1
|
Yang H, Rothenberger E, Zhao T, Fan W, Kelly A, Attaya A, Fan D, Panigrahy D, Deng J. Regulation of inflammation in cancer by dietary eicosanoids. Pharmacol Ther 2023:108455. [PMID: 37257760 DOI: 10.1016/j.pharmthera.2023.108455] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cancer is a major burden of disease worldwide and increasing evidence shows that inflammation contributes to cancer development and progression. Eicosanoids are derived from dietary polyunsaturated fatty acids, such as arachidonic acid (AA), and are mainly produced by a series of enzymatic pathways that include cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P-450 epoxygenase (CYP). Eicosanoids consist of at least several hundred individual molecules and play important roles in the inflammatory response and inflammation-related cancers. SCOPE AND APPROACH Dietary sources of AA and biosynthesis of eicosanoids from AA through different metabolic pathways are summarized. The bioactivities of eicosanoids and their potential molecular mechanisms on inflammation and cancer are revealed. Additionally, current challenges and limitations in eicosanoid research on inflammation-related cancer are discussed. KEY FINDINGS AND CONCLUSIONS Dietary AA generates a large variety of eicosanoids, including prostaglandins, thromboxane A2, leukotrienes, cysteinyl leukotrienes, lipoxins, hydroxyeicosatetraenoic acids (HETEs), and epoxyeicosatrienoic acids (EETs). Eicosanoids exert different bioactivities and mechanisms involved in the inflammation and related cancer developments. A deeper understanding of eicosanoid biology may be advantageous in cancer treatment and help to define cellular targets for further therapeutic development.
Collapse
Affiliation(s)
- Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Eva Rothenberger
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wendong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Abigail Kelly
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ahmed Attaya
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Ghorbanzadeh B, Behmanesh MA, Mahmoudinejad R, Zamaniyan M, Ekhtiar S, Paridar Y. The effect of montelukast, a leukotriene receptor antagonist, on the acetic acid-induced model of colitis in rats: Involvement of NO-cGMP-K ATP channels pathway. Front Pharmacol 2022; 13:1011141. [PMID: 36225573 PMCID: PMC9549743 DOI: 10.3389/fphar.2022.1011141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/08/2022] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease is a chronic autoimmune disorder that may involve entire gastrointestinal tract. The leukotrienes have a role as mediators in the pathophysiology of colitis. Here, we investigated the effect of a leukotriene receptor antagonist, montelukast, and also the role of the NO-cGMP-KATP channel pathway in acetic acid-induced colitis. Rectal administration of acetic acid (4%) was used for induction of colitis in rats. To investigate our hypothesis, the rats were intraperitoneally pre-treated with L-NAME (NOS inhibitor), L-arginine, sildenafil, methylene blue, glibenclamide, or diazoxide 15 min before treatment with montelukast (5-20 mg/kg, i. p.), for three consecutive days. Then, microscopic, macroscopic, and inflammatory parameters were evaluated. Montelukast reduced the microscopic and macroscopic damage induced by acetic acid. Montelukast also reduced the level of IL-1β and TNF-α. We also showed that the effects of montelukast were significantly attenuated by L-NAME, methylene blue (guanylate cyclase inhibitor), and an ATP-sensitive potassium channel blocker (glibenclamide). Also, the administration of L-arginine, sildenafil, and diazoxide before montelukast produced protective effect. In conclusion, the pathway of the NO-cGMP-KATP channel is involved in the protective effect of montelukast in acetic acid-induced colonic tissue damage.
