36274428 DOI: 10.1016/j.bios.2022.114809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/25/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Genetically engineered (GE) bacteria were utilized for developing functional systems upon confinement within a restricted space. Use of natural soft hydrogel such as alginate, gelatin, and agarose, have been investigated as promising approaches to design functional architectures. Nevertheless, a challenge is to develop functional microenvironments that support biofilm-like confinement in a relevant three-dimensional (3D) format for long-term studies. We demonstrate a natural soft hydrogel bioactuator based on alginate core-shell structures (0.25-2 mm core and 50-300 μm shell thickness) that enables 3D microbial colonization upon confinement with high cell density. Specially, our study evaluates the efficiency of bacteria-functional system by recapitulating various GE bacteria which can produce common reporter proteins, to demonstrate their actuator functions as well as dynamic pair-wise interactions. The structural design of the hydrogel can endure continued growth of various bacteria colonies within the confined space for over 10 days. The total amount of cellular biomass upon hydrogel-shell confinement was increased 5-fold compared to conventional techniques without hydrogel-shell. Furthermore, the enzymatic activity increased 3.8-fold and bioluminescence signal by 8-fold compared to the responses from conventional hydrogel systems. The conceptualized platform and our workflow represent a reliable strategy with core-shell structures to develop artificial hydrogel habitats as bacteria-based functional systems for bioactuation.
Collapse
Affiliation(s)
- Yoon Jeong
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wentao Kong
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
41
|
Edelstein J, Fritz M, Lai SK. Challenges and opportunities in gene editing of B cells. Biochem Pharmacol 2022; 206:115285. [PMID: 36241097 DOI: 10.1016/j.bcp.2022.115285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 01/29/2023]
Abstract
B cells have long been an underutilized target in immune cell engineering, despite a number of unique attributes that could address longstanding challenges in medicine. Notably, B cells evolved to secrete large quantities of antibodies for prolonged periods, making them suitable platforms for long-term protein delivery. Recent advances in gene editing technologies, such as CRISPR-Cas, have improved the precision and efficiency of engineering and expanded potential applications of engineered B cells. While most work on B cell editing has focused on ex vivo modification, a body of recent work has also advanced the possibility of in vivo editing applications. In this review, we will discuss both past and current approaches to B cell engineering, and its promising applications in immunology research and therapeutic gene editing.
Collapse
Affiliation(s)
- Jasmine Edelstein
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Marshall Fritz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Immunology and Microbiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
42
|
Langa S, Peirotén Á, Curiel JA, Arqués JL, Landete JM. Promoters for the expression of food-grade selectable markers in lactic acid bacteria and bifidobacteria. Appl Microbiol Biotechnol 2022; 106:7845-7856. [PMID: 36307628 PMCID: PMC11618144 DOI: 10.1007/s00253-022-12237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022]
Abstract
The genetic engineering of bacteria for food applications has biosafety requirements, including the use of non-antibiotic selectable markers. These can be gene-encoding bacteriocin immunity proteins, such as nisI and pedB, which require the use of promoters to ensure optimal expression. Our aim was to search for promoters for the expression of pediocin (pedB) and nisin (nisI) immunity genes, which could allow the selection of a wide variety of transformed lactic acid bacteria (LAB) and bifidobacteria strains. Eight promoters from LAB or bifidobacteria were initially studied using evoglow-Pp1 as the reporter gene in Lactococcus lactis NZ9000, resulting in the selection of P32, P3N, PTuR and PEF-P, which exhibited a strong constitutive expression. These promoters were further tested for the expression of the food-grade selectable markers pedB and nisI in agar diffusion assays with pediocin and nisin, respectively. The results obtained demonstrated that both the PTuR and PEF-P promoters allowed a good level of expression of nisI and pedB in the LAB and bifidobacteria strains tested. A suitable concentration of nisin or pediocin could be established for the selection of the strains transformed with vectors harbouring the combination of the selected promoters and markers nisI and pedB, and this was successfully applied to different strains of LAB and bifidobacteria. Therefore, PTuR and PEF-P promoters are excellent candidates for the expression of nisI and/or pedB as selectable markers in LAB and bifidobacteria, and they are suitable for use in food grade vectors to allow the selection of genetically engineered strains. KEY POINTS: • Food-grade vectors require non-antibiotic selectable markers such as pedB and nisI. • Eight promoters from LAB or bifidobacteria were initially tested in L. lactis NZ9000. • PTuR and PEF-P efficiently drove the expression of pedB and nisI in LAB and bifidobacteria.
