1
|
Li N, Tong H, Hou W, Liu Q, Xiang F, Zhu JW, Xu SL, He Z, Wang B. Neural-cancer crosstalk: Reciprocal molecular circuits driving gastric tumorigenesis and emerging therapeutic opportunities. Cancer Lett 2025; 616:217589. [PMID: 40015663 DOI: 10.1016/j.canlet.2025.217589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
The nervous system plays an important role in regulating physiological functions of the stomach, and its abnormal activity often impairs gastric homeostasis. In response to constant exposure to oncogenic stimuli that leads to gastric tumorigenesis, the neural system becomes an essential component of the tumor microenvironment via perineural infiltration, de novo neurogenesis, and axonogenesis, thereby driving cancer initiation and progression. In this review, we highlight emerging discoveries related to neural-cancer crosstalk and discuss how the nervous system is remodeled by tumor cells including neural components and modulators (including neurotransmitters and neuropeptides). Moreover, we provide a systematic analysis of neural control of the cellular hallmarks of cancer. Finally, we propose how the molecular circuits of neural-cancer crosstalk could be exploited as potential targets for novel anti-cancer treatment, providing new insights into a new modality of neural-based cancer therapeutic strategies.
Collapse
Affiliation(s)
- Ning Li
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Huyun Tong
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Wenqing Hou
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Qin Liu
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China; Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Fei Xiang
- Institute of Burn Research, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Jian-Wu Zhu
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, PR China.
| | - Sen-Lin Xu
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China.
| | - Zongsheng He
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China.
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China; Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China; Jinfeng Laboratory, Chongqing, 401329, PR China.
| |
Collapse
|
2
|
Toledo M, Martínez-Martínez S, Van Hul M, Laudo B, Eyre E, Pelicaen R, Puel A, Altirriba J, Gómez-Valadés AG, Inderhees J, Moreno-Indias I, Pozo M, Chivite I, Milà-Guasch M, Haddad-Tóvolli R, Obri A, Fos-Domènech J, Tahiri I, Llana SR, Ramírez S, Monelli E, Schwaninger M, Cani PD, Nogueiras R, Claret M. Rapid modulation of gut microbiota composition by hypothalamic circuits in mice. Nat Metab 2025:10.1038/s42255-025-01280-3. [PMID: 40263603 DOI: 10.1038/s42255-025-01280-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 03/17/2025] [Indexed: 04/24/2025]
Abstract
In recent years, the gut microbiota and derived metabolites have emerged as relevant players in modulating several brain functions, including energy balance control1-3. This form of distant communication mirrors that of metabolic hormones (for example, leptin, ghrelin), which convey information about the organism's energy status by exerting effects on diverse brain regions, including the master homeostatic centre, the hypothalamus4. However, whether the hypothalamus is also able to influence gut microbiota composition remains enigmatic. Here we present a study designed to unravel this challenging question. To this aim, we used chemogenetics5 (to selectively activate or inhibit hypothalamic pro-opiomelanocortin or agouti-related peptide neurons) or centrally administered leptin or ghrelin to male mice. Subsequently, we conducted microbiota composition analysis throughout the gut using 16S rRNA gene sequencing. Our results showed that these brain interventions significantly changed the gut microbiota in an anatomical and short-term (2-4 h) fashion. Transcriptomic analysis indicated that these changes were associated with the reconfiguration of neuronal and synaptic pathways in the duodenum concomitant with increased sympathetic tone. Interestingly, diet-induced obesity attenuated the brain-mediated changes triggered by leptin in gut microbiota communities and sympathetic activation. Our findings reveal a previously unanticipated brain-gut axis that acutely attunes microbiota composition on fast timescales, with potential implications for meal-to-meal adjustments and systemic energy balance control.
Collapse
Affiliation(s)
- Míriam Toledo
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sara Martínez-Martínez
- Department of Physiology (CIMUS), School of Medicine-Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Berta Laudo
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elena Eyre
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rudy Pelicaen
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Anthony Puel
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Jordi Altirriba
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alicia G Gómez-Valadés
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Julica Inderhees
- Bioanalytic Core Facility, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- German Research Centre for Cardiovascular Research (DZHK), Lübeck, Germany
| | - Isabel Moreno-Indias
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, Málaga, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Macarena Pozo
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Iñigo Chivite
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Milà-Guasch
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Arnaud Obri
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Júlia Fos-Domènech
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Iasim Tahiri
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sergio R Llana
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sara Ramírez
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Erika Monelli
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Markus Schwaninger
- German Research Centre for Cardiovascular Research (DZHK), Lübeck, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Patrice D Cani
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université Catholique de Louvain, Brussels, Belgium.
| | - Rubén Nogueiras
- Department of Physiology (CIMUS), School of Medicine-Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.
- Galicia Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain.
| | - Marc Claret
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
- School of Medicine, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
3
|
Zhang Y, Liang C, Weng M, Zhang Z, Zhang L, Jiang X, Yue F. Intestinal alterations of mucosal barrier integrity, motility and enteric nerve in cynomolgus monkey model of Parkinson's disease. Exp Neurol 2025; 389:115256. [PMID: 40222722 DOI: 10.1016/j.expneurol.2025.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
The most prevalent non-motor symptoms in individuals with Parkinson's disease (PD) such as constipation and bloating that significantly impact patients' quality of life. However, the pathophysiological mechanisms underlying these symptoms remain unclear. PD model with typical and stable symptoms was induced by individualized dosing of MPTP with Kurlan score increased to 10 or above and remained steady for three months or more. TH-positive neurons in the injured substantia nigra (SN) of the brain of PD monkeys showed up to 83.95 % reduction. Histopathological examination indicated severe damage to both enteric nerve and TH neurons, along with significant disruption of mucosal structure, intestinal barrier integrity and motility in PD monkeys across all four intestinal segments, including the duodenum, ileum, transverse colon, and rectum. The association between dopaminergic neuronal deficits in SN and these above mentioned intestinal disorders, that might be attributed to the abnormal regulation of gastrointestinal function due to the breakdown of the integrity of the nigrostriatal dopaminergic nervous system. Therefore, the abnormal alterations found in gut of PD monkeys and its triggered possible secondary pathophysiological cascade reactions might be a potential mechanism underlying the presence of constipation and other intestinal symptoms observed in PD patients. These findings in this study provide a valuable scientific basis for investigating the pathogenesis of gastrointestinal symptoms in PD patients and potential therapeutic approaches. (The graphical abstract is by Figdraw).
Collapse
Affiliation(s)
- Yuling Zhang
- State key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Caiyan Liang
- State key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Miaorong Weng
- State key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | | | - Lin Zhang
- School of Medicine, Guangxi University, Nanning 530003, China
| | - Xue Jiang
- School of Medicine, Guangxi University, Nanning 530003, China.
| | - Feng Yue
- State key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Makowska K, Fagundes KRC, de Britto Mari R, Gonkowski S. Cocaine- and amphetamine-regulated transcript (CART) peptide-positive neuron populations in the enteric nervous system of the porcine descending colon depend on age and gender. PLoS One 2025; 20:e0321339. [PMID: 40184385 PMCID: PMC11970693 DOI: 10.1371/journal.pone.0321339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/05/2025] [Indexed: 04/06/2025] Open
Abstract
The enteric nervous system (ENS) is a complex structure located in the wall of the gastrointestinal tract. One of the less-known active substances found in the ENS is cocaine- and amphetamine-regulated transcript peptide (CART). It is known that CART-positive enteric neurons take part in the reactions to pathological stimuli, but knowledge of physiological stimuli-dependent changes in their population is extremely limited. The aim of the present study was to investigate the age- and gender-dependent diversities in the distribution of CART-positive neurons in the porcine colonic ENS using the double immunofluorescence technique. The obtained results have shown that age affects the number of CART-positive neurons in the colonic ENS and the character and intensity of age-caused changes depend on the type of the enteric plexus, and the most visible changes have been noted in the myenteric plexus in which the percentage of CART-positive neurons amounted to 22.3 ± 0.2% in young females, 20.7 ± 0.4% in young males, 23.7 ± 0.2% in adult females and 25.8 ± 01% in adult males. Moreover, during the present study, sex-dependent diversities in the percentage of CART-positive neurons were found, especially in adult animals. The obtained results suggest that CART in the ENS takes part in neuroplasticity processes occurring during the development, maturation and/or aging of the gastrointestinal tract, as well as that the number of CART-positive neurons is controlled by sex hormones and depends on the gender. However, the elucidation of all aspects connected with the influence of age and gender on the population of CART-positive neurons in the ENS requires further comprehensive studies.
Collapse
Affiliation(s)
- Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kainã R. C. Fagundes
- Institute of Biosciences – Coastal Campus, São Paulo State University (Unesp), São Paulo, Brasil
| | - Renata de Britto Mari
- Institute of Biosciences – Coastal Campus, São Paulo State University (Unesp), São Paulo, Brasil
| | - Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
5
|
Munoz JL, Kelling E, Johnson RM, Buskmiller C, Whitehead WE, Joyeux L, Donepudi RV, Nassr AA, Belfort MA, Castillo J, Castillo H, Cortes MS. Impact of Prenatal Repair for Fetal Myelomeningocele on Gastrointestinal Function. J Pediatr 2025; 282:114573. [PMID: 40185309 DOI: 10.1016/j.jpeds.2025.114573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/03/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
OBJECTIVES To assess the impact of postnatal, open fetal, and fetoscopic repairs for open neural tube defects (ONTDs) on bowel function and to assess the use of diet modification and medication use to achieve regular bowel function. STUDY DESIGN A retrospective cohort study was performed from 2011 to 2020 at our academic referral fetal center. Patients were stratified by route of surgery (postnatal, open prenatal, or fetoscopic prenatal). Bowel function was assessed by patient reported Bristol stool scale as well as a detailed review of current medication usage for bowel management. Patient demographics and clinically relevant outcomes were obtained from electronic medical records. The primary outcome was bowel function assessed at 30-month follow up visit. RESULTS A total of 150 patients with fetal ONTD underwent repair at our institution. Forty-eight (32%) underwent postnatal repair, 34 (23%) open fetal surgery, and 68 (45%) fetoscopic repair. Eighty-six patients (57%) reported abnormal bowel function at 30 months of life. No differences were noted in abnormal bowel function between surgical approaches (postnatal 35% vs open prenatal 26%, and fetoscopic 49%, P = .08). Patients who underwent postnatal repair were more likely to require oral regimens to achieve normal bowel function compared with either prenatal surgery approach (postnatal 83% vs open prenatal 59%, and fetoscopic 69%, P = .046). CONCLUSION Abnormal bowel function remains a significant morbidity regardless of surgical approach for ONTD. Fetal surgery (open or fetoscopic) for ONTD may result in equivalent bowel function when compared with postnatal repair.
Collapse
Affiliation(s)
- Jessian L Munoz
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX.
| | - Emma Kelling
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Rebecca M Johnson
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Cara Buskmiller
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | | | - Luc Joyeux
- Department of Pediatric Surgery, Baylor College of Medicine, Houston, TX
| | - Roopali V Donepudi
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Ahmed A Nassr
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Michael A Belfort
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Jonathan Castillo
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX; Developmental Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Heidi Castillo
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX; Developmental Medicine, University of Nebraska Medical Center, Omaha, NE
| | | |
Collapse
|
6
|
Mueller JL, Hotta R. Current and future state of the management of Hirschsprung disease. WORLD JOURNAL OF PEDIATRIC SURGERY 2025; 8:e000860. [PMID: 40177062 PMCID: PMC11962771 DOI: 10.1136/wjps-2024-000860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
The enteric nervous system (ENS) consists of a network of neurons and glia that control numerous complex functions of the gastrointestinal tract. Hirschsprung disease (HSCR) is a congenital disorder characterized by the absence of ENS along variable lengths of distal intestine due to failure of neural crest-derived cells to colonize the distal intestine during embryonic development. A patient with HSCR usually presents with severe constipation in the neonatal period and is diagnosed by rectal suction biopsy, followed by pull-through procedure to surgically remove the affected segment and reconnect the proximal ganglionated intestine to the anus. Outcomes after pull-through surgery are suboptimal and many patients suffer from ongoing issues of dysmotility and bowel dysfunction, suggesting there is room for optimizing the management of this disease. This review focuses on discussing the recent advances to better understand HSCR and leverage them for more accurate and potentially less invasive diagnosis. We also discuss the potential future management of HSCR, particularly cell-based approaches for the treatment of HSCR.