Collapse
Affiliation(s)
- Behnam Ghorbanzadeh
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran,*Correspondence: Behnam Ghorbanzadeh, ,
| | - Mohammad Amin Behmanesh
- Department of Histology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Roya Mahmoudinejad
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Mehdi Zamaniyan
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Shadi Ekhtiar
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Yousef Paridar
- Department of Internal Medicine, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
3
|
Khodabakhsh P, Khoie N, Dehpour AR, Abdollahi A, Ghazi-Khansari M, Shafaroodi H. Montelukast suppresses the development of irritable bowel syndrome phenotype possibly through modulating NF-κB signaling in an experimental model. Inflammopharmacology 2022; 30:313-325. [PMID: 35013876 DOI: 10.1007/s10787-021-00907-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022]
Abstract
Irritable bowel syndrome (IBS) is a functional gut disorder with multi-factorial pathophysiology that causes recurring pain or discomfort in the abdomen, as well as altered bowel habits. Montelukast, a well-known cysteinyl leukotriene receptor 1 (CysLT1R) antagonist, is widely used for the anti-inflammatory management of asthma. The present study aimed to evaluate the effects of pharmacological inhibition of CysLT1R on acetic acid-induced diarrhea-predominant IBS (D-IBS) in rats. Behavioral pain responses to noxious mechanical stimulation were decreased in the montelukast-treated rats as compared to the model animals following colorectal distension (CRD)-induced visceral hypersensitivity. Stool frequency decreased dose-dependently by montelukast in IBS rats exposed to restraint stress. A significantly shorter immobility time was also observed in IBS rats who received montelukast vs IBS group in the forced swimming test (depression-like behavior). Furthermore, there were significant decreases in the NF-κB protein expression, inflammatory cytokine (TNF-α, and IL-1ß) levels, and histopathological inflammatory injuries concomitant with increased anti-inflammatory cytokine, IL-10, in montelukast-treated rats compared with the IBS group. Cysteinyl leukotriene production and CysLT1R mRNA expression showed no remarkable differences among the experimental groups. The present results suggest the possible beneficial effects of montelukast in the management of D-IBS symptoms. The molecular mechanism underlying such effects, at least to some extent, might be through modulating CysLT1R-mediated NF-κB signaling. Yet, more studies are required to demonstrate the clinical potential of this drug for IBS therapy.
Collapse
Affiliation(s)
- Pariya Khodabakhsh
- Student Research Committee, Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nilgoon Khoie
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad-Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, IKHC, Teheran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Higurashi T, Arimoto J, Ashikari K, Takatsu T, Misawa N, Yoshihara T, Matsuura T, Fuyuki A, Ohkubo H, Nakajima A. The efficacy of a leukotriene receptor antagonist in the treatment of human rectal aberrant crypt foci: a nonrandomized, open-label, controlled trial. BMC Cancer 2020; 20:770. [PMID: 32807113 PMCID: PMC7433177 DOI: 10.1186/s12885-020-07266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/05/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Leukotriene receptor antagonists (LTRAs) are broadly used for the management of allergic asthma and have recently been indicated to inhibit carcinogenesis and cancer cell growth. In colorectal cancer (CRC) chemoprevention studies, the occurrence of adenoma or CRC itself is generally set as the trial endpoint. Although the occurrence rate of CRC is the most confident endpoint, it is inappropriate for chemoprevention studies because CRC incidence rate is low in the general population and needed for long-term monitoring. Aberrant crypt foci (ACF), defined as lesions containing crypts that are larger in diameter and darker in methylene blue staining than normal crypts, are regarded to be a fine surrogate biomarker of CRC. Therefore, this prospective study was designed to explore the chemopreventive effect of LTRA on colonic ACF formation and the safety of the medicine in patients scheduled for a poly resection as a pilot trial leading the CRC chemoprevention trial. METHODS This study is a nonrandomized, open-label, controlled trial in patients with colorectal ACF and polyps scheduled for a polypectomy. Participants meet the inclusion criteria will be recruited, and the number of ACF in the rectum will be counted at the baseline colonoscopic examination. Next, the participants will be assigned to the LTRA or no treatment group. Participants in the LTRA group will continue 10 mg of oral montelukast for 8 weeks, and those in the no treatment group will be observed without the administration of any additional drugs. At the end of the 8-week LTRA intervention period, a polypectomy will be conducted to evaluate the changes in the number of ACF, and cell proliferation in the normal colorectal epithelium will be analyzed. DISCUSSION This will be the first study to investigate the effect of LTRAs on colorectal ACF formation in humans. TRIAL REGISTRATION This trial has been registered in the University Hospital Medical Information Network (UMIN) Clinical Trials Registry as UMIN000029926 . Registered 10 November 2017.
