1
|
Sonar S, Das A, Kalele K, Subramaniyan V. Exosome-based cancer vaccine: a cell-free approach. Mol Biol Rep 2025; 52:421. [DOI: 10.1007/s11033-025-10519-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/15/2025] [Indexed: 05/04/2025]
|
2
|
Wang X, Niu X, Wang Y, Liu Y, Yang C, Chen X, Qi Z. C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 pathway as a therapeutic target and regulatory mechanism for spinal cord injury. Neural Regen Res 2025; 20:2231-2244. [PMID: 39104168 PMCID: PMC11759034 DOI: 10.4103/nrr.nrr-d-24-00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 08/07/2024] Open
Abstract
Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage. The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury. Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury, suggesting that this axis is a novel target and regulatory control point for treatment. This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis, along with the regenerative and repair mechanisms linking the axis to spinal cord injury. Additionally, we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis. This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs, along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs. Nevertheless, there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis. This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury.
Collapse
Affiliation(s)
- Xiangzi Wang
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiaofei Niu
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingkai Wang
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yang Liu
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Cheng Yang
- Characteristic Medical Center of People’s Armed Police Forces, Tianjin, China
| | - Xuyi Chen
- Characteristic Medical Center of People’s Armed Police Forces, Tianjin, China
| | - Zhongquan Qi
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
- Fujian Maternity and Child Health Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
3
|
Seegobin N, Taub M, Vignal C, Waxin C, Chris V, Awad A, Murdan S, Basit AW. Small milk-derived extracellular vesicles: Suitable vehicles for oral drug delivery? Eur J Pharm Biopharm 2025; 212:114744. [PMID: 40355010 DOI: 10.1016/j.ejpb.2025.114744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Current treatments for inflammatory bowel disease often fail due to systemic side effects, but bovine milk-derived extracellular vesicles (EVs) show promise for targeted delivery to inflamed gut tissue via the leaky gut effect. This study assessed the stability of EVs as drug carriers in simulated gastrointestinal (GI) fluids and their efficacy in a colitis mouse model. EVs were characterised after incubation in PBS at various pH levels, and their lipid bilayer stability in biorelevant GI fluids was evaluated using the polar probe laurdan. Two small molecules, acridine orange (lipophilic) and riboflavin (hydrophilic), were loaded into EVs to test their release under GI conditions, while unloaded EVs were investigated for therapeutic effect via oral gavage or rectal enema in a colitis mouse model. Although no significant changes in EVs' physical properties were observed at different pH levels, lipid bilayer damage was evident in acidic (p ≤ 0.05) and enzyme-rich environments (p ≤ 0.01). Acridine orange release was significant (p ≤ 0.05), butriboflavin remained encapsulated, and no therapeutic effect was observed with unloaded EVs in vivo. These results suggest that physical characterisation alone does not reflect EV stability, that bovine milk EVs have limited potential for oral drug delivery and are better suited for hydrophilic drugs.
Collapse
Affiliation(s)
- Nidhi Seegobin
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Marissa Taub
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Cécile Vignal
- Univ. Lille, Inserm, CHU Lille, UMR1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Christophe Waxin
- Univ. Lille, Inserm, CHU Lille, UMR1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Victoria Chris
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom; Medical Sciences Division, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Atheer Awad
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom; Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | - Sudaxshina Murdan
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
4
|
Gu Y, Ye Q, Huang X, Cao Y, Chaiswing L, She QB. Glycosaminoglycan modification of NRP1 exon 4-skipping variant drives colorectal cancer metastasis via endosomal-exosomal trafficking. Cancer Lett 2025; 620:217683. [PMID: 40157493 PMCID: PMC12014352 DOI: 10.1016/j.canlet.2025.217683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/15/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
Neuropilin-1 (NRP1) is a transmembrane glycoprotein that functions as a co-receptor with various cellular functions. Our previous studies identified the NRP1 exon 4-skipping (NRP1-ΔE4) splice variant as an aggressive metastasis driver by activating endosomal signals. Here, we demonstrate the critical role of glycosaminoglycan (GAG) modification in regulating NRP1-ΔE4's cellular trafficking and oncogenic activity. NRP1-ΔE4 undergoes constitutive internalization into endosomes and subsequent exosomal release from colorectal cancer (CRC) cells. Exosomal NRP1-ΔE4 enhances the migration and invasion of both donor and recipient CRC cells. Genetic or pharmacological inhibition of exosome secretion, or immunodepletion of exosomal NRP1-ΔE4, markedly reduces its metastatic potential. Notably, GAG modification at the O-glycosylation site Ser612 is essential for NRP1-ΔE4's endosomal trafficking and exosomal release. This modification also promotes the formation of a trimeric complex with Met and β1-integrin, leading to their co-internalization and accumulation in endosomes, which activates FAK signaling and drives CRC metastasis. These findings reveal GAG modification as a key regulatory process that governs the endosomal-exosomal trafficking of NRP1-ΔE4 to facilitate CRC cell dissemination.
Collapse
Affiliation(s)
- Yiwei Gu
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA; Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qing Ye
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Xiuping Huang
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA; Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yanan Cao
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Luksana Chaiswing
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Lexington, KY, 40506, USA
| | - Qing-Bai She
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.
| |
Collapse
|
5
|
Lv K, Gao J, Yang L, Yuan X. The role of mesenchymal stem cell‑derived exosomes in asthma (Review). Mol Med Rep 2025; 31:166. [PMID: 40242981 PMCID: PMC12012432 DOI: 10.3892/mmr.2025.13531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Asthma is a chronic respiratory disorder characterized by persistent inflammation, airway hyper‑responsiveness and remodeling, leading to notable morbidity and decreased quality of life for patients. Mesenchymal stem cells (MSCs) have potential in regenerative medicine due to their potent immunomodulatory properties and anti‑inflammatory effects. The therapeutic benefits of MSCs are largely mediated by secreted exosomes that facilitate intercellular communication by transferring bioactive molecules, including proteins, lipids and microRNAs. The present review explores the therapeutic potential of MSC‑derived exosomes in asthma, highlighting their ability to modulate key pathological mechanisms underlying the disease.
Collapse
Affiliation(s)
- Kaiying Lv
- Department of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Jiawei Gao
- Department of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Liuxin Yang
- Department of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xingxing Yuan
- Department of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150006, P.R. China
| |
Collapse
|
6
|
Assefa F, Park EK. Spexin-induced MC3T3-E1 cell-derived exosomes enhance osteoblast differentiation. J Bone Miner Metab 2025:10.1007/s00774-025-01604-z. [PMID: 40434546 DOI: 10.1007/s00774-025-01604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/22/2025] [Indexed: 05/29/2025]
Abstract
INTRODUCTION The roles of exosomes in osteoblast differentiation has been widely investigated. Low exosome production from donor cells constitutes the greatest challenges in exosome-based therapies. Spexin (SPX) is a neuropeptide that is involved in various biological activities including osteogenic differentiation and bone regeneration. Therefore, the purpose of this study was to investigate the effects of SPX on exosome production in osteogenic medium (OM)-treated MC3T3-E1 cells and SPX induced MC3T3-E1 cell-derived exosomes (OM + SPX-Exos) on osteoblast differentiation. MATERIALS AND METHODS To evaluate exosome yield, MC3T3-E1 cells were treated with SPX. Exosome marker expression and particle number were validated via reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and nanoparticle tracking analysis (NTA), respectively. MC3T3-E1 cells were then treated with various concentrations of OM + SPX-Exos and osteogenic medium treated MC3T3-E1 derived exosomes (OM-Exos). Cell proliferation, osteogenic differentiation marker expression, alkaline phosphatase (ALP) activity, and mineralization were evaluated using the CCK-8 assay, RT-qPCR, ALP staining, and alizarin red S staining, respectively. RESULTS SPX significantly increased exosome production and the expression of the exosome markers; Cd63, Rab27a and Alix in MC3T3E1 cells. Furthermore, OM + SPX-Exos significantly increased in the expression of runt-related transcription factor 2 (Runx2), alkaline phosphatase, biomineralized associated (Alpl), collagen type I alpha 1 (Col1a1), secreted phosphoprotein 1 (Spp1) and Integrin-binding sialoprotein (Ibsp) at a concentration of 5 µg/ml. ALP staining and alizarin red S staining also revealed that OM + SPX-Exos (5 µg/ml) resulted in more ALP-positive cells and markedly promoted mineralization, respectively. CONCLUSION In general, these results indicate that SPX stimulates exosome production. OM + SPX-Exos enhances MC3T3-E1 cells proliferation, osteogenic differentiation and mineralization.
Collapse
Affiliation(s)
- Freshet Assefa
- Department of Biochemistry, College of Medicine and Health Sciences, Hawassa University, P.O.Box 1560, Hawassa, Ethiopia.
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, 41940, Republic of Korea
| |
Collapse
|
7
|
Huang L, Wei M, Li H, Yu M, Wan L, Zhao R, Gao Q, Sun L, Hou X, Mo Y, Huang Q, Zhen L, Yang X, Li J, Wang N, Zhang C, Jin H, Zhou L, Xu Y, Lin H, Zhang X, Li B, Han Y, Yuan J, Zhang R, Wu F, Zhong H, Wei C. GP73-dependent regulation of exosome biogenesis promotes colorectal cancer liver metastasis. Mol Cancer 2025; 24:151. [PMID: 40414849 DOI: 10.1186/s12943-025-02350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 05/09/2025] [Indexed: 05/27/2025] Open
Abstract
Colorectal cancer (CRC) liver metastasis is the main cause of cancer-related mortality. How liver influences intercellular communication to support CRC liver metastasis remains unknown. Herein, we link GP73, whose chronic upregulation in hepatocytes triggers non-obese metabolic-dysfunction associated steatotic liver disease (MASLD) in mice, with exosome biogenesis and CRC liver metastasis. Mice with high liver GP73 expression exhibited increased CRC liver metastasis in an exosome-dependent manner. GP73 modulated the cholesterol contents in endosomal compartments to promote exosome production. Quantitative proteomics revealed GP73 reshaped hepatocyte exosomal proteome and produced NAV2-rich exosomes. Clinically, serum GP73 levels positively correlated with exosomal NAV2 levels in CRC patients with liver metastasis. Knockdown of liver NAV2 suppressed enhanced CRC liver metastasis in GP73-induced non-obese mice, and GP73 blockade mitigated the increased CRC liver metastasis in obese mice fed by high-fat diet or high-fructose diet. Our findings suggest GP73 blockade as a potential therapeutic strategy for mitigating CRC liver metastasis.
Collapse
Affiliation(s)
- Linfei Huang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Meng Wei
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
| | - Huilong Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Mingxin Yu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, State Key Laboratory of Digestive Health, Beijing Key Laboratory of Early Gastrointestinal Cancer Medicine and Medical Devices, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Luming Wan
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Ruzhou Zhao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Qi Gao
- Beijing Youngen Technology Co. Ltd, No. 55 Qingfeng West Road, Daxing District, Beijing, 102629, China
| | - Lijuan Sun
- Beijing Youngen Technology Co. Ltd, No. 55 Qingfeng West Road, Daxing District, Beijing, 102629, China
| | - Xufeng Hou
- Beijing Youngen Technology Co. Ltd, No. 55 Qingfeng West Road, Daxing District, Beijing, 102629, China
| | - Yunhai Mo
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
| | - Qing Huang
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
| | - Lan Zhen
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
| | - Xiaopan Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Jingfei Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Nan Wang
- Department of Radiotherapy, Changzhi People's Hospital, No. 502, Changxing Middle Road, Luzhou District, Changzhi, Shanxi, 046000, China
| | - Chundong Zhang
- Department of Surgical Oncology and Central Laboratory, the Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, Liaoning, 110032, China
| | - Haoran Jin
- Department of Colorectal Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong Distrct, Shenyang, Liaoning, 110042, China
| | - Li Zhou
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Yixin Xu
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
| | - Haotian Lin
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Xuhui Zhang
- Beijing Youngen Technology Co. Ltd, No. 55 Qingfeng West Road, Daxing District, Beijing, 102629, China
| | - Boan Li
- Clinical Laboratory, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, No. 100 Xisihuan Middle Road, Beijing, 100039, China.
| | - Yue Han
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan South Road, Chaoyang District, Beijing, 100021, China.
| | - Jing Yuan
- Capital Institute of Pediatrics, Capital Center for Children's Health, Capital Medical University, No. 2 Yabao Road, Chaoyang District, Beijing, 100020, China.
| | - Rui Zhang
- Department of Colorectal Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong Distrct, Shenyang, Liaoning, 110042, China.
| | - Feixiang Wu
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China.
| | - Hui Zhong
- Beijing Youngen Technology Co. Ltd, No. 55 Qingfeng West Road, Daxing District, Beijing, 102629, China.
| | - Congwen Wei
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
8
|
Ma J, Yu H, Yao S, Yan Y, Gu Z, Wang Z, Huang H, Chen D. Making cells inter-connected for signaling communication: a developmental view of cytonemes. Cell Commun Signal 2025; 23:241. [PMID: 40414867 DOI: 10.1186/s12964-025-02229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 05/01/2025] [Indexed: 05/27/2025] Open
Abstract
Cellular communication is a cornerstone of metazoan development, orchestrating cell behavior, differentiation, and tissue formation. Morphogens, key signaling molecules for patterning tissue architecture, are traditionally thought to act through diffusion or endocytosis but struggle to explain precise long-range gradient formation in complex tissues. The discovery of cytonemes, specialized actin-based membrane extensions, has introduced a novel mechanism for direct intercellular signaling. Their dynamic structure allows for long-range signaling, ensuring specificity and accuracy in morphogen delivery, which is essential for proper tissue patterning and cell differentiation. In this review, we summarize the latest advances of cytoneme research across different model organisms by focusing on the regulatory mechanisms and functional roles in stem cells and developmental disorders. We establish cytonemes as fundamental mediators of intercellular communication and emphasize their pivotal roles in developmental biology and potential implications in regenerative medicine and cancer therapy.