Collapse
Affiliation(s)
- Jessica L Mueller
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Han MN, Di Natale MR, Lei E, Furness JB, Finkelstein DI, Hao MM, Diwakarla S, McQuade RM. Assessment of gastrointestinal function and enteric nervous system changes over time in the A53T mouse model of Parkinson's disease. Acta Neuropathol Commun 2025; 13:58. [PMID: 40075409 PMCID: PMC11899089 DOI: 10.1186/s40478-025-01956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Gastrointestinal (GI) dysfunctions, including constipation and delayed stomach emptying, are prevalent and debilitating non-motor symptoms of Parkinson's disease (PD). These symptoms have been associated with damage in the enteric nervous system (ENS) and the accumulation of pathogenic alpha-synuclein (α-Syn) within the GI tract. While motor deficits and dopaminergic neuron loss in the central nervous system (CNS) of the A53T mouse model are well-characterised, the temporal relationship between GI dysfunction, ENS pathology, and motor symptoms remains unclear. This study aimed to investigate functional alterations in the GI tract at the early stages of the disease, before the appearance of motor deficits, both in vivo and ex vivo. Early colonic motility deficits observed in A53T mice, measured via bead expulsion, preceded motor impairments emerged at 36 weeks. Although whole-gut transit remained unchanged, reduced faecal output was concurrent with marked colonic dysmotility at 36 weeks. Despite a lack of significant neuronal loss, a greater number of enteric neurons in A53T mice showed signs of neuronal hypertrophy and increased nuclear translocation of HuC/D proteins indicative of neuronal stress at 12 and 36 weeks. Calcium imaging revealed differential enteric neuron activity, characterised by exaggerated calcium transients at 12 weeks that normalized by 36 weeks. Furthermore, a reduction in enteric glial populations was observed as early as 12 weeks in both the ileum and colon of A53T mice. These findings provide compelling evidence that ENS pathology, including neuronal stress, disrupted calcium signalling, and glial cell loss, precedes the onset of motor symptoms and may contribute to early GI dysfunction in PD.
Collapse
Affiliation(s)
- Myat Noe Han
- Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia
| | - Madeleine R Di Natale
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Enie Lei
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - John B Furness
- Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - David I Finkelstein
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Marlene M Hao
- Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia
| | - Shanti Diwakarla
- Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia
| | - Rachel M McQuade
- Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia.
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia.
| |
Collapse
|
8
|
Xu M, Zhou EY, Shi H. Tryptophan and Its Metabolite Serotonin Impact Metabolic and Mental Disorders via the Brain-Gut-Microbiome Axis: A Focus on Sex Differences. Cells 2025; 14:384. [PMID: 40072112 PMCID: PMC11899299 DOI: 10.3390/cells14050384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
The crisis of metabolic and mental disorders continues to escalate worldwide. A growing body of research highlights the influence of tryptophan and its metabolites, such as serotonin, beyond their traditional roles in neural signaling. Serotonin acts as a key neurotransmitter within the brain-gut-microbiome axis, a critical bidirectional communication network affecting both metabolism and behavior. Emerging evidence suggests that the gut microbiome regulates brain function and behavior, particularly through microbial influences on tryptophan metabolism and the serotonergic system, both of which are essential for normal functioning. Additionally, sex differences exist in multiple aspects of serotonin-mediated modulation within the brain-gut-microbiome axis, affecting feeding and affective behaviors. This review summarizes the current knowledge from human and animal studies on the influence of tryptophan and its metabolite serotonin on metabolic and behavioral regulation involving the brain and gut microbiome, with a focus on sex differences and the role of sex hormones. We speculate that gut-derived tryptophan and serotonin play essential roles in the pathophysiology that modifies neural circuits, potentially contributing to eating and affective disorders. We propose the gut microbiome as an appealing therapeutic target for metabolic and affective disorders, emphasizing the importance of understanding sex differences in metabolic and behavioral regulation influenced by the brain-gut-microbiome axis. The therapeutic targeting of the gut microbiota and its metabolites may offer a viable strategy for treating serotonin-related disorders, such as eating and affective disorders, with potential differences in treatment efficacy between men and women. This review would promote research on sex differences in metabolic and behavioral regulation impacted by the brain-gut-microbiome axis.
Collapse
Affiliation(s)
- Mengyang Xu
- Program in Cell, Molecular, and Structural Biology, Miami University, Oxford, OH 45056, USA
| | - Ethan Y. Zhou
- Institute for the Environment and Sustainability, Miami University, Oxford, OH 45056, USA
| | - Haifei Shi
- Program in Cell, Molecular, and Structural Biology, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
9
|
Luca BGD, Almeida PP, Junior RR, Soares DJS, Frantz EDC, Miranda-Alves L, Stockler-Pinto MB, Machado Dos Santos C, Magliano DC. Environmental contamination by bisphenols: From plastic production to modulation of the intestinal morphophysiology in experimental models. Food Chem Toxicol 2025; 197:115280. [PMID: 39923829 DOI: 10.1016/j.fct.2025.115280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
Bisphenols are frequently found in a range of plastic products and have been associated with the development of diseases such as diabetes mellitus type 2 and obesity. These compounds are known as endocrine disruptors and have led to restrictions on their use due to their presence in the environment and their association with non-communicable chronic diseases. The gastrointestinal tract, being the primary site of food and water absorption, is particularly vulnerable to the effects of bisphenols. For this reason, a review of studies showing associations between bisphenols exposure and adverse effects in the gut microbiota, morphology tissue, gut permeability, and on the enteric nervous system was carried out. We have included perinatal studies and in different adult experimental models. The effects of bisphenol exposure on the gut microbiota are complex and varied. Bisphenol exposure generally leads to a decrease in microbial diversity and may impact the integrity of the intestinal barrier, resulting in elevated levels of inflammation, changes in morphological and metabolic characteristics of the gut, modifications in tight junction expression, and changes in goblet cell expression. In addition, bisphenol exposure in the perinatal phase can lead to important intestinal changes, including increased colonic inflammation and decreased colonic paracellular permeability.
Collapse
Affiliation(s)
- Beatriz Gouvêa de Luca
- Research Center on Morphology and Metabolism, Biomedical Institute, Federal Fluminense University, Niteroi, RJ, Brazil; Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Federal Fluminense University, Niterói, RJ, Brazil; Pathology Graduate Program, Federal Fluminense University (UFF), Niteroi, RJ, Brazil
| | - Patricia Pereira Almeida
- Pathology Graduate Program, Federal Fluminense University (UFF), Niteroi, RJ, Brazil; Nutrition Sciences Graduate Program, Federal Fluminense University (UFF), Niteroi, RJ, Brazil
| | - Reinaldo Röpke Junior
- Laboratory of Experimental Endocrinology (LEEx), Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Endocrinology Graduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Débora Júlia Silva Soares
- Research Center on Morphology and Metabolism, Biomedical Institute, Federal Fluminense University, Niteroi, RJ, Brazil
| | - Eliete Dalla Corte Frantz
- Research Center on Morphology and Metabolism, Biomedical Institute, Federal Fluminense University, Niteroi, RJ, Brazil; Cardiovascular Sciences Graduate Program, Fluminense Federal University (UFF), Niteroi, RJ, Brazil
| | - Leandro Miranda-Alves
- Laboratory of Experimental Endocrinology (LEEx), Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Endocrinology Graduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Brazil; Pharmacology and Medicinal Chemistry Graduate Program, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Brazil; Morphological Sciences Graduate Program, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Milena Barcza Stockler-Pinto
- Pathology Graduate Program, Federal Fluminense University (UFF), Niteroi, RJ, Brazil; Nutrition Sciences Graduate Program, Federal Fluminense University (UFF), Niteroi, RJ, Brazil
| | - Clarice Machado Dos Santos
- Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Federal Fluminense University, Niterói, RJ, Brazil
| | - D'Angelo Carlo Magliano
- Research Center on Morphology and Metabolism, Biomedical Institute, Federal Fluminense University, Niteroi, RJ, Brazil; Pathology Graduate Program, Federal Fluminense University (UFF), Niteroi, RJ, Brazil; Laboratory of Experimental Endocrinology (LEEx), Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Endocrinology Graduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Brazil.
| |
Collapse
|
10
|
Petrut SM, Bragaru AM, Munteanu AE, Moldovan AD, Moldovan CA, Rusu E. Gut over Mind: Exploring the Powerful Gut-Brain Axis. Nutrients 2025; 17:842. [PMID: 40077713 PMCID: PMC11901622 DOI: 10.3390/nu17050842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Background: The human gastrointestinal tract is home to a wide variety of microorganisms. For some decades now, bacteria known as probiotics have been added to various foods because of their beneficial effects for human health. Evidence indicates that probiotics significantly regulate gut microbiota, which is vital for digestion, metabolism, immune function, and mental health. Methods: We conducted a narrative review of available original research published in PubMed for the past ten years focusing on recent advancements that provide a thorough understanding of the relationship between the gastrointestinal system and the brain. Results: Recent advances in research have focused on the importance of gut microbiota in influencing mental health. The microbiota-gut-brain axis is a complex, bidirectional communication network linking the central nervous system and the gastrointestinal tract, which highlights how the gut and brain are deeply interconnected and influence each other in ways that affect our overall health, emotions, and behavior. This powerful link is a major area of research as scientists discover more about how gut health can impact mental well-being. Conclusions: A comprehensive understanding of microbiota composition and mechanisms involved in these interactions between the gut and the brain could shape future medical and therapeutic approaches. It would balance scientific explanation with clinical relevance, offering insights into how understanding the brain-gut axis can revolutionize our approach to treating mental health and gastrointestinal disorders.
Collapse
Affiliation(s)
- Stefana-Maria Petrut
- Department of Preclinical Sciences, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania; (S.-M.P.); (E.R.)
| | - Alexandra Maria Bragaru
- Doctoral School of Medicine, Titu Maiorescu University of Bucharest, 040317 Bucharest, Romania; (A.M.B.); (A.-D.M.)
| | - Alice Elena Munteanu
- Department of Medico-Surgical and Prophylactic Sciences, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania;
- Department of Cardiology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Adina-Diana Moldovan
- Doctoral School of Medicine, Titu Maiorescu University of Bucharest, 040317 Bucharest, Romania; (A.M.B.); (A.-D.M.)
- MedLife SA, 010719 Bucharest, Romania
| | - Cosmin-Alec Moldovan
- Department of Medico-Surgical and Prophylactic Sciences, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania;
- Department of General Surgery, Witting Clinical Hospital, 010243 Bucharest, Romania
| | - Elena Rusu
- Department of Preclinical Sciences, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania; (S.-M.P.); (E.R.)
| |
Collapse
|
11
|
Sampson TR, Tansey MG, West AB, Liddle RA. Lewy body diseases and the gut. Mol Neurodegener 2025; 20:14. [PMID: 39885558 PMCID: PMC11783828 DOI: 10.1186/s13024-025-00804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
Gastrointestinal (GI) involvement in Lewy body diseases (LBDs) has been observed since the initial descriptions of patients by James Parkinson. Recent experimental and human observational studies raise the possibility that pathogenic alpha-synuclein (⍺-syn) might develop in the GI tract and subsequently spread to susceptible brain regions. The cellular and mechanistic origins of ⍺-syn propagation in disease are under intense investigation. Experimental LBD models have implicated important contributions from the intrinsic gut microbiome, the intestinal immune system, and environmental toxicants, acting as triggers and modifiers to GI pathologies. Here, we review the primary clinical observations that link GI dysfunctions to LBDs. We first provide an overview of GI anatomy and the cellular repertoire relevant for disease, with a focus on luminal-sensing cells of the intestinal epithelium including enteroendocrine cells that express ⍺-syn and make direct contact with nerves. We describe interactions within the GI tract with resident microbes and exogenous toxicants, and how these may directly contribute to ⍺-syn pathology along with related metabolic and immunological responses. Finally, critical knowledge gaps in the field are highlighted, focusing on pivotal questions that remain some 200 years after the first descriptions of GI tract dysfunction in LBDs. We predict that a better understanding of how pathophysiologies in the gut influence disease risk and progression will accelerate discoveries that will lead to a deeper overall mechanistic understanding of disease and potential therapeutic strategies targeting the gut-brain axis to delay, arrest, or prevent disease progression.
Collapse
Affiliation(s)
- Timothy R Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30329, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Malú Gámez Tansey
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
- Normal Fixel Institute of Neurological Diseases, Gainesville, FL, 32608, USA
| | - Andrew B West
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Duke Center for Neurodegeneration and Neurotherapeutic Research, Department of Pharmacology and Cancer Biology, Durham, NC, 27710, USA.
| | - Rodger A Liddle
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Duke Institute for Brain Sciences, Duke University, Durham, NC, 27710, USA.