Collapse
Affiliation(s)
- Susana Langa
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, Madrid, 28040, Spain.
| | - Ángela Peirotén
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, Madrid, 28040, Spain
| | - José Antonio Curiel
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, Madrid, 28040, Spain
| | - Juan Luis Arqués
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, Madrid, 28040, Spain
| | - José María Landete
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, Madrid, 28040, Spain
| |
Collapse
|
43
|
Flourieusse A, Bourgeois P, Schenckbecher E, Palvair J, Legrand D, Labbé C, Bescond T, Avoscan L, Orlowski S, Rouleau A, Frelet-Barrand A. Formation of intracellular vesicles within the Gram+ Lactococcus lactis induced by the overexpression of Caveolin-1β. Microb Cell Fact 2022; 21:239. [PMCID: PMC9670397 DOI: 10.1186/s12934-022-01944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/02/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract
Background
Caveolae are invaginated plasma membrane domains of 50–100 nm in diameter involved in many important physiological functions in eukaryotic cells. They are composed of different proteins, including the membrane-embedded caveolins and the peripheric cavins. Caveolin-1 has already been expressed in various expression systems (E. coli, insect cells, Toxoplasma gondii, cell-free system), generating intracellular caveolin-enriched vesicles in E. coli, insect cells and T. gondii. These systems helped to understand the protein insertion within the membrane and its oligomerization. There is still need for fundamental insights into the formation of specific domains on membrane, the deformation of a biological membrane driven by caveolin-1, the organization of a caveolar coat, and the requirement of specific lipids and proteins during the process. The aim of this study was to test whether the heterologously expressed caveolin-1β was able to induce the formation of intracellular vesicles within a Gram+ bacterium, Lactococcus lactis, since it displays a specific lipid composition different from E. coli and appears to emerge as a good alternative to E. coli for efficient overexpression of various membrane proteins.
Results
Recombinant bacteria transformed with the plasmid pNZ-HTC coding for the canine isoform of caveolin-1β were shown to produce caveolin-1β, in its functional oligomeric form, at a high expression level unexpected for an eukaryotic membrane protein. Electron microscopy revealed several intracellular vesicles from 30 to 60 nm, a size comparable to E. coli h-caveolae, beneath the plasma membrane of the overexpressing bacteria, showing that caveolin-1β is sufficient to induce membrane vesiculation. Immunolabelling studies showed antibodies on such neo-formed intracellular vesicles, but none on plasma membrane. Density gradient fractionation allowed the correlation between detection of oligomers on Western blot and appearance of vesicles measurable by DLS, showing the requirement of caveolin-1β oligomerization for vesicle formation.
Conclusions
Lactococcus lactis cells can heterologously overexpress caveolin-1β, generating caveolin-1β enriched intracellular neo-formed vesicles. These vesicles might be useful for potential co-expression of membrane proteins of pharmaceutical interest for their simplified functional characterization.
Collapse
|
44
|
Pechenov PY, Garagulya DA, Stanovov DS, Letarov AV. New Effective Method of Lactococcus Genome Editing Using Guide RNA-Directed Transposition. Int J Mol Sci 2022; 23:13978. [PMID: 36430465 PMCID: PMC9696066 DOI: 10.3390/ijms232213978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Lactococcus lactis is an important industrial microorganism and a widely used model object for research in the field of lactic acid bacteria (LAB) biology. The development of new L. lactis and related LAB strains with improved properties, including phage-resistant strains for dairy fermentation, LAB-based vaccines or strains with altered genotypes for research purposes, are hindered by the lack of genome-editing tools that allow for the easy and straightforward incorporation of a significant amount of the novel genetic material, such as large genes or operons, into the chromosomes of these bacteria. We recently employed a suggested system based on the CRISPR-Cas-associated transposon for the editing of the L. lactis genome. After the in-depth redesign of the system, we were able to achieve the stable incorporation of the fragments that were sized up to 10 kbp into the L. lactis beta-galactosidase gene. The efficiency of editing under the optimized conditions were 2 × 10-4 and 4 × 10-5 for 1 kbp and 10 kbp, respectively, which are sufficient for fast and easy modifications if a positive selection marker can be used.
