1
|
Roser LA, Sakellariou C, Lindstedt M, Neuhaus V, Dehmel S, Sommer C, Raasch M, Flandre T, Roesener S, Hewitt P, Parnham MJ, Sewald K, Schiffmann S. IL-2-mediated hepatotoxicity: knowledge gap identification based on the irAOP concept. J Immunotoxicol 2024; 21:2332177. [PMID: 38578203 DOI: 10.1080/1547691x.2024.2332177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Drug-induced hepatotoxicity constitutes a major reason for non-approval and post-marketing withdrawal of pharmaceuticals. In many cases, preclinical models lack predictive capacity for hepatic damage in humans. A vital concern is the integration of immune system effects in preclinical safety assessment. The immune-related Adverse Outcome Pathway (irAOP) approach, which is applied within the Immune Safety Avatar (imSAVAR) consortium, presents a novel method to understand and predict immune-mediated adverse events elicited by pharmaceuticals and thus targets this issue. It aims to dissect the molecular mechanisms involved and identify key players in drug-induced side effects. As irAOPs are still in their infancy, there is a need for a model irAOP to validate the suitability of this tool. For this purpose, we developed a hepatotoxicity-based model irAOP for recombinant human IL-2 (aldesleukin). Besides producing durable therapeutic responses against renal cell carcinoma and metastatic melanoma, the boosted immune activation upon IL-2 treatment elicits liver damage. The availability of extensive data regarding IL-2 allows both the generation of a comprehensive putative irAOP and to validate the predictability of the irAOP with clinical data. Moreover, IL-2, as one of the first cancer immunotherapeutics on the market, is a blueprint for various biological and novel treatment regimens that are under investigation today. This review provides a guideline for further irAOP-directed research in immune-mediated hepatotoxicity.
Collapse
Affiliation(s)
- Luise A Roser
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | | | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Vanessa Neuhaus
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | | - Thierry Flandre
- Translational Medicine, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Sigrid Roesener
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
- EpiEndo Pharmaceuticals ehf, Reykjavík, Iceland
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | |
Collapse
|
2
|
Wang Y, Liu K. Therapeutic potential of oleanolic acid in liver diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4537-4554. [PMID: 38294504 DOI: 10.1007/s00210-024-02959-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Liver-associated diseases affect millions of individuals worldwide. In developed countries, the incidence of viral hepatitis is reducing due to advancements in disease prevention, diagnosis, and treatment. However, with improvements in living standards, the prevalence of metabolic liver diseases, such as non-alcoholic fatty liver disease and alcohol-related liver disease, is expected to increase; notably, this rise in the prevalence of metabolic liver disease can lead to the development of more severe liver diseases, including liver failure, cirrhosis, and liver cancer. The growing demand for natural alternative therapies for chronic diseases has highlighted the importance of studying the pharmacology of bioactive compounds in plants. One such compound is oleanolic acid (OA), a pentacyclic triterpenoid known for its antioxidant, anti-inflammatory, anti-ulcer, antibacterial, antiviral, antihypertensive, anti-obesity, anticancer, anti-diabetic, cardioprotective, hepatoprotective, and anti-neurodegenerative properties. Recent studies have demonstrated that OA treatment can reduce the risk of pathological liver damage, ultimately alleviating liver dysregulation and restoring overall liver function. This review aims to explore the latest research on the biological effects of OA and its derivatives. Notably, it explores the mechanisms of action of these compounds in both in vitro and in vivo research models and, ultimately, highlights OA as a promising candidate for alternative therapies in the treatment and management of chronic liver disease.
Collapse
Affiliation(s)
- Yongxin Wang
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
3
|
Xia L, Yuan LZ, Hu YH, Liu JY, Hu GS, Qi RY, Zhang TY, Xiong HL, Zheng ZZ, Lin HW, Zhang JM, Yu C, Zhou M, Ma J, Cheng T, Chen RR, Guan Y, Xia NS, Liu W. A SARS-CoV-2-specific CAR-T-cell model identifies felodipine, fasudil, imatinib, and caspofungin as potential treatments for lethal COVID-19. Cell Mol Immunol 2023; 20:351-364. [PMID: 36864189 PMCID: PMC9979130 DOI: 10.1038/s41423-023-00985-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 03/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced cytokine storm is closely associated with coronavirus disease 2019 (COVID-19) severity and lethality. However, drugs that are effective against inflammation to treat lethal COVID-19 are still urgently needed. Here, we constructed a SARS-CoV-2 spike protein-specific CAR, and human T cells infected with this CAR (SARS-CoV-2-S CAR-T) and stimulated with spike protein mimicked the T-cell responses seen in COVID-19 patients, causing cytokine storm and displaying a distinct memory, exhausted, and regulatory T-cell phenotype. THP1 remarkably augmented cytokine release in SARS-CoV-2-S CAR-T cells when they were in coculture. Based on this "two-cell" (CAR-T and THP1 cells) model, we screened an FDA-approved drug library and found that felodipine, fasudil, imatinib, and caspofungin were effective in suppressing the release of cytokines, which was likely due to their ability to suppress the NF-κB pathway in vitro. Felodipine, fasudil, imatinib, and caspofungin were further demonstrated, although to different extents, to attenuate lethal inflammation, ameliorate severe pneumonia, and prevent mortality in a SARS-CoV-2-infected Syrian hamster model, which were also linked to their suppressive role in inflammation. In summary, we established a SARS-CoV-2-specific CAR-T-cell model that can be utilized as a tool for anti-inflammatory drug screening in a fast and high-throughput manner. The drugs identified herein have great potential for early treatment to prevent COVID-19 patients from cytokine storm-induced lethality in the clinic because they are safe, inexpensive, and easily accessible for immediate use in most countries.
Collapse
Affiliation(s)
- Lin Xia
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Lun-Zhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ya-Hong Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Jun-Yi Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Guo-Sheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ruo-Yao Qi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Tian-Ying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Hua-Long Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Zao-Zao Zheng
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Hong-Wei Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Jia-Mo Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Chao Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ming Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Jian Ma
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ri-Rong Chen
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
| |
Collapse
|
4
|
Methyl butyrate attenuates concanavalin A-induced autoimmune hepatitis by inhibiting Th1-cell activation and homing to the liver. Cell Immunol 2022; 378:104575. [DOI: 10.1016/j.cellimm.2022.104575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022]
|
5
|
Hepatoprotective Effect of Mixture of Dipropyl Polysulfides in Concanavalin A-Induced Hepatitis. Nutrients 2021; 13:nu13031022. [PMID: 33809904 PMCID: PMC8004208 DOI: 10.3390/nu13031022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 12/15/2022] Open
Abstract
The main biologically active components of plants belonging to the genus Allium, responsible for their biological activities, including anti-inflammatory, antioxidant and immunomodulatory, are organosulfur compounds. The aim of this study was to synthetize the mixture of dipropyl polysulfides (DPPS) and to test their biological activity in acute hepatitis. C57BL/6 mice were administered orally with DPPS 6 h before intravenous injection of Concanavalin A (ConA). Liver inflammation, necrosis and hepatocytes apoptosis were determined by histological analyses. Cytokines in liver tissue were determined by ELISA, expression of adhesive molecules and enzymes by RT PCR, while liver mononuclear cells were analyzed by flow cytometry. DPPS pretreatment significantly attenuated liver inflammation and injury, as evidenced by biochemical and histopathological observations. In DPPS-pretreated mice, messenger RNA levels of adhesion molecules and NADPH oxidase complex were significantly reduced, while the expression of SOD enzymes was enhanced. DPPS pretreatment decreased protein level of inflammatory cytokines and increased percentage of T regulatory cells in the livers of ConA mice. DPPS showed hepatoprotective effects in ConA-induced hepatitis, characterized by attenuation of inflammation and affection of Th17/Treg balance in favor of T regulatory cells and implicating potential therapeutic usage of DPPS mixture in inflammatory liver diseases.
Collapse
|
6
|
Wardi J, Ernst O, Lilja A, Aeed H, Katz S, Ben-Nachum I, Ben-Dror I, Katz D, Bernadsky O, Kandhikonda R, Avni Y, Fraser IDC, Weinstain R, Biro A, Zor T. 3-Aminobenzamide Prevents Concanavalin A-Induced Acute Hepatitis by an Anti-inflammatory and Anti-oxidative Mechanism. Dig Dis Sci 2018; 63:3382-3397. [PMID: 30196390 DOI: 10.1007/s10620-018-5267-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 08/24/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Concanavalin A is known to activate T cells and to cause liver injury and hepatitis, mediated in part by secretion of TNFα from macrophages. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors have been shown to prevent tissue damage in various animal models of inflammation. The objectives of this study were to evaluate the efficacy and mechanism of the PARP-1 inhibitor 3-aminobenzamide (3-AB) in preventing concanavalin A-induced liver damage. METHODS We tested the in vivo effects of 3-AB on concanavalin A-treated mice, its effects on lipopolysaccharide (LPS)-stimulated macrophages in culture, and its ability to act as a scavenger in in vitro assays. RESULTS 3-AB markedly reduced inflammation, oxidative stress, and liver tissue damage in concanavalin A-treated mice. In LPS-stimulated RAW264.7 macrophages, 3-AB inhibited NFκB transcriptional activity and subsequent expression of TNFα and iNOS and blocked NO production. In vitro, 3-AB acted as a hydrogen peroxide scavenger. The ROS scavenger N-acetylcysteine (NAC) and the ROS formation inhibitor diphenyleneiodonium (DPI) also inhibited TNFα expression in stimulated macrophages, but unlike 3-AB, NAC and DPI were unable to abolish NFκB activity. PARP-1 knockout failed to affect NFκB and TNFα suppression by 3-AB in stimulated macrophages. CONCLUSIONS Our results suggest that 3-AB has a therapeutic effect on concanavalin A-induced liver injury by inhibiting expression of the key pro-inflammatory cytokine TNFα, via PARP-1-independent NFκB suppression and via an NFκB-independent anti-oxidative mechanism.
