1
|
Kardos M, Curione D, Valverde I, van Schuppen J, Goo HW, Kellenberger CJ, Secinaro A, Caro-Domínguez P. Pediatric Cardiovascular Computed Tomography: Clinical Indications, Technique, and Standardized Reporting. Recommendations From the Cardiothoracic Taskforce of the European Society of Pediatric Radiology. J Thorac Imaging 2024; 39:18-33. [PMID: 37884389 DOI: 10.1097/rti.0000000000000750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Congenital heart diseases affect 1% of all live births in the general population. The prognosis of these children is increasingly improving due to advances in medical care and surgical treatment. Imaging is also evolving rapidly to assess accurately complex cardiac anomalies prenatally and postnatally. Transthoracic echocardiography is the gold-standard imaging technique to diagnose and follow-up children with congenital heart disease. Cardiac computed tomography imaging plays a key role in the diagnosis of children with congenital heart defects that require intervention, due to its high temporal and spatial resolution, with low radiation doses. It is challenging for radiologists, not primarily specialized in this field, to perform and interpret these studies due to the difficult anatomy, physiology, and postsurgical changes. Technical challenges consist of necessary electrocardiogram gating and contrast bolus timing to obtain an optimal examination. This article aims to define indications for pediatric cardiac computed tomography, to explain how to perform and report these studies, and to discuss future applications of this technique.
Collapse
Affiliation(s)
- Marek Kardos
- Department of Functional Diagnostics, Children's Cardiac Center, Bratislava, Slovakia
| | - Davide Curione
- Department of Imaging, Advanced Cardiothoracic Imaging Unit, Pediatric Hospital Bambino Gesu, Rome, Italy
| | - Israel Valverde
- Department of Radiology, Pediatric Radiology Unit, Virgen del Rocio University Hospital, Seville, Spain
| | - Joost van Schuppen
- Department of Radiology and Nuclear Medicine, Emma Children's Hospital-Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hyun Woo Goo
- Department of Radiology and Research Institute of Radiology, Asian Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Aurelio Secinaro
- Department of Imaging, Advanced Cardiothoracic Imaging Unit, Pediatric Hospital Bambino Gesu, Rome, Italy
| | - Pablo Caro-Domínguez
- Department of Radiology, Pediatric Radiology Unit, Virgen del Rocio University Hospital, Seville, Spain
| |
Collapse
|
2
|
Brida M, Chessa M, Celermajer D, Li W, Geva T, Khairy P, Griselli M, Baumgartner H, Gatzoulis MA. Atrial septal defect in adulthood: a new paradigm for congenital heart disease. Eur Heart J 2021; 43:2660-2671. [PMID: 34535989 DOI: 10.1093/eurheartj/ehab646] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/09/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Atrial septal defects (ASDs) represent the most common congenital heart defect diagnosed in adulthood. Although considered a simple defect, challenges in optimal diagnostic and treatment options still exist due to great heterogeneity in terms of anatomy and time-related complications primarily arrhythmias, thromboembolism, right heart failure and, in a subset of patients, pulmonary arterial hypertension (PAH). Atrial septal defects call for tertiary expertise where all options may be considered, namely catheter vs. surgical closure, consideration of pre-closure ablation for patients with atrial tachycardia and suitability for closure or/and targeted therapy for patients with PAH. This review serves to update the clinician on the latest evidence, the nuances of optimal diagnostics, treatment options, and long-term follow-up care for patients with an ASD.
Collapse
Affiliation(s)
- Margarita Brida
- Adult Congenital Heart Centre and National Centre for Pulmonary Hypertension, Royal Brompton & Harefield Hospitals, National Heart and Lung Institute, Imperial College, Sydney Street, London SW3 6NP, UK.,Division of Adult Congenital Heart Disease, Department of Cardiovascular Medicine, University Hospital Centre Zagreb, Kispaticeva ul. 12, Zagreb 10000, Croatia.,Department of Medical Rehabilitation, Medical Faculty, University of Rijeka, Ul. Braće Branchetta 20/1, Rijeka 51000, Croatia
| | - Massimo Chessa
- ACHD Unit - Pediatric and Adult Congenital Heart Centre, IRCCS-Policlinico San Donato, Piazza Edmondo Malan, 2, Milan 20097, Italy.,UniSR - Vita Salute San Raffaele University, Via Olgettina, 58, Milan 20132, Italy
| | - David Celermajer
- Heart Research Institute, University of Sydney, Camperdown, NSW 2050, Australia
| | - Wei Li
- Adult Congenital Heart Centre and National Centre for Pulmonary Hypertension, Royal Brompton & Harefield Hospitals, National Heart and Lung Institute, Imperial College, Sydney Street, London SW3 6NP, UK
| | - Tal Geva
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.,Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Paul Khairy
- Department of Medicine, Montreal Heart Institute, Université de Montréal, 5000 Rue Bélanger, Montréal, QC H1T 1C8, Canada
| | - Massimo Griselli
- Division of Pediatric Cardiovascular Surgery, Masonic Children's Hospital, University of Minnesota, 2450 Riverside Ave, Minneapolis, MN 55454, USA
| | - Helmut Baumgartner
- Department of Cardiology III: Adult Congenital and Valvular Heart Disease, University Hospital Muenster, Albert-Schweitzer-Campus 1, Muenster 48149, Germany
| | - Michael A Gatzoulis