Collapse
Affiliation(s)
- Pavel Yu Pechenov
- Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia
| | | | | | - Andrey V. Letarov
- Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia
| |
Collapse
|
45
|
In vivo monitoring of Lactiplantibacillus plantarum in the nasal and vaginal mucosa using infrared fluorescence. Appl Microbiol Biotechnol 2022; 106:6239-6251. [PMID: 35999391 PMCID: PMC9398905 DOI: 10.1007/s00253-022-12121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Lactic acid bacteria (LAB) of the genus Lactiplantibacillus have been explored as potential mucosal vaccine vectors due to their ability to elicit an immune response against expressed foreign antigens and to their safety. However, tools for monitoring LAB distribution and persistence at the mucosal surfaces are needed. Here, we characterize Lactiplantibacillus plantarum bacteria expressing the infrared fluorescent protein IRFP713 for exploring their in vivo distribution in the mucosa and potential use as a mucosal vaccine vector. This bacterial species is commonly used as a vaginal probiotic and was recently found to have a niche in the human nose. Three different fluorescent L. plantarum strains were obtained using the nisin-inducible pNZRK-IRFP713 plasmid which contains the nisRK genes, showing stable and constitutive expression of IRFP713 in vitro. One of these strains was further monitored in BALB/c mice using near-infrared fluorescence, indicating successful colonization of the nasal and vaginal mucosae for up to 72 h. This study thus provides a tool for the in vivo spatiotemporal monitoring of lactiplantibacilli, allowing non-invasive bacterial detection in these mucosal sites. KEY POINTS: • Stable and constitutive expression of the IRFP713 protein was obtained in different L. plantarum strains. • IRFP713+ L. plantarum 3.12.1 was monitored in vivo using near-infrared fluorescence. • Residence times observed after intranasal and vaginal inoculation were 24-72 h.
Collapse
|
46
|
Levit R, Cortes-Perez NG, de Moreno de Leblanc A, Loiseau J, Aucouturier A, Langella P, LeBlanc JG, Bermúdez-Humarán LG. Use of genetically modified lactic acid bacteria and bifidobacteria as live delivery vectors for human and animal health. Gut Microbes 2022; 14:2110821. [PMID: 35960855 PMCID: PMC9377234 DOI: 10.1080/19490976.2022.2110821] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
There is now strong evidence to support the interest in using lactic acid bacteria (LAB)in particular, strains of lactococci and lactobacilli, as well as bifidobacteria, for the development of new live vectors for human and animal health purposes. LAB are Gram-positive bacteria that have been used for millennia in the production of fermented foods. In addition, numerous studies have shown that genetically modified LAB and bifodobacteria can induce a systemic and mucosal immune response against certain antigens when administered mucosally. They are therefore good candidates for the development of new mucosal delivery strategies and are attractive alternatives to vaccines based on attenuated pathogenic bacteria whose use presents health risks. This article reviews the most recent research and advances in the use of LAB and bifidobacteria as live delivery vectors for human and animal health.
Collapse
Affiliation(s)
- Romina Levit
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Naima G. Cortes-Perez
- Université Paris-Saclay, INRAE, AgroParisTech, UMR 0496, 78350 Jouy-en-Josas, France
| | - Alejandra de Moreno de Leblanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Jade Loiseau
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Anne Aucouturier
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Luis G. Bermúdez-Humarán
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France,CONTACT Luis G. Bermúdez-Humarán Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| |
Collapse
|
47
|
Zahirović A, Berlec A. Targeting IL-6 by engineered Lactococcus lactis via surface-displayed affibody. Microb Cell Fact 2022; 21:143. [PMID: 35842694 PMCID: PMC9287920 DOI: 10.1186/s12934-022-01873-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dysregulated production of interleukin (IL)-6 is implicated in the pathology of inflammatory bowel disease (IBD). Neutralization of IL-6 in the gut by safe probiotic bacteria may help alleviate intestinal inflammation. Here, we developed Lactococcus lactis with potent and selective IL-6 binding activity by displaying IL-6-specific affibody on its surface. RESULTS Anti-IL-6 affibody (designated as ZIL) was expressed in fusion with lactococcal secretion peptide Usp45 and anchoring protein AcmA. A high amount of ZIL fusion protein was detected on bacterial surface, and its functionality was validated by confocal microscopy and flow cytometry. Removal of IL-6 from the surrounding medium by the engineered L. lactis was evaluated using enzyme-linked immunosorbent assay. ZIL-displaying L. lactis sequestered recombinant human IL-6 from the solution in a concentration-dependent manner by up to 99% and showed no binding to other pro-inflammatory cytokines, thus proving to be highly specific for IL-6. The removal was equally efficient across different IL-6 concentrations (150-1200 pg/mL) that were found to be clinically relevant in IBD patients. The ability of engineered bacteria to capture IL-6 from cell culture supernatant was assessed using immunostimulated human monocytic cell lines (THP-1 and U-937) differentiated into macrophage-like cells. ZIL-displaying L. lactis reduced the content of IL-6 in the supernatants of both cell lines in a concentration-dependent manner by up to 94%. Dose response analysis showed that bacterial cell concentrations of 107 and 109 CFU/mL (colony forming units per mL) were required for half-maximal removal of recombinant and macrophage-derived IL-6, respectively. CONCLUSION The ability of ZIL-displaying L. lactis to bind pathological concentrations of IL-6 at common bacterial doses suggests physiological significance.