- Department of Medicine, Duke University and Department of Veterans Affairs Health Care System, Durham, NC, 27710, USA.
| |
Collapse
|
12
|
Tiwari RK, Rawat SG, Rai S, Kumar A. Stress regulatory hormones and cancer: the contribution of epinephrine and cancer therapeutic value of beta blockers. Endocrine 2025:10.1007/s12020-025-04161-7. [PMID: 39869294 DOI: 10.1007/s12020-025-04161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
The word "cancer" evokes myriad emotions, ranging from fear and despair to hope and determination. Cancer is aptly defined as a complex and multifaceted group of diseases that has unapologetically led to the loss of countless lives and affected innumerable families across the globe. The battle with cancer is not only a physical battle, but also an emotional, as well as a psychological skirmish for patients and for their loved ones. Cancer has been a part of our history, stories, and lives for centuries and has challenged the ingenuity of health and medical science, and the resilience of the human spirit. From the early days of surgery and radiation therapy to cutting-edge developments in chemotherapeutic agents, immunotherapy, and targeted treatments, the medical field continues to make significant headway in the fight against cancer. However, even after all these advancements, cancer is still among the leading cause of death globally. This urges us to understand the central hallmarks of neoplastic cells to identify novel molecular targets for the development of promising therapeutic approaches. Growing research suggests that stress mediators, including epinephrine, play a critical role in the development and progression of cancer by inducing neoplastic features through activating adrenergic receptors, particularly β-adrenoreceptors. Further, our experimental data has also shown that epinephrine mediates the growth of T-cell lymphoma by inducing proliferation, glycolysis, and apoptosis evasion via altering the expression levels of key regulators of these vital cellular processes. The beauty of receptor-based therapy lies in its precision and higher therapeutic value. Interestingly, the enhanced expression of β-adrenergic receptors (ADRBs), namely ADRB2 (β2-adrenoreceptor) and ADRB3 (β3-adrenoreceptor) has been noted in many cancers, such as breast, colon, gastric, pancreatic, and prostate and has been reported to play a pivotal role in facilitating cancer growth mainly by promoting proliferation, evasion of apoptosis, angiogenesis, invasion and metastasis, and chemoresistance. The present review article is an attempt to summarize the available findings which indicate a distinct relationship between stress hormones and cancer, with a special emphasis on epinephrine, considered as a key stress regulatory molecule. This article also discusses the possibility of using beta-blockers for cancer therapy.
Collapse
Affiliation(s)
- Rajan Kumar Tiwari
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- School of Medicine and Health Sciences, The George Washington University, Washington DC, USA
| | - Shiv Govind Rawat
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- MD Anderson Cancer Center, The University of Texas, Texas, USA
| | - Siddharth Rai
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
13
|
Ziółkowska EA, Jansen MJ, Williams LL, Wang SH, Eultgen EM, Takahashi K, Le SQ, Nelvagal HR, Sharma J, Sardiello M, DeBosch BJ, Dickson PI, Anderson JB, Sax SE, Wright CM, Bradley RP, Whiteman IT, Makita T, Grider JR, Sands MS, Heuckeroth RO, Cooper JD. Gene therapy ameliorates bowel dysmotility and enteric neuron degeneration and extends survival in lysosomal storage disorder mouse models. Sci Transl Med 2025; 17:eadj1445. [PMID: 39813314 DOI: 10.1126/scitranslmed.adj1445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/01/2024] [Accepted: 10/24/2024] [Indexed: 01/18/2025]
Abstract
Children with neurodegenerative disease often have debilitating gastrointestinal symptoms. We hypothesized that this may be due at least in part to underappreciated degeneration of neurons in the enteric nervous system (ENS), the master regulator of bowel function. To test this hypothesis, we evaluated mouse models of neuronal ceroid lipofuscinosis type 1 and 2 (CLN1 and CLN2 disease, respectively), neurodegenerative lysosomal storage disorders caused by deficiencies in palmitoyl protein thioesterase-1 and tripeptidyl peptidase-1, respectively. Both mouse lines displayed slow bowel transit in vivo that worsened with age. Although the ENS appeared to develop normally in these mice, there was a progressive and profound loss of myenteric plexus neurons accompanied by changes in enteric glia in adult mice. Similar pathology was evident in colon autopsy material from a child with CLN1 disease. Neonatal administration of adeno-associated virus-mediated gene therapy prevented bowel transit defects, ameliorated loss of enteric neurons, and extended survival in mice. Treatment after weaning was less effective than treating neonatally but still extended the lifespan of CLN1 disease mice. These data provide proof-of-principle evidence of ENS degeneration in two lysosomal storage diseases and suggest that gene therapy can ameliorate ENS disease, also improving survival.
Collapse
Affiliation(s)
- Ewa A Ziółkowska
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J Jansen
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Letitia L Williams
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Sophie H Wang
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Elizabeth M Eultgen
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Keigo Takahashi
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Steven Q Le
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Hemanth R Nelvagal
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Jaiprakash Sharma
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Marco Sardiello
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Brian J DeBosch
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Patricia I Dickson
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Jessica B Anderson
- Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sophie E Sax
- Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina M Wright
- Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca P Bradley
- Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ineka T Whiteman
- Batten Disease Support, Research and Advocacy Foundation (US), P.O. Box 30049, Gahanna, OH 43230, USA
- Batten Disease Support and Research Association (Australia), 74 McLachlan Avenue, Shelly Beach, NSW 2261, Australia
| | - Takako Makita
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - John R Grider
- Department of Physiology and Biophysics, Division of Gastroenterology, VCU Program in Enteric Neuromuscular Sciences (VPENS), Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mark S Sands
- Department of Genetics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Robert O Heuckeroth
- Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan D Cooper
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
14
|
Cuevas S, Mayer E, Hughes M, Adler BL, McMahan ZH. Evidence for targeting autonomic dysfunction in systemic sclerosis: A scoping review. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2025:23971983241308050. [PMID: 39790996 PMCID: PMC11707778 DOI: 10.1177/23971983241308050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025]
Abstract
Autonomic dysfunction is a common and early complication among patients with systemic sclerosis, suggesting that it may play a role in the pathogenesis of the disease and be a potential target for therapeutic interventions. Although the true prevalence of autonomic dysfunction among patients with systemic sclerosis is still unclear, it is estimated that as many as 80% of patients may be affected. Autonomic dysfunction may lead to widespread multi-organ dysfunction through its effects on the cardiovascular system, gastrointestinal tract, urinary tract, sweat and salivary glands, and pupils. Early identification of systemic sclerosis associated with dysautonomia may guide prompt diagnosis in this complex patient population and lay the groundwork for future research in this area. Furthermore, the current landscape of targeted interventions for autonomic dysfunction is rapidly expanding; therefore, prioritizing patients who may benefit from such interventions or candidates for related clinical trials is paramount. Our scoping review details timely updates in the extant literature, including findings from recent studies on autonomic dysfunction in systemic sclerosis, and integrates these updates to identify critical gaps in the field.
Collapse
Affiliation(s)
- Sandra Cuevas
- University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Erik Mayer
- McMaster University, Hamilton, ON, Canada
| | - Michael Hughes
- Division of Musculoskeletal & Dermatological Sciences, The University of Manchester and Manchester Academic Health Science Centre, Manchester, UK
- Northern Care Alliance NHS Foundation Trust, Salford Care Organisation, Salford, UK
| | - Brittany L Adler
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, USA
| | - Zsuzsanna H McMahan
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, USA
- UTHealth Houston, Houston, TX, USA
| |
Collapse
|
15
|
Gao V, Crawford CV, Burré J. The Gut-Brain Axis in Parkinson's Disease. Cold Spring Harb Perspect Med 2025; 15:a041618. [PMID: 38772708 PMCID: PMC11694753 DOI: 10.1101/cshperspect.a041618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Parkinson's disease (PD) involves both the central nervous system (CNS) and enteric nervous system (ENS), and their interaction is important for understanding both the clinical manifestations of the disease and the underlying disease pathophysiology. Although the neuroanatomical distribution of pathology strongly suggests that the ENS is involved in disease pathophysiology, there are significant gaps in knowledge about the underlying mechanisms. In this article, we review the clinical presentation and management of gastrointestinal dysfunction in PD. In addition, we discuss the current understanding of disease pathophysiology in the gut, including controversies about early involvement of the gut in disease pathogenesis. We also review current knowledge about gut α-synuclein and the microbiome, discuss experimental models of PD-linked gastrointestinal pathophysiology, and highlight areas for further research. Finally, we discuss opportunities to use the gut-brain axis for the development of biomarkers and disease-modifying treatments.
Collapse
Affiliation(s)
- Virginia Gao
- Appel Institute for Alzheimer's Disease Research and Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021, USA
- Parkinson's Disease and Movement Disorders Institute, Department of Neurology, Weill Cornell Medicine, New York, New York 10065, USA
- Division of Movement Disorders, The Neurological Institute of New York, Columbia University Irving Medical Center, New York, New York 10033, USA
| | - Carl V Crawford
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York 10065, USA
| | - Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research and Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
16
|
Ohara TE, Hsiao EY. Microbiota-neuroepithelial signalling across the gut-brain axis. Nat Rev Microbiol 2025:10.1038/s41579-024-01136-9. [PMID: 39743581 DOI: 10.1038/s41579-024-01136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Research over the past two decades has established a remarkable ability of the gut microbiota to modulate brain activity and behaviour. Conversely, signals from the brain can influence the composition and function of the gut microbiota. This bidirectional communication across the gut microbiota-brain axis, involving multiple biochemical and cellular mediators, is recognized as a major brain-body network that integrates cues from the environment and the body's internal state. Central to this network is the gut sensory system, formed by intimate connections between chemosensory epithelial cells and sensory nerve fibres, that conveys interoceptive signals to the central nervous system. In this Review, we provide a broad overview of the pathways that connect the gut and the brain, and explore the complex dialogue between microorganisms and neurons at this emerging intestinal neuroepithelial interface. We highlight relevant microbial factors, endocrine cells and neural mechanisms that govern gut microbiota-brain interactions and their implications for gastrointestinal and neuropsychiatric health.
Collapse
Affiliation(s)
- Takahiro E Ohara
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Adler EP, Nguyen L, Gottfried-Blackmore A. Clinical applications of vagal nerve stimulation for gastrointestinal motility disorders and chronic abdominal pain. VAGUS NERVE STIMULATION 2025:299-306. [DOI: 10.1016/b978-0-12-816996-4.00003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Li J, Zang C, Li P, Sheng D, Xiao Z, Xiao B, Xia J, Zhou L. Investigating the role of gut microbiota in hemorrhagic stroke: Evidence from causal analysis. J Stroke Cerebrovasc Dis 2025; 34:108131. [PMID: 39528054 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Hemorrhagic stroke is potentially fatal and debilitating. Previous studies have indicated a potential correlation between gut microbiota and hemorrhagic stroke. METHODS We conducted a two-sample Mendelian randomization (MR) study to assess the potential causal effects of gut microbiota on hemorrhagic stroke, including nontraumatic intracranial hemorrhage (ntICH), intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH). The inverse variance weighted (IVW) method was employed as the primary MR evaluation approach. Complementary methods of MR‒Egger, simple mode, weighted mode, and weighted median were utilized for validation. Heterogeneity and pleiotropy were assessed using Cochran's Q and MR‒Egger intercept tests. MR-PRESSO and leave-one-out analyses were employed to identify instrumental outliers. RESULTS The IVW estimates demonstrated significant causal associations between ntICH and taxa from two classes (Clostridia, Methanobacteria), one order (Methanobacteriales), two families (Clostridiales vadin BB60 group, Methanobacteriaceae), and two genera (Catenibacterium, unknown genus id. 1000000073) (P<0.05). Subgroup analyses revealed causal links between ICH and taxa from two classes (Clostridia, Methanobacteria), two orders (Methanobacteriales, Rhodospirillales), two families (Acidaminococcaceae, Methanobacteriaceae), and four genera (Butyricimonas, Catenibacterium, Lachnospiraceae UCG010, unknown genus id.2755) (P<0.05). Furthermore, for the SAH subgroup, we identified causal associations with taxa from one family (Rikenellaceae) and six genera (Alloprevotella, Enterorhabdus, Hungatella, Lachnoclostridium, Parabacteroides, Ruminococcus gauvreauii group) (P<0.05). These findings remained robust across all sensitivity tests. CONCLUSIONS Our findings provide support for the causal effects of specific gut microbial taxa on hemorrhagic stroke and identify promising targets for its prevention and therapy. Further research is warranted to validate these associations.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenyang Zang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peihong Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dandan Sheng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Xiao
- Department of Pathology, First Hospital of Changsha, Changsha, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luo Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
19
|
Ni Bhraonain EP, Turner JA, Hannigan KI, Sanders KM, Cobine CA. Immunohistochemical characterization of interstitial cells and their spatial relationship to motor neurons within the mouse esophagus. Cell Tissue Res 2025; 399:61-84. [PMID: 39607495 DOI: 10.1007/s00441-024-03929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Interstitial cells of Cajal (ICC) and PDGFRα+ cells regulate smooth muscle motility in the gastrointestinal (GI) tract, yet their function in the esophagus remains unknown. The mouse esophagus has been described as primarily skeletal muscle; however, ICC have been identified in this region. This study characterizes the distribution of skeletal and smooth muscle cells (SMCs) and their spatial relationship to ICC, PDGFRα+ cells, and intramuscular motor neurons in the mouse esophagus. SMCs occupied approximately 30% of the distal esophagus, but their density declined in more proximal regions. Similarly, ANO1+ intramuscular ICC (ICC-IM) were distributed along the esophagus, with density decreasing proximally. While ICC-IM were closely associated with SMCs, they were also present in regions of skeletal muscle. Intramuscular, submucosal, and myenteric PDGFRα+ cells were densely distributed throughout the esophagus, yet only intramuscular PDGFRα+ cells in the lower esophageal sphincter (LES) and distal esophagus expressed SK3. ICC-IM and PDGFRα+ cells were closely associated with intramuscular nNOS+, VIP+, VAChT+, and TH+ neurons and GFAP+ cells resembling intramuscular enteric glia. These findings suggest that ICC-IM and PDGFRα+ cells may have roles in regulating esophageal motility due to their close proximity to each other and to skeletal muscle and SMCs, although further functional studies are needed to explore their role in this region. The mixed muscular composition and presence of interstitial cells in the mouse distal esophagus is anatomically similar to the transitional zone found in the human esophagus, and therefore, motility studies in the mouse may be translatable to humans.