Collapse
Affiliation(s)
- Joram Wardi
- Department of Gastroenterology, E. Wolfson Medical Center, P.O.B. 5, 58100, Holon, Israel.
| | - Orna Ernst
- Department of Biochemistry and Molecular Biology, Life Sciences Faculty, Tel-Aviv University, 69978, Tel-Aviv, Israel.,Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anna Lilja
- Department of Biochemistry and Molecular Biology, Life Sciences Faculty, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Hussein Aeed
- Department of Gastroenterology, E. Wolfson Medical Center, P.O.B. 5, 58100, Holon, Israel
| | - Sebastián Katz
- Department of Biochemistry and Molecular Biology, Life Sciences Faculty, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Idan Ben-Nachum
- Department of Biochemistry and Molecular Biology, Life Sciences Faculty, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Iris Ben-Dror
- Department of Biochemistry and Molecular Biology, Life Sciences Faculty, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Dolev Katz
- Department of Biochemistry and Molecular Biology, Life Sciences Faculty, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Olga Bernadsky
- Department of Pathology, E. Wolfson Medical Center, P.O.B. 5, 58100, Holon, Israel
| | - Rajendar Kandhikonda
- Department of Molecular Biology and Ecology of Plants, Life Sciences Faculty, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Yona Avni
- Department of Gastroenterology, E. Wolfson Medical Center, P.O.B. 5, 58100, Holon, Israel
| | - Iain D C Fraser
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Roy Weinstain
- Department of Molecular Biology and Ecology of Plants, Life Sciences Faculty, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Alexander Biro
- Institute of Nephrology, E. Wolfson Medical Center, P.O.B. 5, 58100, Holon, Israel.
| | - Tsaffrir Zor
- Department of Biochemistry and Molecular Biology, Life Sciences Faculty, Tel-Aviv University, 69978, Tel-Aviv, Israel.
| |
Collapse
|
7
|
Christen U. Animal models of autoimmune hepatitis. Biochim Biophys Acta Mol Basis Dis 2018; 1865:970-981. [PMID: 29857050 DOI: 10.1016/j.bbadis.2018.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023]
Abstract
Many animal models for autoimmune hepatitis (AIH) have been described in the past. Most models had to deal with the relative immunosuppressive environment of the liver. Therefore, some models used a combination of several triggering factors often on a susceptible background to generate an aggressive immune response that targets the liver. In addition, in order to be able to track the immune response the models used specific model autoantigens as targets that are either not present or have not been identified as a natural autoantigen in AIH patients. Thereby the feasibility of such models is somewhat questionable. Although many historic approaches included challenges of experimental animals with liver homogenates it was only in the last decade that natural occurring liver autoantigens have been used in animal models. This article reflects on the requirements for breaking liver tolerance and on how an ideal experimental model for AIH would look like. In addition, it discusses historic as well as recent animal models in the context of feasibility of induction, similarity of the clinical outcome to human AIH, and gain of knowledge for possible future therapies.
Collapse
Affiliation(s)
- Urs Christen
- Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany.
| |
Collapse
|
8
|
The Hepatoprotection by Oleanolic Acid Preconditioning: Focusing on PPAR α Activation. PPAR Res 2018; 2018:3180396. [PMID: 29805439 PMCID: PMC5901823 DOI: 10.1155/2018/3180396] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/08/2018] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Objective Previous studies have characterized the hepatoprotective and anti-inflammatory properties of oleanolic acid (OA). This study aimed to investigate the molecular mechanisms of OA hepatoprotection in concanavalin A- (ConA-) induced acute liver injury. Materials and Methods ConA (20 mg/kg) was intravenously injected to induce acute liver injury in Balb/C mice. OA pretreatment (20, 40, and 80 mg/kg) was administered subcutaneously once daily for 3 consecutive days prior to treatment with ConA; 2, 8, and 24 h after ConA injection, the levels of serum liver enzymes and the histopathology of major factors and inflammatory cytokines were determined. Results OA reduced the release of serum liver enzymes and inflammatory factors and prevented ConA mediated damage to the liver. OA elevated the expression levels of peroxisome proliferator-activated receptor alpha (PPARα) and decreased the phosphorylation of c-Jun NH2-terminal kinase (JNK). Conclusion OA exhibits anti-inflammatory properties during ConA-induced acute liver injury by attenuating apoptosis and autophagy through activation of PPARα and downregulation of JNK signaling.
Collapse
|
9
|
Bal-Price A, Hogberg HT, Crofton KM, Daneshian M, FitzGerald RE, Fritsche E, Heinonen T, Hougaard Bennekou S, Klima S, Piersma AH, Sachana M, Shafer TJ, Terron A, Monnet-Tschudi F, Viviani B, Waldmann T, Westerink RHS, Wilks MF, Witters H, Zurich MG, Leist M. Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2018; 35:306-352. [PMID: 29485663 DOI: 10.14573/altex.1712081] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/29/2018] [Indexed: 01/06/2023]
Abstract
Multiple non-animal-based test methods have never been formally validated. In order to use such new approach methods (NAMs) in a regulatory context, criteria to define their readiness are necessary. The field of developmental neurotoxicity (DNT) testing is used to exemplify the application of readiness criteria. The costs and number of untested chemicals are overwhelming for in vivo DNT testing. Thus, there is a need for inexpensive, high-throughput NAMs, to obtain initial information on potential hazards, and to allow prioritization for further testing. A background on the regulatory and scientific status of DNT testing is provided showing different types of test readiness levels, depending on the intended use of data from NAMs. Readiness criteria, compiled during a stakeholder workshop, uniting scientists from academia, industry and regulatory authorities are presented. An important step beyond the listing of criteria, was the suggestion for a preliminary scoring scheme. On this basis a (semi)-quantitative analysis process was assembled on test readiness of 17 NAMs with respect to various uses (e.g. prioritization/screening, risk assessment). The scoring results suggest that several assays are currently at high readiness levels. Therefore, suggestions are made on how DNT NAMs may be assembled into an integrated approach to testing and assessment (IATA). In parallel, the testing state in these assays was compiled for more than 1000 compounds. Finally, a vision is presented on how further NAM development may be guided by knowledge of signaling pathways necessary for brain development, DNT pathophysiology, and relevant adverse outcome pathways (AOP).
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission, Joint Research Centre (EC JRC), Ispra (VA), Italy
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Kevin M Crofton
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | - Mardas Daneshian
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany
| | - Rex E FitzGerald
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine & Heinrich-Heine-University, Düsseldorf, Germany
| | - Tuula Heinonen
- Finnish Centre for Alternative Methods (FICAM), University of Tampere, Tampere, Finland
| | | | - Stefanie Klima
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Aldert H Piersma
- RIVM, National Institute for Public Health and the Environment, Bilthoven, and Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Timothy J Shafer
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | | | - Florianne Monnet-Tschudi
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Tanja Waldmann
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Remco H S Westerink
- Neurotoxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martin F Wilks
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Hilda Witters
- VITO, Flemish Institute for Technological Research, Unit Environmental Risk and Health, Mol, Belgium
| | - Marie-Gabrielle Zurich
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Marcel Leist
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany.,In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
10
|
Leist M. New animal-free concepts and test methods for developmental toxicity and peripheral neurotoxicity. Altern Lab Anim 2017; 45:253-260. [PMID: 29112453 DOI: 10.1177/026119291704500505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The complex toxicological fields of repeat dose organ toxicity (RDT) and developmental and reproductive toxicity (DART) still require new concepts and approaches to achieve a fully animal-free safety assessment of chemicals. One novel approach is the generation of relevant human cell types from pluripotent stem cells, and the use of such cells for the establishment of phenotypic test methods. Due to their broad endpoints, such tests capture multiple types of toxicants, i.e. they are a readout for the activation of many adverse outcome pathways (AOPs). The 2016 Lush Science Prize was awarded for the development of one such assay, the PeriTox test, which uses human peripheral neurons generated from stem cells. The assay endpoints measure various cell functions, and these give information on the potential neurotoxicity and developmental neurotoxicity hazard of test compounds. The PeriTox test method has a high predictivity and sensitivity for peripheral neurotoxicants, and thus addresses the inherent challenges in pesticide testing and drug development. Data from the test can be obtained quickly and at a relatively high-throughput, and thus, the assay has the potential to replace animal-based safety assessment during early product development or for screening potential environmental toxicants.
Collapse
Affiliation(s)
- Marcel Leist
- In Vitro Toxicology and Biomedicine Laboratory, Department of Biology, University of Konstanz, Konstanz, Germany; CAAT-Europe, University of Konstanz, Konstanz, Germany; Konstanz Research School Chemical Biology, Konstanz, Germany; Co-operative Research Training Group on In Vitro Testing of Active Ingredients, Konstanz-Sigmaringen, Germany
| |
Collapse
|
11
|
Leist M, Ghallab A, Graepel R, Marchan R, Hassan R, Bennekou SH, Limonciel A, Vinken M, Schildknecht S, Waldmann T, Danen E, van Ravenzwaay B, Kamp H, Gardner I, Godoy P, Bois FY, Braeuning A, Reif R, Oesch F, Drasdo D, Höhme S, Schwarz M, Hartung T, Braunbeck T, Beltman J, Vrieling H, Sanz F, Forsby A, Gadaleta D, Fisher C, Kelm J, Fluri D, Ecker G, Zdrazil B, Terron A, Jennings P, van der Burg B, Dooley S, Meijer AH, Willighagen E, Martens M, Evelo C, Mombelli E, Taboureau O, Mantovani A, Hardy B, Koch B, Escher S, van Thriel C, Cadenas C, Kroese D, van de Water B, Hengstler JG. Adverse outcome pathways: opportunities, limitations and open questions. Arch Toxicol 2017; 91:3477-3505. [DOI: 10.1007/s00204-017-2045-3] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/21/2017] [Indexed: 12/18/2022]
|
12
|
Christen U, Hintermann E. Immunopathogenic Mechanisms of Autoimmune Hepatitis: How Much Do We Know from Animal Models? Int J Mol Sci 2016; 17:ijms17122007. [PMID: 27916939 PMCID: PMC5187807 DOI: 10.3390/ijms17122007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
Autoimmune hepatitis (AIH) is characterized by a progressive destruction of the liver parenchyma and a chronic fibrosis. The current treatment of autoimmune hepatitis is still largely dependent on the administration of corticosteroids and cytostatic drugs. For a long time the development of novel therapeutic strategies has been hampered by a lack of understanding the basic immunopathogenic mechanisms of AIH and the absence of valid animal models. However, in the past decade, knowledge from clinical observations in AIH patients and the development of innovative animal models have led to a situation where critical factors driving the disease have been identified and alternative treatments are being evaluated. Here we will review the insight on the immunopathogenesis of AIH as gained from clinical observation and from animal models.