Collapse
Affiliation(s)
- Takuma Higurashi
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan.
| | - Jun Arimoto
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Keiichi Ashikari
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Tomohiro Takatsu
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Noboru Misawa
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Tsutomu Yoshihara
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Tetsuya Matsuura
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Akiko Fuyuki
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Hidenori Ohkubo
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| |
Collapse
|
5
|
|
6
|
Osman J, Savari S, Chandrashekar NK, Bellamkonda K, Douglas D, Sjölander A. Cysteinyl leukotriene receptor 1 facilitates tumorigenesis in a mouse model of colitis-associated colon cancer. Oncotarget 2018; 8:34773-34786. [PMID: 28410235 PMCID: PMC5471010 DOI: 10.18632/oncotarget.16718] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/20/2017] [Indexed: 12/19/2022] Open
Abstract
Cysteinyl leukotriene receptor 1 (CysLT1R) has been shown to be up-regulated in the adenocarcinomas of colorectal cancer patients, which is associated with a poor prognosis. In a spontaneous model of colon cancer, CysLT1R disruption was associated with a reduced tumor burden in double-mutant female mice (ApcMin/+/Cysltr1-/-) compared to ApcMin/+ littermates. In the current study, we utilized a genetic approach to investigate the effect of CysLT1R in the induced azoxymethane/dextran sulfate sodium (AOM/DSS) model of colitis-associated colon cancer. We found that AOM/DSS female mice with a global disruption of the Cysltr1 gene (Cysltr1-/-) had a higher relative body weight, a more normal weight/length colon ratio and smaller-sized colonic polyps compared to AOM/DSS wild-type counterparts. The Cysltr1-/- colonic polyps exhibited low-grade dysplasia, while wild-type polyps had an adenoma-like phenotype. The Cysltr1-/- colonic polyps exhibited significant decreases in nuclear β-catenin and COX-2 protein expression, while the normal crypts surrounding the polyps exhibited increased Mucin 2 expression. Furthermore, Cysltr1-/- mice exhibited an overall reduction in inflammation, with a significant decrease in proinflammatory cytokines, polyp 5-LOX expression and infiltration of CD45 leukocytes and F4/80 macrophages. In conclusion, the present genetic approach in an AOM/DSS model further supports an important role for CysLT1R in colon tumorigenesis.
Collapse
Affiliation(s)
- Janina Osman
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Sayeh Savari
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Naveen Kumar Chandrashekar
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Kishan Bellamkonda
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Desiree Douglas
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Anita Sjölander
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| |
Collapse
|
7
|
Silva VCD, Leitão RFDC, Brito GADC, Martins CDS, Freire GE, Aragão KS, Wanderley CWDS, Freitas MRD. Role of the route of leukotrienes in an experimental model of oral mucositis induced by 5-fluorouracil 1. Acta Cir Bras 2017; 32:712-725. [PMID: 29019589 DOI: 10.1590/s0102-865020170090000004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/20/2017] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To investigate the participation of cysteinyl leukotrienes in the pathophysiology of oral mucositis. METHODS Oral mucositis was induced in hamsters using 5-fluorouracil (5-FU; 60 and 40 mg/kg; i.p., on days 1 and 2, respectively, and with excoriations in jugal mucosa on day 4). Montelukast (10, 20, or 40 mg/kg/d; gavage), MK886 (3 mg/kg/d, i.p.), or saline or celecoxib (7.5 mg/kg/d; i.p.) was administered 1 h prior to 5-FU and daily, until the fourth (MK886) or tenth day, when the animals were euthanized and their jugal mucosa was collected for macroscopic, histopathological, and immunohistochemical evaluation. RESULTS Neither montelukast nor MK-886 prevented the oral mucositis induced by 5-FU, as observed by histopathological evaluation. In addition, we did not find significant differences in the expression of inducible nitric oxide synthase-2, cyclooxygenase-2, or interleukin (IL)-1β between the experimental and control groups. However, we did observe a significant decrease in tumor necrosis factor (TNF)-α expression for all doses of montelukast; we also observed a significant decrease in IL-10 with 40 mg/kg/d and MK 886. CONCLUSIONS Cysteinyl leukotrienes do not play an important role in experimental oral mucositis induced by 5-FU. There is a modulating action specifically on TNF-α.