Collapse
Affiliation(s)
- Emer P Ni Bhraonain
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Jack A Turner
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Karen I Hannigan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Caroline A Cobine
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA.
| |
Collapse
|
20
|
Kincaid AE, Clouse MD, Magrum SM, Bartz JC. Direct prion neuroinvasion following inhalation into the nasal cavity. mSphere 2024; 9:e0086324. [PMID: 39611853 DOI: 10.1128/msphere.00863-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Inhalation of prions into the nasal cavity is an efficient route of infection. Following inhalation of infectious prions, animals develop disease with a similar incubation period compared with per os exposure, but with greater efficiency. To identify the reason for this increased efficiency, we identified neural structures that uniquely innervate the nasal cavity and neural structures known to mediate neuroinvasion following oral infection and used immunohistochemistry to determine the temporal and spatial accumulation of prions from hamster tissue sections containing cell bodies and axons at 2-week intervals following prion exposure. Prions were identified in the trigeminal ganglion, the spinal trigeminal tract in the brainstem, the intermediolateral cell column of the thoracic spinal cord, and the dorsal motor nucleus of the vagus/solitary nucleus complex months prior to detection of prions in the olfactory bulb or superior cervical ganglion. These results indicate that the trigeminal nerve, but not the olfactory nerve or sympathetic nerves, are involved in neuroinvasion following inhalation of prions into the nasal cavity. The detection of prions in the intermediolateral cell column of the thoracic spinal cord and dorsal motor nucleus of the vagus nerve 14 weeks following inhalation is consistent with inoculum crossing the alimentary wall and infecting the enteric nervous system via this route of infection. Neuroinvasion via the trigeminal nerve, in combination with entry into the central nervous system via autonomic innervation of the enteric nervous system, may contribute to increased efficiency of nasal cavity exposure to prions compared with per os exposure in hamsters.IMPORTANCEInhalation of prions into the nasal cavity is thought to be a route of infection in naturally acquired prion diseases. Experimental studies indicate that inhalation of prions is up to two orders of magnitude more efficient compared with ingestion. The mechanisms underlying this observation are poorly understood. We found a previously unreported direct route of neuroinvasion from the nasal cavity to the nervous system. Importantly, the peripheral ganglia involved may be a useful tissue to sample for prion diagnostics. Overall, identification of a new route of neuroinvasion following prion infection may provide an anatomical basis to explain the increased efficiency of infection following prion inhalation.
Collapse
Affiliation(s)
- Anthony E Kincaid
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, Nebraska, USA
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska, USA
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Melissa D Clouse
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Shawn M Magrum
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, Nebraska, USA
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| |
Collapse
|
21
|
Jia Q, Young D, Zhang Q, Sieburth D. Endogenous hydrogen peroxide positively regulates secretion of a gut-derived peptide in neuroendocrine potentiation of the oxidative stress response in Caenorhabditis elegans. eLife 2024; 13:RP97503. [PMID: 39636673 PMCID: PMC11620748 DOI: 10.7554/elife.97503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The gut-brain axis mediates bidirectional signaling between the intestine and the nervous system and is critical for organism-wide homeostasis. Here, we report the identification of a peptidergic endocrine circuit in which bidirectional signaling between neurons and the intestine potentiates the activation of the antioxidant response in Caenorhabditis elegans in the intestine. We identify an FMRF-amide-like peptide, FLP-2, whose release from the intestine is necessary and sufficient to activate the intestinal oxidative stress response by promoting the release of the antioxidant FLP-1 neuropeptide from neurons. FLP-2 secretion from the intestine is positively regulated by endogenous hydrogen peroxide (H2O2) produced in the mitochondrial matrix by sod-3/superoxide dismutase, and is negatively regulated by prdx-2/peroxiredoxin, which depletes H2O2 in both the mitochondria and cytosol. H2O2 promotes FLP-2 secretion through the DAG and calcium-dependent protein kinase C family member pkc-2 and by the SNAP25 family member aex-4 in the intestine. Together, our data demonstrate a role for intestinal H2O2 in promoting inter-tissue antioxidant signaling through regulated neuropeptide-like protein exocytosis in a gut-brain axis to activate the oxidative stress response.
Collapse
Affiliation(s)
- Qi Jia
- Development, Stem Cells and Regenerative Medicine PhD program, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
- Neuromedicine Graduate Program, University of Southern CaliforniaLos AngelesUnited States
| | - Drew Young
- Neuroscience Graduate Program, University of Southern CaliforniaLos AngelesUnited States
- Zilkha Neurogenetic Institute, University of Southern CaliforniaLos AngelesUnited States
| | - Qixin Zhang
- Neuromedicine Graduate Program, University of Southern CaliforniaLos AngelesUnited States
- Zilkha Neurogenetic Institute, University of Southern CaliforniaLos AngelesUnited States
| | - Derek Sieburth
- Zilkha Neurogenetic Institute, University of Southern CaliforniaLos AngelesUnited States
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
22
|
Puchała Ł, Gonkowski S, Rytel L, Wojtkiewicz J, Grzegorzewski WJ. Distribution and neurochemical characterisation of neurons containing neuregulin 1 in the enteric nervous system within the porcine small intestine. J Vet Res 2024; 68:623-632. [PMID: 39776680 PMCID: PMC11702255 DOI: 10.2478/jvetres-2024-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction The enteric nervous system (ENS) in the wall of the gastrointestinal tract is complex and comprises many neurons, which are differentiated in terms of structure, function and neurochemistry. Neuregulin 1 (NRG 1) is one of the neuronal factors synthesised in the ENS about the distribution and functions of which relatively little is known. The present study is the first description of the distribution of NRG 1 in the ENS in various segments of the porcine small intestine. Material and Methods Fragments were excised from the duodenum, jejunum and ileum of five euthanised Piétrain × Duroc sows, 18-20 kg in weight and eight weeks of age. Paraformaldehyde-fixed and dehydrated tissue was sectioned and double-labelling immunofluorescence was performed using Alexa Fluor-conjugated secondary antibodies to visualise neuregulin 1 and its colocalisation with vasoactive intestinal polypeptide (VIP), galanin (GAL), and the neuronal isoform of nitric oxide synthase (nNOS) in the myenteric and inner and outer submucosal plexuses, with PGP 9.5 serving as a pan-neuronal marker. Results Neuregulin 1 was observed in all enteric plexuses in each segment of the small intestine. The percentage of NRG 1-positive neurons ranged from 8.38 ± 0.55% of all neurons in the jejunal inner submucous plexus to 21.52 ± 0.98% in the duodenal myenteric plexus. Cells which were NRG 1-positive also contained VIP, GAL and nNOS in all segments of the small intestine to a degree which varied by small intestine segment and enteric plexus type. Conclusion The results indicate that NRG 1-positive neurons are present in the ENS of the porcine small intestine and differ significantly neurochemically, which may suggest a multifaceted role for NRG-1 in the controlling of the small intestine activity.
Collapse
Affiliation(s)
| | | | - Liliana Rytel
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082Olsztyn, Poland
| | | |
Collapse
|
23
|
Alvarez-Hernandez MP, Adler B, Perin J, Hughes M, McMahan ZH. Evaluating the Associations Among Dysautonomia, Gastrointestinal Transit, and Clinical Phenotype in Patients With Systemic Sclerosis. Arthritis Care Res (Hoboken) 2024; 76:1675-1685. [PMID: 39138019 PMCID: PMC11606774 DOI: 10.1002/acr.25411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/29/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE Our objective was to identify patients with systemic sclerosis (SSc) with a high burden of autonomic symptoms and to determine whether they have a distinct clinical phenotype, gastrointestinal (GI) transit, or extraintestinal features. METHODS In a prospective cohort of patients with SSc with GI disease, clinical data were systematically obtained at routine visits. Dysautonomia was identified by the Composite Autonomic Symptom Score (COMPASS)-31questionnaire. GI transit was measured by whole-gut scintigraphy. Associations between total COMPASS-31 scores and clinical features, GI symptoms, and transit were evaluated. Comparisons between patients with global autonomic dysfunction (GAD; ≥5 positive COMPASS-31 subdomains) and those with limited autonomic dysfunction (LAD; <5 positive subdomains) were also studied. RESULTS A total of 91 patients with SSc and GI involvement were included (mean age 57 years, 90% female, 74% limited cutaneous disease, 83% significant GI disease [Medsger score ≥2]). The mean COMPASS-31 score in patients with SSc was higher than controls (38.8 vs 7.2); 33% had GAD, and 67% had LAD. Patients with GAD were more likely to have limited SSc (93% vs 65%; P < 0.01) and have sicca symptoms (100% vs 77%; P = 0.01). Gastric and colonic transit were faster in patients with GAD (P < 0.05). Upper GI involvement (Medsger GI score of 1 or 2) was associated with higher total COMPASS-31 scores (P = 0.02). CONCLUSION Symptoms of global dysautonomia are seen in up to one-third of patients with SSc and GI involvement. Identifying specific clinical characteristics associated with GAD in SSc will help to identify a population that may benefit from therapies that modulate the autonomic nervous system.
Collapse
Affiliation(s)
| | | | - Jamie Perin
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Michael Hughes
- Northern Care Alliance NHS Foundation Trust, Salford Care Organisation, Salford, and The University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
24
|
Boldyreva LV, Evtushenko AA, Lvova MN, Morozova KN, Kiseleva EV. Underneath the Gut-Brain Axis in IBD-Evidence of the Non-Obvious. Int J Mol Sci 2024; 25:12125. [PMID: 39596193 PMCID: PMC11594934 DOI: 10.3390/ijms252212125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The gut-brain axis (GBA) plays a pivotal role in human health and wellness by orchestrating complex bidirectional regulation and influencing numerous critical processes within the body. Over the past decade, research has increasingly focused on the GBA in the context of inflammatory bowel disease (IBD). Beyond its well-documented effects on the GBA-enteric nervous system and vagus nerve dysregulation, and gut microbiota misbalance-IBD also leads to impairments in the metabolic and cellular functions: metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton dysregulation. These systemic effects are currently underexplored in relation to the GBA; however, they are crucial for the nervous system cells' functioning. This review summarizes the studies on the particular mechanisms of metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton impairments in IBD. Understanding the involvement of these processes in the GBA may help find new therapeutic targets and develop systemic approaches to improve the quality of life in IBD patients.