Collapse
Affiliation(s)
- Jiayue Ma
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Honglin Yu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Shuo Yao
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Yan Yan
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Zhaoyu Gu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Ziqi Wang
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Hai Huang
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, China.
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China.
| | - Di Chen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
- State Key Laboratory of Biobased Transportation Fuel Technology, Haining, 314400, Zhejiang, China.
- Zhejiang Key Laboratory of Medical Imaging Artificial Intelligence, Haining, 314400, Zhejiang, China.
| |
Collapse
|
9
|
Asgari R, Rashidi S, Soleymani B, Bakhtiari M, Mohammadi P, Yarani R, Mansouri K. The supportive role of stem cells-derived exosomes in the embryo implantation process by regulating oxidative stress. Biomed Pharmacother 2025; 188:118171. [PMID: 40412359 DOI: 10.1016/j.biopha.2025.118171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/28/2025] [Accepted: 05/10/2025] [Indexed: 05/27/2025] Open
Abstract
Oxidative stress can affect many aspects of the reproduction process. The embryo implantation process is also one of the critical steps in establishing a successful pregnancy, and several factors, including oxidative stress, can impact the process. Oxidative stress is a state of imbalance between pro-oxidant molecules such as reactive oxygen species (ROS) and antioxidant defenses. Excessive levels of ROS cause damage to the cellular macromolecules such as nucleic acids, proteins, and lipids, resulting in cell dysfunction and pathological conditions. Recently, studies have displayed the therapeutic and antioxidant properties of exosomes derived from stem cells. Exosomes are one type of extracellular vesicles (EVs) secreted by almost all cells and contain different biomolecules. The unique properties of exosomes, like regulation of biological processes, transportation of biomolecules, stability, and biodegradability, can make exosomes a promising therapeutic option in reproductive disorders and diseases. Exosomes also can significantly improve the curative effect of oxidative stress-related pathogenesis. Accordingly, this review aims to provide a novel overview of how exosomes derived from stem cells can regulate oxidative stress and support the process of embryo implantation, hoping to pave the way to clinical applications and future research in this field.
Collapse
Affiliation(s)
- Rezvan Asgari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sahar Rashidi
- Department of Obstetrics and Gynecology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bijan Soleymani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Bakhtiari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Kamran Mansouri
- Regenerative Medicine Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
10
|
Jin Z, Zhang C, Shen L, Cao Y. Harnessing Exosomes: From Tumor Immune Escape to Therapeutic Innovation in Gastric Cancer Immunotherapy. Cancer Lett 2025:217792. [PMID: 40409451 DOI: 10.1016/j.canlet.2025.217792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/21/2025] [Accepted: 05/11/2025] [Indexed: 05/25/2025]
Abstract
Gastric cancer ranks fifth among the most prevalent cancers globally, with a dismal prognosis. In recent years, immunotherapy, particularly immune checkpoint inhibitors, has emerged as a glimmer of hope for advanced gastric cancer patients. However, not all patients can benefit from this treatment modality, as the tumor microenvironment significantly influences treatment efficacy. Exosomes, pivotal mediators of intercellular communication, exert intricate and diverse effects in shaping and regulating the tumor microenvironment. This review provides a comprehensive overview of the functional mechanisms of exosomes within the gastric cancer tumor microenvironment. It delves into their biogenesis, functions, and impact on innate and adaptive immune cells (such as dendritic cells, myeloid-derived suppressor cells, and T cells) and cancer-associated fibroblasts. Additionally, the potential applications of exosomes in gastric cancer immunotherapy are explored, including their use as biomarkers to predict responses to immune checkpoint inhibitors, and drug delivery vectors, and in the development of exosome-based vaccines and gene therapy. Notably, this review emphasizes the dual nature of exosomes: they can facilitate tumor immune escape, yet they also serve as promising targets for innovative therapeutic strategies. It also compares potential exosome-based strategies with existing immunotherapies like ICIs and emerging CAR-T cell therapies. Finally, insights into the future of exosomes in precision immunotherapy for gastric cancer are offered, presenting a forward-looking perspective on this emerging field.
Collapse
Affiliation(s)
- Zhao Jin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Cell & Gene Therapy for Solid Tumor, Department of GI Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Cheng Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Cell & Gene Therapy for Solid Tumor, Department of GI Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Lin Shen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Cell & Gene Therapy for Solid Tumor, Department of GI Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Yanshuo Cao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Cell & Gene Therapy for Solid Tumor, Department of GI Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
11
|
Fatima A, Attem J, Esam S, Vemuganti GK. Extracellular Vesicles of Tears and Ocular Surface: An Enigma. Curr Eye Res 2025:1-15. [PMID: 40390228 DOI: 10.1080/02713683.2025.2503214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/21/2025]
Abstract
PURPOSE A stable ocular surface is crucial for maintaining ocular health by protecting against various infections. This is achieved by coordinated function of ocular structures (cornea, limbus, conjunctiva), innervation, and the tear film which forms a protective barrier over the ocular surface ensuring proper hydration, lubrication, and overall ocular comfort. This complex three-layered tear film secreted by different sources ensures its stability by adhesion to the corneal epithelium. Ocular surface fluid kinetics and tear secretion involve complex processes influenced by neural regulation, environmental factors, and molecular composition. Recent advances in cell biology and secretome has unravelled the mysteries of cellular cargo of almost every cell and system i.e. the extracellular vesicles (EVs) which facilitate intercellular communication. EVs are of different sizes, amongst which small EVs (sEVs) potentially are more informative than other EVs. METHODS An extensive review of literature on sEVs in tears and ocular surface was conducted. RESULTS Emerging literature on sEVs derived from ocular surface structures such as cornea and limbal stem cells contribute to corneal wound healing, regeneration and reduced fibrosis by the activation of specific proteins. A recent study documents that homeostasis between cornea and conjunctiva is maintained by the expression of specific genes triggering trans differentiation in diseased conditions. There is also mounting evidence on role of tear-derived sEVs in normal and diseased states. The approach in which tear layers secreted from three different sources form into a single tri-layered stable biofilm covering the entire ocular surface remains elusive. Hence not surprisingly, the tear sEVs therefore have been referred to as one entity and not attributed to any of the 3 different sources that they originate from. CONCLUSION This review attempts to present the recent concepts of sEVs, ocular surface, tears and highlight the gaps in our understanding of tear-derived exosomes and its potential role in homeostasis and disease conditions.
Collapse
Affiliation(s)
- Asra Fatima
- School of Medical Science, University of Hyderabad, Hyderabad, India
| | - Jyothi Attem
- School of Medical Science, University of Hyderabad, Hyderabad, India
| | - Sandhya Esam
- School of Medical Science, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
12
|
Wijerathne SVT, Pandit R, Ezeuko CC, Matthews QL. Comparative Examination of Feline Coronavirus and Canine Coronavirus Effects on Extracellular Vesicles Acquired from A-72 Canine Fibrosarcoma Cell Line. Vet Sci 2025; 12:477. [PMID: 40431570 DOI: 10.3390/vetsci12050477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Introduction: Coronavirus (CoV) is an extremely contagious, enveloped positive-single-stranded RNA virus, which has become a global pandemic that causes several illnesses in humans and animals. Hence, it is necessary to investigate viral-induced reactions across diverse hosts. Herein, we propose utilizing naturally secreted extracellular vesicles (EVs), mainly focusing on exosomes to examine virus-host responses following CoV infection. Exosomes are small membrane-bound vesicles originating from the endosomal pathway, which play a pivotal role in intracellular communication and physiological and pathological processes. We suggested that CoV could impact EV formation, content, and diverse immune responses in vitro. Methods: In this study, we infected A-72, which is a canine fibroblast cell line, with a feline coronavirus (FCoV) and canine coronavirus (CCoV) independently in an exosome-free media at 0.001 multiplicity of infection (MOI), with incubation periods of 48 and 72 h. The cell viability was significantly downregulated with increased incubation time following FCoV and CCoV infection, which was identified by performing the 3-(4,5-dimethylthiazo-1-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. After the infection, EVs were isolated through ultracentrifugation, and the subsequent analysis involved quantifying and characterizing the purified EVs using various techniques. Results: NanoSight particle tracking analysis (NTA) verified that EV dimensions fell between 100 and 200 nm at both incubation periods. At both periods, total protein and RNA levels were significantly upregulated in A-72-derived EVs following FCoV and CCoV infections. However, total DNA levels were gradually upregulated with increased incubation time. Dot blot analysis indicated that the expression levels of ACE2, IL-1β, Flotillin-1, CD63, caspase-8, and Hsp90 were modified in A-72-derived EVs following both CoV infections. Conclusions: Our results indicated that FCoV and CCoV infections could modulate the EV production and content, which could play a role in the development of viral diseases. Investigating diverse animal CoV will provide in-depth insight into host exosome biology during CoV infection. Hence, our findings contribute to the comprehension and characterization of EVs in virus-host interactions during CoV infection.
Collapse
Affiliation(s)
| | - Rachana Pandit
- Microbiology Program, Alabama State University, Montgomery, AL 36104, USA
| | - Chioma C Ezeuko
- Microbiology Program, Alabama State University, Montgomery, AL 36104, USA
| | - Qiana L Matthews
- Microbiology Program, Alabama State University, Montgomery, AL 36104, USA
- Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics, Alabama State University, Montgomery, AL 36104, USA
| |
Collapse
|
13
|
Saadh MJ, Allela OQB, Al-Hussainy AF, Baldaniya L, Rekha MM, Nathiya D, Kaur P, Aminov Z, Sameer HN, Hameed HG, Athab ZH, Adil M. Exosomal non-coding RNAs: gatekeepers of inflammation in autoimmune disease. J Inflamm (Lond) 2025; 22:18. [PMID: 40369549 PMCID: PMC12079953 DOI: 10.1186/s12950-025-00443-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/28/2025] [Indexed: 05/16/2025] Open
Abstract
Autoimmune diseases (AIDs) are marked by systemic inflammation and immune dysregulation, yet current therapies often fail to target their underlying causes. Emerging evidence positions exosomal non-coding RNAs (ncRNAs)-including miRNAs, lncRNAs, and circRNAs-as key regulators of inflammatory pathways, providing critical insights into AID pathogenesis. This review synthesizes recent advances in how these ncRNAs orchestrate immune cell communication, modulate inflammatory mediators, and drive microglial activation in neuroinflammatory AIDs. It evaluates their dual role as disease amplifiers (e.g., miR-155 in lupus, miR-326 in rheumatoid arthritis) and therapeutic targets, emphasizing their potential to reprogram immune responses or deliver anti-inflammatory agents. In this review, we first provide a glimpse into the pathogenesis of autoimmune diseases and delve into the structure and function of exosomes, emphasizing their role in cell-cell communication. We then discuss the regulatory roles of exosomal ncRNAs in immune modulation, detailing their types, functions, and mechanisms of action. Finally, we examine the implications of exosomes and exosomal ncRNAs in the context of autoimmune diseases, with a particular focus on microglial activation and its contribution to neuroinflammation.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | | | - Lalji Baldaniya
- Department of Pharmacy, Faculty of Health Sciences, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
14
|
Phan N, Li Y, Yang M, Liu F. Tear fluid derived extracellular vesicles for new biomarker discovery. Ocul Surf 2025; 37:314-322. [PMID: 40368029 DOI: 10.1016/j.jtos.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/23/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
Various cell types release extracellular vesicles (EVs) containing proteins, DNA, and RNA essential for intercellular communication. The bioactive molecules from EVs can reflect disease status and monitor progression, while their communication abilities suggest therapeutic potential. We will review various EV isolation methods, EV-enriched fluids, and studies analyzing differential mi-RNA and protein levels extracted from EVs. Specifically, tear-derived EVs, which protect their molecular content and allow for real-time monitoring of ocular conditions such as Dry Eye Disease (DED), Sjögren's disease (SJD), Ocular graft-versus-host disease (oGVHD), and Diabetic Retinopathy (DR), which all currently remain undiagnosed in patients. EVs also provide potential as carriers for gene transfer, and mesenchymal stem cell (MSCs)-derived EVs are shown to be immunomodulatory, demonstrating promise for autoimmune ocular diseases. Through the multi-omic analysis of tear-fluid content, EVs are promising biomarkers and therapeutic agents in ocular diseases.