- Adult Congenital Heart Centre and National Centre for Pulmonary Hypertension, Royal Brompton & Harefield Hospitals, National Heart and Lung Institute, Imperial College, Sydney Street, London SW3 6NP, UK
| |
Collapse
|
3
|
Pruitt A, Rich A, Liu Y, Jin N, Potter L, Tong M, Rajpal S, Simonetti O, Ahmad R. Fully self-gated whole-heart 4D flow imaging from a 5-minute scan. Magn Reson Med 2020; 85:1222-1236. [PMID: 32996625 DOI: 10.1002/mrm.28491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/20/2020] [Accepted: 08/01/2020] [Indexed: 11/07/2022]
Abstract
PURPOSE To develop and validate an acquisition and processing technique that enables fully self-gated 4D flow imaging with whole-heart coverage in a fixed 5-minute scan. THEORY AND METHODS The data are acquired continuously using Cartesian sampling and sorted into respiratory and cardiac bins using the self-gating signal. The reconstruction is performed using a recently proposed Bayesian method called ReVEAL4D. ReVEAL4D is validated using data from 8 healthy volunteers and 2 patients and compared with compressed sensing technique, L1-SENSE. RESULTS Healthy subjects-Compared with 2D phase-contrast MRI (2D-PC), flow quantification from ReVEAL4D shows no significant bias. In contrast, the peak velocity and peak flow rate for L1-SENSE are significantly underestimated. Compared with traditional parallel MRI-based 4D flow imaging, ReVEAL4D demonstrates small but significant biases in net flow and peak flow rate, with no significant bias in peak velocity. All 3 indices are significantly and more markedly underestimated by L1-SENSE. Patients-Flow quantification from ReVEAL4D agrees well with the 2D-PC reference. In contrast, L1-SENSE markedly underestimated peak velocity. CONCLUSIONS The combination of highly accelerated 5-minute Cartesian acquisition, self-gating, and ReVEAL4D enables whole-heart 4D flow imaging with accurate flow quantification.
Collapse
Affiliation(s)
- Aaron Pruitt
- Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Adam Rich
- Biomedical Engineering, The Ohio State University, Columbus, OH, USA.,Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA
| | - Yingmin Liu
- Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Ning Jin
- Cardiovascular MR R&D, Siemens Medical Solutions USA Inc., Columbus, OH, USA
| | - Lee Potter
- Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA.,Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Matthew Tong
- Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Saurabh Rajpal
- Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Orlando Simonetti
- Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA.,Internal Medicine, The Ohio State University, Columbus, OH, USA.,Radiology, The Ohio State University, Columbus, OH, USA
| | - Rizwan Ahmad
- Biomedical Engineering, The Ohio State University, Columbus, OH, USA.,Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA.,Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Urmeneta Ulloa J, Álvarez Vázquez A, Martínez de Vega V, Cabrera JÁ. Evaluation of Cardiac Shunts With
4D
Flow Cardiac Magnetic Resonance: Intra‐ and Interobserver Variability. J Magn Reson Imaging 2020; 52:1055-1063. [DOI: 10.1002/jmri.27158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/03/2023] Open
Affiliation(s)
- Javier Urmeneta Ulloa
- Cardiology Department. Quirón‐Salud University Hospital European University of Madrid Madrid Spain
| | - Ana Álvarez Vázquez
- Radiology Department. Quirón‐Salud University Hospital European University of Madrid Madrid Spain
| | - Vicente Martínez de Vega
- Radiology Department. Quirón‐Salud University Hospital European University of Madrid Madrid Spain
| | - José Ángel Cabrera
- Cardiology Department. Quirón‐Salud University Hospital European University of Madrid Madrid Spain
| |
Collapse
|
5
|
Validation of 4D flow CMR against simultaneous invasive hemodynamic measurements: a swine study. Int J Cardiovasc Imaging 2019; 35:1111-1118. [PMID: 30963352 PMCID: PMC6534524 DOI: 10.1007/s10554-019-01593-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/28/2019] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to compare invasively measured aorta flow with 2D phase contrast flow and 4D flow measurements by cardiovascular magnetic resonance (CMR) imaging in a large animal model. Nine swine (mean weight 63 ± 4 kg) were included in the study. 4D flow CMR exams were performed on a 1.5T MRI scanner. Flow measurements were performed on 4D flow images at the aortic valve level, in the ascending aorta, and main pulmonary artery. Simultaneously, flow was measured using an invasive flow probe, placed around the ascending aorta. Additionally, standard 2D phase contrast flow and 2D left ventricular (LV) volumetric data were used for comparison. The correlations of cardiac output (CO) between the invasive flow probe, and CMR modalities were strong to very strong. CO measured by 4D flow CMR correlated better with the CO measured by the invasive flow probe than 2D flow CMR flow and volumetric LV data (4D flow CMR: Spearman’s rho = 0.86 at the aortic valve level and 0.90 at the ascending aorta level; 2D flow CMR: 0.67 at aortic valve level; LV measurements: 0.77). In addition, there tended to be a correlation between mean pulmonary artery flow and aorta flow with 4D flow (Spearman’s rho = 0.65, P = 0.07), which was absent in measurements obtained with 2D flow CMR (Spearman’s rho = 0.40, P = 0.33). This study shows that aorta flow can be accurately measured by 4D flow CMR compared to simultaneously measured invasive flow. This helps to further validate the quantitative reliability of this technique.