Collapse
Affiliation(s)
- Viviane Carvalho da Silva
- Fellow PhD degree, Postgraduate Program in Medical and Surgical Sciences, Department of Surgery, School of Medicine, Universidade Federal do Ceará (UFCE), Fortaleza-CE, Brazil. Conception and design of the study, acquisition and interpretation of data, statistics analysis, manuscript preparation, final approval
| | - Renata Ferreira de Carvalho Leitão
- PhD, Postgraduate Program in Morphofunctional Sciences, Department of Morphology, School of Medicine, UFCE, Fortaleza-CE, Brazil. Acquisition and interpretation of data, histopathological examinations, manuscript preparation
| | - Gerly Anne de Castro Brito
- PhD, Postgraduate Program in Morphofunctional Sciences, Department of Morphology, School of Medicine, UFCE, Fortaleza-CE, Brazil. Acquisition and interpretation of data, histopathological examinations, manuscript preparation
| | - Conceição da Silva Martins
- PhD, Postgraduate Program in Morphofunctional Sciences, Department of Morphology, School of Medicine, UFCE, Fortaleza-CE, Brazil. Acquisition and interpretation of data, histopathological examinations, manuscript preparation
| | - Gildenio Estevam Freire
- Fellow Master degree, Postgraduate Program in Morphofunctional Sciences, Department of Morphology, School of Medicine, UFCE, Fortaleza-CE, Brazil. Acquisition and interpretation of data, manuscript preparation
| | - Karoline Saboia Aragão
- PhD, Laboratory of Inflammation and Cancer Pharmacology (LAFICA), UFCE, Fortaleza-CE, Brazil. Conception and design of the study, acquisition and interpretation of data, manuscript preparation
| | | | - Marcos Rabelo de Freitas
- PhD, Postgraduate Program in Medical and Surgical Sciences, Department of Surgery, Faculty of Medicine, UFCE, Fortaleza-CE, Brazil. Conception and design of the study, interpretation of data, manuscript preparation, final approval
| |
Collapse
|
8
|
Burke L, Butler CT, Murphy A, Moran B, Gallagher WM, O'Sullivan J, Kennedy BN. Evaluation of Cysteinyl Leukotriene Signaling as a Therapeutic Target for Colorectal Cancer. Front Cell Dev Biol 2016; 4:103. [PMID: 27709113 PMCID: PMC5030284 DOI: 10.3389/fcell.2016.00103] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/30/2016] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is the third most common cancer worldwide and is associated with significant morbidity and mortality. Current pharmacotherapy options include cytotoxic chemotherapy, anti-VEGF, and anti-EGFR targeting drugs, but these are limited by toxic side effects, limited responses and ultimately resistance. Cysteinyl leukotriene (CysLT) signaling regulates intestinal homeostasis with mounting evidence suggesting that CysLT signaling also plays a role in the pathogenesis of colorectal cancer. Therefore, CysLT signaling represents a novel target for this malignancy. This review evaluates reported links between CysLT signaling and established hallmarks of cancer in addition to its pharmacological potential as a new therapeutic target.
Collapse
Affiliation(s)
- Lorraine Burke
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College DublinDublin, Ireland; Translational Oncology, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's HospitalDublin, Ireland
| | - Clare T Butler
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin Dublin, Ireland
| | - Adrian Murphy
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital Baltimore, MD, USA
| | - Bruce Moran
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin Dublin, Ireland
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin Dublin, Ireland
| | - Jacintha O'Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital Dublin, Ireland
| | - Breandán N Kennedy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin Dublin, Ireland
| |
Collapse
|
9
|
Savari S, Vinnakota K, Zhang Y, Sjölander A. Cysteinyl leukotrienes and their receptors: Bridging inflammation and colorectal cancer. World J Gastroenterol 2014; 20:968-977. [PMID: 24574769 PMCID: PMC3921548 DOI: 10.3748/wjg.v20.i4.968] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/16/2013] [Accepted: 12/06/2013] [Indexed: 02/06/2023] Open
Abstract
Long-standing inflammation has emerged as a hallmark of neoplastic transformation of epithelial cells and may be a limiting factor of successful conventional tumor therapies. A complex milieu composed of distinct stromal and immune cells, soluble factors and inflammatory mediators plays a crucial role in supporting and promoting various types of cancers. An augmented inflammatory response can predispose a patient to colorectal cancer (CRC). Common risk factors associated with CRC development include diet and lifestyle, altered intestinal microbiota and commensals, and chronic inflammatory bowel diseases. Cysteinyl leukotrienes are potent inflammatory metabolites synthesized from arachidonic acid and have a broad range of functions involved in the etiology of various pathologies. This review discusses the important role of cysteinyl leukotriene signaling in linking inflammation and CRC.