Collapse
Affiliation(s)
- Natalie Phan
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Yi Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA.
| | - Fei Liu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Wang M, Chen Y, Yang W, Li X, Liu G, Wang X, Liu S, Gao G, Meng F, Kong F, Sun D, Qin W, Dong B, Zhang J. Bioinformatics analysis of circular RNAs associated with atrial fibrillation and their evaluation as predictive biomarkers. Hum Genomics 2025; 19:52. [PMID: 40355900 PMCID: PMC12070608 DOI: 10.1186/s40246-025-00760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Circular noncoding RNAs (circRNAs) are implicated in many human diseases, but their role in atrial fibrillation (AF) is poorly understood. In this study, we performed bioinformatics analysis of circRNA sequencing data to identify AF-related circRNAs. METHODS Left atrial appendage (LAA) samples were obtained from patients with valvular heart disease and were categorised into the sinus rhythm (SR; n = 4) and AF (n = 4) groups. CircRNA sequencing analysis was performed to identify differentially expressed (DE) circRNAs in AF patients. Functional enrichment analysis of DE circRNAs was performed to identify enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. RESULTS We identified 3338 DE circRNAs, including 2147 upregulated and 1191 downregulated circRNAs, in AF patients. A ceRNA network of 16 DE circRNAs, 11 DE miRNAs, and 15 DE mRNAs was constructed. Functional enrichment analyses revealed that the AF-related DE circRNAs were enriched in response to vitamin D, the potassium channel complex, delayed rectifier potassium channel activity, osteoclast differentiation, primary immunodeficiency, endocrine and other factor-regulated calcium reabsorption and other processes. ROC curve analysis identified circRNA_00324, circRNA_17225, circRNA_16305, circRNA_10233, circRNA_05499, circRNA_03183, circRNA_14211, and circRNA_18422 as potential predictive biomarkers for distinguishing AF patients from SR patients, with AUC values of 0.9138, 0.7370, 0.8526, 0.6803, 0.8163, 0.8662, 0.7664, and 0.9320, respectively. CONCLUSIONS In this study, we constructed an AF-related ceRNA network and identified eight circRNAs as potential predictive biomarkers of AF.
Collapse
Affiliation(s)
- Manman Wang
- Shandong Provincial Key Medical and Health Discipline of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Jining Key Laboratory of Precise Therapeutic Research of Coronary Intervention, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuanyuan Chen
- Shandong Provincial Key Medical and Health Discipline of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Jining Key Laboratory of Precise Therapeutic Research of Coronary Intervention, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Weiwei Yang
- Department of Medical Record, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xiangting Li
- Shandong Provincial Key Medical and Health Discipline of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Jining Key Laboratory of Precise Therapeutic Research of Coronary Intervention, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Genli Liu
- Shandong Provincial Key Medical and Health Discipline of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Jining Key Laboratory of Precise Therapeutic Research of Coronary Intervention, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xin Wang
- Shandong Provincial Key Medical and Health Discipline of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Jining Key Laboratory of Precise Therapeutic Research of Coronary Intervention, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Shuai Liu
- Shandong Provincial Key Medical and Health Discipline of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Jining Key Laboratory of Precise Therapeutic Research of Coronary Intervention, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Ge Gao
- Shandong Provincial Key Medical and Health Discipline of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Jining Key Laboratory of Precise Therapeutic Research of Coronary Intervention, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Fanhua Meng
- Shandong Provincial Key Medical and Health Discipline of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Jining Key Laboratory of Precise Therapeutic Research of Coronary Intervention, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Feifei Kong
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Dandan Sun
- Shandong Provincial Key Medical and Health Discipline of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Jining Key Laboratory of Precise Therapeutic Research of Coronary Intervention, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Jinguo Zhang
- Shandong Provincial Key Medical and Health Discipline of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Jining Key Laboratory of Precise Therapeutic Research of Coronary Intervention, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
16
|
Sadeghi A, Noorbakhshnia M, Khodashenas S. Protective potential of BM-MSC extracted Exosomes in a rat model of Alzheimer's disease. PLoS One 2025; 20:e0320883. [PMID: 40327601 PMCID: PMC12054907 DOI: 10.1371/journal.pone.0320883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 02/25/2025] [Indexed: 05/08/2025] Open
Abstract
Exosomes are extracellular vesicles, which are released into the extracellular space by all types of cells, especially stem cells. Compared with stem cells, exosomes are safer and can be considered one of the most promising therapeutic strategies for neurodegenerative disease. We examined the effect of exosomes derived from bone marrow mesenchymal stem cells (BM-MSC) on a rat model of Alzheimer's disease (AD). For this purpose, male Wistar rats weighing 220-250 g were used. For the induction of AD, rats received a daily dosage of 100 mg/kg Aluminum chloride (Alcl3) by oral gavage for 60 days. Also, Primary BM-MSC was extracted from the femora of Wistar rats (male, 100-150 g). Extracted exosomes were Characterized and Qualified using TEM Microscope and Zetasizer Nano. Specific markers of exosomes were evaluated by Flow cytometry. MSC-extracted exosomes (150 µg/µl) were injected 2 or 5 times into the animals via tail vein on specific days. Our data revealed that receiving exosomes significantly prevented AlCl3-induced enhancement of hippocampal APP gene expression, beta-amyloid plaque formation, impairment of passive avoidance learning and spatial memory. However, exosome injections in healthy subjects caused some negative effects such as spatial memory impairment. It seems, MSC-derived exosomes can be considered as a candidate to prevent AD progression.
Collapse
Affiliation(s)
- Atefeh Sadeghi
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Maryam Noorbakhshnia
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Shabanali Khodashenas
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Thalassemia Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
17
|
Wang J, Shi K, Xu Q, Wang H, Wang Y, Liu S, Jiang W, Chen R, Chen Y, Zhang Y, Wu M, Li X, Li C. Aldose reductase -mediated HUR ubiquitination enhances exosome release and hepatic fibrosis via ROS/PI3K/AKT pathway. Free Radic Biol Med 2025; 236:1-16. [PMID: 40334999 DOI: 10.1016/j.freeradbiomed.2025.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/18/2025] [Accepted: 04/26/2025] [Indexed: 05/09/2025]
Abstract
INTRODUCTION Liver fibrosis is caused by the activation of hepatic stellate cells due to various reasons. Our previous research has shown that aldose reductase (AR) played an important role in liver ischemia-reperfusion injury and liver regeneration. OBJECTIVES Here, we aimed to investigate the role and mechanism of AR in the progression of liver fibrosis induced by various factors. METHODS AR expression was detected in liver tissue of fibrosis patients and mouse models. The role and mechanism of AR in fibrosis progression were investigated in AR knockout mice and cell lines. RESULTS AR expression was increased in liver from patients with fibrosis and mouse models. The knockout of AR protected against CCL4 or HFD induced liver injury and development of fibrosis. Furthermore, AR promoted ubiquitization degradation of HUR through competitive binding with OTUB1, thereby exacerbating the accumulation of ROS, and ultimately activating PI3K/AKT pathway. The impaired autophagolysosome resulted in the massive release of exosomes, which activated stellate cells by regulating PTP4a1/SMAD3 pathway. The hepatocyte specific recovery of AR in AR knockout mice aggravated ROS damage and fibrosis, while recovery of HUR in wild-type mice reduced ROS damage and fibrosis. CONCLUSIONS In conclusion, these findings suggest that AR might be a promising therapeutic target for treating liver fibrosis.
Collapse
Affiliation(s)
- Jifei Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Gusu School, Nanjing Medical University, Soochow, China
| | - Kuangheng Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qingqiao Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | | | - Yirui Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shuochen Liu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wangjie Jiang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ruixiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yananlan Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yaodong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Mingyu Wu
- Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China; Gusu School, Nanjing Medical University, Soochow, China.
| | - Changxian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China.
| |
Collapse
|
18
|
Ajwad N, Mustapha M, Idris Z, Lee SY. The Recent Applications of Stem Cell-Derived Exosomes and Hydrogels in Neurological Disorders. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 40323680 DOI: 10.1089/ten.teb.2024.0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Neurological disorders such as Alzheimer's disease, Parkinson's disease, and stroke pose significant challenges for conventional therapy due to the complexities of the blood-brain barrier (BBB) and the restricted delivery of drugs to the central nervous system. Exosomes, a type of small extracellular vesicle secreted by nearly all cell types, hold substantial promise as delivery vehicles for therapeutic agents in treating these conditions. Notably, stem cell-secreted exosomes have emerged as particularly effective due to their regenerative potential and natural ability to cross the BBB. Similarly, hydrogels have gained recognition as versatile biomaterials capable of supporting sustained release and targeted delivery of therapeutics. The combination of the regenerative properties of stem cell-derived exosomes (SC-Exos) with the structural and functional benefits of hydrogels offers a promising approach for enhancing neurogenesis, modulating neuroinflammation, and facilitating tissue repair. This review explores the origin, structure, and modifications of exosomes as well as the synthesis and incorporation methods of hydrogels in the therapeutic context for debilitating neurological disorders. It highlights recent advancements in using SC-Exos and hydrogels for therapeutic delivery, addressing both current challenges and future applications. Improving our understanding of hydrogels loaded with SC-Exos for cargo transportation and neural tissue regeneration may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Nabil Ajwad
- Regenerative Medicine Research Group, Department of Hematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Si-Yuen Lee
- Regenerative Medicine Research Group, Department of Hematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
19
|
Mehdizadeh S, Mamaghani M, Hassanikia S, Pilehvar Y, Ertas YN. Exosome-powered neuropharmaceutics: unlocking the blood-brain barrier for next-gen therapies. J Nanobiotechnology 2025; 23:329. [PMID: 40319325 PMCID: PMC12049023 DOI: 10.1186/s12951-025-03352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/24/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND The blood-brain barrier (BBB) presents a formidable challenge in neuropharmacology, limiting the delivery of therapeutic agents to the brain. Exosomes, nature's nanocarriers, have emerged as a promising solution due to their biocompatibility, low immunogenicity, and innate ability to traverse the BBB. A thorough examination of BBB anatomy and physiology reveals the complexities of neurological drug delivery and underscores the limitations of conventional methods. MAIN BODY This review explores the potential of exosome-powered neuropharmaceutics, highlighting their structural and functional properties, biogenesis, and mechanisms of release. Their intrinsic advantages in drug delivery, including enhanced stability and efficient cellular uptake, are discussed in detail. Exosomes naturally overcome BBB barriers through specific translocation mechanisms, making them a compelling vehicle for targeted brain therapies. Advances in engineering strategies, such as genetic and biochemical modifications, drug loading techniques, and specificity enhancement, further bolster their therapeutic potential. Exosome-based approaches hold immense promise for treating a spectrum of neurological disorders, including Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), brain tumors, stroke, and psychiatric conditions. CONCLUSION By leveraging their innate properties and engineering innovations, exosomes offer a versatile platform for precision neurotherapeutics. Despite their promise, challenges remain in clinical translation, including large-scale production, standardization, and regulatory considerations. Future research directions in exosome nanobiotechnology aim to refine these therapeutic strategies, unlocking new avenues for treating neurological diseases. This review underscores the transformative impact of exosome-based drug delivery, paving the way for next-generation therapies that can effectively penetrate the BBB and revolutionize neuropharmacology.