Collapse
Affiliation(s)
- Urs Christen
- Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany.
| | - Edith Hintermann
- Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Switching from astrocytic neuroprotection to neurodegeneration by cytokine stimulation. Arch Toxicol 2016; 91:231-246. [PMID: 27052459 DOI: 10.1007/s00204-016-1702-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/21/2016] [Indexed: 12/12/2022]
Abstract
Astrocytes, the largest cell population in the human brain, are powerful inflammatory effectors. Several studies have examined the interaction of activated astrocytes with neurons, but little is known yet about human neurotoxicity under such situations and about strategies of neuronal rescue. To address this question, immortalized murine astrocytes (IMA) were combined with human LUHMES neurons and stimulated with an inflammatory (TNF, IL-1) cytokine mix (CM). Neurotoxicity was studied both in co-cultures and in monocultures after transfer of conditioned medium from activated IMA. Interventions with >20 drugs were used to profile the model system. Control IMA supported neurons and protected them from neurotoxicants. Inflammatory activation reduced this protection, and prolonged exposure of co-cultures to CM triggered neurotoxicity. Neither the added cytokines nor the release of NO from astrocytes were involved in this neurodegeneration. The neurotoxicity-mediating effect of IMA was faithfully reproduced by human astrocytes. Moreover, glia-dependent toxicity was also observed, when IMA cultures were stimulated with CM, and the culture medium was transferred to neurons. Such neurotoxicity was prevented when astrocytes were treated by p38 kinase inhibitors or dexamethasone, whereas such compounds had no effect when added to neurons. Conversely, treatment of neurons with five different drugs, including resveratrol and CEP1347, prevented toxicity of astrocyte supernatants. Thus, the sequential IMA-LUHMES neuroinflammation model is suitable for separate profiling of both glial-directed and directly neuroprotective strategies. Moreover, direct evaluation in co-cultures of the same cells allows for testing of therapeutic effectiveness in more complex settings, in which astrocytes affect pharmacological properties of neurons.
Collapse
|
14
|
Rahnenführer J, Leist M. From smoking guns to footprints: mining for critical events of toxicity pathways in transcriptome data. Arch Toxicol 2015; 89:813-7. [PMID: 25851820 PMCID: PMC4396704 DOI: 10.1007/s00204-015-1497-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 12/23/2022]
Affiliation(s)
| | - Marcel Leist
- Doerenakmp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, PO Box M657, 78457 Konstanz, Germany
| |
Collapse
|
15
|
Wu YY, Xu RR, Zhang J, Zhou L, Wang BM. Establishment of two mouse models of autoimmune hepatitis induced by concanavalin A and S-100. Shijie Huaren Xiaohua Zazhi 2014; 22:4113-4118. [DOI: 10.11569/wcjd.v22.i27.4113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish two autoimmune hepatitis (AIH) mouse models by injection of concanavalin A (ConA) and syngeneic S-100, respectively, and to compare the two models.
METHODS: Female Balb/C mice received injection of ConA (15 mg/kg) through the tail vein, whereas control mice were injected with equal volume of sodium chloride. At 6, 12, 24 and 48 h after injection, blood and liver samples were taken. In addition, female C57BL/6 mice were given syngeneic S-100 emulsified with equal volume of Freund's complete adjuvant (CFA) by peritoneal injection at the 1st and 7th day, and the mixture of sodium chloride and CFA were given to control mice. Blood and liver samples were taken 4 wk later. Serum levels of alanine transaminase (ALT) and aspartate aminotransferase (AST) were tested using an automatic biochemistry analyzer. Liver pathological changes were observed after hematoxylin and eosin (HE) staining.
RESULTS: Serum levels of ALT and AST increased significantly 6 h after ConA injection and reached the peak at 12 h in comparison with the control group. The peak values of ALT and AST were significantly higher than those in the control group (ALT: 1603.40 U/L ± 461.24 U/L vs 66.25 U/L ± 18.66 U/L, AST: 1877.20 U/L ± 623.23 U/L vs 159.50 U/L ± 29.22 U/L, P < 0.01). Liver tissue showed mild congestion, infiltration of few inflammatory cells and hepatocyte degeneration 6 h after ConA injection. Degeneration and necrosis of hepatocytes and inflammatory cell infiltration became more significant and part of liver lobules disappeared at 24 h. Serum levels of ALT and AST in mice injected with syngeneic S-100 were significantly higher than those in the controls (ALT: 156.80 U/L ± 52.86 U/L vs 29.90 U/L ± 8.43 U/L; AST: 317.80 U/L ± 105.80 U/L vs 146.40 U/L ± 30.61 U/L, P < 0.01). The liver cells were arranged irregularly, and local necrosis and massive inflammatory cell infiltration were observed in model mice.
CONCLUSION: Animal models created with S-100 or ConA can be both used as AIH models. ConA model showed an acute course, while S-100 model showed a chronic course. They can be used in different experiments.
Collapse
|
16
|
Alépée N, Bahinski A, Daneshian M, De Wever B, Fritsche E, Goldberg A, Hansmann J, Hartung T, Haycock J, Hogberg H, Hoelting L, Kelm JM, Kadereit S, McVey E, Landsiedel R, Leist M, Lübberstedt M, Noor F, Pellevoisin C, Petersohn D, Pfannenbecker U, Reisinger K, Ramirez T, Rothen-Rutishauser B, Schäfer-Korting M, Zeilinger K, Zurich MG. State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2014. [PMID: 25027500 DOI: 10.14573/altex1406111] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.
Collapse
|
17
|
Alépée N, Bahinski A, Daneshian M, De Wever B, Fritsche E, Goldberg A, Hansmann J, Hartung T, Haycock J, Hogberg HT, Hoelting L, Kelm JM, Kadereit S, McVey E, Landsiedel R, Leist M, Lübberstedt M, Noor F, Pellevoisin C, Petersohn D, Pfannenbecker U, Reisinger K, Ramirez T, Rothen-Rutishauser B, Schäfer-Korting M, Zeilinger K, Zurich MG. State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX 2014; 31:441-77. [PMID: 25027500 PMCID: PMC4783151 DOI: 10.14573/altex.1406111] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/30/2014] [Indexed: 02/02/2023]
Abstract
Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.
Collapse
Affiliation(s)
| | - Anthony Bahinski
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA
| | - Mardas Daneshian
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany
| | | | - Ellen Fritsche
- Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Alan Goldberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Jan Hansmann
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Thomas Hartung
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany,Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - John Haycock
- Department of Materials Science of Engineering, University of Sheffield, Sheffield, UK
| | - Helena T. Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Lisa Hoelting
- Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | | | - Suzanne Kadereit
- Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Emily McVey
- Board for the Authorization of Plant Protection Products and Biocides, Wageningen, The Netherlands
| | | | - Marcel Leist
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany,Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Marc Lübberstedt
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Fozia Noor
- Biochemical Engineering, Saarland University, Saarbruecken, Germany
| | | | | | | | | | - Tzutzuy Ramirez
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | | | - Monika Schäfer-Korting
- Institute for Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Katrin Zeilinger
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Marie-Gabriele Zurich
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,Swiss Center for Applied Human Toxicology (SCAHT), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Fullerton AM, Roth RA, Ganey PE. Pretreatment with TCDD exacerbates liver injury from Concanavalin A: critical role for NK cells. Toxicol Sci 2013; 136:72-85. [PMID: 23970800 PMCID: PMC3829569 DOI: 10.1093/toxsci/kft174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/09/2013] [Indexed: 12/13/2022] Open
Abstract
For many liver diseases, including viral and autoimmune hepatitis, immune cells play an important role in the development and progression of liver injury. Concanavalin A (Con A) administration to rodents has been used as a model of immune-mediated liver injury resembling human autoimmune hepatitis. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been demonstrated to alter the development of immune-mediated diseases. Mice pretreated with TCDD developed exacerbated liver injury in response to administration of a mild dose (6 mg/kg) of Con A. In the present study, we tested the hypothesis that TCDD pretreatment exacerbates Con A-induced liver injury by enhancing the activation and recruitment of accessory cell types including neutrophils, macrophages, and natural killer (NK) cells. Mice were treated with 0, 0.3, 3, or 30 μg/kg TCDD and 4 days later with Con A or saline. TCDD pretreatment with doses of 3 and 30 μg/kg significantly increased liver injury from Con A administration. The plasma concentrations of neutrophil chemokines were significantly increased in TCDD-pretreated mice after Con A administration. NKT cell-deficient (CD1d KO) mice were used to examine whether NKT cells were required for TCDD/Con A-induced liver injury. CD1d KO mice were completely protected from liver injury induced by treatment with Con A alone, whereas the injury from TCDD/Con A treatment was reduced but not eliminated. However, T-cell deficient (RAG1 KO) mice were protected from liver injury induced by Con A irrespective of pretreatment with TCDD. TCDD/Con A treatment increased the percentage of NK cells expressing the activation marker CD69. Depletion of NK cells prior to treatment resulted in significant reductions in plasma interferon-γ and liver injury from TCDD/Con A treatment. In summary, exposure to TCDD exacerbated the immune-mediated liver injury induced by Con A, and our findings suggest that NK cells play a critical role in this response.