Collapse
Affiliation(s)
- Lidiya V. Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Anna A. Evtushenko
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Maria N. Lvova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Ksenia N. Morozova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Elena V. Kiseleva
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| |
Collapse
|
25
|
McMahan Z, Pandolfino J, Perlman H, Del Galdo F, Hinchcliff M. Gastrointestinal disease in systemic sclerosis: the neglected organ system? Curr Opin Rheumatol 2024; 36:374-378. [PMID: 39193877 PMCID: PMC11588520 DOI: 10.1097/bor.0000000000001052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
PURPOSE OF REVIEW Identifying outcomes and clinical trial endpoints enabled the discovery of new inflammatory bowel disease (IBD) treatments. Herein, we describe efforts to advance the study of gastrointestinal (GI) manifestations in systemic sclerosis (SSc). RECENT FINDINGS Insights into the scope of the problem, as well as advancements in the measurement and treatment of SSc-GI, are underway. Proposed SSc esophageal endophenotypes are now defined, risk stratification methods are growing, and imaging and functional studies are now employed to guide therapeutic interventions. Additional progress is being made in characterizing the gut microbiome in patients with SSc. Research into the role of the immune response in the pathogenesis of SSc-GI disease is also ongoing, evolving simultaneously with the development of methods to facilitate data collection with real-time capture of diet, exercise, and medication data. SUMMARY Multidisciplinary teams are working to deepen our understanding of SSc-GI disease pathogenesis, to identify biomarkers for risk stratification and the assessment of disease activity, and to develop and validate outcomes and clinical trial endpoints to pave the way toward effective therapy for SSc-GI disease.
Collapse
Affiliation(s)
- Zsuzsanna McMahan
- Department of Internal Medicine, Division of Rheumatology, UTHealth Houston, Houston, Texas
| | - John Pandolfino
- Department of Internal Medicine, Division of Gastroenterology and Hepatology
| | - Harris Perlman
- Department of Internal Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Monique Hinchcliff
- Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
26
|
Nguyen KV, Schytz HW. The Evidence for Diet as a Treatment in Migraine-A Review. Nutrients 2024; 16:3415. [PMID: 39408380 PMCID: PMC11478386 DOI: 10.3390/nu16193415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Background/objectives: The connection between diet and migraine has gained increasing attention in migraine research due to its potential relevance as part of migraine treatment. This study reviewed the current evidence on the use of diets or specific foods in the prevention of migraine. Methods: A PubMed search was performed with the keywords "diet and migraine" OR "brain-gut-axis and migraine". One author (KVN) screened titles, abstracts, and full-text articles and excluded or included them based on eligibility criteria. Results: A ketogenic diet and a "Dietary Approaches to Stop Hypertension" diet reduced attack duration (p < 0.002), frequency (p < 0.05), and severity (p < 0.01). The ketogenic diet also reduced monthly medication intake (p ≤ 0.05). A low-fat vegan diet mixed with an elimination diet reduced the attack duration (p < 0.01), frequency (p < 0.05), severity (p < 0.0001), and percentage of medicated headaches (p < 0.001). Elimination diet reduced attack duration (p < 0.05), frequency (p < 0.02), severity (p < 0.01), and medication intake (p < 0.002). Elimination diet with IgG-positive foods reduced attack frequency (p < 0.001), and total medication intake (p < 0.01). Gluten-free diet reduced frequency (p = 0.02) and severity (p = 0.013). Conclusions: Certain diets and food items may trigger attacks in some migraine patients, though the overall evidence supporting this is limited. Modifying a diet may reduce symptoms such as attack duration, frequency, severity, and medication intake. However, the included studies' small populations and diverse study designs make the results difficult to apply in clinical practise. Further high-quality, double-blinded, randomised controlled trials are necessary to confirm the association between diet and migraine.
Collapse
Affiliation(s)
- Kattia Valentine Nguyen
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital—Rigshospitalet-Glostrup, 2600 Copenhagen, Denmark
| | - Henrik Winther Schytz
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital—Rigshospitalet-Glostrup, 2600 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
27
|
Jia Q, Young D, Zhang Q, Sieburth D. Endogenous hydrogen peroxide positively regulates secretion of a gut-derived peptide in neuroendocrine potentiation of the oxidative stress response in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587937. [PMID: 39345448 PMCID: PMC11429608 DOI: 10.1101/2024.04.03.587937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The gut-brain axis mediates bidirectional signaling between the intestine and the nervous system and is critical for organism-wide homeostasis. Here we report the identification of a peptidergic endocrine circuit in which bidirectional signaling between neurons and the intestine potentiates the activation of the antioxidant response in C. elegans in the intestine. We identify a FMRF-amide-like peptide, FLP-2, whose release from the intestine is necessary and sufficient to activate the intestinal oxidative stress response by promoting the release of the antioxidant FLP-1 neuropeptide from neurons. FLP-2 secretion from the intestine is positively regulated by endogenous hydrogen peroxide (H2O2) produced in the mitochondrial matrix by sod-3/superoxide dismutase, and is negatively regulated by prdx-2/peroxiredoxin, which depletes H2O2 in both the mitochondria and cytosol. H2O2 promotes FLP-2 secretion through the DAG and calciumdependent protein kinase C family member pkc-2 and by the SNAP25 family member aex-4 in the intestine. Together, our data demonstrate a role for intestinal H2O2 in promoting inter-tissue antioxidant signaling through regulated neuropeptide-like protein exocytosis in a gut-brain axis to activate the oxidative stress response.
Collapse
Affiliation(s)
- Qi Jia
- Development, Stem Cells and Regenerative Medicine PhD program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Neuromedicine Graduate Program, University of Southern California, Los Angeles, CA 90089
| | - Drew Young
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033
| | - Qixin Zhang
- Neuromedicine Graduate Program, University of Southern California, Los Angeles, CA 90089
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033
| | - Derek Sieburth
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
28
|
Liu R, Luo Y, Ma J, Zhang Q, Sheng Y, Li J, Li H, Zhao T. Traditional Chinese medicine for functional gastrointestinal disorders and inflammatory bowel disease: narrative review of the evidence and potential mechanisms involving the brain-gut axis. Front Pharmacol 2024; 15:1444922. [PMID: 39355776 PMCID: PMC11443704 DOI: 10.3389/fphar.2024.1444922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) and inflammatory bowel disease (IBD) are common clinical disorders characterized by recurrent diarrhea and abdominal pain. Although their pathogenesis has not been fully clarified, disruptions in intestinal motility and immune function are widely accepted as contributing factors to both conditions, and the brain-gut axis plays a key role in these processes. Traditional Chinese Medicine (TCM) employs a holistic approach to treatment, considers spleen and stomach impairments and liver abnormality the main pathogenesis of these two diseases, and offers a unique therapeutic strategy that targets these interconnected pathways. Clinical evidence shows the great potential of TCM in treating FGIDs and IBD. This study presents a systematic description of the pathological mechanisms of FGIDs and IBD in the context of the brain-gut axis, discusses clinical and preclinical studies on TCM and acupuncture for the treatment of these diseases, and summarizes TCM targets and pathways for the treatment of FGIDs and IBD, integrating ancient wisdom with contemporary biomedical insights. The alleviating effects of TCM on FGID and IBD symptoms are mainly mediated through the modulation of intestinal immunity and inflammation, sensory transmission, neuroendocrine-immune network, and microbiota and their metabolism through brain-gut axis mechanisms. TCM may be a promising treatment option in controlling FGIDs and IBD; however, further high-quality research is required. This review provides a reference for an in-depth exploration of the interventional effects and mechanisms of TCM in FGIDs and IBD, underscoring TCM's potential to recalibrate the dysregulated brain-gut axis in FGIDs and IBD.
Collapse
Affiliation(s)
- RuiXuan Liu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - YunTian Luo
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - JinYing Ma
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Sheng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiashan Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongjiao Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - TianYi Zhao
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
29
|
Shatunova S, Aktar R, Peiris M, Lee JYP, Vetter I, Starobova H. The role of the gut microbiome in neuroinflammation and chemotherapy-induced peripheral neuropathy. Eur J Pharmacol 2024; 979:176818. [PMID: 39029779 DOI: 10.1016/j.ejphar.2024.176818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most debilitating adverse effects caused by chemotherapy drugs such as paclitaxel, oxaliplatin and vincristine. It is untreatable and often leads to the discontinuation of cancer therapy and a decrease in the quality of life of cancer patients. It is well-established that neuroinflammation and the activation of immune and glial cells are among the major drivers of CIPN. However, these processes are still poorly understood, and while many chemotherapy drugs alone can drive the activation of these cells and consequent neuroinflammation, it remains elusive to what extent the gut microbiome influences these processes. In this review, we focus on the peripheral mechanisms driving CIPN, and we address the bidirectional pathways by which the gut microbiome communicates with the immune and nervous systems. Additionally, we critically evaluate literature addressing how chemotherapy-induced dysbiosis and the consequent imbalance in bacterial products may contribute to the activation of immune and glial cells, both of which drive neuroinflammation and possibly CIPN development, and how we could use this knowledge for the development of effective treatment strategies.
Collapse
Affiliation(s)
- Svetlana Shatunova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Rubina Aktar
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Madusha Peiris
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jia Yu Peppermint Lee
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia; The School of Pharmacy, The University of Queensland, Woollsiana, QLD, Australia
| | - Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
30
|
Baccari MC, Vannucchi MG, Idrizaj E. The Possible Involvement of Glucagon-like Peptide-2 in the Regulation of Food Intake through the Gut-Brain Axis. Nutrients 2024; 16:3069. [PMID: 39339669 PMCID: PMC11435434 DOI: 10.3390/nu16183069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Food intake regulation is a complex mechanism involving the interaction between central and peripheral structures. Among the latter, the gastrointestinal tract represents one of the main sources of both nervous and hormonal signals, which reach the central nervous system that integrates them and sends the resulting information downstream to effector organs involved in energy homeostasis. Gut hormones released by nutrient-sensing enteroendocrine cells can send signals to central structures involved in the regulation of food intake through more than one mechanism. One of these is through the modulation of gastric motor phenomena known to be a source of peripheral satiety signals. In the present review, our attention will be focused on the ability of the glucagon-like peptide 2 (GLP-2) hormone to modulate gastrointestinal motor activity and discuss how its effects could be related to peripheral satiety signals generated in the stomach and involved in the regulation of food intake through the gut-brain axis. A better understanding of the possible role of GLP-2 in regulating food intake through the gut-brain axis could represent a starting point for the development of new strategies to treat some pathological conditions, such as obesity.
Collapse
Affiliation(s)
- Maria Caterina Baccari
- Department of Experimental & Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy;
| | - Maria Giuliana Vannucchi
- Department of Experimental & Clinical Medicine, Research Unit of Histology & Embryology, University of Florence, 50139 Florence, Italy;
| | - Eglantina Idrizaj
- Department of Experimental & Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy;
| |
Collapse
|
31
|
Lou M, Heuckeroth RO, Tjaden NEB. Neuroimmune Crossroads: The Interplay of the Enteric Nervous System and Intestinal Macrophages in Gut Homeostasis and Disease. Biomolecules 2024; 14:1103. [PMID: 39334870 PMCID: PMC11430413 DOI: 10.3390/biom14091103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
A defining unique characteristic of the gut immune system is its ability to respond effectively to foreign pathogens while mitigating unnecessary inflammation. Intestinal macrophages serve as the cornerstone of this balancing act, acting uniquely as both the sword and shield in the gut microenvironment. The GI tract is densely innervated by the enteric nervous system (ENS), the intrinsic nervous system of the gut. Recent advances in sequencing technology have increasingly suggested neuroimmune crosstalk as a critical component for homeostasis both within the gut and in other tissues. Here, we systematically review the ENS-macrophage axis. We focus on the pertinent molecules produced by the ENS, spotlight the mechanistic contributions of intestinal macrophages to gut homeostasis and inflammation, and discuss both existing and potential strategies that intestinal macrophages use to integrate signals from the ENS. This review aims to elucidate the complex molecular basis governing ENS-macrophage signaling, highlighting their cooperative roles in sustaining intestinal health and immune equilibrium.
Collapse
Affiliation(s)
- Meng Lou
- Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute, Abramson Research Center and Department of Pediatrics, Pearlman School of Medicine at the University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA 19004, USA; (R.O.H.); (N.E.B.T.)
| | - Robert O. Heuckeroth
- Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute, Abramson Research Center and Department of Pediatrics, Pearlman School of Medicine at the University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA 19004, USA; (R.O.H.); (N.E.B.T.)
- Division of Gastroenterology, Nutrition and Hepatology, The Children’s Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19004, USA
| | - Naomi E. Butler Tjaden
- Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute, Abramson Research Center and Department of Pediatrics, Pearlman School of Medicine at the University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA 19004, USA; (R.O.H.); (N.E.B.T.)
- Division of Gastroenterology, Nutrition and Hepatology, The Children’s Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19004, USA
| |
Collapse
|
32
|
Herath M, Speer AL. Bioengineering of Intestinal Grafts. Gastroenterol Clin North Am 2024; 53:461-472. [PMID: 39068007 PMCID: PMC11284275 DOI: 10.1016/j.gtc.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Intestinal failure manifests as an impaired capacity of the intestine to sufficiently absorb vital nutrients and electrolytes essential for growth and well-being in pediatric and adult populations. Although parenteral nutrition remains the mainstay therapeutic approach, the pursuit of a definitive and curative strategy, such as regenerative medicine, is imperative. Substantial advancements in the field of engineered intestinal tissues present a promising avenue for addressing intestinal failure; nevertheless, extensive research is still necessary for effective translation from experimental benchwork to clinical bedside applications.