Collapse
Affiliation(s)
- Sepehr Mehdizadeh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mobin Mamaghani
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Türkiye.
| |
Collapse
|
20
|
Azar BKY, Vakhshiteh F. The Pre-metastatic Niche: How Cancer Stem Cell-Derived Exosomal MicroRNA Fit into the Puzzle. Stem Cell Rev Rep 2025; 21:1062-1074. [PMID: 40095238 DOI: 10.1007/s12015-025-10866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
Cancer metastasis is a complicated biological process that critically affects cancer progression, patient outcomes, and treatment plans. A significant step in metastasis is the formation of a pre-metastatic niche (PMN). A small subset of cells within tumors, known as cancer stem cells (CSCs), possess unique characteristics including, differentiation into different cell types within the tumor, self-renewal, and resistance to conventional therapies, that enable them to initiate tumors and drive metastasis. PMN plays an important role in preparing secondary organs for the arrival and proliferation of CSCs, thereby facilitating metastasis. CSC-derived exosomes are crucial components in the complex interplay between CSCs and the tumor microenvironment. These exosomes function as transporters of various substances that can promote cancer progression, metastasis, and modulation of pre-metastatic environments by delivering microRNA (miRNA, miR) cargo. This review aims to illustrate how exosomal miRNAs (exo-miRs) secreted by CSCs can predispose PMN and promote angiogenesis and metastasis.
Collapse
Affiliation(s)
- Behjat Kheiri Yeghaneh Azar
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
21
|
Abida, Alhuthali HM, Alshehri JM, Alkathiri A, Almaghrabi ROM, Alsaeed SS, Albebi SAH, Almethn RM, Alfuraydi BA, Alharbi SB, Kamal M, Imran M. Exosomes in infectious diseases: insights into leishmaniasis pathogenesis, immune modulation, and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4913-4931. [PMID: 39702600 DOI: 10.1007/s00210-024-03702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Leishmaniasis continues to be a critical international health issue due to the scarcity of efficient treatment and the development of drug tolerance. New developments in the research of extracellular vesicles (EVs), especially exosomes, have revealed novel disease management approaches. Exosomes are small vesicles that transport lipids, nucleic acids, and proteins in cell signalling. Its biogenesis depends on several cellular processes, and their functions in immune response, encompassing innate and adaptive immunity, underline their function in the pathogen-host interface. Exosomes play a significant role in the pathogenesis of some parasitic infections, especially Leishmaniasis, by helping parasites escape host immunity and promote disease progression. This article explains that in the framework of parasitic diseases, exosomes can act as master regulators that define the pathogenesis of the disease, as illustrated by the engagement of exosomes in the Leishmaniasis parasite and immune escape processes. Based on many published articles on Leishmaniasis, this review aims to summarize the biogenesis of exosomes, the properties of the cargo in exosomes, and the modulation of immune responses. We delve deeper into the prospect of using exosomes for the therapy of Leishmaniasis based on the possibility of using these extracellular vesicles for drug delivery and as diagnostic and prognostic biomarkers. Lastly, we focus on the recent research perspectives and future developments, underlining the necessity to continue the investigation of exosome-mediated approaches in Leishmaniasis treatment. Thus, this review intends to draw attention to exosomes as a bright new perspective in the battle against this disabling affliction.
Collapse
Affiliation(s)
- Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Jawaher Mohammad Alshehri
- Optometry Department, Faculty of Applied Medical Sciences, Albaha University, 65431, Albaha, Saudi Arabia
| | - Afnan Alkathiri
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Albaha University, 65431, Albaha, Saudi Arabia
| | - Ruba Omar M Almaghrabi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Albaha University, 65431, Albaha, Saudi Arabia
| | | | | | | | | | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| |
Collapse
|
22
|
Sonwane S, Telrandhe U, Chambhare N, Vaidya S. Unraveling exosome-mediated cancer therapy resistance: pathways and therapeutic challenges. J Egypt Natl Canc Inst 2025; 37:30. [PMID: 40310494 DOI: 10.1186/s43046-025-00289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Extracellular vesicles (EVs) have emerged as key cell-to-cell communication mediators and play significant roles in both physiological and pathological processes. In EVs, exosomes represent a distinct subpopulation of EVs that have been found to be involved in cancer initiation and therapeutic resistance. Exosomes transfer a diverse spectrum of molecular cargos that have significant effects on the tumor microenvironment (TME), thereby enabling cancer initiation, metastasis, and therapeutic resistance. Exosomes have recently been of interest in cancer therapy due to their role as important mediators of treatment resistance. The exosomal molecular content-proteins, miRNAs, and lncRNAs-allows exosomes to perform functions including drug efflux and detoxification, cell death pathway modulation, induction of epithelial-to-mesenchymal transition (EMT), and suppression of the immune system. In addition to facilitating immune and stromal cell interactions, exosomes cause extracellular matrix remodeling and induce tumor heterogeneity, making it more difficult to respond to therapy. This review covers intricate roles of exosomes in cancer therapy resistance with regard to their biogenesis, molecular content, and functional impact in the TME. Along with this, we also discuss new therapeutic strategies to overcome exosome-mediated resistance including utilizing exosome inhibitors, designed exosome therapy, and combination with conventional therapies. While exosomes hold promise in prediction and diagnosis through their biomarker function, their heterogeneous origins and cryptic functions make it difficult to target interventions. This review emphasizes that research on exosome-mediated pathways is urgently required to develop new therapeutic strategies that can improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Sandip Sonwane
- Datta Meghe College of Pharmacy, DMIHER (DU), Sawangi, Wardha, Wardha, India.
| | - Umesh Telrandhe
- Datta Meghe College of Pharmacy, DMIHER (DU), Sawangi, Wardha, Wardha, India
| | - Nikhita Chambhare
- Datta Meghe College of Pharmacy, DMIHER (DU), Sawangi, Wardha, Wardha, India
| | - Sunita Vaidya
- Datta Meghe College of Pharmacy, DMIHER (DU), Sawangi, Wardha, Wardha, India
| |
Collapse
|
23
|
Saadh MJ, Ahmed HH, Kareem RA, Bishoyi AK, Roopashree R, Shit D, Arya R, Joshi KK, Sameer HN, Yaseen A, Athab ZH, Adil M. The hidden messengers: Tumor microenvironment-derived exosomal ceRNAs in gastric cancer progression. Pathol Res Pract 2025; 269:155905. [PMID: 40073646 DOI: 10.1016/j.prp.2025.155905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
The tumor microenvironment (TME) plays a crucial role in the development and progression of gastric cancer (GC). The TME comprises a network of cancer cells, immune cells, fibroblasts, endothelial cells, and extracellular matrix components, which provide a supportive niche for cancer cells. This study investigates the role of TME-derived exosomal competitive endogenous RNAs (ceRNAs), particularly long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as major regulating agents in GC development. Exosomal ceRNAs control gene expression across several TME components, amplifying cancer hallmarks like cell proliferation, invasion, metastases, and chemoresistance. They promote dynamic interplay between cancer cells and adjacent stromal cells, enabling tumor development through immune suppression, angiogenesis, and epithelial-mesenchymal transition (EMT). Exosomal ceRNAs can modify the TME, creating a pro-tumorigenic milieu and preparing cancer cells to avoid immunological responses, defy death, and adapt to therapeutic pressures. This review highlights the understudied interactions between the TME and exosomal ceRNAs in gastric cancer and emphasizes their potential utility as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand 248002, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
24
|
Chopra P, Fatima A, Mohapatra S, Murugaiyan K, Vemuganti GK, Rengan AK, Watson SL, Singh V, Basu S, Singh S. Extracellular vesicles in dry eye disease and Sjögren's syndrome: A systematic review on their diagnostic and therapeutic role. Surv Ophthalmol 2025; 70:499-515. [PMID: 39818361 DOI: 10.1016/j.survophthal.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Extracellular vesicles (EVs), defined as membrane-bound vesicles released from all cells, are being explored for their diagnostic and therapeutic role in dry eye disease (DED). We systematically shortlisted 32 articles on the role of EVs in diagnosing and treating DED. We cover the progress in the last 2 decades on the classification and isolation of EVs and their role in DED. The diagnostic predictability of exosomes was evaluated in Sjögren syndrome (SS) patients' tears, plasma, and saliva, where upregulation of inflammatory proteins was reported uniformly across studies. Also, we evaluate the therapeutic effects of MSC-derived EVs in in vitro and in vivo studies of SS and DED mouse models. A significant response occurs at a functional level with improved tear production and saliva flow rate and at a cellular level with reduced lymphocyte infiltration, improved corneal structural integrity, decreased epithelial cell apoptosis, and dampening of the inflammatory cytokine response. The proposed mechanisms of EV action include PD-L1, PRDM, NLRP-3, and Nf-kb pathways, and an increase in M2 macrophage phenotype. Current use of exosomes in DED is limited due to their cumbersome isolation techniqus. Further research on human subjects is needed, in addition to optimizing exosome isolation and delivery methods.
Collapse
Affiliation(s)
- Prakshi Chopra
- Sydney Eye Hospital, Sydney, Australia; The University of Sydney, Australia
| | - Asra Fatima
- School of Medical Sciences, University of Hyderabad, India
| | - Sonali Mohapatra
- Brien Holden Centre for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Kavipriya Murugaiyan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | | | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | | | - Vivek Singh
- Brien Holden Centre for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sayan Basu
- Brien Holden Centre for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India; Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Swati Singh
- Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India; Prof. Krothapalli Ravindranath Ophthalmic Research Biorepository, LV Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
25
|
Fatima A, Sanyal S, Jha GK, Kaliki S, Pallavi R. The enigmatic world of tear extracellular vesicles (EVs)-exploring their role in ocular health and beyond. FEBS Lett 2025; 599:1346-1372. [PMID: 39961136 DOI: 10.1002/1873-3468.70004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/29/2024] [Accepted: 01/10/2025] [Indexed: 05/27/2025]
Abstract
Extracellular vesicles (EVs) are released by all kind of cells into the extracellular space, where they shuttle parental cell-derived molecular cargoes (DNA, RNA, proteins) to both adjacent and distant cells, influencing the physiology of target cells. Their specific cargo content and abundance in liquid biopsies make them excellent candidates for biomarker studies. Indeed, EVs isolated from various body fluids, including blood, pleural fluid, urine, cerebrospinal fluid, saliva, milk, ascites, and tears, have been recognized for their potential as biomarkers in diagnosis, monitoring treatment, and predicting outcomes for various diseases. Increasing studies suggest that tears have great promise as a noninvasive liquid biopsy source for EVs. Our aim here is to provide a comprehensive review of the exploration of tears as a noninvasive reservoir of EVs and their contents, evaluating their accessibility and potential utility as a liquid biopsy method. Additionally, the potential of tear EVs in various cancers, including ocular cancer, is discussed. Finally, the advantages and challenges of employing tear-based liquid biopsy for EVs for the disease's biomarker studies are evaluated.
Collapse
Affiliation(s)
- Azima Fatima
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, 500034, Telangana State, India
| | - Shalini Sanyal
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, 500034, Telangana State, India
| | - Gaurab Kumar Jha
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, 500034, Telangana State, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, 500034, Telangana State, India
| | - Rani Pallavi
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, 500034, Telangana State, India
| |
Collapse
|
26
|
Liu C, Luo Y, Zhou H, Lin M, Zang D, Chen J. Immune cell-derived exosomal non-coding RNAs in tumor microenvironment: Biological functions and potential clinical applications. Chin J Cancer Res 2025; 37:250-267. [PMID: 40353080 PMCID: PMC12062983 DOI: 10.21147/j.issn.1000-9604.2025.02.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/25/2025] [Indexed: 05/14/2025] Open
Abstract
The intricate interactions between immune cells and tumors exert a profound influence on cancer progression and therapeutic efficacy. Within the tumor microenvironment, exosomes have emerged as pivotal mediators of intercellular communication, with their cargo of non-coding RNAs (ncRNAs) serving as key regulatory elements. This review examines the multifaceted roles of immune cell-derived exosomal ncRNAs in tumor biology. The involvement of various immune cells, including T cells, B cells, natural killer cells, macrophages, neutrophils, and myeloid-derived suppressor cells, in utilizing exosomal ncRNAs to regulate tumor initiation and progression is explored. Additionally, the biogenesis and delivery mechanisms of these immune cell-derived exosomal ncRNAs are discussed, alongside their potential clinical applications in cancer.