Collapse
Affiliation(s)
- Aaron M. Fullerton
- Department of Pharmacology & Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Robert A. Roth
- Department of Pharmacology & Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Patricia E. Ganey
- Department of Pharmacology & Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
19
|
Ramirez T, Daneshian M, Kamp H, Bois FY, Clench MR, Coen M, Donley B, Fischer SM, Ekman DR, Fabian E, Guillou C, Heuer J, Hogberg HT, Jungnickel H, Keun HC, Krennrich G, Krupp E, Luch A, Noor F, Peter E, Riefke B, Seymour M, Skinner N, Smirnova L, Verheij E, Wagner S, Hartung T, van Ravenzwaay B, Leist M. Metabolomics in toxicology and preclinical research. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2013; 30:209-25. [PMID: 23665807 DOI: 10.14573/altex.2013.2.209] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolomics, the comprehensive analysis of metabolites in a biological system, provides detailed information about the biochemical/physiological status of a biological system, and about the changes caused by chemicals. Metabolomics analysis is used in many fields, ranging from the analysis of the physiological status of genetically modified organisms in safety science to the evaluation of human health conditions. In toxicology, metabolomics is the -omics discipline that is most closely related to classical knowledge of disturbed biochemical pathways. It allows rapid identification of the potential targets of a hazardous compound. It can give information on target organs and often can help to improve our understanding regarding the mode-of-action of a given compound. Such insights aid the discovery of biomarkers that either indicate pathophysiological conditions or help the monitoring of the efficacy of drug therapies. The first toxicological applications of metabolomics were for mechanistic research, but different ways to use the technology in a regulatory context are being explored. Ideally, further progress in that direction will position the metabolomics approach to address the challenges of toxicology of the 21st century. To address these issues, scientists from academia, industry, and regulatory bodies came together in a workshop to discuss the current status of applied metabolomics and its potential in the safety assessment of compounds. We report here on the conclusions of three working groups addressing questions regarding 1) metabolomics for in vitro studies 2) the appropriate use of metabolomics in systems toxicology, and 3) use of metabolomics in a regulatory context.
Collapse
Affiliation(s)
- Tzutzuy Ramirez
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
YANG QIAO, SHI YU, YANG YING, CHEN ZHI. Deactivation and apoptosis of hepatic macrophages are involved in the development of concanavalin A-induced acute liver failure. Mol Med Rep 2013; 8:757-62. [DOI: 10.3892/mmr.2013.1575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 06/26/2013] [Indexed: 11/05/2022] Open
|
21
|
Fullerton AM, Roth RA, Ganey PE. 2,3,7,8-TCDD enhances the sensitivity of mice to concanavalin A immune-mediated liver injury. Toxicol Appl Pharmacol 2012; 266:317-27. [PMID: 23164664 DOI: 10.1016/j.taap.2012.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/24/2012] [Accepted: 11/03/2012] [Indexed: 12/18/2022]
Abstract
Inflammation plays a major role in immune-mediated liver injury, and exposure to environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been reported to alter the inflammatory response as well as affect immune cell activity. In this study, we tested the hypothesis that TCDD pretreatment exacerbates hepatotoxicity in a murine model of immune-mediated liver injury induced by concanavalin A (Con A) administration. Mice were pretreated with 30 μg/kg TCDD or vehicle control on day zero and then given either Con A or saline intravenously on day four. Mice treated with TCDD did not develop liver injury; however, TCDD pretreatment increased liver injury resulting from moderate doses of Con A (4-10 mg/kg). TCDD-pretreated mice had altered plasma concentrations of inflammatory cytokines, including interferon gamma (IFNγ), and TCDD/Con A-induced hepatotoxicity was attenuated in IFNγ knockout mice. At various times after treatment, intrahepatic immune cells were isolated, and expression of cell activation markers as well as cytolytic proteins was determined. TCDD pretreatment increased the proportion of activated natural killer T (NKT) cells and the percent of cells expressing Fas ligand (FasL) after Con A administration. In addition FasL knockout mice and mice treated with CD18 antiserum were both protected from TCDD/Con A-induced hepatotoxicity, suggesting a requirement for direct cell-cell interaction between effector immune cells and parenchymal cell targets in the development of liver injury from TCDD/Con A treatment. In summary, exposure to TCDD increased NKT cell activation and exacerbated immune-mediated liver injury induced by Con A through a mechanism involving IFNγ and FasL expression.
Collapse
Affiliation(s)
- Aaron M Fullerton
- Department of Pharmacology & Toxicology, Center for Integrative Toxicology, Michigan State University, 1129 Farm Lane, Room 215, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
22
|
Yang Q, Shi Y, He J, Chen Z. The evolving story of macrophages in acute liver failure. Immunol Lett 2012; 147:1-9. [PMID: 22820147 DOI: 10.1016/j.imlet.2012.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/15/2012] [Accepted: 07/10/2012] [Indexed: 12/21/2022]
Abstract
Acute liver failure (ALF) remains a worldwide problem. The innate immune system acts as an important regulator of ALF. Kupffer cells (KCs), the resident macrophages in liver, play a key role in liver innate immune response. Recent researches have shown that macrophages display a remarkable plasticity and can differentiate into functionally diverse subsets. However, the dynamic polarized phenotypes and functional status of macrophages at different stage of ALF are not clear. In this paper, we present a review of evidence that KCs play a significant role in the pathogenesis of ALF, including the phenotype and functions of macrophages, signaling pathways involved in macrophage functional status and cell-crosstalks of KCs with other immune cells. More information on macrophages will promote a better understanding of the cellular molecular mechanisms of ALF and provide new insights for the development of therapeutic targets for ALF.
Collapse
Affiliation(s)
- Qiao Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Medical College, Zhejiang University, Zhejiang, PR China.
| | | | | | | |
Collapse
|
23
|
Liu C, Zhang L, Gao S, qu Z, Wang Q, Zhu F, Guo C, Hou L, Wu P, Shi Y. NCPP treatment alleviates ConA-induced hepatitis via reducing CD4+T activation and NO production. Immunopharmacol Immunotoxicol 2012; 34:962-7. [DOI: 10.3109/08923973.2012.680065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Animal models of cutaneous and hepatic fibrosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:371-409. [PMID: 22137437 DOI: 10.1016/b978-0-12-394596-9.00011-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fibrosis occurs as a part of normal wound healing. However, excessive or dysregulated fibrosis can lead to severe organ dysfunction and is a feature of a variety of diseases. Due to its insidious onset, fibrosis tends to go undetected in its early stages. This is in part why these diseases remain so poorly understood. Animal models have provided a means to examine these early stages and to isolate and understand the effect of perturbations in signaling pathways, chemokines, and cytokines. Here, we summarize recent progress in the understanding of the molecular pathogenesis of fibrosis, both its initiation and its maintenance phases, from animal models of fibrosis in the skin and liver. Due to these organs' properties, modeling fibrosis in them poses unique challenges. Elegant solutions have therefore been developed for modeling fibrosis in each, and now, great potential for animal models to contribute to our understanding appears scientifically imminent.
Collapse
|
25
|
Jaeckel E, Hardtke-Wolenski M, Fischer K. The benefit of animal models for autoimmune hepatitis. Best Pract Res Clin Gastroenterol 2011; 25:643-51. [PMID: 22117631 DOI: 10.1016/j.bpg.2011.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/25/2011] [Indexed: 01/31/2023]
Abstract
Autoimmune hepatitis (AIH) is a chronic liver disease which is normally recognized during late stage of the disease. Due to limited knowledge about the onset and course of disease and need for chronic immunosuppression with significant side-effects there is a requirement for a good preclinical animal model, mirroring main characteristics of AIH. In addition to the exclusion of other liver diseases, AIH is characterized by elevated serum transaminases, specific autoantibodies and elevated gammaglobulins as well as a specific liver histopathology. A good preclinical model should mirror most of these criteria. In the last decades several models have been published using different approaches to break hepatic tolerance and induce liver damage. The induction of a chronic hepatitis similar to the human disease remained a difficult challenge. Nevertheless, these models helped to get more information about the aspects of AIH induction and liver immunology.
Collapse
Affiliation(s)
- Elmar Jaeckel
- Medizinische Hochschule Hannover, Dept Gastroenterology, Hepatology und Endocrinology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | | | | |
Collapse
|
26
|
Lutz HH, Sackett SD, Kroy DC, Gassler N, Trautwein C. Deletion of gp130 in myeloid cells modulates IL-6-release and is associated with more severe liver injury of Con A hepatitis. Eur J Cell Biol 2011; 91:576-81. [PMID: 22018663 DOI: 10.1016/j.ejcb.2011.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/09/2011] [Accepted: 09/08/2011] [Indexed: 12/16/2022] Open
Abstract
IL-6/gp130 dependent signaling plays an important role in modulating inflammation in acute and chronic diseases. The course of Concanavalin A- (Con A) induced hepatitis can be modulated by different immune-mediated mechanisms. IL-6/gp130-dependent signaling has been shown to be protective in hepatocytes. However, the role of this pathway in myeloid cells has not yet been studied. In our present study we used macrophage/neutrophil-specific gp130 knockout (gp130(ΔLys), KO) animals and analyzed its relevance in modulating Con A-induced hepatitis. Additionally, we performed in vitro studies with gp130(ΔLys)-macrophages. We demonstrate that gp130(ΔLys) animals are more susceptible to Con A-induced hepatitis. This is reflected by higher transaminases, higher lethality and more severe liver injury as shown by histological staining. Using flow cytometry analysis we further could show that increased liver injury of gp130(ΔLys) animals is associated with a stronger infiltration of CD11b/F4/80 double-positive cells compared to wild-type (gp130(flox/flox), WT) controls. To further characterize our observations we studied thioglycolate-elicited peritoneal macrophages from gp130(ΔLys) animals. Interestingly, the LPS-dependent IL-6 release in gp130(ΔLys) macrophages is significantly reduced (p<0.05) compared to WT macrophages. Additionally, IL-6 blood levels in vivo after Con A injection were significantly lower in gp130(ΔLys) animals compared to WT animals (p<0.05). In summary, our results suggest that gp130-deletion in macrophages and granulocytes leads to diminished IL-6 release from these cells, which is associated with more severe Con A-induced hepatitis.