Collapse
|
6
|
Evaluation of atrial septal defects with 4D flow MRI-multilevel and inter-reader reproducibility for quantification of shunt severity. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 32:269-279. [PMID: 30171383 PMCID: PMC6424937 DOI: 10.1007/s10334-018-0702-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/10/2018] [Accepted: 08/16/2018] [Indexed: 01/08/2023]
Abstract
Purpose With the hypothesis that 4D flow can be used in evaluation of cardiac shunts, we seek to evaluate the multilevel and interreader reproducibility of measurements of the blood flow, shunt fraction and shunt volume in patients with atrial septum defect (ASD) in practice at multiple clinical sites. Materials and methods Four-dimensional flow MRI examinations were performed at four institutions across Europe and the US. Twenty-nine patients (mean age, 43 years; 11 male) were included in the study. Flow measurements were performed at three levels (valve, main artery and periphery) in both the pulmonary and systemic circulation by two independent readers and compared against stroke volumes from 4D flow anatomic data. Further, the shunt ratio (Qp/Qs) was calculated. Additionally, shunt volume was quantified at the atrial level by tracking the atrial septum. Results Measurements of the pulmonary blood flow at multiple levels correlate well whether measuring at the valve, main pulmonary artery or branch pulmonary arteries (r = 0.885–0.886). Measurements of the systemic blood flow show excellent correlation, whether measuring at the valve, ascending aorta or sum of flow from the superior vena cava (SVC) and descending aorta (r = 0.974–0.991). Intraclass agreement between the two observers for the flow measurements varies between 0.96 and 0.99. Compared with stroke volume, pulmonic flow is underestimated with 0.26 l/min at the main pulmonary artery level, and systemic flow is overestimated with 0.16 l/min at the ascending aorta level. Direct measurements of ASD flow are feasible in 20 of 29 (69%) patients. Conclusion Blood flow and shunt quantification measured at multiple levels and performed by different readers are reproducible and consistent with 4D flow MRI. Electronic supplementary material The online version of this article (10.1007/s10334-018-0702-z) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Four-Dimensional Phase Contrast Magnetic Resonance Imaging Protocol Optimization Using Patient-Specific 3-Dimensional Printed Replicas for In Vivo Imaging Before and After Flow Diverter Placement. World Neurosurg 2017. [DOI: 10.1016/j.wneu.2017.06.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Lawley CM, Broadhouse KM, Callaghan FM, Winlaw DS, Figtree GA, Grieve SM. 4D flow magnetic resonance imaging: role in pediatric congenital heart disease. Asian Cardiovasc Thorac Ann 2017; 26:28-37. [PMID: 28185475 DOI: 10.1177/0218492317694248] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Imaging-based evaluation of cardiac structure and function remains paramount in the diagnosis and monitoring of congenital heart disease in childhood. Accurate measurements of intra- and extracardiac hemodynamics are required to inform decision making, allowing planned timing of interventions prior to deterioration of cardiac function. Four-dimensional flow magnetic resonance imaging is a nonionizing noninvasive technology that allows accurate and reproducible delineation of blood flow at any anatomical location within the imaging volume of interest, and also permits derivation of physiological parameters such as kinetic energy and wall shear stress. Four-dimensional flow is the focus of a great deal of attention in adult medicine, however, the translation of this imaging technique into the pediatric population has been limited to date. A more broad-scaled application of 4-dimensional flow in pediatric congenital heart disease stands to increase our fundamental understanding of the cause and significance of abnormal blood flow patterns, may improve risk stratification, and inform the design and use of surgical and percutaneous correction techniques. This paper seeks to outline the application of 4-dimensional flow in the assessment and management of the pediatric population affected by congenital heart disease.
Collapse
Affiliation(s)
- Claire M Lawley
- 1 Sydney Translational Imaging Laboratory, Sydney Heart Research Institute, Charles Perkins Centre, University of Sydney, Sydney, Australia.,2 North Shore Heart Research Group, Kolling Institute of Medical Research, Sydney Medical School Northern, University of Sydney, Sydney, Australia.,3 Clinical Population Perinatal Health Research, Kolling Institute, University of Sydney, Sydney, Australia
| | - Kathryn M Broadhouse
- 1 Sydney Translational Imaging Laboratory, Sydney Heart Research Institute, Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Fraser M Callaghan
- 1 Sydney Translational Imaging Laboratory, Sydney Heart Research Institute, Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - David S Winlaw
- 4 Heart Centre for Children & University of Sydney, The Children's Hospital at Westmead, Sydney, Australia
| | - Gemma A Figtree
- 1 Sydney Translational Imaging Laboratory, Sydney Heart Research Institute, Charles Perkins Centre, University of Sydney, Sydney, Australia.,2 North Shore Heart Research Group, Kolling Institute of Medical Research, Sydney Medical School Northern, University of Sydney, Sydney, Australia
| | - Stuart M Grieve
- 1 Sydney Translational Imaging Laboratory, Sydney Heart Research Institute, Charles Perkins Centre, University of Sydney, Sydney, Australia.,2 North Shore Heart Research Group, Kolling Institute of Medical Research, Sydney Medical School Northern, University of Sydney, Sydney, Australia.,5 Department of Radiology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
9
|
Update on the Role of Cardiac Magnetic Resonance Imaging in Congenital Heart Disease. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:2. [PMID: 28144782 DOI: 10.1007/s11936-017-0504-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OPINION STATEMENT Cardiac magnetic resonance imaging (CMR) is an important imaging modality in the evaluation of congenital heart diseases (CHD). CMR has several strengths including good spatial and temporal resolutions, wide field-of-view, and multi-planar imaging capabilities. CMR provides significant advantages for imaging in CHD through its ability to measure function, flow and vessel sizes, create three-dimensional reconstructions, and perform tissue characterization, all in a single imaging study. Thus, CMR is the most comprehensive imaging modality available today for the evaluation of CHD. Newer MRI sequences and post-processing tools will allow further development of quantitative methods of analysis, and opens the door for risk stratification in CHD. CMR also can interface with computer modeling, 3D printing, and other methods of understanding the complex anatomic and physiologic relationships in CHD.