Collapse
Affiliation(s)
- Chenguang Liu
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Yawen Luo
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Huan Zhou
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Meixi Lin
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Dan Zang
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Jun Chen
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian 116023, China
| |
Collapse
|
27
|
Bashirrohelleh MA, Bavarsad K, Khodadadi A, Shohan M, Asadirad A. Curcumin-enhanced stem cell exosomes: A novel approach to modulating neuroinflammation and improving cognitive function in a rat model of Alzheimer's disease. Eur J Pharmacol 2025; 999:177695. [PMID: 40315951 DOI: 10.1016/j.ejphar.2025.177695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/22/2025] [Accepted: 04/30/2025] [Indexed: 05/04/2025]
Abstract
The effect of Curcumin-enhanced stem cell exosomes on the learning and memory impairment induced by streptozotocin (STZ) and neuro-inflammation in rats was evaluated. An animal model of Alzheimer's disease (AD) was established by intracerebroventricular (ICV) injection of STZ (3 mg/kg) in male Wistar rats (250 ± 50 g). ICV STZ injections chronically reduce cerebral glucose uptake and produce other effects similar to pathological, molecular and behavioral features of AD. Numerous studies confirmed the anti-inflammatory and antioxidant properties of curcumin (a natural polyphenol) against free radicals, as well as its ability to inhibit the aggregation of proteins such as beta-amyloid and alpha-synuclein in disorders such as AD and Parkinson's disease. The use of extracellular vesicles has garnered a lot of interest in research studies because of the important roles that mesenchymal stem cell-derived exosomes play in permeability, retention, and drug delivery as well as their ability to reduce inflammatory cytokines (TNF-α, IL-1β, and IL-6). Furthermore, researches highlighted the positive effect of curcumin on neuronal differentiation of stem cells in vivo and in vitro. Since studies emphasized the ameliorating effect of curcumin-treated macrophage-exosomes on symptoms of Alzheimer's disease by inhibiting tau protein phosphorylation, we proposed that Curcumin-primed MSC exosomes may offer greater efficacy to alleviate AD compared to naïve MSC exosomes. In this study, we investigated the effect of curcumin in stimulating the anti-inflammatory potential of exosome-derived stem cells. We evaluated the effect of MSC-EXO and pre-treated MSC-EXO with curcumin (CUR-MSC-EXO) on inhibiting inflammation and memory and learning impairments. Following four intraperitoneal injections of MSC-EXO and CUR-MSC-EXO at a dosage of 30μg/body over 30 days, we found that MSC-EXO and CUR-MSC-EXO elevated anti-inflammatory cytokines (IL10, TGF-β) and reduced pro-inflammatory cytokines (IL1, TNF-α) in peripheral blood compared to the AD group. The elevated level of M2 anti-inflammatory microglia markers (Arg1, CD206) and decreased level expression of M1 pro-inflammatory markers (iNOS, CD86) indicated that the CUR-MSC-EXO effect was more significant in the polarization of microglia into the M2 phenotype in the rat hippocampus. Both treatment groups demonstrated improvements in memory and learning skills. The results of the passive avoidance learning in the rats with STZ-induced memory impairment, however, were better in the CUR-MSC-EXO. Additionally, after therapy, a decrease in degenerative neurons was seen. Therefore, using curcumin may stimulate the anti-inflammatory and neuroprotective potential of exosome-derived stem cells which could provide hope for Alzheimer's disease treatment in the future.
Collapse
Affiliation(s)
- Mohammad-Ali Bashirrohelleh
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur, University of Medical Sciences, Iran; Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kowsar Bavarsad
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur, University of Medical Sciences, Iran; Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Shohan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur, University of Medical Sciences, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur, University of Medical Sciences, Iran; Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
28
|
Ramezani A, Rahnama M, Mahmoudian F, Shirazi F, Ganji M, Bakhshi S, Khalesi B, Hashemi ZS, Khalili S. Current Understanding of the Exosomes and Their Associated Biomolecules in the Glioblastoma Biology, Clinical Treatment, and Diagnosis. J Neuroimmune Pharmacol 2025; 20:48. [PMID: 40299204 DOI: 10.1007/s11481-025-10204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
Glioblastoma is the most common and aggressive brain tumor with a low survival rate. Due to its heterogeneous composition, high invasiveness, and frequent recurrence after surgery, treatment success has been limited. In addition, due to the brain's unique immune status and the suppressor tumor microenvironment (TME), glioblastoma treatment has faced more challenges. Exosomes play a critical role in cancer metastasis by regulating cell-cell interactions that promote tumor growth, angiogenesis, metastasis, treatment resistance, and immunological regulation in the tumor microenvironment. This review explores the pivotal role of exosomes in the development of glioblastoma, with a focus on their potential as non-invasive biomarkers for prognosis, early detection and real-time monitoring of disease progression. Notably, exosome-based drug delivery methods hold promise for overcoming the blood-brain barrier (BBB) and developing targeted therapies for glioblastoma. Despite challenges in clinical translation, the potential for personalized exosome = -054321`therapies and the capacity to enhance therapeutic responses in glioblastoma, present intriguing opportunities for improving patient outcomes. It seems that getting a good and current grasp of the role of exosomes in the fight against glioblastoma would properly serve the scientific community to further their understanding of the related potentials of these biological moieties.
Collapse
Affiliation(s)
- Aghdas Ramezani
- Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Maryam Rahnama
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Mahmoudian
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Shirazi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Mahmoud Ganji
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shohreh Bakhshi
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Education and Extension Organization, Razi Vaccine and Serum Research Institute, Agricultural Research, Karaj, 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| |
Collapse
|
29
|
Stentz R, Jones E, Gul L, Latousakis D, Parker A, Brion A, Goldson AJ, Gotts K, Carding SR. Proteomics of Bacterial and Mouse Extracellular Vesicles Released in the Gastrointestinal Tracts of Nutrient-Stressed Animals Reveals an Interplay Between Microbial Serine Proteases and Mammalian Serine Protease Inhibitors. Int J Mol Sci 2025; 26:4080. [PMID: 40362319 PMCID: PMC12071298 DOI: 10.3390/ijms26094080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Bacterial extracellular vesicles (BEVs) produced by members of the intestinal microbiota can not only contribute to digestion but also mediate microbe-host cell communication via the transfer of functional biomolecules to mammalian host cells. An unresolved question is which host factors and conditions influence BEV cargo and how they impact host cell function. To address this question, we analysed and compared the proteomes of BEVs released by the major human gastrointestinal tract (GIT) symbiont Bacteroides thetaiotaomicron (Bt) in vivo in fed versus fasted animals using nano-liquid chromatography with tandem mass spectrometry (LC-MSMS). Among the proteins whose abundance was negatively affected by fasting, nine of ten proteins of the serine protease family, including the regulatory protein dipeptidyl peptidase-4 (DPP-4), were significantly decreased in BEVs produced in the GITs of fasted animals. Strikingly, in extracellular vesicles produced by the intestinal epithelia of the same fasted mice, the proteins with the most increased abundance were serine protease inhibitors (serpins). Together, these findings suggest a dynamic interaction between GI bacteria and the host. Additionally, they indicate a regulatory role for the host in determining the balance between bacterial serine proteases and host serpins exported in bacterial and host extracellular vesicles.
Collapse
Affiliation(s)
- Régis Stentz
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (E.J.); (L.G.); (D.L.); (A.P.); (S.R.C.)
| | - Emily Jones
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (E.J.); (L.G.); (D.L.); (A.P.); (S.R.C.)
| | - Lejla Gul
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (E.J.); (L.G.); (D.L.); (A.P.); (S.R.C.)
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Dimitrios Latousakis
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (E.J.); (L.G.); (D.L.); (A.P.); (S.R.C.)
| | - Aimee Parker
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (E.J.); (L.G.); (D.L.); (A.P.); (S.R.C.)
| | - Arlaine Brion
- Core Science Resources, Quadram Institute Bioscience, Norwich NR4 7UQ, UK (A.J.G.); (K.G.)
| | - Andrew J. Goldson
- Core Science Resources, Quadram Institute Bioscience, Norwich NR4 7UQ, UK (A.J.G.); (K.G.)
| | - Kathryn Gotts
- Core Science Resources, Quadram Institute Bioscience, Norwich NR4 7UQ, UK (A.J.G.); (K.G.)
| | - Simon R. Carding
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (E.J.); (L.G.); (D.L.); (A.P.); (S.R.C.)
- Norwich Medical School, University East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
30
|
Fujimoto D, Umemoto S, Mizumoto T, Kanki T, Hata Y, Nishiguchi Y, Date R, Zhang J, Kakizoe Y, Izumi Y, Adachi M, Kojima H, Yokoi H, Mukoyama M, Kuwabara T. Alvespimycin is identified as a novel therapeutic agent for diabetic kidney disease by chemical screening targeting extracellular vesicles. Sci Rep 2025; 15:14436. [PMID: 40281012 PMCID: PMC12032101 DOI: 10.1038/s41598-025-98894-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication and play key roles in the regulation of pathophysiological processes. In diabetic kidney disease (DKD), it has been reported that macrophages recruited in the mesangial region may play pathogenic roles through inducing local inflammation in glomeruli. We focused on EV-mediated crosstalk between mesangial cells (MC) and macrophages as a novel therapeutic target for DKD. EVs released from MC induced inflammation in macrophages and the effect was enhanced under high-glucose conditions. For discovering novel therapeutic agents which can inhibit such EV-mediated mechanisms, drug repositioning is considered as an effective tool. We established a unique screening strategy and screened agents to aim at maximizing their specificity and potency to inhibit EV mechanisms, along with minimizing their toxicity. We succeeded in identifying alvespimycin, an HSP90 inhibitor. Treatment of diabetic rats with alvespimycin significantly suppressed mesangial expansion, inflammatory gene activation including macrophage markers, and proteinuria. The inhibitory effect on EV uptake was specific to alvespimycin compared with other known HSP90 inhibitors. MC-derived EVs are crucial for inflammation by intercellular crosstalk between MC and macrophages in DKD, and alvespimycin effectively ameliorated the progression of DKD by suppressing EV-mediated actions, suggesting that EV-targeted agents can be a novel therapeutic strategy.
Collapse
Affiliation(s)
- Daisuke Fujimoto
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Shuro Umemoto
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Teruhiko Mizumoto
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Tomoko Kanki
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yusuke Hata
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yoshihiko Nishiguchi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Ryosuke Date
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Jingxuan Zhang
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masataka Adachi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan
| | - Hideki Yokoi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
31
|
Hsu CY, Chandramoorthy HC, Mohammed JS, Al-Hasnaawei S, Yaqob M, Kundlas M, Samikan K, Sahoo S, Sunori SK, Abbas ZA. Exosomes as key mediators in immune and cancer cell interactions: insights in melanoma progression and therapy. Arch Dermatol Res 2025; 317:729. [PMID: 40252131 DOI: 10.1007/s00403-025-04237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
Exosomes (30-150 nm) are small extracellular vesicles that are secreted by cells into the extracellular environment and are known to mediate cell-to-cell communication. Exosomes contain proteins, lipids, and RNA molecules in relative abundance, capable of modifying the activity of target cells. Melanoma-derived exosomes (MEXs) promote the transfer of oncogenic signals and immunosuppressive factors into immune cells, resulting in a bias of the immune response towards tumor-promoting processes. MEXs could suppress the activation and proliferation of T cells and dendritic cells and induce differentiation of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). They can induce apoptosis of antigen-specific CD8 + T cells and promote the transfer of tumor antigens, resulting in immune evasion. Specifically, MEXs can shuttle cytokines like interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) to immune cells or express programmed death-ligand 1 (PD-L1 or CD274), creating an immune-suppressive microenvironment that promotes tumorigenesis. Since exosomes preferentially accumulate in melanoma tissues, this targeted delivery could enhance the bioavailability of treatments while limiting side effects. Here, we review the molecular composition of melanoma-derived exosomes, their mechanisms of action, and their potential as therapeutic targets or biomarkers in melanoma. The summarizations of these mechanisms to appropriately influence exosome-mediated interactions could yield new tactics to elicit anti-melanoma immunity or augment the therapeutic effects of current therapies.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University, Tempe Campus, Phoenix, AZ, 85004, USA.