Collapse
Affiliation(s)
- H H Lutz
- Department of Gastroenterology and Metabolic Disorders, RWTH University Hospital Aachen, University of Aachen (RWTH), Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
27
|
Yamashita J, Iwamura C, Sasaki T, Mitsumori K, Ohshima K, Hada K, Hara N, Takahashi M, Kaneshiro Y, Tanaka H, Kaneko K, Nakayama T. Apolipoprotein A-II suppressed concanavalin A-induced hepatitis via the inhibition of CD4 T cell function. THE JOURNAL OF IMMUNOLOGY 2011; 186:3410-20. [PMID: 21300819 DOI: 10.4049/jimmunol.1002924] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Con A-induced hepatitis has been used as a model of human autoimmune or viral hepatitis. During the process of identifying immunologically bioactive proteins in human plasma, we found that apolipoprotein A-II (ApoA-II), the second major apolipoprotein of high-density lipoprotein, inhibited the production of IFN-γ by Con A-stimulated mouse and human CD4 T cells. Con A-induced hepatitis was attenuated by the administration of ApoA-II. The beneficial effect of ApoA-II was associated with reduced leukocyte infiltration and decreased production of T cell-related cytokines and chemokines in the liver. ApoA-II inhibited the Con A-induced activation of ERK-MAPK and nuclear translocation of NFAT in CD4 T cells. Interestingly, exacerbated hepatitis was observed in ApoA-II-deficient mice, indicating that ApoA-II plays a suppressive role in Con A-induced hepatitis under physiological conditions. Moreover, the administration of ApoA-II after the onset of Con A-induced hepatitis was sufficient to suppress disease. Thus, the therapeutic effect of ApoA-II could be useful for patients with CD4 T cell-related autoimmune and viral hepatitis.
Collapse
Affiliation(s)
- Junji Yamashita
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Miller AH, Pearce BD, Ruzek MC, Biron CA. Interactions Between the Hypothalamic‐Pituitary‐Adrenal Axis and Immune System During Viral Infection: Pathways for Environmental Effects on Disease Expression. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Reciprocal Activation Between CD4+ T Cells and Kupffer Cells During Hepatic Ischemia-Reperfusion. Transplantation 2008; 86:710-8. [DOI: 10.1097/tp.0b013e3181821aa7] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Hatano M, Sasaki S, Ohata S, Shiratsuchi Y, Yamazaki T, Nagata K, Kobayashi Y. Effects of Kupffer cell-depletion on Concanavalin A-induced hepatitis. Cell Immunol 2008; 251:25-30. [DOI: 10.1016/j.cellimm.2008.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 01/17/2008] [Accepted: 02/07/2008] [Indexed: 01/22/2023]
|
31
|
Tanabe J, Izawa A, Takemi N, Miyauchi Y, Torii Y, Tsuchiyama H, Suzuki T, Sone S, Ando K. Interferon-beta reduces the mouse liver fibrosis induced by repeated administration of concanavalin A via the direct and indirect effects. Immunology 2007; 122:562-70. [PMID: 17645499 PMCID: PMC2266031 DOI: 10.1111/j.1365-2567.2007.02672.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Type I interferons (IFNs), IFN-alpha and IFN-beta, are widely used for treating chronic hepatitis C. Although retrospective studies have suggested that type I IFNs have direct antifibrotic effects, little is known about these mechanisms. The present study was designed to clarify the preventive mechanisms of type I IFNs in the progression of fibrosis for the establishment of a more effective therapy. A murine fibrosis model comprising immunological reactions was induced by the administration of concanavalin A (0.3 mg/body) into mice once a week for 4 weeks. Liver injury and the degree of fibrosis were determined by measuring the serum alanine aminotransferase activities and liver hydroxyproline contents with or without IFN-beta pretreatment. IFN-beta suppressed the hepatocellular injury and increased the hydroxyproline content induced by repeated concanavalin A injections, but had no effect on established fibrosis. Furthermore, IFN-beta reduced the expressions of transforming growth factor-beta, basic fibroblast growth factor, collagen type I A2 and tissue inhibitor of metalloproteinase 1 messenger RNAs, which are related to the progression of liver fibrosis. The IFN-beta reduced the liver injury and fibrosis induced by immunological reactions. These data suggest that type I IFNs suppress the progression of cirrhosis through inhibition of repeated hepatocellular injury and/or factors that promote the liver fibrosis induced by hepatitis virus infection.
Collapse
Affiliation(s)
- Junichi Tanabe
- Pharmaceutical Research Laboratory, Toray Industries Inc., Kanagawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Latta M, Künstle G, Lucas R, Hentze H, Wendel A. ATP-depleting carbohydrates prevent tumor necrosis factor receptor 1-dependent apoptotic and necrotic liver injury in mice. J Pharmacol Exp Ther 2007; 321:875-83. [PMID: 17369282 DOI: 10.1124/jpet.107.119958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We demonstrated previously that depletion of hepatic ATP by endogenous metabolic shunting of phosphate after fructose treatment renders hepatocytes resistant to tumor necrosis factor (TNF)-induced apoptosis. We here address the question whether this principle extends to TNF receptor 1-mediated caspase-independent apoptotic and to necrotic liver injury. As in the apoptotic model of galactosamine/lipopolysaccharide (LPS)-induced liver damage, the necrotic hepatotoxicity initiated by sole high-dose LPS treatment was abrogated after depletion of hepatic ATP. Although systemic TNF and interferon-gamma levels were suppressed, animals still were protected when ATP depletion was initiated after the peak of proinflammatory cytokines upon LPS injection, showing that fructose-induced ATP depletion affects both cytokine release and action. In T cell-dependent necrotic hepatotoxicity elicited by concanavalin A or galactosamine + staphylococcal enterotoxin B, ATP depletion prevented liver injury as well, but here without modulating cytokine release. By attenuating caspase-8 activation, ATP depletion of hepatocytes in vitro impaired TNF receptor signaling by the death-inducing signaling complex, whereas receptor internalization and nuclear factor-kappaB activation upon TNF stimulation were unaffected. These findings demonstrate that sufficient target cell ATP levels are required for the execution of both apoptotic and necrotic TNF-receptor 1-mediated liver cell death.
Collapse
Affiliation(s)
- Markus Latta
- Biochemical Pharmacology, Faculty of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | | | |
Collapse
|
33
|
Liu LL, Gong LK, Wang H, Xiao Y, Wu XF, Zhang YH, Xue X, Qi XM, Ren J. Baicalin protects mouse from Concanavalin A-induced liver injury through inhibition of cytokine production and hepatocyte apoptosis. Liver Int 2007; 27:582-91. [PMID: 17403198 DOI: 10.1111/j.1478-3231.2007.01450.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND Baicalin (BA) exhibits an anti-inflammatory effect in vivo and in vitro and is used to treat chronic hepatitis. However, the mechanism by which BA exerts the liver-protective effect remains largely unknown. AIMS The present study reports that BA inhibits cytokine production and hepatocyte apoptosis to protect mice from liver injury induced by concanavalin A (Con A), a T-cell-dependent liver injury model. RESULTS Con A injection of mice induced severe immune responses and extensive hepatocellular apoptosis within 24 h. Pretreatment of 200 or 100 mg/kg BA markedly reduced serum aminotransferase activities, protected hepatoycte apoptosis and reduced the increase of plasma cytokine levels, including tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma) and interleukin-6 (IL-6). Furthermore, BA pretreatment decreased tissue myeloperoxidase activity and lipid peroxidation, but increased the superoxide dismutase level. In vitro studies indicated that the beneficial effect of BA was associated with reduced cytokine production from lymphocytes and reduced TNF-alpha-induced hepatocyte apoptosis. CONCLUSION These results suggest that BA has therapeutic potential for T-cell-mediated liver injury.
Collapse
Affiliation(s)
- Lin-Lin Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Thomas KJ, Sherman DB, Amiss TJ, Andaluz SA, Pitner JB. A long-wavelength fluorescent glucose biosensor based on bioconjugates of galactose/glucose binding protein and Nile Red derivatives. Diabetes Technol Ther 2006; 8:261-8. [PMID: 16800747 DOI: 10.1089/dia.2006.8.261] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Fluorescent biosensors based on galactose/glucose binding protein (GGBP) and environmentally sensitive derivatives of the phenoxazine dye Nile Red are described. These biosensors are proposed as the sensing platform for a minimally invasive, continuous glucose monitoring system that can be implanted under the skin and read transdermally using an external fluorometer. METHODS To construct the biosensors, the thiol-reactive Nile Red derivatives INR and IANR were prepared and conjugated to GGBP proteins possessing cysteine mutations that were designed for optimal site-specific fluorophore attachment. The attachment sites were selected to maximize the local environment change for attached dyes between the bound and unbound conformations of GGBP. RESULTS Fluorescence responses at the selected cysteine sites of GGBP upon binding to glucose showed that the conjugates typically yielded fluorescence emission around 640-650 nm with up to 50% changes in fluorescence intensity. Conjugate E149C/A213C/L238S INR GGBP also displayed glucose binding in the human physiological range (K (D) = 7.4 mM). CONCLUSIONS The phenoxazine derivatives fluoresced at longer wavelengths (>600 nm) approaching the near-infrared spectral window, where interference from scattering and tissue absorbance are minimal. Ultimately, we expect that monitoring systems based on GGBP and longwavelength dyes will be implanted for up to 6 months and can be used to transmit information through the skin to an external monitor.