Collapse
|
10
|
Yudina Y, Parhamifar L, Bengtsson AML, Juhas M, Sjölander A. Regulation of the eicosanoid pathway by tumour necrosis factor alpha and leukotriene D4 in intestinal epithelial cells. Prostaglandins Leukot Essent Fatty Acids 2008; 79:223-31. [PMID: 19042113 DOI: 10.1016/j.plefa.2008.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/20/2008] [Accepted: 09/30/2008] [Indexed: 12/16/2022]
Abstract
In this study the mRNA and protein levels of the key enzymes involved in eicosanoid biosynthesis and the cysteinyl leukotriene receptors (CysLT1R and CysLT2R) have been analysed in non-transformed intestinal epithelial and colon cancer cell lines. Our results revealed that tumour necrosis factor alpha (TNF-alpha), and leukotriene D4 (LTD4), which are inflammatory mediators implicated in carcinogenesis, stimulated an increase of cyclooxygenase-2 (COX-2), in non-transformed epithelial cells, and 5-lipoxygenase (5-LO) in both non-transformed and cancer cell lines. Furthermore, these mediators also stimulated an up-regulation of LTC4 synthase in cancer cells as well as non-transformed cells. We also observed an endogenous production of CysLTs in these cells. TNF-alpha and LTD4, to a lesser extent, up-regulate the CysLT1R levels. Interestingly, TNF-alpha also reduced CysLT2R expression in cancer cells. Our results demonstrate that inflammatory mediators can cause intestinal epithelial cells to up-regulate the expression of enzymes needed for the biosynthesis of eicosanoids, including the cysteinyl leukotrienes, as well as the signal transducing proteins, the CysLT receptors, thus providing important mechanisms for both maintaining inflammation and for tumour progression.
Collapse
Affiliation(s)
- Yulyana Yudina
- Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Malmö University Hospital, CRC, Entrance 72, Building 91, Floor 11, SE-205 02 Malmö, Sweden
| | | | | | | | | |
Collapse
|
11
|
Blokzijl H, van Steenpaal A, Vander Borght S, Bok LIH, Libbrecht L, Tamminga M, Geuken M, Roskams TAD, Dijkstra G, Moshage H, Jansen PLM, Faber KN. Up-regulation and cytoprotective role of epithelial multidrug resistance-associated protein 1 in inflammatory bowel disease. J Biol Chem 2008; 283:35630-7. [PMID: 18838379 DOI: 10.1074/jbc.m804374200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
MRP1 (multidrug resistance-associated protein 1) is well known for its role in providing multidrug resistance to cancer cells. In addition, MRP1 has been associated with both pro- and anti-inflammatory functions in nonmalignant cells. The pro-inflammatory function is evident from the fact that MRP1 is a high affinity transporter for cysteinyl-leukotriene C4 (LTC4), a lipid mediator of inflammation. It remains unexplained, however, why the absence of Mrp1 leads to increased intestinal epithelial damage in mice treated with dextran-sodium sulfate, a model for inflammatory bowel disease (IBD). We found that MRP1 expression is induced in the inflamed intestine of IBD patients, e.g. Crohn disease and ulcerative colitis. Increased MRP1 expression was detected at the basolateral membrane of intestinal epithelial cells. To study a putative role for MRP1 in protecting epithelial cells against inflammatory cues, we manipulated MRP1 levels in human epithelial DLD-1 cells and exposed these cells to cytokines and anti-Fas. Inhibition of MRP1 (by MK571 or RNA interference) resulted in increased cytokine- and anti-Fas-induced apoptosis of DLD-1 cells. Opposite effects, e.g. protection of DLD-1 cells against cytokine- and anti-Fas-induced apoptosis, were observed after recombinant MRP1 overexpression. Inhibition of LTC4 synthesis reduced anti-Fas-induced apoptosis when MRP1 function was blocked, suggesting that LTC4 is the pro-apoptotic compound exported by epithelial MRP1 during inflammation. These data show that MRP1 protects intestinal epithelial cells against inflammation-induced apoptotic cell death and provides a functional role for MRP1 in the inflamed intestinal epithelium of IBD patients.