| | - Harish C Chandramoorthy
- Department of Microbiology and Clinical Parasitology, College of Medicine and Central Research Laboratories, King Khalid University, Abha, Saudi Arabia
| | | | - Shaker Al-Hasnaawei
- College of Pharmacy, the Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Mohammed Yaqob
- Department of Biology, Mazaya University College, Dhiqar, Iraq
| | - Mayank Kundlas
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Krishnakumar Samikan
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Samir Sahoo
- Department of General Medicine, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - S K Sunori
- Graphic Era Hill University, Bhimtal, Uttarakhand, India
- Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India
| | - Zainab Ahmed Abbas
- College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| |
Collapse
|
32
|
Korutla L, Hu R, Liu Y, Romano C, Habertheuer A, Abedi P, Wang H, Molugu S, Rostami S, Naji A, Nuqali A, Beasley M, Maulion C, Hahn S, Ahmad T, Wang Z, Sen S, Vallabhajosyula P. Circulating Tissue Specific Extracellular Vesicles for Noninvasive Monitoring of Acute Cellular Rejection in Clinical Heart Transplantation. Transplantation 2025:00007890-990000000-01061. [PMID: 40238644 DOI: 10.1097/tp.0000000000005369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
BACKGROUND There remains a critical need for biomarkers of acute cellular rejection (ACR) in heart transplantation. We hypothesized that immunopathophysiology of ACR is reflected via dynamic changes in the protein and RNA cargoes of small extracellular vesicles (sEVs) released by cardiac allograft and T cells into circulation, thus enabling noninvasive window into ACR. METHODS T-cell sEVs were enriched using anti-CD3 antibody beads, and antidonor HLA I antibody beads for donor sEVs. Cargoes of donor sEVs (cardiac troponin T [cTnT] protein and mRNA) and T-cell sEVs (CD4, CD8, T-cell receptor proteins, miRNAs [miRs] let 7i, 101b, 21a) were compared with time-matched endomyocardial biopsy samples (n = 70) in 12 patients to postoperative day 120. RESULTS Six patients had 11 moderate ACR (15.7%) episodes, 1 had antibody-mediated rejection, and 5 had ≤ mild ACR. By Wilcoxon rank-sum tests, cTnT protein (P = 6.04 × 10-5) and mRNA (P = 6.87 × 10-7) were decreased with moderate ACR compared with grades 0/1 ACR. T-cell sEV CD4, CD8, and TCR protein cargoes (P ≤ 3.92 × 10-5) and miRs let 7i, 101b, and 21a (P ≤ 9.05 × 10-5) were increased with moderate ACR. Successful treatment of moderate ACR led to dynamic reversal in sEV profiles, especially donor heart sEV cTnT mRNA (Spearman coefficient 0.87) and miR 21a (coefficient 0.85). CONCLUSIONS Our first investigation in heart transplant patients demonstrated that circulating T cell-sEV and donor heart-sEV profiles enable diagnosis of moderate ACR with high diagnostic accuracy. A large sample cohort external validation study is warranted to better understand diagnostic potential of this platform for ACR monitoring in heart transplantation.
Collapse
Affiliation(s)
| | - Robert Hu
- Department of Surgery, Creighton University School of Medicine, Omaha, NE
| | - Yihan Liu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT
| | - Connie Romano
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Andreas Habertheuer
- Division of Cardiac Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Parisa Abedi
- Division of Cardiac Surgery, Yale University School of Medicine, New Haven, CT
| | - He Wang
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Sudheer Molugu
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Susan Rostami
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Abdulelah Nuqali
- Division of Cardiology, Yale University School of Medicine, New Haven, CT
| | - Michael Beasley
- Division of Cardiology, Yale University School of Medicine, New Haven, CT
| | | | - Samuel Hahn
- Division of Cardiology, Yale University School of Medicine, New Haven, CT
| | - Tariq Ahmad
- Division of Cardiology, Yale University School of Medicine, New Haven, CT
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT
| | - Sounok Sen
- Division of Cardiology, Yale University School of Medicine, New Haven, CT
| | | |
Collapse
|
33
|
Du G, He J, Zhan Y, Chen L, Hu Y, Qian J, Huang H, Meng F, Shan L, Chen Z, Hu D, Zhu C, Yue M, Qi Y, Tan W. Changes and application prospects of biomolecular materials in small extracellular vesicles (sEVs) after flavivirus infection. Eur J Med Res 2025; 30:275. [PMID: 40229861 PMCID: PMC11998145 DOI: 10.1186/s40001-025-02539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/31/2025] [Indexed: 04/16/2025] Open
Abstract
Small extracellular vesicles (sEVs), also known as exosomes, are membranous vesicles filled with various proteins and nucleic acids, serving as a communication vector between cells. Recent research has highlighted their role in viral diseases. This review synthesizes current understanding of viral sEVs and includes recent findings on sEVs infected with flaviviruses. It discusses the implications of viral sEVs research for advancing arbovirus sEVs research and anticipates the potential applications of sEVs in flavivirus infections.
Collapse
Affiliation(s)
- Gengting Du
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China
| | - Junhua He
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Yan Zhan
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Leru Chen
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China
| | - Yue Hu
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Jiaojiao Qian
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Huan Huang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Fanjin Meng
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Laiyou Shan
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Zhiyu Chen
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | | | - Changqiang Zhu
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China
| | - Ming Yue
- Department of Infectious Diseases, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Qi
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China
| | - Weilong Tan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China.
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
34
|
Wei J, Xie Z, Kuang X. Extracellular Vesicles in Renal Inflammatory Diseases: Revealing Mechanisms of Extracellular Vesicle-Mediated Macrophage Regulation. Int J Mol Sci 2025; 26:3646. [PMID: 40332144 PMCID: PMC12027779 DOI: 10.3390/ijms26083646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Renal inflammatory diseases are a group of severe conditions marked by significant morbidity and mortality. Extracellular vesicles (EVs), as facilitators of intercellular communication, have been recognized as pivotal regulators of renal inflammatory diseases, significantly contributing to these conditions by modulating immune responses among other mechanisms. This review highlights the intricate mechanisms through which EVs modulate macrophage-kidney cell interactions by regulating macrophages, the principal immune cells within the renal milieu. This regulation subsequently influences the pathophysiology of renal inflammatory diseases such as acute kidney injury and chronic kidney disease. Furthermore, understanding these mechanisms offers novel opportunities to alleviate the severe consequences associated with renal inflammatory diseases. In addition, we summarize the therapeutic landscape based on EV-mediated macrophage regulatory mechanisms, highlighting the potential of EVs as biomarkers and therapeutic targets as well as the challenges and limitations of translating therapies into clinical practice.
Collapse
Affiliation(s)
- Jiatai Wei
- The Second Clinical Medical College, Nanchang University, Nanchang 330031, China; (J.W.); (Z.X.)
| | - Zijie Xie
- The Second Clinical Medical College, Nanchang University, Nanchang 330031, China; (J.W.); (Z.X.)
| | - Xiaodong Kuang
- Pathology Teaching and Research Office, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
35
|
Hasan R, Zhao Z, Li Y, Liu Y, Zhang Y, Cheng K. Small extracellular vesicles (sEVs) in pancreatic cancer progression and diagnosis. J Control Release 2025; 380:269-282. [PMID: 39889882 PMCID: PMC11908897 DOI: 10.1016/j.jconrel.2025.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Pancreatic cancer is one of the most aggressive malignancies with poor prognostic outcomes, necessitating the exploration of novel biomarkers and therapeutic targets for early detection and effective treatment. Small extracellular vesicles (sEVs) secreted by cells, have gained considerable attention in cancer research due to their role in intercellular communication and their potential as non-invasive biomarkers. This review focuses on the role of sEVs in the progression of pancreatic cancer and their application as biomarkers. We delve into the biogenesis, composition, and functional implications of sEVs in pancreatic tumor biology, emphasizing their involvement in processes such as tumor growth, metastasis, immune modulation, and chemotherapy resistance. In addition, we discuss the challenges in isolating and characterizing sEVs. The review also highlights recent advances in the utilization of sEV-derived biomarkers for the early diagnosis, prognosis, and monitoring of pancreatic cancer. By synthesizing the latest findings, we aim to underscore the significance of sEVs in pancreatic cancer and their potential to revolutionize patient management through improved diagnostics and targeted therapies.
Collapse
Affiliation(s)
- Reaid Hasan
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Zhen Zhao
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yuanke Li
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yanli Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
36
|
Karpurapu M, Yan J, Chung S, Pannu SR, Parinandi N, Berdyshev E, Zhang L, Christman JW. Specialized Pro-Resolving Mediator loaded Extracellular Vesicles Mitigate Pulmonary Inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.09.648009. [PMID: 40291690 PMCID: PMC12027339 DOI: 10.1101/2025.04.09.648009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Specialized pro-resolving mediators (SPMs), including lipoxins derived from arachidonic acid and resolvins, protectins, and maresins derived from docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), orchestrate the active resolution of inflammation. These SPMs are biosynthesized through the coordinated interaction of various cells in a process known as transcellular biosynthesis, involving the sequential action of cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), 12-lipoxygenase (12-LOX), and/or 15-lipoxygenase (15-LOX) enzymes. Additionally, Aspirin-triggered Resolvins are produced by acetylated COX-2, along with various lipoxygenases. Although SPMs regulate various cellular processes to actively resolve inflammation, their in vivo levels are typically low. To address this limitation, we engineered a multigene expression vector that co-expresses COX-2, 5-LOX, and 15-LOX, potentiating the synthesis of various SPMs. HEK293T cells transfected with this vector and cultured with fatty acid-free BSA-complexed DHA, EPA, and aspirin, successfully mimicked both transcellular and aspirin-triggered biosynthesis of Resolvins. These Resolvins are packaged into extracellular vesicles, which significantly inhibited neutrophil adhesion to endothelial cells, preserved endothelial monolayer barrier integrity, suppressed NF-κB reporter activity, and enhanced macrophage efferocytosis in vitro . Notably, post-injury administration of Resolvin-loaded EVs mitigated pulmonary inflammation in LPS-treated mice without causing systemic or pulmonary toxicity. In summary, we report a novel cell-based platform for generating Resolvin-loaded EVs that mitigate pulmonary inflammation in mouse models, underscoring their potential for treating other acute inflammatory diseases.
Collapse
|
37
|
Liu Z, Liu X, Zhou Y, Wen X, Xu J, He M, Chen J, Jia N, Liu Y. Extracellular vesicles play a central role in linking podocyte injury to mesangial activation in glomerular disease. Theranostics 2025; 15:5121-5137. [PMID: 40303345 PMCID: PMC12036872 DOI: 10.7150/thno.110034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Background: Podocyte injury leading to proteinuria is the primary feature of a vast majority of glomerular diseases, while mesangial cell activation is the hallmark of glomerulosclerosis. Whether and how these two events are connected remains elusive. In this study, we investigated the role of extracellular vesicles (EVs) in linking podocyte injury to mesangial activation in glomerular disease. Methods: EVs were characterized by nanoparticle tracking analysis and electron microscopy. Differentially expressed proteins from podocyte-derived EVs were analyzed by protein microarray. The role and mechanism by which EVs-packaged sonic hedgehog (Shh) mediates mesangial cell activation were investigated in vitro and in vivo. Results: An increased production of EVs in mouse podocytes (MPC5) was observed after injury induced by angiotensin II (Ang II). Shh and N-Shh were identified as major constituents of the proteins encapsulated in EVs isolated from Ang II-treated MPC5 cells (Ang II-EVs). In vitro, Ang II-EVs induced the activation and proliferation of rat mesangial cells (HBZY-1), whereas inhibition of EV secretion with dimethyl amiloride, depletion of EVs from conditioned media or knockdown of Shh expression abolished the ability of Ang II-EVs to induce HBZY-1 activation. In vivo, intravenous injection of Ang II-EVs exacerbated glomerulosclerosis, which was negated by hedgehog inhibitor. Furthermore, blocking EV secretion also ameliorated glomerulosclerosis in mouse model of glomerular disease. Conclusions: These findings suggest that podocyte injury can cause mesangial cell activation and glomerulosclerosis by releasing Shh-enriched EVs. Therefore, strategies targeting EVs may be a novel way to ameliorate proteinuric kidney disease.