Collapse
|
10
|
Owen JW, Raptis CA. Emerging Clinical Applications of 4D Flow MR in the Heart and Aorta. CURRENT RADIOLOGY REPORTS 2016. [DOI: 10.1007/s40134-016-0188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Kawakubo M, Akamine H, Yamasaki Y, Takemura A, Abe K, Hosokawa K, Morishita J, Nagao M. Three-dimensional phase contrast magnetic resonance imaging validated to assess pulmonary artery flow in patients with chronic thromboembolic pulmonary hypertension. Radiol Phys Technol 2016; 10:249-255. [PMID: 27783357 DOI: 10.1007/s12194-016-0383-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/15/2016] [Accepted: 10/20/2016] [Indexed: 11/29/2022]
Abstract
In this study, three-dimensional phase contrast magnetic resonance imaging (3D-PC MRI), a novel technique, was validated to assess pulmonary artery (PA) flow in patients with chronic thromboembolic pulmonary hypertension (CTEPH). The MR data of PAs from 3D-PC and two-dimensional PC (2D-PC) from before and after treatment for 3 patients with CTEPH were retrospectively analyzed. Additionally, 3D- and 2D-PC MR scans of PA were performed in 5 healthy volunteers. Correlation of stroke volumes (SVs) obtained by 3D-PC and 2D-PC was analyzed using Pearson's correlation coefficients. There was an excellent correlation in the SV of main PA, left PA and right PA between 3D-PC and 2D-PC (main PA: r = 0.91, p < 0.01, left PA: r = 0.72, p < 0.01 and right PA: r = 0.77, p < 0.01). In conclusion, 3D-PC MRI was able to accurately quantify the PA flow in patients with CTEPH.
Collapse
Affiliation(s)
- Masateru Kawakubo
- Department of Radiological Technology, Faculty of Fukuoka Medical Technology, Teikyo University, 6-22 Misaki-machi, Omuta, Fukuoka, Japan.
| | - Hiroshi Akamine
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan.,Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuzo Yamasaki
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Kohtaro Abe
- Department of Advanced Cardiovascular Regulation and Therapeutics, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - Kazuya Hosokawa
- Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Junji Morishita
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Michinobu Nagao
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
12
|
Left Atrial 4-Dimensional Flow Magnetic Resonance Imaging: Stasis and Velocity Mapping in Patients With Atrial Fibrillation. Invest Radiol 2016; 51:147-54. [PMID: 26488375 DOI: 10.1097/rli.0000000000000219] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Left atrial (LA) 4-dimensional flow magnetic resonance imaging (MRI) was used to derive anatomic maps of LA stasis, peak velocity, and time-to-peak (TTP) velocity in patients with atrial fibrillation (AF) and to identify relationships between LA flow with LA volume and patient characteristics. MATERIALS AND METHODS Four-dimensional flow MRI for the in vivo assessment of time-resolved 3-dimensional LA blood flow velocities was performed in 111 subjects: 42 patients with a history of AF and in sinus rhythm (AF-sinus), 39 patients with persistent AF (AF-afib), 10 young healthy volunteers (HVs), and 20 age-appropriate controls (CTRL). Data analysis included the 3-dimensional segmentation of the LA and the calculation of LA stasis, peak velocity, and TTP maps. Regional LA flow dynamics were quantified by calculating mean stasis, peak velocity, and TTP in the LA center region and the region adjacent to the LA wall. RESULTS A sensitivity analysis identified thresholds for global LA stasis (<0.1 m/s) and peak velocity (top 5% LA velocities), which detected significant differences between AF patients and controls for global LA stasis (HV, 25% ± 5%; CTRL, 29% ± 10%; AF-sinus, 41% ± 13%; AF-afib, 52% ± 17%) and peak velocity (HV, 0.43 ± 0.02 m/s; CTRL, 0.37 ± 0.04 m/s; AF-sinus, 0.33 ± 0.05 m/s; AF-afib, 0.30 ± 0.05 m/s). Regional analysis revealed significantly increased stasis at both LA center and wall for AF patients compared with age-appropriate controls (29%-84% difference, P < 0.006) and for AF-afib versus AF-sinus patients (22%-30% difference, P < 0.004). In addition, stasis close to the LA wall was significantly elevated (P < 0.001) compared with the LA center for all subject groups. Multiple regressions revealed significant (RAdj = 0.45-0.50, P < 0.001) relationships between impaired global LA flow (reduced velocity and increased stasis) with age (|β| = 0.27-0.50, P < 0.002) and LA volume (|β| = 0.26-0.50, P < 0.003). CONCLUSIONS Atrial 4-dimensional flow MRI detected changes in global and regional LA flow dynamics associated with AF, age, and LA volume. Longitudinal studies are needed to test the diagnostic value of LA flow metrics as potential risk factors for thromboembolic events.