Collapse
Affiliation(s)
- Madushani Herath
- Program in Children's Regenerative Medicine, Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), 6431 Fannin Street, Suite 5.254, Houston, TX 77030, USA
| | - Allison L Speer
- Program in Children's Regenerative Medicine, Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), 6431 Fannin Street, Suite 5.254, Houston, TX 77030, USA.
| |
Collapse
|
33
|
He Y, Wang K, Su N, Yuan C, Zhang N, Hu X, Fu Y, Zhao F. Microbiota-gut-brain axis in health and neurological disease: Interactions between gut microbiota and the nervous system. J Cell Mol Med 2024; 28:e70099. [PMID: 39300699 PMCID: PMC11412916 DOI: 10.1111/jcmm.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Along with mounting evidence that gut microbiota and their metabolites migrate endogenously to distal organs, the 'gut-lung axis,' 'gut-brain axis,' 'gut-liver axis' and 'gut-renal axis' have been established. Multiple animal recent studies have demonstrated gut microbiota may also be a key susceptibility factor for neurological disorders such as Alzheimer's disease, Parkinson's disease and autism. The gastrointestinal tract is innervated by the extrinsic sympathetic and vagal nerves and the intrinsic enteric nervous system, and the gut microbiota interacts with the nervous system to maintain homeostatic balance in the host gut. A total of 1507 publications on the interactions between the gut microbiota, the gut-brain axis and neurological disorders are retrieved from the Web of Science to investigate the interactions between the gut microbiota and the nervous system and the underlying mechanisms involved in normal and disease states. We provide a comprehensive overview of the effects of the gut microbiota and its metabolites on nervous system function and neurotransmitter secretion, as well as alterations in the gut microbiota in neurological disorders, to provide a basis for the possibility of targeting the gut microbiota as a therapeutic agent for neurological disorders.
Collapse
Affiliation(s)
- Yuhong He
- Department of Operating RoomChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Ke Wang
- Department of Operating RoomChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| | - Niri Su
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Chongshan Yuan
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Naisheng Zhang
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Xiaoyu Hu
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Yunhe Fu
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Feng Zhao
- Department of Operating RoomChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
34
|
da Silva MDV, da Silva Bonassa L, Piva M, Basso CR, Zaninelli TH, Machado CCA, de Andrade FG, Miqueloto CA, Sant Ana DDMG, Aktar R, Peiris M, Aziz Q, Blackshaw LA, Verri WA, de Almeida Araújo EJ. Perineuronal net in the extrinsic innervation of the distal colon of mice and its remodeling in ulcerative colitis. J Neurochem 2024; 168:1937-1955. [PMID: 38426587 DOI: 10.1111/jnc.16080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
The perineuronal net (PNN) is a well-described highly specialized extracellular matrix structure found in the central nervous system. Thus far, no reports of its presence or connection to pathological processes have been described in the peripheral nervous system. Our study demonstrates the presence of a PNN in the spinal afferent innervation of the distal colon of mice and characterizes structural and morphological alterations induced in an ulcerative colitis (UC) model. C57Bl/6 mice were given 3% dextran sulfate sodium (DSS) to induce acute or chronic UC. L6/S1 dorsal root ganglia (DRG) were collected. PNNs were labeled using fluorescein-conjugated Wisteria Floribunda (WFA) l lectin, and calcitonin gene-related peptide (CGRP) immunofluorescence was used to detect DRG neurons. Most DRG cell bodies and their extensions toward peripheral nerves were found surrounded by the PNN-like structure (WFA+), labeling neurons' cytoplasm and the pericellular surfaces. The amount of WFA+ neuronal cell bodies was increased in both acute and chronic UC, and the PNN-like structure around cell bodies was thicker in UC groups. In conclusion, a PNN-like structure around DRG neuronal cell bodies was described and found modulated by UC, as changes in quantity, morphology, and expression profile of the PNN were detected, suggesting a potential role in sensory neuron peripheral sensitization, possibly modulating the pain profile of ulcerative colitis.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Laboratory of Neurogastroenterology, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Larissa da Silva Bonassa
- Laboratory of Neurogastroenterology, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - Maiara Piva
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Camila Regina Basso
- Laboratory of Neurogastroenterology, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - Tiago Henrique Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Camila Cristina Alves Machado
- Laboratory of Neurogastroenterology, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - Fábio Goulart de Andrade
- Laboratory of Histopathological Analysis, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - Carlos Alberto Miqueloto
- Laboratory of Neurogastroenterology, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Rubina Aktar
- Wingate Institute for Neurogastroenterology, Queen Mary University of London, London, UK
| | - Madusha Peiris
- Wingate Institute for Neurogastroenterology, Queen Mary University of London, London, UK
| | - Qasim Aziz
- Wingate Institute for Neurogastroenterology, Queen Mary University of London, London, UK
| | - L Ashley Blackshaw
- Wingate Institute for Neurogastroenterology, Queen Mary University of London, London, UK
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | | |
Collapse
|
35
|
Peruzzi N, Eckermann M, Frohn J, Salditt T, Ohlsson B, Bech M. Volumetric changes of the enteric nervous system under physiological and pathological conditions measured using x-ray phase-contrast tomography. JGH Open 2024; 8:e70027. [PMID: 39295850 PMCID: PMC11408747 DOI: 10.1002/jgh3.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024]
Abstract
Background and Aim Full-thickness biopsies of the intestinal wall may be used to study and assess damage to the neurons of the enteric nervous system (ENS), that is, enteric neuropathy. The ENS is difficult to examine due to its localization deep in the intestinal wall and its organization with several connections in diverging directions. Histological sections used in clinical practice only visualize the sample in a two-dimensional way. X-ray phase-contrast micro-computed tomography (PC-μCT) has shown potential to assess the cross-sectional thickness and volume of the ENS in three dimensions (3D). The aim of this study was to explore the potential of PC-μCT to evaluate its use to determine the size of the ENS. Methods Full-thickness biopsies of ileum obtained during surgery from five controls and six patients clinically diagnosed with enteric neuropathy and dysmotility were included. Punch biopsies of 1 mm in diameter and 1 cm in length, from an area containing myenteric plexus, were extracted from paraffin blocks, and scanned with synchrotron-based PC-μCT without any staining. Results The microscopic volumetric structure of the neural tissue (consisting of both ganglia and fascicles) could be determined in all samples. The ratio of neural tissue volume/total tissue volume was higher in controls than in patients with enteric neuropathy (P = 0.013). The patient with the longest disease duration had the lowest ratio. Conclusion The assessment of neural tissue can be performed in an objective, standardized way, to ensure reproducibility and comparison under physiological and pathological conditions. Further evaluation is needed to examine the role of this method in the diagnosis of enteric neuropathy.
Collapse
Affiliation(s)
- Niccolò Peruzzi
- Medical Radiation Physics, Department of Clinical Sciences Lund Lund University Lund Sweden
| | - Marina Eckermann
- ESRF, The European Synchrotron Grenoble France
- Institute for X-Ray Physics, University of Göttingen Göttingen Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen Göttingen Germany
| | - Jasper Frohn
- Institute for X-Ray Physics, University of Göttingen Göttingen Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen Göttingen Germany
| | - Tim Salditt
- Institute for X-Ray Physics, University of Göttingen Göttingen Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen Göttingen Germany
| | - Bodil Ohlsson
- Department of Clinical Sciences Malmö Lund University Lund Sweden
- Department of Internal Medicine Skåne University Hospital Malmö Sweden
| | - Martin Bech
- Medical Radiation Physics, Department of Clinical Sciences Lund Lund University Lund Sweden
- LINXS Institute of advanced Neutron and X-ray Science (LINXS) Lund Sweden
| |
Collapse
|
36
|
Populin LC, Rajala AZ, Matkowskyj KA, Saha S, Zeng W, Christian B, McVea A, Tay EX, Mueller EM, Malone ME, Brust-Mascher I, McMillan AB, Ludwig KA, Suminski AJ, Reardon C, Furness JB. Characterization of idiopathic chronic diarrhea and associated intestinal inflammation and preliminary observations of effects of vagal nerve stimulation in a non-human primate. Neurogastroenterol Motil 2024; 36:e14876. [PMID: 39072841 PMCID: PMC11321913 DOI: 10.1111/nmo.14876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/26/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Diarrhea is commonly associated with irritable bowel syndrome, inflammatory bowel disease, microscopic colitis, and other gastrointestinal dysfunctions. Spontaneously occurring idiopathic chronic diarrhea is frequent in rhesus macaques, but has not been used as a model for the investigation of diarrhea or its treatment. We characterized this condition and present preliminary data demonstrating that left vagal nerve stimulation provides relief. METHODS Stool consistency scores were followed for up to 12 years. Inflammation was assessed by plasma C-reactive protein, [18F]fluorodeoxyglucose (FDG) uptake, measured by positron emission tomography (PET), multiplex T cell localization, endoscopy and histology. The vagus was stimulated for 9 weeks in conscious macaques, using fully implanted electrodes, under wireless control. KEY RESULTS Macaques exhibited recurrent periods of diarrhea for up to 12 years, and signs of inflammation: elevated plasma C-reactive protein, increased bowel FDG uptake and increased mucosal T helper1 T-cells. The colon and distal ileum were endoscopically normal, and histology revealed mild colonic inflammation. Application of vagal nerve stimulation to conscious macaques (10 Hz, 30 s every 3 h; 24 h a day for 9 weeks) significantly reduced severity of diarrhea and also reduced inflammation, as measured by FDG uptake and C-reactive protein. CONCLUSIONS AND INFERENCES These macaques exhibit spontaneously occurring diarrhea with intestinal inflammation that can be reduced by VNS. The data demonstrate the utility of this naturally occurring primate model to study the physiology and treatments for chronic diarrhea and the neural control circuits influencing diarrhea and inflammation that are not accessible in human subjects.
Collapse
Affiliation(s)
- Luis C Populin
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Abigail Z Rajala
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Kristina A Matkowskyj
- Department of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Sumona Saha
- Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Weifeng Zeng
- Department of Surgery, Dental and Plastic Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Bradley Christian
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Andrew McVea
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Emmy Xue Tay
- Department of Anatomy, Physiology and Cell Biology, UC Davis
| | - Ellie M Mueller
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Margaret E Malone
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | | | - Alan B McMillan
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Kip A Ludwig
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Aaron J Suminski
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Colin Reardon
- Department of Anatomy, Physiology and Cell Biology, UC Davis
| | - John B Furness
- Department of Anatomy & Physiology, University of Melbourne, Parkville, VIC 3010, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
| |
Collapse
|
37
|
Parkar N, Spencer NJ, Wiklendt L, Olson T, Young W, Janssen P, McNabb WC, Dalziel JE. Novel insights into mechanisms of inhibition of colonic motility by loperamide. Front Neurosci 2024; 18:1424936. [PMID: 39268036 PMCID: PMC11390470 DOI: 10.3389/fnins.2024.1424936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Background It is well known that opiates slow gastrointestinal (GI) transit, via suppression of enteric cholinergic neurotransmission throughout the GI tract, particularly the large intestine where constipation is commonly induced. It is not clear whether there is uniform suppression of enteric neurotransmission and colonic motility across the full length of the colon. Here, we investigated whether regional changes in colonic motility occur using the peripherally-restricted mu opioid agonist, loperamide to inhibit colonic motor complexes (CMCs) in isolated mouse colon. Methods High-resolution video imaging was performed to monitor colonic wall diameter on isolated whole mouse colon. Regional changes in the effects of loperamide on the pattern generator underlying cyclical CMCs and their propagation across the full length of large intestine were determined. Results The sensitivity of CMCs to loperamide across the length of colon varied significantly. Although there was a dose-dependent inhibition of CMCs with increasing concentrations of loperamide (10 nM - 1 μM), a major observation was that in the mid and distal colon, CMCs were abolished at low doses of loperamide (100 nM), while in the proximal colon, CMCs persisted at the same low concentration, albeit at a significantly slower frequency. Propagation velocity of CMCs was significantly reduced by 46%. The inhibitory effects of loperamide on CMCs were reversed by naloxone (1 μM). Naloxone alone did not change ongoing CMC characteristics. Discussion The results show pronounced differences in the inhibitory action of loperamide across the length of large intestine. The most potent effect of loperamide to retard colonic transit occurred between the proximal colon and mid/distal regions of colon. One of the possibilities as to why this occurs is because the greatest density of mu opioid receptors are located on interneurons responsible for neuro-neuronal transmission underlying CMCs propagation between the proximal and mid/distal colon. The absence of effect of naloxone alone on CMC characteristics suggest that the mu opioid receptor has little ongoing constitutive activity under our recording conditions.