Collapse
Affiliation(s)
- Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Holma R, Salmenperä P, Riutta A, Virtanen I, Korpela R, Vapaatalo H. Acute effects of the cys-leukotriene-1 receptor antagonist, montelukast, on experimental colitis in rats. Eur J Pharmacol 2001; 429:309-18. [PMID: 11698051 DOI: 10.1016/s0014-2999(01)01330-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cysteinyl leukotrienes play a part in inflammatory reactions such as inflammatory bowel diseases. The aim of the present study was to evaluate the acute effects of a cys-leukotriene-1 receptor antagonist, montelukast, on trinitrobenzene sulphonic acid (TNBS)-induced colitis in rats. Montelukast (5, 10 or 20 mg kg(-1) day(-1)), a 5-lipoxygenase inhibitor, zileuton (50 or 100 mg kg(-1) day(-1), a positive control), or the vehicle was administered intracolonically to the rats twice daily throughout the study, starting 12 h before the induction of colitis with TNBS. The severity of colitis (macroscopic and histological assessment, as well as myeloperoxidase activity), the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2, and eicosanoid production in colonic tissue incubation were assessed 24 and 72 h after colitis induction. Montelukast increased prostaglandin E(2) production at 24 h and tended to reduce the cyclooxygenase-2 protein expression at 72 h, but did not influence the severity of colitis. Zileuton failed to decrease the inflammatory reaction in spite of reduced leukotriene B(4) production at 72 h. The results suggest that drugs that block cysteinyl leukotriene receptors have limited potential to ameliorate acute TNBS-induced colitis, but that they exert some beneficial effects which make them capable of modulating the course of colitis.
Collapse
Affiliation(s)
- R Holma
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, P.O. Box 63, FIN-00014 University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
13
|
Chamulitrat W. Desulfonation of a colitis inducer 2,4,6-trinitrobenzene sulfonic acid produces sulfite radical. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1472:368-75. [PMID: 10572958 DOI: 10.1016/s0304-4165(99)00141-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2,4,6-Trinitrobenzene sulfonic acid (TNBS) has been used in vivo to induce colitis. With the nitroreductase of intestinal cells, TNBS underwent redox cycling to produce TNBS-nitro and superoxide radical anions which are thought to be involved in initial oxidative reactions that lead to colonic injury. In this study, we demonstrated that the TNBS desulfonative reaction with tissue amino acids produces sulfite which is subsequently oxidized to sulfite radical. Sulfite radical was measured using a spin trapping methodology. Sulfite radical adducts of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) or 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) were detected in a mixture of TNBS and lysine, xanthine oxidase, red blood cells, colonic mucosal or submucosal muscle tissues. TNBS alone did not produce sulfite radical, indicating that its formation required the presence of amino acids. Because sulfite radical is the precursor of highly reactive sulfiteperoxyl and sulfate radicals, our data imply that these sulfite-derived free radicals may also contribute to oxidative reactions leading to colonic injury in TNBS-induced colitis.
Collapse
Affiliation(s)
- W Chamulitrat
- Department of Physiology, Louisiana State University Medical Center, New Orleans 70112-1393, USA.
| |
Collapse
|
14
|
Chamulitrat W, Spitzer JJ. Generation of nitro and superoxide radical anions from 2,4,6-trinitrobenzenesulfonic acid by rat gastrointestinal cells. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1336:73-82. [PMID: 9271252 DOI: 10.1016/s0304-4165(97)00012-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reactive oxygen and nitrogen species have been implicated in the inflammation of the gastrointestinal tract. The objective of this study was to investigate mechanisms of free radical formation from the colitis inducer 2,4,6-trinitrobenzene sulfonic acid (TNBS). We showed that TNBS was rapidly metabolized to TNBS nitro radical anion via metabolic reduction by flavinmononucleotide/NADPH, xanthine/xanthine oxidase as well as the rat small intestine and colon. TNBS nitro radical anion was directly detected with electron paramagnetic resonance (EPR) spectroscopy. EPR spectra of TNBS nitro radical anion showed hyperfine coupling constants from the proximal nitrogen, two hydrogens and the two distal nitrogens with respective magnitudes of a(N)(4) = 9.7 G; a(H)(3,5) = 3.2 G (2); and a(N)(2,6) = 0.25 G. EPR spin trapping using 5.5-dimethyl-1-pyrroline N-oxide in aerobic incubations of isolated enterocytes (or colonocytes, or red blood cells) and TNBS, in the presence or absence of NADPH, produced radical adducts characteristic of superoxide and hydroxyl radicals. Our EPR data showing generation of TNBS nitro and superoxide radical anions demonstrate that one-electron reduction of TNBS may be an initial step in the cascade of the in vivo inflammatory events in TNBS-induced colitis.
Collapse
Affiliation(s)
- W Chamulitrat
- Department of Physiology, Louisiana State University Medical Center, New Orleans 70112-1393, USA.
| | | |
Collapse
|