Collapse
|
13
|
Improved Semiautomated 4D Flow MRI Analysis in the Aorta in Patients With Congenital Aortic Valve Anomalies Versus Tricuspid Aortic Valves. J Comput Assist Tomogr 2016; 40:102-8. [PMID: 26466113 DOI: 10.1097/rct.0000000000000312] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to systematically investigate a newly developed semiautomated workflow for the analysis of aortic 4-dimensional flow MRI and its ability to detect hemodynamic differences in patients with congenitally altered aortic valve (bicuspid or quadricuspid valves) compared with tricuspid aortic valves. METHODS Four-dimensional flow MRI data were acquired in 20 patients with aortic dilatation (9 tricuspid aortic valves, 11 congenitally altered aortic valves). A semiautomated workflow was evaluated regarding interobserver variability, accuracy of net flow, regurgitant fraction and peak systolic velocity, and the ability to detect differences between cohorts. Results were compared with manual segmentation of vessel contours. RESULTS Despite the significantly reduced analysis time, a good interobserver agreement was found for net flow and peak systolic velocity, and a moderate agreement was found for regurgitation. Significant differences in peak velocities in the descending aorta (P = 0.014) could be detected. CONCLUSIONS Four-dimensional flow MRI-based semiautomated analysis of aortic hemodynamics can be performed with good reproducibility and accuracy.
Collapse
|
14
|
Stankovic Z. Four-dimensional flow magnetic resonance imaging in cirrhosis. World J Gastroenterol 2016; 22:89-102. [PMID: 26755862 PMCID: PMC4698511 DOI: 10.3748/wjg.v22.i1.89] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/08/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
Since its introduction in the 1970’s, magnetic resonance imaging (MRI) has become a standard imaging modality. With its broad and standardized application, it is firmly established in the clinical routine and an essential element in cardiovascular and abdominal imaging. In addition to sonography and computer tomography, MRI is a valuable tool for diagnosing cardiovascular and abdominal diseases, for determining disease severity, and for assessing therapeutic success. MRI techniques have improved over the last few decades, revealing not just morphologic information, but functional information about perfusion, diffusion and hemodynamics as well. Four-dimensional (4D) flow MRI, a time-resolved phase contrast-MRI with three-dimensional (3D) anatomic coverage and velocity encoding along all three flow directions has been used to comprehensively assess complex cardiovascular hemodynamics in multiple regions of the body. The technique enables visualization of 3D blood flow patterns and retrospective quantification of blood flow parameters in a region of interest. Over the last few years, 4D flow MRI has been increasingly performed in the abdominal region. By applying different acceleration techniques, taking 4D flow MRI measurements has dropped to a reasonable scanning time of 8 to 12 min. These new developments have encouraged a growing number of patient studies in the literature validating the technique’s potential for enhanced evaluation of blood flow parameters within the liver’s complex vascular system. The purpose of this review article is to broaden our understanding of 4D flow MRI for the assessment of liver hemodynamics by providing insights into acquisition, data analysis, visualization and quantification. Furthermore, in this article we highlight its development, focussing on the clinical application of the technique.
Collapse
|
15
|
Hsiao A, Yousaf U, Alley MT, Lustig M, Chan FP, Newman B, Vasanawala SS. Improved quantification and mapping of anomalous pulmonary venous flow with four-dimensional phase-contrast MRI and interactive streamline rendering. J Magn Reson Imaging 2015; 42:1765-76. [PMID: 25914149 PMCID: PMC4843111 DOI: 10.1002/jmri.24928] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/07/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cardiac MRI is routinely performed for quantification of shunt flow in patients with anomalous pulmonary veins, but can be technically-challenging to perform. Four-dimensional phase-contrast (4D-PC) MRI has potential to simplify this exam. We sought to determine whether 4D-PC may be a viable clinical alternative to conventional 2D phase-contrast MR imaging. METHODS With institutional review board approval and HIPAA-compliance, we retrospectively identified all patients with anomalous pulmonary veins who underwent cardiac MRI at either 1.5 Tesla (T) or 3T with parallel-imaging compressed-sensing (PI-CS) 4D-PC between April, 2011 and October, 2013. A total of 15 exams were included (10 male, 5 female). Algorithms for interactive streamline visualization were developed and integrated into in-house software. Blood flow was measured at the valves, pulmonary arteries and veins, cavae, and any associated shunts. Pulmonary veins were mapped to their receiving atrial chamber with streamlines. The intraobserver, interobserver, internal consistency of flow measurements, and consistency with conventional MRI were then evaluated with Pearson correlation and Bland-Altman analysis. RESULTS Triplicate measurements of blood flow from 4D-PC were highly consistent, particularly at the aortic and pulmonary valves (cv 2-3%). Flow measurements were reproducible by a second observer (ρ = 0.986-0.999). Direct measurements of shunt volume from anomalous veins and intracardiac shunts matched indirect estimates from the outflow valves (ρ = 0.966). Measurements of shunt fraction using 4D-PC using any approach were more consistent with ventricular volumetric displacements than conventional 2D-PC (ρ = 0.972-0.991 versus 0.929). CONCLUSION Shunt flow may be reliably quantified with 4D-PC MRI, either indirectly or with detailed delineation of flow from multiple shunts. The 4D-PC may be a more accurate alternative to conventional MRI.