Collapse
Affiliation(s)
- Nabil Parkar
- AgResearch, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, SA, Australia
| | - Luke Wiklendt
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, SA, Australia
| | | | - Wayne Young
- AgResearch, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Patrick Janssen
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Julie E Dalziel
- AgResearch, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
38
|
Elfers K, Sehnert AS, Wagner A, Zwirner U, Linge H, Kulik U, Poehnert D, Winny M, Gundert B, Aselmann H, Mazzuoli-Weber G. Functional and Structural Investigation of Myenteric Neurons in the Human Colon. GASTRO HEP ADVANCES 2024; 4:100537. [PMID: 39790245 PMCID: PMC11714724 DOI: 10.1016/j.gastha.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 01/12/2025]
Abstract
Background and Aims The enteric nervous system independently controls gastrointestinal function including motility, which is primarily mediated by the myenteric plexus, therefore also playing a crucial role in functional intestinal disorders. Live recordings from human myenteric neurons proved to be challenging due to technical difficulties. Using the neuroimaging technique, we are able to record human colonic myenteric neuronal activity and investigate their functional properties in a large cohort of patients. Methods Activity from myenteric neurons in wholemount preparations of different sampling sites of fresh, human colonic tissue was recorded using neuroimaging with the voltage sensitive dye 1-(3-sulfanatopropyl)-4-[beta[2-(di-n-octylamino)-6-naphthyl]vinyl]pyridinium betaine. Neuronal responses were analyzed following stimulation with nicotine and serotonin (5-HT) for differences based on the donor's age, the disorder indicative for surgery and the colonic region. Immunohistochemistry was performed to calculate the total neuronal numbers. Results Stimulation with nicotine and 5-HT elicited reproducible action potential discharge in a proportion of human myenteric neurons. The responses to 5-HT were significantly greater in tissues from older patients and from those with inflammatory disorders, while neuronal activity to nicotinergic stimulation was comparable in all patients. Neuronal numbers declined with rising patient's age and was highest in the sigmoid colon. Conclusion Neuroimaging with 1-(3-sulfanatopropyl)-4-[beta[2-(di-n-octylamino)-6-naphthyl]vinyl]pyridinium betaine was successfully adapted to record reproducible responses from human colonic myenteric neurons upon pharmacological stimulation. Evidence exists for an impact of age and inflammation on the serotonergic neuronal signaling and for differences in neuronal numbers in the distinct colonic regions as well as a neuronal decrease with age.
Collapse
Affiliation(s)
- Kristin Elfers
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Alina Sophia Sehnert
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Alexander Wagner
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Ulrich Zwirner
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Helena Linge
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Ulf Kulik
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Daniel Poehnert
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Markus Winny
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Benjamin Gundert
- Clinic for General, Visceral and Minimal Invasive Surgery, KRH Klinikum Siloah, Hannover, Germany
| | - Heiko Aselmann
- Clinic for General, Visceral and Minimal Invasive Surgery, KRH Klinikum Siloah, Hannover, Germany
| | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
39
|
Almeida PP, Brito ML, Thomasi B, Mafra D, Fouque D, Knauf C, Tavares-Gomes AL, Stockler-Pinto MB. Is the enteric nervous system a lost piece of the gut-kidney axis puzzle linked to chronic kidney disease? Life Sci 2024; 351:122793. [PMID: 38848938 DOI: 10.1016/j.lfs.2024.122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The enteric nervous system (ENS) regulates numerous functional and immunological attributes of the gastrointestinal tract. Alterations in ENS cell function have been linked to intestinal outcomes in various metabolic, intestinal, and neurological disorders. Chronic kidney disease (CKD) is associated with a challenging intestinal environment due to gut dysbiosis, which further affects patient quality of life. Although the gut-related repercussions of CKD have been thoroughly investigated, the involvement of the ENS in this puzzle remains unclear. ENS cell dysfunction, such as glial reactivity and alterations in cholinergic signaling in the small intestine and colon, in CKD are associated with a wide range of intestinal pathways and responses in affected patients. This review discusses how the ENS is affected in CKD and how it is involved in gut-related outcomes, including intestinal permeability, inflammation, oxidative stress, and dysmotility.
Collapse
Affiliation(s)
| | - Michele Lima Brito
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Beatriz Thomasi
- Department of Physiology, Neuroscience Program, Michigan State University (MSU), East Lansing, MI, USA
| | - Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Denis Fouque
- Department of Nephrology, Centre Hopitalier Lyon Sud, INSERM 1060, CENS, Université de Lyon, France
| | - Claude Knauf
- INSERM U1220 Institut de Recherche en Santé Digestive, CHU Purpan, Université Toulouse III Paul Sabatier Toulouse, Toulouse, France
| | - Ana Lúcia Tavares-Gomes
- Neurosciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Milena Barcza Stockler-Pinto
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil; INSERM U1220 Institut de Recherche en Santé Digestive, CHU Purpan, Université Toulouse III Paul Sabatier Toulouse, Toulouse, France
| |
Collapse
|
40
|
Perez KM, Strobel KM, Hendrixson DT, Brandon O, Hair AB, Workneh R, Abayneh M, Nangia S, Hoban R, Kolnik S, Rent S, Salas A, Ojha S, Valentine GC. Nutrition and the gut-brain axis in neonatal brain injury and development. Semin Perinatol 2024; 48:151927. [PMID: 38897828 DOI: 10.1016/j.semperi.2024.151927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Early nutritional exposures, including during embryogenesis and the immediate postnatal period, affect offspring outcomes in both the short- and long-term. Alterations of these modifiable exposures shape the developing gut microbiome, intestinal development, and even neurodevelopmental outcomes. A gut-brain axis exists, and it is intricately connected to early life feeding and nutritional exposures. Here, we seek to discuss the (1) origins of the gut-brain access and relationship with neurodevelopment, (2) components of human milk (HM) beyond nutrition and their role in the developing newborn, and (3) clinical application of nutritional practices, including fluid management and feeding on the development of the gut-brain axis, and long-term neurodevelopmental outcomes. We conclude with a discussion on future directions and unanswered questions that are critical to provide further understanding and insight into how clinicians and healthcare providers can optimize early nutritional practices to ensure children not only survive, but thrive, free of neurodevelopmental impairment.
Collapse
Affiliation(s)
- Krystle M Perez
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Katie M Strobel
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - D Taylor Hendrixson
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Olivia Brandon
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Amy B Hair
- Division of Neonatology, Baylor College of Medicine, Houston, TX, United States of America
| | - Redeat Workneh
- St Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Mahlet Abayneh
- St Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Sushma Nangia
- Department of Neonatology, Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| | - Rebecca Hoban
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Sarah Kolnik
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Sharla Rent
- Division of Neonatology, Duke University, Durham, NC, United States of America
| | - Ariel Salas
- Department of Pediatrics, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Shalini Ojha
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Gregory C Valentine
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America; Department of Oral Health Sciences, University of Washington, Seattle, WA, United States of America; Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, United States of America.
| |
Collapse
|
41
|
Wang L, Taché Y. The parasympathetic and sensory innervation of the proximal and distal colon in male mice. Front Neuroanat 2024; 18:1422403. [PMID: 39045348 PMCID: PMC11263295 DOI: 10.3389/fnana.2024.1422403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction The distributions of extrinsic neurons innervating the colon show differences in experimental animals from humans, including the vagal and spinal parasympathetic innervation to the distal colon. The neuroanatomical tracing to the mouse proximal colon has not been studied in details. This study aimed to trace the locations of extrinsic neurons projecting to the mouse proximal colon compared to the distal colon using dual retrograde tracing. Methods The parasympathetic and sensory neurons projecting to colon were assessed using Cholera Toxin subunit B conjugated to Alexa-Fluor 488 or 555 injected in the proximal and distal colon of the same mice. Results Retrograde tracing from the proximal and distal colon labeled neurons in the dorsal motor nucleus of the vagus (DMV) and the nodose ganglia, while the tracing from the distal colon did not label the parasympathetic neurons in the lumbosacral spinal cord at L6-S1. Neurons in the pelvic ganglia which were cholinergic projected to the distal colon. There were more neurons in the DMV and nodose ganglia projecting to the proximal than distal colon. The right nodose ganglion had a higher number of neurons than the left ganglion innervating the proximal colon. In the dorsal root ganglia (DRG), the highest number of neurons traced from the distal colon were at L6, and those from the proximal colon at T12. DRG neurons projected closely to the cholinergic neurons in the intermediolateral column of L6 spinal cord. Small percentages of neurons with dual projections to both the proximal and distal colon existed in the DMV, nodose ganglia and DRG. We also observed long projecting neurons traced from the caudal distal colon to the transverse and proximal colon, some of which were calbindin immunoreactive, while there were no retrogradely labeled neurons traced from the proximal to distal colon. Discussion These data demonstrated that the vagal motor and motor and sensory neurons innervate both the proximal and distal colon in mice, and the autonomic neurons in the intermediate zone of the lumbosacral spinal cord do not project directly to the mouse colon, which differs from that in humans.
Collapse
Affiliation(s)
- Lixin Wang
- CURE/Digestive Diseases Research Center, Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Yvette Taché
- CURE/Digestive Diseases Research Center, Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
42
|
Hellysaz A, Hagbom M. Rotavirus Sickness Symptoms: Manifestations of Defensive Responses from the Brain. Viruses 2024; 16:1086. [PMID: 39066248 PMCID: PMC11281384 DOI: 10.3390/v16071086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Rotavirus is infamous for being extremely contagious and for causing diarrhea and vomiting in infants. However, the symptomology is far more complex than what could be expected from a pathogen restricted to the boundaries of the small intestines. Other rotavirus sickness symptoms like fever, fatigue, sleepiness, stress, and loss of appetite have been clinically established for decades but remain poorly studied. A growing body of evidence in recent years has strengthened the idea that the evolutionarily preserved defensive responses that cause rotavirus sickness symptoms are more than just passive consequences of illness and rather likely to be coordinated events from the central nervous system (CNS), with the aim of maximizing the survival of the individual as well as the collective group. In this review, we discuss both established and plausible mechanisms of different rotavirus sickness symptoms as a series of CNS responses coordinated from the brain. We also consider the protective and the harmful nature of these events and highlight the need for further and deeper studies on rotavirus etiology.
Collapse
Affiliation(s)
| | - Marie Hagbom
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden;
| |
Collapse
|
43
|
Palus K. Dietary Exposure to Acrylamide Has Negative Effects on the Gastrointestinal Tract: A Review. Nutrients 2024; 16:2032. [PMID: 38999779 PMCID: PMC11243272 DOI: 10.3390/nu16132032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Changing eating habits and an increase in consumption of thermally processed products have increased the risk of the harmful impact of chemical substances in food on consumer health. A 2002 report by the Swedish National Food Administration and scientists at Stockholm University on the formation of acrylamide in food products during frying, baking and grilling contributed to an increase in scientific interest in the subject. Acrylamide is a product of Maillard's reaction, which is a non-enzymatic chemical reaction between reducing sugars and amino acids that takes place during thermal processing. The research conducted over the past 20 years has shown that consumption of acrylamide-containing products leads to disorders in human and animal organisms. The gastrointestinal tract is a complex regulatory system that determines the transport, grinding, and mixing of food, secretion of digestive juices, blood flow, growth and differentiation of tissues, and their protection. As the main route of acrylamide absorption from food, it is directly exposed to the harmful effects of acrylamide and its metabolite-glycidamide. Despite numerous studies on the effect of acrylamide on the digestive tract, no comprehensive analysis of the impact of this compound on the morphology, innervation, and secretory functions of the digestive system has been made so far. Acrylamide present in food products modifies the intestine morphology and the activity of intestinal enzymes, disrupts enteric nervous system function, affects the gut microbiome, and increases apoptosis, leading to gastrointestinal tract dysfunction. It has also been demonstrated that it interacts with other substances in food in the intestines, which increases its toxicity. This paper summarises the current knowledge of the impact of acrylamide on the gastrointestinal tract, including the enteric nervous system, and refers to strategies aimed at reducing its toxic effect.