Collapse
Affiliation(s)
- K Joseph Thomas
- BD Technologies, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
35
|
Sharma N, Suzuki H, He Q, Sharma RP. Tumor necrosis factor alpha-mediated activation of c-Jun NH(2)-terminal kinase as a mechanism for fumonisin B(1) induced apoptosis in murine primary hepatocytes. J Biochem Mol Toxicol 2006; 19:359-67. [PMID: 16421893 DOI: 10.1002/jbt.20102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fumonisin B(1) is a mycotoxin produced by Fusarium verticillioides, frequently associated with corn. It produces species-specific and organ-specific toxicity, including equine leukoencephalomalacia, porcine pulmonary edema, and hepatic or renal damage in most animal species. Fumonisin B(1) perturbs sphingolipid metabolism by inhibiting ceramide synthase. Our previous studies indicated that fumonisin B(1) caused localized activation of cytokines in liver produced by macrophages and other cell types that modulate fumonisin B(1) induced hepatic apoptosis in mice. The role of tumor necrosis factor alpha (TNFalpha) in fumonisin B(1) mediated hepatocyte apoptosis has been established; not much is known about the downstream events leading to apoptosis. In the current study, fumonisin B(1) induced apoptosis in primary culture of liver cells. In consistence with previous reports, fumonisin B(1) caused accumulation of sphingoid bases and led to increase in TNFalpha expression. Phosphorylated and total c-Jun NH(2)-terminal kinase (JNK) activities were increased after 24 h fumonisin B(1) treatment. JNK inhibitor (SP600125) and anti-TNFalpha reduced the apoptosis induced by fumonisin B(1). The role of JNK signaling in fumonisin B(1) induced apoptosis is downstream of TNFalpha production, as fumonisin B(1)-mediated activation of JNK was reduced by the presence of anti-TNFalpha in the medium, whereas the presence of JNK inhibitor did not change the fumonisin B(1) induced TNFalpha expression. Results of this study imply that generation of fumonisin B(1) induced TNFalpha results in modulation of mitogen activated protein kinases, particularly of JNK, and provides a possible mechanism for apoptosis in murine hepatocytes.
Collapse
Affiliation(s)
- Neelesh Sharma
- Department of Physiology and Pharmacology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602-7389, USA
| | | | | | | |
Collapse
|
36
|
Grivennikov SI, Tumanov AV, Liepinsh DJ, Kruglov AA, Marakusha BI, Shakhov AN, Murakami T, Drutskaya LN, Förster I, Clausen BE, Tessarollo L, Ryffel B, Kuprash DV, Nedospasov SA. Distinct and nonredundant in vivo functions of TNF produced by t cells and macrophages/neutrophils: protective and deleterious effects. Immunity 2005; 22:93-104. [PMID: 15664162 DOI: 10.1016/j.immuni.2004.11.016] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2004] [Revised: 11/06/2004] [Accepted: 11/24/2004] [Indexed: 11/16/2022]
Abstract
Tumor necrosis factor (TNF, TNFalpha) is implicated in various pathophysiological processes and can be either protective, as in host defense, or deleterious, as in autoimmunity or toxic shock. To uncover the in vivo functions of TNF produced by different cell types, we generated mice with TNF ablation targeted to various leukocyte subsets. Systemic TNF in response to lipopolysaccharide was produced mainly by macrophages and neutrophils. This source of TNF was indispensable for resistance to an intracellular pathogen, Listeria, whereas T-cell-derived TNF was important for protection against high bacterial load. Additionally, both T-cell-derived TNF and macrophage-derived TNF had critical and nonredundant functions in the promotion of autoimmune hepatitis. Our data suggest that T-cell-specific TNF ablation may provide a therapeutic advantage over systemic blockade.
Collapse
Affiliation(s)
- Sergei I Grivennikov
- Laboratory of Molecular Immunology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences and Belozersky Institute of Physico-Chemical Biology, 32 Vavilov Str., 119991 Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Imose M, Nagaki M, Kimura K, Takai S, Imao M, Naiki T, Osawa Y, Asano T, Hayashi H, Moriwaki H. Leflunomide protects from T-cell-mediated liver injury in mice through inhibition of nuclear factor kappaB. Hepatology 2004; 40:1160-9. [PMID: 15455409 DOI: 10.1002/hep.20438] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Leflunomide is a novel immunosuppressive and anti-inflammatory agent for the treatment of autoimmune disease. The aim of this study was to investigate whether leflunomide protects from liver injury induced by concanavalin A (Con A), a T-cell-dependent model of liver damage. BALB/c mice were injected with 25 mg/kg Con A in the presence or absence of 30 mg/kg leflunomide. Liver injury was assessed biochemically and histologically. Levels of circulating cytokines and expressions of cytokine messenger RNA (mRNA) in the liver and the spleen were determined. Treatment with leflunomide markedly reduced serum transaminase activities and the numbers of dead liver cells. Leflunomide significantly inhibited increases in plasma tumor necrosis factor alpha (TNF-alpha) and interleukin 2 concentrations, and also reduced TNF-alpha mRNA expression in the liver after administration of Con A. These findings were supported by the results in which leflunomide administration decreased the number of T lymphocytes infiltrating the liver as well as inhibiting their production of TNF-alpha. Activation of nuclear factor kappaB (NF-kappaB), which regulates TNF-alpha production, was inhibited in the liver of mice treated with leflunomide, resulting in a reduction of TNF-alpha production from lymphocytes infiltrating the liver. In conclusion, leflunomide is capable of regulating T-cell-mediated liver injury in vivo and that this event may depend on the decrease of TNF-alpha production in the liver through inhibition of NF-kappaB activation caused by leflunomide.
Collapse
Affiliation(s)
- Motoaki Imose
- First Department of Internal Medicine, Gifu University School of Medicine, Gifu, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sharma N, He Q, Sharma RP. Augmented fumonisin B1 toxicity in co-cultures: evidence for crosstalk between macrophages and non-parenchymatous liver epithelial cells involving proinflammatory cytokines. Toxicology 2004; 203:239-51. [PMID: 15363598 DOI: 10.1016/j.tox.2004.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 06/15/2004] [Accepted: 06/17/2004] [Indexed: 10/26/2022]
Abstract
Fumonisin B1, a common mycotoxin produced by Fusarium verticillioides found in corn, causes several fatal animal diseases. Liver and kidney are target organs of fumonisin B1 in laboratory animals, but primary rodent hepatocytes and liver slices were resistant to fumonisin B1-induced cytotoxic effects. We have shown that fumonisin B1 induces expression of tumor necrosis factor (TNF)alpha, interferon (IFN)gamma, and interleukine (IL) 12, in mouse liver. In various models of acute liver injury, a positive amplification loop involving TNFalpha, IFNgamma, and IL-12 has been implied that involves Kupffer cells (macrophages), hepatic lymphocytes and non-parenchymatous liver epithelial cells (NPECs). In the current study, cellular interactions in fumonisin B1-induced toxicity were investigated, using co-cultures of murine macrophages (J774A.1) and NPECs (NMuLi). Treatment of the co-cultures with fumonisin B1-produced cytotoxicity, whereas either J774A.1 or NMuLi cultures alone showed no response to the mycotoxin. Accumulation of sphinganine occurred to the similar extent in individual cultures as well as co-cultures. Expression of TNFalpha and IL-12 was increased in co-cultures but not in individual cultures. Transfer of conditioned medium from fumonisin B1-treated J774A.1 cells to NMuLi cultures produced an increase in IFNgamma expression in NMuLi cells. Results indicated that macrophages and liver epithelial cells interact in response to fumonisin B1 and potentiate the cytokines expression, which may have implications in making hepatocytes responsive to cytotoxicity of fumonisin B1.
Collapse
Affiliation(s)
- Neelesh Sharma
- Department of Physiology and Pharmacology, College of Veterinary Medicine, The University of Georgia, Athens 30602-7389, USA
| | | | | |
Collapse
|
39
|
Li M, Liu GT. Inhibition of Fas/FasL mRNA expression and TNF-α release in concanavalin A-induced liver injury in mice by bicyclol. World J Gastroenterol 2004; 10:1775-9. [PMID: 15188504 PMCID: PMC4572267 DOI: 10.3748/wjg.v10.i12.1775] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: Bicyclol, 4,4’-dimethoxy-5,6,5’,6’-dimethylene-dioxy-2-hydroxymethyl-2’-carbonyl biphenyl, is a new anti-hepatitis drug. The aim of the present study was to investigate the protective effect of bicyclol on concanavalin A (Con A)-induced immunological liver injury in mice and its mechanism.
METHODS: Liver injury was induced by injection of Con A via tail vein of mice and assessed biochemically and histologically. Serum transaminase and tumor necrosis factor alpha (TNF-α) were determined. Liver lesions were observed by light microscope. Expressions of TNF-α, interferon gamma (IFN-γ), Fas and Fas ligand (FasL) mRNA in the livers were measured by RT-PCR.
RESULTS: Serum transaminase level and liver lesions in Con A-induced mice were markedly reduced by oral administration of 100, 200 mg/kg of bicyclol. TNF-α level in serum was also reduced by bicyclol. Con A injection induced up-regulation of TNF-α, IFN-γ, Fas and FasL mRNA expression in liver tissues. Bicyclol significantly down-regulated the expression of IFN-γ, Fas and FasL mRNA, but only slightly affected TNF-α mRNA expression in liver tissues.
CONCLUSION: Bicyclol protects against Con A-induced liver injury mainly through inhibition of Fas/FasL mRNA expression in liver tissues and TNF-α release in mice.