Collapse
Affiliation(s)
- Albert Hsiao
- Department of Radiology, University of California, San Diego, California, USA
| | - Ufra Yousaf
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Marcus T. Alley
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Michael Lustig
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, California, USA
| | - Frandics Pak Chan
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Beverley Newman
- Department of Radiology, Stanford University, Stanford, California, USA
| | | |
Collapse
|
16
|
4-D flow magnetic resonance imaging: blood flow quantification compared to 2-D phase-contrast magnetic resonance imaging and Doppler echocardiography. Pediatr Radiol 2015; 45:804-13. [PMID: 25487721 PMCID: PMC4450116 DOI: 10.1007/s00247-014-3246-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/29/2014] [Accepted: 11/12/2014] [Indexed: 01/27/2023]
Abstract
BACKGROUND Doppler echocardiography (echo) is the reference standard for blood flow velocity analysis, and two-dimensional (2-D) phase-contrast magnetic resonance imaging (MRI) is considered the reference standard for quantitative blood flow assessment. However, both clinical standard-of-care techniques are limited by 2-D acquisitions and single-direction velocity encoding and may make them inadequate to assess the complex three-dimensional hemodynamics seen in congenital heart disease. Four-dimensional flow MRI (4-D flow) enables qualitative and quantitative analysis of complex blood flow in the heart and great arteries. OBJECTIVES The objectives of this study are to compare 4-D flow with 2-D phase-contrast MRI for quantification of aortic and pulmonary flow and to evaluate the advantage of 4-D flow-based volumetric flow analysis compared to 2-D phase-contrast MRI and echo for peak velocity assessment in children and young adults. MATERIALS AND METHODS Two-dimensional phase-contrast MRI of the aortic root, main pulmonary artery (MPA), and right and left pulmonary arteries (RPA, LPA) and 4-D flow with volumetric coverage of the aorta and pulmonary arteries were performed in 50 patients (mean age: 13.1 ± 6.4 years). Four-dimensional flow analyses included calculation of net flow and regurgitant fraction with 4-D flow analysis planes similarly positioned to 2-D planes. In addition, 4-D flow volumetric assessment of aortic root/ascending aorta and MPA peak velocities was performed and compared to 2-D phase-contrast MRI and echo. RESULTS Excellent correlation and agreement were found between 2-D phase-contrast MRI and 4-D flow for net flow (r = 0.97, P < 0.001) and excellent correlation with good agreement was found for regurgitant fraction (r = 0.88, P < 0.001) in all vessels. Two-dimensional phase-contrast MRI significantly underestimated aortic (P = 0.032) and MPA (P < 0.001) peak velocities compared to echo, while volumetric 4-D flow analysis resulted in higher (aortic: P = 0.001) or similar (MPA: P = 0.98) peak velocities relative to echo. CONCLUSION Excellent flow parameter agreement between 2-D phase-contrast MRI and 4-D flow and the improved volumetric 4-D flow velocity analysis relative to echo suggests that 4-D flow has the potential to become a clinical alternative to 2-D phase-contrast MRI.
Collapse
|
17
|
Pineda Zapata JA, Delgado de Bedout JA, Rascovsky Ramírez S, Bustamante C, Mesa S, Calvo Betancur VD. A practical introduction to the hemodynamic analysis of the cardiovascular system with 4D Flow MRI. RADIOLOGIA 2014; 56:485-95. [PMID: 25447368 DOI: 10.1016/j.rx.2014.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 11/28/2022]
Abstract
The 4D Flow MRI technique provides a three-dimensional representation of blood flow over time, making it possible to evaluate the hemodynamics of the cardiovascular system both qualitatively and quantitatively. In this article, we describe the application of the 4D Flow technique in a 3T scanner; in addition to the technical parameters, we discuss the advantages and limitations of the technique and its possible clinical applications. We used 4D Flow MRI to study different body areas (chest, abdomen, neck, and head) in 10 volunteers. We obtained 3D representations of the patterns of flow and quantitative hemodynamic measurements. The technique makes it possible to evaluate the pattern of blood flow in large and midsize vessels without the need for exogenous contrast agents.
Collapse
Affiliation(s)
- J A Pineda Zapata
- Grupo de Investigación, Instituto de Alta Tecnología Médica (IATM), Medellín, Antioquia, Colombia.