Collapse
Affiliation(s)
- Abida Zahirović
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia. .,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
48
|
Guo T, Cui Y, Zhang L, Xu X, Xu Z, Kong J. Holin-assisted bacterial recombinant protein export. Biotechnol Bioeng 2022; 119:2908-2918. [PMID: 35822237 DOI: 10.1002/bit.28179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 11/05/2022]
Abstract
A simple generic method for enhancing extracellular protein yields in engineered bacteria is still lacking. Here, we demonstrated that phage-encoded holin can be used to export proteins to the extracellular medium in both Gram-negative Escherichia coli and -positive Lactococcus lactis. When a putative holin gene LLNZ_RS10380 annotated in the genome of L. lactis NZ9000 (hol380) was recombinantly expressed in E. coli BL21(DE3), the Hol380 oligomerized up to hexamer in the cytoplasmic membrane, yielding membrane pore to allow the passage of cytosolic β-galatosidase (116 kDa), whose extracellular production reached 54.59 U/μL, accounting for 76.37% of the total activity. However, the overexpressed Hol380 could not release cytosolic proteins across the membrane in L. lactis NZ9000, but increased the secretory production of staphylococcal nuclease to 2.55-fold and fimbrial adhesin FaeG to 2.40-fold compared with those guided by signal peptide Usp45 alone. By using a combination of proteomics and transcriptional level analysis, we found that overexpression of the Hol380 raised the accumulation of Ffh and YidC involved in the signal recognition particle pathway in L. lactis, suggesting an alternative road participating in protein secretion. This study proposed a new approach by expressing holin in bacterial cell factories to export target proteins of economic or medical interest. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Yue Cui
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Lingwen Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Xiaoning Xu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Zhenxiang Xu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| |
Collapse
|
49
|
Tan SY, How YH, Siak PY, Pui LP, In LLA. Development of therapeutic or prophylactic recombinant Lactococcus lactis NZ9000-fermented milk with KRAS mimotope. FOOD BIOTECHNOL 2022. [DOI: 10.1080/08905436.2022.2093216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shi-Yie Tan
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Cheras, Malaysia
| | - Yu-Hsuan How
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Cheras, Malaysia
| | - Pui-Yan Siak
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Malaysia
| | - Liew-Phing Pui
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Cheras, Malaysia
| | - Lionel Lian-Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Malaysia
| |
Collapse
|
50
|
Kazi TA, Acharya A, Mukhopadhyay BC, Mandal S, Arukha AP, Nayak S, Biswas SR. Plasmid-Based Gene Expression Systems for Lactic Acid Bacteria: A Review. Microorganisms 2022; 10:1132. [PMID: 35744650 PMCID: PMC9229153 DOI: 10.3390/microorganisms10061132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 01/27/2023] Open
Abstract
Lactic acid bacteria (LAB) play a very vital role in food production, preservation, and as probiotic agents. Some of these species can colonize and survive longer in the gastrointestinal tract (GIT), where their presence is crucially helpful to promote human health. LAB has also been used as a safe and efficient incubator to produce proteins of interest. With the advent of genetic engineering, recombinant LAB have been effectively employed as vectors for delivering therapeutic molecules to mucosal tissues of the oral, nasal, and vaginal tracks and for shuttling therapeutics for diabetes, cancer, viral infections, and several gastrointestinal infections. The most important tool needed to develop genetically engineered LABs to produce proteins of interest is a plasmid-based gene expression system. To date, a handful of constitutive and inducible vectors for LAB have been developed, but their limited availability, host specificity, instability, and low carrying capacity have narrowed their spectrum of applications. The current review discusses the plasmid-based vectors that have been developed so far for LAB; their functionality, potency, and constraints; and further highlights the need for a new, more stable, and effective gene expression platform for LAB.
Collapse
Affiliation(s)
- Tawsif Ahmed Kazi
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Aparupa Acharya
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Bidhan Chandra Mukhopadhyay
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India;
| | - Ananta Prasad Arukha
- Researcher 5 Department of Neurosurgery, Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Subhendu Nayak
- Sr. Scientist, Clorox, Better Health VMS, Durham, NC 27701, USA;
| | - Swadesh Ranjan Biswas
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| |
Collapse
|