Collapse
Affiliation(s)
- Min Li
- Department of Pharmacology, Institute of Materia Medica and Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | | |
Collapse
|
40
|
Safir N, Wendel A, Saile R, Chabraoui L. The effect of selenium on immune functions of J774.1 cells. Clin Chem Lab Med 2003; 41:1005-11. [PMID: 12964805 DOI: 10.1515/cclm.2003.154] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The J774.1 macrophage cell line was used as a tool to investigate the influence of selenium on macrophage function. In vitro selenium supplementation enhanced phagocytosis, degranulation by the release of beta-glucuronidase after N-formyl-methionyl-leucyl-phenylalanine (FMLP) or cytochalasin B, and the production of superoxide anion after phorbol myristate acetate stimulation of these cells, while the release of nitric oxide was not affected by the selenium status. Selenium supplementation enhanced significantly (p < 0.05) the release of tumor necrosis factor (5-fold), interleukin-1 (3-fold) and interleukin-6 (2.5-fold) after 10 microg/ml lipopolysaccharide stimulation compared to selenium-deficient cells.
Collapse
Affiliation(s)
- Nadia Safir
- Laboratory of Biochemistry, Faculté de Sciences Ben Msik, Casablanca, Morocco
| | | | | | | |
Collapse
|
41
|
Ariki N, Morimoto Y, Yagi T, Oyama T, Cyouda Y, Sadamori H, Inagaki M, Urushihara N, Iwagaki H, Tanaka N. Activated T cells and soluble molecules in the portal venous blood of patients with cholestatic and hepatitis C virus-positive liver cirrhosis. Possible promotion of Fas/FasL-mediated apoptosis in the bile-duct cells and hepatocyte injury. J Int Med Res 2003; 31:170-80. [PMID: 12870369 DOI: 10.1177/147323000303100302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We investigated the immune responses of patients with cholestatic and hepatitis C virus-positive (HCV-positive) liver cirrhosis by analysing T-cell subsets and cytokine levels in the portal and peripheral veins, using flow cytometry and enzyme-linked immunosorbent assay. In cholestatic liver cirrhosis, the proportion of natural-killer (NK) T cells and interleukin (IL) 6 and IL-18 levels in the portal venous blood were significantly higher than those in the peripheral venous blood. In HCV-positive liver cirrhosis, the proportions of NK T cells and Fas+ T cells and IL-6 and soluble Fas levels in the portal venous blood were significantly higher than those in the peripheral venous blood. These results suggest that in these diseases, activated T cells and soluble molecules in portal venous blood may promote Fas/FasL-mediated apoptosis of the bile-duct cells and hepatocytes, and contribute to the deterioration in liver function as an inevitable result of positive feedback.
Collapse
Affiliation(s)
- N Ariki
- Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bang R, Sass G, Kiemer AK, Vollmar AM, Neuhuber WL, Tiegs G. Neurokinin-1 receptor antagonists CP-96,345 and L-733,060 protect mice from cytokine-mediated liver injury. J Pharmacol Exp Ther 2003; 305:31-9. [PMID: 12649350 DOI: 10.1124/jpet.102.043539] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Previously, we have shown that primary afferent sensory neurons are necessary for disease activity in T cell-mediated immune hepatitis in mice. In the present study, we analyzed the possible role of substance P (SP), an important proinflammatory neuropeptide of these nerve fibers, in an in vivo mouse model of liver inflammation. Liver injury was induced by bacterial lipopolysaccharide (LPS) in D-galactosamine (GalN)-sensitized mice. Depletion of primary afferent nerve fibers by neonatal capsaicin treatment down-regulated circulating levels of the proinflammatory cytokines tumor necrosis factor-alpha (TNFalpha) and interferon-gamma (IFNgamma) and protected mice from GalN/LPS-induced liver injury. Likewise, pretreatment of mice with antagonists of the SP-specific neurokinin-1 receptor (NK-1R), i.e., (2S,3S)-cis-2-(diphenylmethyl)-N-((2-methoxyphenyl)-methyl)-1-azabicyclo(2.2.2.)-octan-3-amine (CP-96,345) and (2S,3S)3-([3,5-bis(trifluoromethyl)phenyl]methoxy)-2-phenylpiperidine (L-733,060), dose dependently protected mice from GalN/LPS-induced liver injury. The presence of the NK-1R in the murine liver was demonstrated by reverse transcription-polymerase chain reaction, sequence analysis, and immunocytochemistry. NK-1R blockade reduced inflammatory liver damage, i.e., edema formation, neutrophil infiltration, hepatocyte apoptosis, and necrosis. To get further insight into the mechanism by which receptor blockade attenuated GalN/LPS-induced liver damage, we analyzed plasma levels and intrahepatic expression of TNFalpha, IFNgamma, interleukin (IL)-6, and IL-10. NK-1R blockade clearly inhibited GalN/LPS-induced production of TNFalpha and IFNgamma, whereas synthesis of the hepatoprotective cytokines IL-6 and IL-10 was increased. NK-1 receptor antagonists might be potent drugs for treatment of inflammatory liver disease, most likely by inhibiting SP effects.
Collapse
Affiliation(s)
- Renate Bang
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Matsumoto G, Tsunematsu S, Tsukinoki KI, Ohmi Y, Iwamiya M, Oliveira-dos-Santos A, Tone D, Shindo J, Penninger JM. Essential role of the adhesion receptor LFA-1 for T cell-dependent fulminant hepatitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:7087-96. [PMID: 12471145 DOI: 10.4049/jimmunol.169.12.7087] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Viral hepatitis affects more than 2 billion people worldwide. In particular, no effective treatment exists to abrogate death and liver damage in fulminant hepatitis. Activation of T cells is an initial and critical event in the pathogenesis of liver damage in autoimmune and viral hepatitis. The precise molecular mechanisms that induce T cell-mediated hepatocyte injury remain largely unclear. In mice, T cell-dependent hepatitis and acute liver damage can be modeled using ConA. In this study, we examined the role of the adhesion receptor LFA-1 in ConA-induced acute hepatic damage using LFA-1(-/-) (CD11a) mice. Massive liver cell apoptosis and metabolic liver damage were observed in LFA-1(+/+) mice following ConA injection. By contrast, LFA-1(-/-) mice were completely resistant to ConA-induced hepatitis and none of the LFA-1(-/-) mice showed any hepatic damage. Whereas activated hepatic T cells remained in the liver in LFA-1(+/+) mice, activated T cells were rapidly cleared from the livers of LFA-1(-/-) mice. Mechanistically, T cells from LFA-1(-/-) mice showed markedly reduced cytotoxicity toward liver cells as a result of impaired, activation-dependent adhesion. Importantly, adoptive transfer of hepatic T cells from LFA-1(+/+) mice, but not from LFA-1(-/-) mice, sensitized LFA-1(-/-) mice to ConA-induced hepatitis. Thus, LFA-1 expression on T cells is necessary and sufficient for T cell-mediated liver damage in vivo. These results provide the first genetic evidence on an adhesion receptor, LFA-1, that has a crucial role in fulminant hepatitis. These genetic data identify LFA-1 as a potential key target for the treatment of T cell-mediated hepatitis and the prevention of liver damage.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antigens/biosynthesis
- Antigens, Surface
- Cell Adhesion/genetics
- Cell Adhesion/immunology
- Cell Line
- Chemical and Drug Induced Liver Injury/etiology
- Chemical and Drug Induced Liver Injury/genetics
- Chemical and Drug Induced Liver Injury/immunology
- Chemical and Drug Induced Liver Injury/prevention & control
- Concanavalin A/toxicity
- Cytotoxicity, Immunologic/genetics
- Injections, Intravenous
- Intercellular Adhesion Molecule-1/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/transplantation
- Lectins, C-Type
- Liver/immunology
- Liver/pathology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Lymphocyte Function-Associated Antigen-1/biosynthesis
- Lymphocyte Function-Associated Antigen-1/genetics
- Lymphocyte Function-Associated Antigen-1/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NK Cell Lectin-Like Receptor Subfamily B
- Protein Biosynthesis
- Proteins
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/transplantation
Collapse
Affiliation(s)
- Goichi Matsumoto
- First Department of Oral and Maxillofacial Surgery, Kanagawa Dental College, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Willuweit A, Sass G, Schöneberg A, Eisel U, Tiegs G, Clauss M. Chronic inflammation and protection from acute hepatitis in transgenic mice expressing TNF in endothelial cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3944-52. [PMID: 11564813 DOI: 10.4049/jimmunol.167.7.3944] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endothelial activation is an important feature of many inflammatory diseases and has been implicated as the cause of vascular complications in disorders such as diabetes, atherosclerosis, and transplant rejection. One of the most potent activators of the endothelium is TNF, which can also be expressed by endothelial cells, causing a permanent, autocrine stimulatory signal. To establish a model of continuous endothelial activation and to elucidate the role of endothelial derived TNF in vivo, we generated transgenic mice expressing a noncleavable transmembrane form of TNF under the control of the endothelial-specific tie2 promoter. Adult tie2-transmembrane TNF-transgenic mice developed chronic inflammatory pathology in kidney and liver, characterized by perivascular infiltration of mononuclear cells into these organs. Along with the infiltrate, an up-regulation of the adhesion molecules ICAM-1 and VCAM-1, but not E-selectin, in the endothelium was observed. Despite predisposition to chronic inflammation these mice were protected from immune-mediated liver injury in a model of Con A-induced acute hepatitis. Although the blood levels of soluble TNF and IFN-gamma were increased in transgenic animals after challenge with Con A, no damage of hepatocytes could be detected, as assessed by the lack of increase in plasma transaminase activities and the absence of TUNEL staining in the liver. We conclude that expression of transmembrane TNF in the endothelium causes continuous endothelial activation, leading to both proinflammatory and protective events.