Collapse
Affiliation(s)
- Katarzyna Palus
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowski Str. 13, 10-718 Olsztyn, Poland
| |
Collapse
|
44
|
Makowska K, Gonkowski S. Comparison of the Influence of Bisphenol A and Bisphenol S on the Enteric Nervous System of the Mouse Jejunum. Int J Mol Sci 2024; 25:6941. [PMID: 39000048 PMCID: PMC11241817 DOI: 10.3390/ijms25136941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Bisphenols are dangerous endocrine disruptors that pollute the environment. Due to their chemical properties, they are globally used to produce plastics. Structural similarities to oestrogen allow bisphenols to bind to oestrogen receptors and affect internal body systems. Most commonly used in the plastic industry is bisphenol A (BPA), which also has negative effects on the nervous, immune, endocrine, and cardiovascular systems. A popular analogue of BPA-bisphenol S (BPS) also seems to have harmful effects similar to BPA on living organisms. Therefore, with the use of double immunofluorescence labelling, this study aimed to compare the effect of BPA and BPS on the enteric nervous system (ENS) in mouse jejunum. The study showed that both studied toxins impact the number of nerve cells immunoreactive to substance P (SP), galanin (GAL), vasoactive intestinal polypeptide (VIP), the neuronal isoform of nitric oxide synthase (nNOS), and vesicular acetylcholine transporter (VAChT). The observed changes were similar in the case of both tested bisphenols. However, the influence of BPA showed stronger changes in neurochemical coding. The results also showed that long-term exposure to BPS significantly affects the ENS.
Collapse
Affiliation(s)
- Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland
| | - Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland
| |
Collapse
|
45
|
Ardasheva R, Popov V, Yotov V, Prissadova N, Pencheva M, Slavova I, Turiyski V, Krastev A. Accelerated Electron Ionization-Induced Changes in the Myenteric Plexus of the Rat Stomach. Int J Mol Sci 2024; 25:6807. [PMID: 38928511 PMCID: PMC11203758 DOI: 10.3390/ijms25126807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The influence of accelerated electrons on neuronal structures is scarcely explored compared to gamma and X-rays. This study aims to investigate the effects of accelerated electron radiation on some pivotal neurotransmitter circuits (cholinergic and serotonergic) of rats' myenteric plexus. Male Wistar rats were irradiated with an electron beam (9 MeV, 5 Gy) generated by a multimodality linear accelerator. The contractile activity of isolated smooth muscle samples from the gastric corpus was measured. Furthermore, an electrical stimulation (200 μs, 20 Hz, 50 s, 60 V) was performed on the samples and an assessment of the cholinergic and serotonergic circuits was made. Five days after irradiation, the recorded mechanical responses were biphasic-contraction/relaxation in controls and contraction/contraction in irradiated samples. The nature of the contractile phase of control samples was cholinergic with serotonin involvement. The relaxation phase involved ACh-induced nitric oxide release from gastric neurons. There was a significant increase in serotonergic involvement during the first and second contractile phases of the irradiated samples, along with a diminished role of acetylcholine in the first phase. This study demonstrates an increased involvement of serotonergic neurotransmitter circuits in the gastric myenteric plexus caused by radiation with accelerated electrons.
Collapse
Affiliation(s)
- Raina Ardasheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (R.A.); (N.P.); (M.P.); (V.T.)
| | - Veselin Popov
- Section of Radiotherapy and Nuclear Medicine, Department of Clinical Oncology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Viktor Yotov
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (R.A.); (N.P.); (M.P.); (V.T.)
| | - Natalia Prissadova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (R.A.); (N.P.); (M.P.); (V.T.)
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (R.A.); (N.P.); (M.P.); (V.T.)
| | - Iva Slavova
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Valentin Turiyski
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (R.A.); (N.P.); (M.P.); (V.T.)
| | - Athanas Krastev
- Medical College, Trakia University, 6015 Stara Zagora, Bulgaria;
| |
Collapse
|
46
|
Chatterjee P, Dassama LMK. Unveiling of a messenger: Gut microbes make a neuroactive signal. Cell 2024; 187:2903-2904. [PMID: 38848674 PMCID: PMC11890971 DOI: 10.1016/j.cell.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024]
Abstract
Gut microbes are known to impact host physiology in several ways. However, key molecular players in host-commensal interactions remain to be uncovered. In this issue of Cell, McCurry et al. reveal that gut bacteria perform 21-dehydroxylation to convert abundant biliary corticoids to neurosteroids using readily available H2 in their environment.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Chemistry, Stanford University, Stanford, CA, USA; Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Laura M K Dassama
- Department of Chemistry, Stanford University, Stanford, CA, USA; Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
47
|
Suman S. Enteric Nervous System Alterations in Inflammatory Bowel Disease: Perspectives and Implications. GASTROINTESTINAL DISORDERS 2024; 6:368-379. [PMID: 38872954 PMCID: PMC11175598 DOI: 10.3390/gidisord6020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
The enteric nervous system (ENS), consisting of neurons and glial cells, is situated along the gastrointestinal (GI) tract's wall and plays a crucial role in coordinating digestive processes. Recent research suggests that the optimal functioning of the GI system relies on intricate connections between the ENS, the intestinal epithelium, the immune system, the intestinal microbiome, and the central nervous system (CNS). Inflammatory bowel disease (IBD) encompasses a group of chronic inflammatory disorders, such as Crohn's disease (CD) and ulcerative colitis (UC), characterized by recurring inflammation and damage to the GI tract. This review explores emerging research in the dynamic field of IBD and sheds light on the potential role of ENS alterations in both the etiology and management of IBD. Specifically, we delve into IBD-induced enteric glial cell (EGC) activation and its implications for persistent enteric gliosis, elucidating how this activation disrupts GI function through alterations in the gut-brain axis (GBA). Additionally, we examine IBD-associated ENS alterations, focusing on EGC senescence and the acquisition of the senescence-associated secretory phenotype (SASP). We highlight the pivotal role of these changes in persistent GI inflammation and the recurrence of IBD. Finally, we discuss potential therapeutic interventions involving senotherapeutic agents, providing insights into potential avenues for managing IBD by targeting ENS-related mechanisms. This approach might represent a potential alternative to managing IBD and advance treatment of this multifaceted disease.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
48
|
Recinto SJ, Premachandran S, Mukherjee S, Allot A, MacDonald A, Yaqubi M, Gruenheid S, Trudeau LE, Stratton JA. Characterizing enteric neurons in dopamine transporter (DAT)-Cre reporter mice reveals dopaminergic subtypes with dual-transmitter content. Eur J Neurosci 2024; 59:2465-2482. [PMID: 38487941 DOI: 10.1111/ejn.16307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 05/22/2024]
Abstract
The enteric nervous system (ENS) comprises a complex network of neurons whereby a subset appears to be dopaminergic although the characteristics, roles, and implications in disease are less understood. Most investigations relating to enteric dopamine (DA) neurons rely on immunoreactivity to tyrosine hydroxylase (TH)-the rate-limiting enzyme in the production of DA. However, TH immunoreactivity is likely to provide an incomplete picture. This study herein provides a comprehensive characterization of DA neurons in the gut using a reporter mouse line, expressing a fluorescent protein (tdTomato) under control of the DA transporter (DAT) promoter. Our findings confirm a unique localization of DA neurons in the gut and unveil the discrete subtypes of DA neurons in this organ, which we characterized using both immunofluorescence and single-cell transcriptomics, as well as validated using in situ hybridization. We observed distinct subtypes of DAT-tdTomato neurons expressing co-transmitters and modulators across both plexuses; some of them likely co-releasing acetylcholine, while others were positive for a slew of canonical DAergic markers (TH, VMAT2 and GIRK2). Interestingly, we uncovered a seemingly novel population of DA neurons unique to the ENS which was ChAT/DAT-tdTomato-immunoreactive and expressed Grp, Calcb, and Sst. Given the clear heterogeneity of DAergic gut neurons, further investigation is warranted to define their functional signatures and decipher their implication in disease.
Collapse
Affiliation(s)
- Sherilyn Junelle Recinto
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Shobina Premachandran
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Sriparna Mukherjee
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Pharmacology and Physiology, Department of Neurosciences, Université de Montreal, Faculty of Medicine, SNC and CIRCA Research Groups, Montreal, Quebec, Canada
| | - Alexis Allot
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Adam MacDonald
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Moein Yaqubi
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Samantha Gruenheid
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Louis-Eric Trudeau
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Pharmacology and Physiology, Department of Neurosciences, Université de Montreal, Faculty of Medicine, SNC and CIRCA Research Groups, Montreal, Quebec, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
49
|
Dilixiati S, Yan J, Qingzhuoga D, Song G, Tu L. Exploring Electrical Neuromodulation as an Alternative Therapeutic Approach in Inflammatory Bowel Diseases. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:729. [PMID: 38792911 PMCID: PMC11123282 DOI: 10.3390/medicina60050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Background and Objectives: This review systematically evaluates the potential of electrical neuromodulation techniques-vagus nerve stimulation (VNS), sacral nerve stimulation (SNS), and tibial nerve stimulation (TNS)-as alternative treatments for inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's Disease (CD). It aims to synthesize current evidence on the efficacy and safety of these modalities, addressing the significant burden of IBD on patient quality of life and the limitations of existing pharmacological therapies. Materials and Methods: We conducted a comprehensive analysis of studies from PubMed, focusing on research published between 1978 and 2024. The review included animal models and clinical trials investigating the mechanisms, effectiveness, and safety of VNS, SNS, and TNS in IBD management. Special attention was given to the modulation of inflammatory responses and its impact on gastrointestinal motility and functional gastrointestinal disorders associated with IBD. Results: Preliminary findings suggest that VNS, SNS, and TNS can significantly reduce inflammatory markers and improve symptoms in IBD patients. These techniques also show potential in treating related gastrointestinal disorders during IBD remission phases. However, the specific mechanisms underlying these benefits remain to be fully elucidated, and there is considerable variability in treatment parameters. Conclusions: Electrical neuromodulation holds promise as a novel therapeutic avenue for IBD, offering an alternative to patients who do not respond to traditional treatments or experience adverse effects. The review highlights the need for further rigorous studies to optimize stimulation parameters, understand long-term outcomes, and integrate neuromodulation effectively into IBD treatment protocols.
Collapse
Affiliation(s)
- Suofeiya Dilixiati
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.D.); (D.Q.)
| | - Jiaxi Yan
- Division of Gastroenterology and Hepatology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH 44109, USA;
| | - De Qingzhuoga
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.D.); (D.Q.)
| | - Gengqing Song
- Division of Gastroenterology and Hepatology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH 44109, USA;
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.D.); (D.Q.)
| |
Collapse
|
50
|
Griffiths JA, Yoo BB, Thuy-Boun P, Cantu VJ, Weldon KC, Challis C, Sweredoski MJ, Chan KY, Thron TM, Sharon G, Moradian A, Humphrey G, Zhu Q, Shaffer JP, Wolan DW, Dorrestein PC, Knight R, Gradinaru V, Mazmanian SK. Peripheral neuronal activation shapes the microbiome and alters gut physiology. Cell Rep 2024; 43:113953. [PMID: 38517896 PMCID: PMC11132177 DOI: 10.1016/j.celrep.2024.113953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024] Open
Abstract
The gastrointestinal (GI) tract is innervated by intrinsic neurons of the enteric nervous system (ENS) and extrinsic neurons of the central nervous system and peripheral ganglia. The GI tract also harbors a diverse microbiome, but interactions between the ENS and the microbiome remain poorly understood. Here, we activate choline acetyltransferase (ChAT)-expressing or tyrosine hydroxylase (TH)-expressing gut-associated neurons in mice to determine effects on intestinal microbial communities and their metabolites as well as on host physiology. The resulting multi-omics datasets support broad roles for discrete peripheral neuronal subtypes in shaping microbiome structure, including modulating bile acid profiles and fungal colonization. Physiologically, activation of either ChAT+ or TH+ neurons increases fecal output, while only ChAT+ activation results in increased colonic contractility and diarrhea-like fluid secretion. These findings suggest that specific subsets of peripherally activated neurons differentially regulate the gut microbiome and GI physiology in mice without involvement of signals from the brain.
Collapse
Affiliation(s)
- Jessica A Griffiths
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Bryan B Yoo
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Peter Thuy-Boun
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Victor J Cantu
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | - Kelly C Weldon
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, USA; UCSD Center for Microbiome Innovation, University of California, San Diego, San Diego, CA, USA
| | - Collin Challis
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael J Sweredoski
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ken Y Chan
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Taren M Thron
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gil Sharon
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Annie Moradian
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gregory Humphrey
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | - Qiyun Zhu
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | - Justin P Shaffer
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | - Dennis W Wolan
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Pieter C Dorrestein
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA; Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, USA; UCSD Center for Microbiome Innovation, University of California, San Diego, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA; UCSD Center for Microbiome Innovation, University of California, San Diego, San Diego, CA, USA; Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, USA; Shu Chien-Gene Lay Department of Engineering, University of California, San Diego, San Diego, CA, USA; Halıcıoğlu Data Science Institute, University of California, San Diego, San Diego, CA, USA
| | - Viviana Gradinaru
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sarkis K Mazmanian
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|