| | - J A Delgado de Bedout
- Grupo de Investigación, Instituto de Alta Tecnología Médica (IATM), Medellín, Antioquia, Colombia
| | - S Rascovsky Ramírez
- Grupo de Investigación, Instituto de Alta Tecnología Médica (IATM), Medellín, Antioquia, Colombia
| | - C Bustamante
- Grupo de Investigación, Instituto de Alta Tecnología Médica (IATM), Medellín, Antioquia, Colombia
| | - S Mesa
- Universidad CES, Medellín, Antioquia, Colombia
| | - V D Calvo Betancur
- Grupo de Investigación, Instituto de Alta Tecnología Médica (IATM), Medellín, Antioquia, Colombia
| |
Collapse
|
18
|
Pineda Zapata J, Delgado de Bedout J, Rascovsky Ramírez S, Bustamante C, Mesa S, Calvo Betancur V. A practical introduction to the hemodynamic analysis of the cardiovascular system with 4D Flow MRI. RADIOLOGIA 2014. [DOI: 10.1016/j.rxeng.2014.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Stankovic Z, Allen BD, Garcia J, Jarvis KB, Markl M. 4D flow imaging with MRI. Cardiovasc Diagn Ther 2014; 4:173-92. [PMID: 24834414 DOI: 10.3978/j.issn.2223-3652.2014.01.02] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/21/2013] [Indexed: 12/22/2022]
Abstract
Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiovascular disease. Since its introduction in the late 1980s, 2-dimensional phase contrast MRI (2D PC-MRI) has become a routine part of standard-of-care cardiac MRI for the assessment of regional blood flow in the heart and great vessels. More recently, time-resolved PC-MRI with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (also termed '4D flow MRI') has been developed and applied for the evaluation of cardiovascular hemodynamics in multiple regions of the human body. 4D flow MRI allows for the comprehensive evaluation of complex blood flow patterns by 3D blood flow visualization and flexible retrospective quantification of flow parameters. Recent technical developments, including the utilization of advanced parallel imaging techniques such as k-t GRAPPA, have resulted in reasonable overall scan times, e.g., 8-12 minutes for 4D flow MRI of the aorta and 10-20 minutes for whole heart coverage. As a result, the application of 4D flow MRI in a clinical setting has become more feasible, as documented by an increased number of recent reports on the utility of the technique for the assessment of cardiac and vascular hemodynamics in patient studies. A number of studies have demonstrated the potential of 4D flow MRI to provide an improved assessment of hemodynamics which might aid in the diagnosis and therapeutic management of cardiovascular diseases. The purpose of this review is to describe the methods used for 4D flow MRI acquisition, post-processing and data analysis. In addition, the article provides an overview of the clinical applications of 4D flow MRI and includes a review of applications in the heart, thoracic aorta and hepatic system.
Collapse
Affiliation(s)
- Zoran Stankovic
- 1 Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, USA ; 2 Department Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, USA
| | - Bradley D Allen
- 1 Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, USA ; 2 Department Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, USA
| | - Julio Garcia
- 1 Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, USA ; 2 Department Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, USA
| | - Kelly B Jarvis
- 1 Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, USA ; 2 Department Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, USA
| | - Michael Markl
- 1 Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, USA ; 2 Department Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, USA
| |
Collapse
|
20
|
Atrial shunts: presentation, investigation, and management, including recent advances in magnetic resonance imaging. Cardiol Young 2014; 24:403-16. [PMID: 24397877 DOI: 10.1017/s1047951113002321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Atrial shunts are a common finding in both paediatric and adult populations. Recent developments in advanced imaging have widened the options for diagnosis and evaluation of such shunts. This paper reviews the various types of interatrial communications, discusses the features of clinical presentation in adults and children, and provides an overview of the clinical assessment including physical examination, electrocardiography, echocardiography, cardiac catheterisation, computed tomography, and magnetic resonance imaging. Focus will be placed on recent developments in magnetic resonance imaging that may improve the non-invasive evaluation of atrial shunts.
Collapse
|
21
|
Abstract
Atrial septal defects are the third most common type of congenital heart disease. Included in this group of malformations are several types of atrial communications that allow shunting of blood between the systemic and the pulmonary circulations. Most children with isolated atrial septal defects are free of symptoms, but the rates of exercise intolerance, atrial tachyarrhythmias, right ventricular dysfunction, and pulmonary hypertension increase with advancing age and life expectancy is reduced in adults with untreated defects. The risk of development of pulmonary vascular disease, a potentially lethal complication, is higher in female patients and in older adults with untreated defects. Surgical closure is safe and effective and when done before age 25 years is associated with normal life expectancy. Transcatheter closure offers a less invasive alternative for patients with a secundum defect who fulfil anatomical and size criteria. In this Seminar we review the causes, anatomy, pathophysiology, treatment, and outcomes of atrial septal defects in children and adult patients in whom this defect is the primary cardiac anomaly.
Collapse
Affiliation(s)
- Tal Geva
- Department of Cardiology, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Jose D Martins
- Department of Pediatric Cardiology, Hospital de Santa Marta, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | - Rachel M Wald
- Toronto Congenital Cardiac Centre for Adults, Peter Munk Cardiac Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Abstract
Traditionally, magnetic resonance imaging (MRI) of flow using phase contrast (PC) methods is accomplished using methods that resolve single-directional flow in two spatial dimensions (2D) of an individual slice. More recently, three-dimensional (3D) spatial encoding combined with three-directional velocity-encoded phase contrast MRI (here termed 4D flow MRI) has drawn increased attention. 4D flow MRI offers the ability to measure and to visualize the temporal evolution of complex blood flow patterns within an acquired 3D volume. Various methodological improvements permit the acquisition of 4D flow MRI data encompassing individual vascular structures and entire vascular territories such as the heart, the adjacent aorta, the carotid arteries, abdominal, or peripheral vessels within reasonable scan times. To subsequently analyze the flow data by quantitative means and visualization of complex, three-directional blood flow patterns, various tools have been proposed. This review intends to introduce currently used 4D flow MRI methods, including Cartesian and radial data acquisition, approaches for accelerated data acquisition, cardiac gating, and respiration control. Based on these developments, an overview is provided over the potential this new imaging technique has in different parts of the body from the head to the peripheral arteries.