Collapse
Affiliation(s)
- Zhao Liu
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xi Liu
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Zhou
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Wen
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Xu
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meizhi He
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiongcheng Chen
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nan Jia
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
38
|
Tarin M, Oryani MA, Javid H, Karimi-Shahri M. Exosomal PD-L1 in non-small cell lung Cancer: Implications for immune evasion and resistance to immunotherapy. Int Immunopharmacol 2025; 155:114519. [PMID: 40199140 DOI: 10.1016/j.intimp.2025.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
Exosomes, characterized by their bilayer lipid structure, are crucial in mediating intercellular signaling and contributing to various physiological processes. Tumor cells produce distinct exosomes facilitating cancer progression, angiogenesis, and metastasis by conveying signaling molecules. A notable feature of these tumor-derived exosomes is the presence of programmed death-ligand 1 (PD-L1) on their surface. The PD-L1/programmed cell death receptor-1 (PD-1) signaling axis serves as a critical immune checkpoint, enabling tumors to evade immune detection and antitumor activity. The advancement of immunotherapy targeting the PD-1/PD-L1 pathway has significantly impacted the treatment landscape for non-small cell lung cancer (NSCLC). Despite its promise, evidence indicates that many patients experience limited responses or develop resistance to PD-1/PD-L1 inhibitors. Recent studies suggest that exosomal PD-L1 contributes to this resistance by modulating immune responses and tumor adaptability. This study reviews the PD-1/PD-L1 pathway's characteristics, current clinical findings on PD-L1 inhibitors in NSCLC, and exosome-specific attributes, with a particular focus on exosomal PD-L1. Furthermore, it examines the growing body of research investigating the role of exosomal PD-L1 in cancer progression and response to immunotherapy, underscoring its potential as a target for overcoming resistance in NSCLC treatment.
Collapse
Affiliation(s)
- Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
39
|
Shapiro IM, Risbud MV, Tang T, Landis WJ. Skeletal and dental tissue mineralization: The potential role of the endoplasmic reticulum/Golgi complex and the endolysosomal and autophagic transport systems. Bone 2025; 193:117390. [PMID: 39814250 DOI: 10.1016/j.bone.2025.117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
This paper presents a review of the potential role of the endoplasmic reticulum/Golgi complex and intracellular vesicles in mediating events leading to or associated with vertebrate tissue mineralization. The possible importance of these organelles in this process is suggested by observations that calcium ions accumulate in the tubules and lacunae of the endoplasmic reticulum and Golgi. Similar levels of calcium ions (approaching millimolar) are present in vesicles derived from endosomes, lysosomes and autophagosomes. The cellular level of phosphate ions in these organelles is also high (millimolar). While the source of these ions for mineral formation has not been identified, there are sound reasons for considering that they may be liberated from mitochondria during the utilization of ATP for anabolic purposes, perhaps linked to matrix synthesis. Published studies indicate that calcium and phosphate ions or their clusters contained as cargo within the intracellular organelles noted above lead to formation of extracellular mineral. The mineral sequestered in mitochondria has been documented as an amorphous calcium phosphate. The ion-, ion cluster- or mineral-containing vesicles exit the cell in plasma membrane blebs, secretory lysosomes or possibly intraluminal vesicles. Such a cell-regulated process provides a means for the rapid transport of ions or mineral particles to the mineralization front of skeletal and dental tissues. Within the extracellular matrix, the ions or mineral may associate to form larger aggregates and potential mineral nuclei, and they may bind to collagen and other proteins. How cells of hard tissues perform their housekeeping and other biosynthetic functions while transporting the very large volumes of ions required for mineralization of the extracellular matrix is far from clear. Addressing this and related questions raised in this review suggests guidelines for further investigations of the intracellular processes promoting the mineralization of the skeletal and dental tissues.
Collapse
Affiliation(s)
- Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America.
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Tengteng Tang
- Center for Applied Biomechanics, Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, United States of America
| | - William J Landis
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California at San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
40
|
Daghrery A, Araújo IJDS, Marques JF, Alipour M, Ünsal RBK, Chathoth BM, Sivaramakrishnan G, Delgadillo-Barrera S, Chaurasia A. Role of exosomes in dental and craniofacial regeneration - A review. Tissue Cell 2025; 93:102684. [PMID: 39740273 DOI: 10.1016/j.tice.2024.102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND The treatment of congenital deformities, traumatic injuries, infectious diseases, and tumors in the craniomaxillofacial (CMF) region is complex due to the intricate nature of the tissues involved. Conventional treatments such as bone grafts and cell transplantation face limitations, including the need for multiple surgeries, complications, and safety concerns. OBJECTIVE This paper aims to provide a comprehensive analysis of the role of exosomes (EXOs) in CMF and dental tissue regeneration and to explore their potential applications in regenerative dental medicine. METHODS An extensive review of advancements in tissue engineering, materials sciences, and nanotechnology was conducted to evaluate the development of delivery systems for EXOs-based therapies. The analysis included how EXOs, as nanovesicles released by cells, can be modified to target specific cells or loaded with functional molecules for drug or gene delivery. RESULTS EXOs have emerged as a promising alternative to cell transplant therapy, offering a safer method for cell communication and epigenetic control. EXOs transport important proteins and genetic materials, facilitating intercellular communication and delivering therapeutics effectively. The potential of EXOs in personalized medicine, particularly in diagnosing, customizing treatment, and predicting patient responses, is highlighted. CONCLUSION EXO-mediated therapy holds significant potential for advancing tissue regeneration, offering targeted, personalized treatment options with reduced side effects. However, challenges in purification, production, and standardized protocols need to be addressed before its clinical application can be fully realized.
Collapse
Affiliation(s)
- Arwa Daghrery
- Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia.
| | | | - Joana Faria Marques
- Faculdade de Medicina Dentária, Universidade de Lisboa, Cidade Universitária, Lisboa 1600-277, Portugal.
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Iran; Departments of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, USA.
| | - Revan Birke Koca Ünsal
- Department of Periodontology, University of Kyrenia, Faculty of Dentistry, Kyrenia, Cyprus.
| | | | | | - Sara Delgadillo-Barrera
- Grupo de Investigacion Básica y Aplicada en Odontología - IBAPO, Facultad de Odontologia, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, Faculty of Dental Sciences. King George's Medical University, Lucknow, India.
| |
Collapse
|
41
|
Cao Y, Qin Y, Cheng Q, Zhong J, Han B, Li Y. Bifunctional nanomaterial enabled high-specific isolation of urinary exosomes for cervical cancer metabolomics analysis and biomarker discovery. Talanta 2025; 285:127280. [PMID: 39613490 DOI: 10.1016/j.talanta.2024.127280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Cervical cancer (CC) remains a critical public health issue, highlighting the importance of early detection. However, current methods such as cytological and HPV testing face challenges of invasiveness and low patient compliance. Exosomes, emerging as crucial in cancer diagnosis, offer promise due to their noninvasive, highly specificity, and abundant biomarkers. However, isolating exosomes efficiently remains challenging. In this study, we designed and synthesized a bifunctional affinity nanomaterial Fe3O4 @CD63-CLIKKPF, based on the synergistic interaction between its modified aptamer CD63 and peptide CLIKKPF, and CD63 protein and PS of exosomes which can achieve high specificity and high yield separation of urinary exosomes. Notably, the co-modified aptamer CD63 and peptide CLIKKPF not only enable efficient exosome isolation by leveraging dual-affinity mechanisms through a synergistic "AND" logic analysis, but also could be achieved on the Fe3O4 in one-step reaction at room temperature via Fe-S bonding. Combined with LC-MS/MS, we conducted exosome metabolomics analysis in healthy individuals and CC patients across various stages, and machine learning models demonstrated accurate classification (accuracy >0.822) and prediction capabilities for CC. Furthermore, six key metabolites indicative of CC progression were identified and validated in additional patient samples, highlighting their potential as biomarkers. Overall, this study establishes a novel method for exosome metabolomics in CC, offering insights for non-invasive early diagnosis and progression prediction on a large scale.
Collapse
Affiliation(s)
- Yiqing Cao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yulin Qin
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Qunxian Cheng
- Department of Gynecology and Obstetrics, Minhang Hospital, Fudan University, Shanghai, China
| | - Jialiang Zhong
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, 201100, China.
| | - Yan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, 201203, China; Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
42
|
Tajabadi Z, Dadkhah PA, Gholami Chahkand MS, Esmaeilpour Moallem F, Karimi MA, Amini-Salehi E, Karimi M. Exploring the role of exosomes in diabetic neuropathy: From molecular mechanisms to therapeutic potential. Biomed Pharmacother 2025; 185:117959. [PMID: 40056828 DOI: 10.1016/j.biopha.2025.117959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025] Open
Abstract
Diabetic neuropathy (DN) is a debilitating complication of diabetes mellitus (DM), characterized by progressive neuronal damage, sensory dysfunction, and impaired quality of life. Recent advances in exosome research have elucidated their crucial role in DN's pathogenesis, diagnosis, and treatment. Exosomes-nanoscale extracellular vesicles-function as vehicles for molecular cargo, including microRNAs (miRNAs), proteins, and lipids, which mediate intercellular communication and regulate key biological processes. Pathologically, hyperglycemia and hyperlipidemia induce the release of exosomes enriched with pathogenic miRNAs, such as miR-130a and miR-20b-3p, which disrupt neuronal function, axonal regeneration, and inflammatory pathways. Conversely, diagnostic studies highlight the utility of exosomal biomarkers like miR-7 and miR-221 in the early detection and monitoring of DN. Therapeutically, Schwann cell-derived and mesenchymal stromal cell (MSC)-derived exosomes demonstrate neuroprotective and reparative effects by enhancing mitochondrial function, modulating inflammation, and promoting axonal repair. Emerging approaches, including engineered exosomes and miRNA-enriched vesicles, further expand their therapeutic potential. Despite these advances, challenges such as standardization, large-scale production, and clinical validation remain in translating these findings into clinical practice. This review underscores the multifaceted roles of exosomes in DN and highlights their potential as innovative tools for precision diagnostics and targeted therapies, paving the way for future research and clinical applications.
Collapse
Affiliation(s)
- Zohreh Tajabadi
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Mehdi Karimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kyiv, Ukraine
| |
Collapse
|
43
|
Mukerjee N, Bhattacharya A, Maitra S, Kaur M, Ganesan S, Mishra S, Ashraf A, Rizwan M, Kesari KK, Tabish TA, Thorat ND. Exosome isolation and characterization for advanced diagnostic and therapeutic applications. Mater Today Bio 2025; 31:101613. [PMID: 40161926 PMCID: PMC11950786 DOI: 10.1016/j.mtbio.2025.101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/01/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Advancements in exosome isolation technologies are pivotal for transforming personalized medicine and enhancing clinical diagnostics. Exosomes, small extracellular vesicles with diameters ranging between 30 and 150 nm, are secreted into bodily fluids by a variety of cells and play essential roles in intercellular communication. These vesicles facilitate the transfer of nucleic acids, lipids, and proteins, affecting a wide range of biological and pathological processes. Given their importance in disease diagnostics, therapy, and as biomarkers, there has been a surge in developing methods to isolate them from fluids such as urine, saliva, blood, and cerebrospinal fluid. While traditional isolation techniques like ultracentrifugation and polymer-based precipitation have been foundational, recent technological advances have introduced more precise methods like microfluidics and immunoaffinity capture. These newer methods enable high-throughput and specific exosome isolation by targeting surface markers, thus enhancing purity. However, challenges such as balancing purity with yield and the lack of standardized protocols across different laboratories persist, impacting the consistency of findings. By integrating advanced isolation techniques and discussing their implications in diagnostics and therapy, this review aims to catalyze further research and adoption of exosome-based technologies in medicine, marking a significant stride towards tailored healthcare solutions.
Collapse
Affiliation(s)
- Nobendu Mukerjee
- Centre for Infectious Diseases & Microbiology, School of Public Health Sciences and Technology, Malla Reddy Vishwavidyapeeth, Hyderabad 500 055, Telangana, India
| | - Arghya Bhattacharya
- Department of Pharmacology, Bengal School of Technology, West Bengal, Kolkata, 712102, India
| | - Swastika Maitra
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Shivang Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ayash Ashraf
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, 140307, Punjab, India
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Tanveer A. Tabish
- Radcliffe Department of Medicine, University of Oxford, OX3 7BN, United Kingdom
| | - Nanasaheb D. Thorat
- Department of Physics and Bernal Institute, University of Limerick, Castletroy, Limerick V94T9PX, Ireland
- Limerick Digital Cancer Research Centre (LDCRC) University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
| |
Collapse
|
44
|
Currim F, Brown-Leung J, Syeda T, Corson M, Schumann S, Qi W, Baloni P, Shannahan JH, Rochet JC, Singh R, Cannon JR. Rotenone induced acute miRNA alterations in extracellular vesicles produce mitochondrial dysfunction and cell death. NPJ Parkinsons Dis 2025; 11:59. [PMID: 40148337 PMCID: PMC11950519 DOI: 10.1038/s41531-025-00917-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
How extracellular vesicles (EVs) may contribute to mechanisms of primary intracellular pathogenesis in Parkinson's disease (PD) remains unknown. To critically advance our understanding of how EVs influence early-stage PD pathogenesis, we tested the hypothesis that rats acutely exposed to the PD neurotoxin rotenone would produce differential miRNAs in CSF/serum-derived EVs and that such modulation would be responsible for PD-relevant functional alterations in recipient neuronal cells. We discovered that acute rotenone treatment produced significant and specific serum miRNA alterations. Primary midbrain neurons treated with serum EVs from rotenone-exposed rats produced oxidative stress, mitochondrial toxicity, and cell loss in neuronal culture. These mechanisms were dependent on miR-30a-5p and miR-484. Thus, this study has elucidated that differential expression of miRNAs in circulating EVs from serum/CSF of rats is a potential early diagnostic marker for PD, and that the modulation of cellular functions and viability due to extracellular vesicles determines the pathological fate.
Collapse
Affiliation(s)
- Fatema Currim
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Dept. of Biochemistry, The MS University of Baroda, Vadodara, 390002, Gujarat, India
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Josephine Brown-Leung
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Matthew Corson
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Sofia Schumann
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Wenzhu Qi
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
- Dept. of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Priyanka Baloni
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Jean-Christophe Rochet
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
- Dept. of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Rajesh Singh
- Dept. of Biochemistry, The MS University of Baroda, Vadodara, 390002, Gujarat, India.
- Department of Molecular and Human Genetics, Banaras Hindu University (BHU), Varanasi, 221005, UP, India.
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
45
|
Wang W, Wang J, Liao D. Effects and Mechanisms of Extracellular Vesicles in Different Models of Acute Kidney Injury. Stem Cells Int 2025; 2025:1075016. [PMID: 40165854 PMCID: PMC11957863 DOI: 10.1155/sci/1075016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Acute kidney injury (AKI) is a rapid decline in renal function caused by ischemia/reperfusion (I/R), renal toxic injury, and sepsis. While the precise molecular mechanisms underlying AKI are still under investigation, current therapeutic approaches remain insufficient. In recent years, there has been growing evidence that mesenchymal stem cells (MSCs) have great potential in accelerating renal repair after AKI in various preclinical models, while there has been extensive research on extracellular vesicles (EVs) as therapeutic mediators in AKI models, and they are considered to be superior to MSCs as new regenerative therapies. EVs are nanoparticles secreted by various types of cells under physiological and pathological conditions. EVs derived from various sources possess biomarker potential and play crucial roles in mediating cellular communication between kidney cells and other tissue cells by transmitting signal molecules. These vesicles play a direct and indirect role in regulating the pathophysiological mechanisms of AKI and contribute to the occurrence, development, treatment, and repair of AKI. In this review, we briefly outline the essential characteristics of EVs, focus on the multiple molecular mechanisms currently involved in the protection of EVs against different types of AKI, and further discuss the potential targets of EVs from different sources in the treatment of AKI. Finally, we summarized the deficiencies in the production and treatment of EVs and the current strategies for improvement.
Collapse
Affiliation(s)
- Weidong Wang
- Department of Nephrology, Mianyang Central Hospital, Mianyang 621000, China
| | - Jingyu Wang
- Renal Division, Peking University First Hospital, Beijing 100080, China
| | - Dan Liao
- Department of Nephrology, Mianyang Central Hospital, Mianyang 621000, China
| |
Collapse
|
46
|
Wang F, Feng J, Jin A, Shao Y, Shen M, Ma J, Lei L, Liu L. Extracellular Vesicles for Disease Treatment. Int J Nanomedicine 2025; 20:3303-3337. [PMID: 40125438 PMCID: PMC11928757 DOI: 10.2147/ijn.s506456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Traditional drug therapies suffer from problems such as easy drug degradation, side effects, and treatment resistance. Traditional disease diagnosis also suffers from high error rates and late diagnosis. Extracellular vesicles (EVs) are nanoscale spherical lipid bilayer vesicles secreted by cells that carry various biologically active components and are integral to intercellular communication. EVs can be found in different body fluids and may reflect the state of the parental cells, making them ideal noninvasive biomarkers for disease-specific diagnosis. The multifaceted characteristics of EVs render them optimal candidates for drug delivery vehicles, with evidence suggesting their efficacy in the treatment of various ailments. However, poor stability and easy degradation of natural EVs have affected their applications. To solve the problems of poor stability and easy degradation of natural EVs, they can be engineered and modified to obtain more stable and multifunctional EVs. In this study, we review the shortcomings of traditional drug delivery methods and describe how to modify EVs to form engineered EVs to improve their utilization. An innovative stimulus-responsive drug delivery system for EVs has also been proposed. We also summarize the current applications and research status of EVs in the diagnosis and treatment of different systemic diseases, and look forward to future research directions, providing research ideas for scholars.
Collapse
Affiliation(s)
- Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Mengen Shen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Jiaqi Ma
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, People’s Republic of China
| |
Collapse
|
47
|
Liao Y, Chen X, Xu H, Zhi Y, Zhuo X, Yu J, Zhao L. N6-methyladenosine RNA modified BAIAP2L2 facilitates extracellular vesicles-mediated chemoresistance transmission in gastric cancer. J Transl Med 2025; 23:320. [PMID: 40082986 PMCID: PMC11905699 DOI: 10.1186/s12967-025-06340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/01/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) produced in the tumor microenvironment in response to chemotherapy promote chemotherapy-resistant phenotypes. However, the role of EVs proteins induced by gastric cancer (GC) cell chemotherapy in regulating chemotherapy resistance remains unclear. METHODS Immunohistochemistry was used to verify the relationship between brain-specific angiogenesis inhibitor 1-associated protein-2-like protein 2 (BAIAP2L2) expression and chemotherapy resistance in advanced GC. The relationship between BAIAP2L2 and chemotherapy resistance was verified using a subcutaneous tumor model in nude mice. Transmission electron microscopy, nanoparticle tracking analysis, and western blotting were performed to detect purified EVs. Tandem mass tag (TMT) analysis was used to detect differential labels. The interaction between YTH domain-containing family protein1 (YTHDF1) and BAIAP2L2 in GC cells was confirmed by RIP-qPCR analysis using a YTHDF1-specific antibody. RESULTS We found that BAIAP2L2 was associated with chemotherapy resistance to GC in clinical samples and was increased in chemotherapy-resistant GC cells. Mechanistically, BAIAP2L2 promotes the transfer of chemotherapy resistance from resistant GC cells to sensitive cells through EVs proteins, such as ANXA4. Furthermore, ANXA4 promoted platinum-based chemical resistance in GC by mediating autophagy. Interestingly, YTHDF1 facilitates the translation of BAIAP2L2 and ANXA4 through m6A modifications. CONCLUSIONS Our findings reveal the key role of BAIAP2L2 as a potential prognostic marker and therapeutic target for chemotherapy resistance in GC.
Collapse
Affiliation(s)
- Yuhan Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology &, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xinhua Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology &, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yunfei Zhi
- Department of Gastroenterology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Xinghua Zhuo
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology &, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Pathology &, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
48
|
Yang Y, Deng C, Aldali F, Huang Y, Luo H, Liu Y, Huang D, Cao X, Zhou Q, Xu J, Li Y, Chen H. Therapeutic Approaches and Potential Mechanisms of Small Extracellular Vesicles in Treating Vascular Dementia. Cells 2025; 14:409. [PMID: 40136659 PMCID: PMC11941715 DOI: 10.3390/cells14060409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Small extracellular vesicles (sEVs), including exosomes as a subtype, with a diameter typically less than 200 nm and originating from the endosomal system, are capable of transporting a diverse array of bioactive molecules, including proteins, nucleic acids, and lipids, thereby facilitating intercellular communication and modulating cellular functions. Vascular dementia (VaD) represents a form of cognitive impairment attributed to cerebrovascular disease, characterized by a complex and multifaceted pathophysiological mechanism. Currently, the therapeutic approach to VaD predominantly emphasizes symptom management, as no specific pharmacological treatment exists to cure the condition. Recent investigations have illuminated the significant role of sEVs in the pathogenesis of vascular dementia. This review seeks to provide a comprehensive analysis of the characteristics and functions of sEVs, with a particular focus on their involvement in vascular dementia and its underlying mechanisms. The objective is to advance the understanding of the interplays between sEVs and vascular dementia, thereby offering novel insights for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Yujie Yang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Chunchu Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Fatima Aldali
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Yunjie Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Hongmei Luo
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Yizhou Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Danxia Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Xiaojian Cao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Qiuzhi Zhou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Jia Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yajie Li
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
49
|
Taher M, Jalali H, Mohseni Kouchesfehani H, Kaka G. Mesenchymal Stem Cell-Derived Small Extracellular Vesicle as A Novel Therapeutic Approach for Chemotherapy-Induced Male Infertility: A Review Article. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2025; 19:110-119. [PMID: 40200768 PMCID: PMC11976884 DOI: 10.22074/ijfs.2024.2031240.1705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 04/10/2025]
Abstract
Small extracellular vesicles (sEVs) have been recognized as a promising therapeutic modality due to their low immunogenicity, and the ability to penetrate biological barriers. They contain significant amounts of lipids, proteins, and microRNAs, effectively participating in intra- and inter-cellular communications. sEVs derived from mesenchymal stem cells (MSCs) are being explored as a potential therapeutic option due to their immunomodulatory, anti-inflammatory, antioxidant, and regenerative properties, offering advantages over stem cell transplantationbased treatments. Chemotherapy induces side effects on various organs, particularly those with high proliferative capacity, such as testicular tissue. Exposure to some groups of chemotherapeutic agents, such as cyclophosphamide, cisplatin, and doxorubicin can cause DNA damage and induce apoptosis in spermatogonia and primary spermatocytes. Chemotherapy has been shown to induce cellular stress in testicles, leading to testicular dysfunction and the activation of apoptotic pathways in response to external and internal stress. The current research aims to review the potential therapeutic advantages of sEVs derived from MSCs in addressing sperm abnormalities and male infertility resulting from chemotherapy. Several lines of evidence indicate that treatment with sEVs can reduce testicular tissue damage caused by chemotherapy by decreasing oxidative stress and inflammatory responses. sEVs boost the growth and motility of spermatogenic cells and protect them from apoptosis by activating internal pathways. Therefore, as a non-invasive approach, they have shown promising results in regenerating damaged spermatozoa and restoring spermatogenesis.
Collapse
Affiliation(s)
- Maryam Taher
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hanieh Jalali
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | | | - Gholamreza Kaka
- Department of Anatomy, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Perpiñá-Clérigues C, Mellado S, Galiana-Roselló C, García-García F, Pascual M. Unraveling the Impact of TLR4 and Sex on Chronic Alcohol Consumption-Induced Lipidome Dysregulation in Extracellular Vesicles. J Proteome Res 2025; 24:1197-1208. [PMID: 39907520 DOI: 10.1021/acs.jproteome.4c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The lipids that form extracellular vesicles (EVs) play critical structural and regulatory roles, and cutting-edge bioinformatics strategies have shown the ability to decipher lipid metabolism and related molecular mechanisms. We previously demonstrated that alcohol abuse induces an inflammatory immune response through Toll-like receptor 4 (TLR4), leading to structural and cognitive dysfunction. This study evaluated how TLR4 and sex as variables (male/female) impact the lipidome of plasma-resident EVs after chronic alcohol exposure. Using a mouse model of chronic ethanol exposure in wild-type and TLR4-deficient mice, enrichment networks generated by LINEX2 highlighted significant ethanol-induced changes in the EV lipid substrate-product of enzyme reactions associated with glycerophospholipid metabolism. We also demonstrated ethanol-induced differences in Lipid Ontology enrichment analysis in EVs, focusing on terms related to lipid bilayer properties. A lipid abundance analysis revealed higher amounts of significant lipid subclasses in all experimental comparisons associated with inflammatory responses and EV biogenesis/secretion. These findings suggest that interrogating EV lipid abundance with a sensitive lipidomic-based strategy can provide deep insight into the molecular mechanisms underlying biological processes associated with sex, alcohol consumption, and TLR4 immune responses and open new avenues for biomarker identification and therapeutic development.
Collapse
Affiliation(s)
- Carla Perpiñá-Clérigues
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Susana Mellado
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Cristina Galiana-Roselló
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - Francisco García-García
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - María Pascual
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|