Collapse
Affiliation(s)
- Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | | | |
Collapse
|
23
|
Uribe S, Bächler P, Valverde I, Crelier GR, Beerbaum P, Tejos C, Irarrazaval P. Hemodynamic assessment in patients with one-and-a-half ventricle repair revealed by four-dimensional flow magnetic resonance imaging. Pediatr Cardiol 2013; 34:447-51. [PMID: 22447380 DOI: 10.1007/s00246-012-0288-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
Abstract
We report hemodynamic findings in two patients with pulmonary atresia and intact ventricular septum (PAIVS) after "one-and-a-half ventricle repair" and placement of a bidirectional Glenn shunt using four-dimensional (4D) flow magnetic resonance imaging. Quantification of flow and analysis of flow patterns revealed the hemodynamic "battle" between the right ventricle (RV) and the Glenn shunt. Moreover, with a novel approach we calculated during Glenn anastomosis the flow distribution from the superior vena cava (SVC) to the pulmonary arteries. Our results showed a highly asymmetric flow distribution, with most of the flow from the SVC toward the RV and not to the lungs. The evidence provided by 4D flow demonstrates poor efficiency of this system and suggests that both patients might benefit from adding an artificial pulmonary valve to avoid right heart failure.
Collapse
Affiliation(s)
- Sergio Uribe
- Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|
24
|
Bächler P, Valverde I, Pinochet N, Nordmeyer S, Kuehne T, Crelier G, Tejos C, Irarrazaval P, Beerbaum P, Uribe S. Caval blood flow distribution in patients with Fontan circulation: quantification by using particle traces from 4D flow MR imaging. Radiology 2013; 267:67-75. [PMID: 23297331 DOI: 10.1148/radiol.12120778] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To validate the use of particle traces derived from four-dimensional (4D) flow magnetic resonance (MR) imaging to quantify in vivo the caval flow contribution to the pulmonary arteries (PAs) in patients who had been treated with the Fontan procedure. MATERIALS AND METHODS The institutional review boards approved this study, and informed consent was obtained. Twelve healthy volunteers and 10 patients with Fontan circulation were evaluated. The particle trace method consists of creating a region of interest (ROI) on a blood vessel, which is used to emit particles with a temporal resolution of approximately 40 msec. The flow distribution, as a percentage, is then estimated by counting the particles arriving to different ROIs. To validate this method, two independent observers used particle traces to calculate the flow contribution of the PA to its branches in volunteers and compared it with the contribution estimated by measuring net forward flow volume (reference method). After the method was validated, caval flow contributions were quantified in patients. Statistical analysis was performed with nonparametric tests and Bland-Altman plots. P < .05 was considered to indicate a significant difference. RESULTS Estimation of flow contributions by using particle traces was equivalent to estimation by using the reference method. Mean flow contribution of the PA to the right PA in volunteers was 54% ± 3 (standard deviation) with the reference method versus 54% ± 3 with the particle trace method for observer 1 (P = .4) and 54% ± 4 versus 54% ± 4 for observer 2 (P = .6). In patients with Fontan circulation, 87% ± 13 of the superior vena cava blood flowed to the right PA (range, 63%-100%), whereas 55% ± 19 of the inferior vena cava blood flowed to the left PA (range, 22%-82%). CONCLUSION Particle traces derived from 4D flow MR imaging enable in vivo quantification of the caval flow distribution to the PAs in patients with Fontan circulation. This method might allow the identification of patients at risk of developing complications secondary to uneven flow distribution. SUPPLEMENTAL MATERIAL http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12120778/-/DC1.
Collapse
Affiliation(s)
- Pablo Bächler
- Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago 8330024, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ntsinjana HN, Hughes ML, Taylor AM. The role of cardiovascular magnetic resonance in pediatric congenital heart disease. J Cardiovasc Magn Reson 2011; 13:51. [PMID: 21936913 PMCID: PMC3210092 DOI: 10.1186/1532-429x-13-51] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 09/21/2011] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular magnetic resonance (CMR) has expanded its role in the diagnosis and management of congenital heart disease (CHD) and acquired heart disease in pediatric patients. Ongoing technological advancements in both data acquisition and data presentation have enabled CMR to be integrated into clinical practice with increasing understanding of the advantages and limitations of the technique by pediatric cardiologists and congenital heart surgeons. Importantly, the combination of exquisite 3D anatomy with physiological data enables CMR to provide a unique perspective for the management of many patients with CHD. Imaging small children with CHD is challenging, and in this article we will review the technical adjustments, imaging protocols and application of CMR in the pediatric population.
Collapse
Affiliation(s)
- Hopewell N Ntsinjana
- Centre for Cardiovascular MR, UCL Institute of Cardiovascular Sciences, Great Ormond Street Hospital for Children, London, UK
| | - Marina L Hughes
- Centre for Cardiovascular MR, UCL Institute of Cardiovascular Sciences, Great Ormond Street Hospital for Children, London, UK
| | - Andrew M Taylor
- Centre for Cardiovascular MR, UCL Institute of Cardiovascular Sciences, Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
26
|
Valverde I, Miller O, Beerbaum P, Greil G. Imaging of Pulmonary Vein Stenosis Using Multidimensional Phase Contrast Magnetic Resonance Imaging (4-Dimensional Flow). J Am Coll Cardiol 2011; 58:e3. [DOI: 10.1016/j.jacc.2010.10.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 10/06/2010] [Indexed: 10/18/2022]
|
27
|
Valverde I, Parish V, Tzifa A, Head C, Sarikouch S, Greil G, Schaeffter T, Razavi R, Beerbaum P. Cardiovascular MR dobutamine stress in adult tetralogy of fallot: Disparity between CMR volumetry and flow for cardiovascular function. J Magn Reson Imaging 2011; 33:1341-50. [DOI: 10.1002/jmri.22573] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|