Collapse
Affiliation(s)
- A Willuweit
- Department of Molecular and Cellular Biology, Max Planck Institute for Physiological and Clinical Research, Parkstrasse 1, 61231 Bad Nauheim, Germany. antje.willuweit@kerckhoff,mpg.de
| | | | | | | | | | | |
Collapse
|
45
|
Gorham JD, Lin JT, Sung JL, Rudner LA, French MA. Genetic regulation of autoimmune disease: BALB/c background TGF-beta 1-deficient mice develop necroinflammatory IFN-gamma-dependent hepatitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:6413-22. [PMID: 11342667 DOI: 10.4049/jimmunol.166.10.6413] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoimmune hepatitis (AIH) in humans arises spontaneously in genetically susceptible individuals and is associated with the presence of Th1 cells in the liver. The understanding of AIH has advanced more slowly than that of other organ-specific autoimmune diseases, however, largely because of the lack of an appropriate animal model. We now describe a new mouse model characterized by spontaneous development of necroinflammatory hepatitis that is restricted by genetic background. Mice deficient in the immunomodulatory cytokine TGF-beta1 were extensively back-bred to the BALB/c background. The BALB/c background dramatically modified the phenotype of TGF-beta1(-/-) mice: specifically, BALB/c-TGF-beta1(-/-) mice developed a lethal necroinflammatory hepatitis that was not observed in TGF-beta1(-/-) mice on a different genetic background. BALB/c background TGF-beta1(-/-) livers contained large numbers of activated CD4(+) T cells that produced large quantities of IFN-gamma, but little IL-4, identifying them as Th1 cells. BALB/c background TGF-beta1(-/-)/IFN-gamma(-/-) double knockout mice, generated by cross-breeding, did not develop necroinflammatory hepatitis, demonstrating that IFN-gamma is mechanistically required for its pathogenesis. This represents the first murine model of hepatitis that develops spontaneously, is restricted by genetic background, and is dependent upon the Th1 cytokine IFN-gamma, and that thus recapitulates these important aspects of AIH.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/mortality
- Autoimmune Diseases/pathology
- Cell Differentiation/immunology
- Crosses, Genetic
- Genetic Predisposition to Disease
- Hepatitis, Animal/genetics
- Hepatitis, Animal/immunology
- Hepatitis, Animal/mortality
- Hepatitis, Animal/pathology
- Interferon-gamma/physiology
- Liver/immunology
- Liver/pathology
- Mice
- Mice, Inbred BALB C/genetics
- Mice, Inbred BALB C/immunology
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Necrosis
- Survival Rate
- Th1 Cells/pathology
- Th2 Cells/pathology
- Transforming Growth Factor beta/biosynthesis
- Transforming Growth Factor beta/deficiency
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta1
Collapse
Affiliation(s)
- J D Gorham
- Department of Pathology, Dartmouth Medical School, Lebanon, NH 03756, USA.
| | | | | | | | | |
Collapse
|
46
|
Schümann J, Bluethmann H, Tiegs G. Synergism of Pseudomonas aeruginosa exotoxin A with endotoxin, superantigen, or TNF results in TNFR1- and TNFR2-dependent liver toxicity in mice. Immunol Lett 2000; 74:165-72. [PMID: 10996392 DOI: 10.1016/s0165-2478(00)00240-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pseudomonas aeruginosa is a potentially dangerous Gram-negative nosocomial pathogen, causing bacteremia in debilitated patients, and a prominent cause of bacterial cholangitis. Opportunistic infections with other nosocomial pathogens, e.g. Staphylococcus aureus, are common. Hence, multi-intoxication with P. aeruginosa exotoxin A (PEA) and other bacterial toxins, including endotoxin (LPS) and the superantigen S. aureus enterotoxin B (SEB), is very likely. Here we show that PEA synergistically interacted with LPS, SEB, or recombinant murine tumor necrosis factor alpha (rmuTNF) in mice, resulting in severe liver injury. Enhanced and prolonged circulation of cytokines, including TNF, which depended on the presence of T cells, was a remarkable feature of synergistic PEA/LPS- or PEA/SEB-induced hepatotoxicity. PEA/LPS-, PEA/SEB- or PEA/rmuTNF-induced liver injury was mediated by both TNF receptors (TNFRs), i.e. TNFR1 and TNFR2. In view of the fact that TNFR1, but not TNFR2, signaling is unequivocally required for host defense, our results suggest that anti-TNFR2 strategies might be beneficial to protect the liver from inflammatory damage caused by synergistic interactions of PEA with other TNF-inducing bacterial toxins.
Collapse
Affiliation(s)
- J Schümann
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nürnberg, Fahrstr. 17, Universitatsstrasse 22, D-91054, Erlangen, Germany.
| | | | | |
Collapse
|
47
|
Epelman S, Bruno TF, Neely GG, Woods DE, Mody CH. Pseudomonas aeruginosa exoenzyme S induces transcriptional expression of proinflammatory cytokines and chemokines. Infect Immun 2000; 68:4811-4. [PMID: 10899895 PMCID: PMC98444 DOI: 10.1128/iai.68.8.4811-4814.2000] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2000] [Accepted: 05/15/2000] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa infection of cystic fibrosis patients causes lung damage that is substantially orchestrated by cytokines. In this study, multi-gene probe analysis was used to characterize the ability of the P. aeruginosa mitogen, exoenzyme S, to induce proinflammatory and immunoregulatory cytokines and chemokines. Exoenzyme S strongly induced transcription of proinflammatory cytokines and chemokines (tumor necrosis factor alpha, interleukin-1alpha [IL-1alpha], IL-1beta, IL-6, IL-8, MIP-1alpha, MIP-1beta, MCP-1, RANTES, and I-309), modest transcription of immunoregulatory cytokines (IL-10 and IL-12p40), and weak transcription of Th1 cytokines (IL-2 and gamma interferon). The response occurred early and subsided without evolving over time. These data suggest that cells responding to exoenzyme S would rapidly express proinflammatory cytokines and chemokines that may contribute to pulmonary inflammation in cystic fibrosis.
Collapse
Affiliation(s)
- S Epelman
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
48
|
Hentze H, Gantner F, Kolb SA, Wendel A. Depletion of hepatic glutathione prevents death receptor-dependent apoptotic and necrotic liver injury in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:2045-56. [PMID: 10854226 PMCID: PMC1850090 DOI: 10.1016/s0002-9440(10)65076-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The activation of the death receptors, tumor necrosis factor-receptor-1 (TNF-R1) or CD95, is a hallmark of inflammatory or viral liver disease. In different murine in vivo models, we found that livers depleted of gamma-glutamyl-cysteinyl-glycine (GSH) by endogenous enzymatic conjugation after phorone treatment were resistant against death receptor-elicited injury as assessed by transaminase release and histopathology. In apoptotic models initiated by engagement of CD95, or by injection of TNF or lipopolysaccharide into galactosamine-sensitized mice, hepatic caspase-3-like proteases were not activated in the GSH-depleted state. Under GSH depletion, also caspase-independent, TNF-R1-mediated injury (high-dose actinomycin D or alpha-amanitin), as well as necrotic hepatotoxicity (high-dose lipopolysaccharide) were entirely blocked. In the T-cell-dependent model of concanavalin A-induced hepatotoxicity, GSH depletion resulted in a suppression of interferon-gamma release, delay of systemic TNF release, hepatic nuclear factor-kappaB activation, and an abrogation of sinusoidal endothelial cell detachment as assessed by electron microscopy. When GSH depletion was initiated 3 hours after concanavalin A injection, ie, after the peak of early pro-inflammatory cytokines, livers were still protected. We conclude that sufficient hepatic GSH levels are a prerequisite for the execution of death receptor-mediated hepatocyte demise.
Collapse
Affiliation(s)
- H Hentze
- Department of Biochemical Pharmacology, University of Konstanz, Germany
| | | | | | | |
Collapse
|
49
|
Bautista AP. Impact of alcohol on the ability of Kupffer cells to produce chemokines and its role in alcoholic liver disease. J Gastroenterol Hepatol 2000; 15:349-56. [PMID: 10824877 DOI: 10.1046/j.1440-1746.2000.02174.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chemokines are implicated in the pathogenesis of alcoholic liver disease in humans and in experimental models of alcohol intoxication. The major sources of these chemokines are Kupffer cells which represent more than 80% of tissue macrophages in the body. Kupffer cells are highly responsive to the effects of ethanol, endotoxin and human immunodeficiency virus (HIV)-1 glycoprotein120. These agents, either independently or in combination, may exacerbate the production of chemokines. Chemokines are agents that are highly chemotactic to mononuclear cells and granulocytes. The levels of these chemokines in sera and tissue are elevated in patients with alcoholic hepatitis, alcoholic cirrhosis, diseased livers, viral hepatitis, and in experimental models of chronic alcohol intoxication. Alcohol-induced influx of endotoxin from the gut into the portal circulation is suggested to play an important role in the activation of Kupffer cells which leads to enhanced chemokine release. The up-regulation of chemokines during alcohol consumption is selective. During the early phase of alcoholic liver disease, C-X-C or alpha-chemokines predominate. This is also associated with neutrophilic infiltration of the liver. In the later stage, up-regulation of C-C or beta-chemokine production and migration of mononuclear cells into the liver are observed, and this may lead to liver cirrhosis. Selective up-regulation of chemokine synthesis and release may involve differential modulation of the transcription factors required for chemokine gene expression. Increased cytokine release following alcohol consumption may also regulate chemokine secretion in Kupffer cells via paracrine and autocrine mechanisms and vice versa. In addition, infection with HIV-1 may further compromise the liver to more damage. During HIV-1 infection, a pre-existing liver disease superimposed on chronic alcohol consumption may also exacerbate HIV-1 replication and lymphocytic infiltration in the liver, because of the ability of HIV-1 gp120 to stimulate chemokine production by Kupffer cells and stimulate migration of inflammatory leucocytes in the liver.
Collapse
Affiliation(s)
- A P Bautista
- Department of Physiology and National Institute on Alcohol Abuse and Alcoholism-Sponsored Alcohol Research Center, Louisiana State University Medical Center, New Orleans 70112, USA.
| |
Collapse
|
50
|
Kaneko Y, Harada M, Kawano T, Yamashita M, Shibata Y, Gejyo F, Nakayama T, Taniguchi M. Augmentation of Valpha14 NKT cell-mediated cytotoxicity by interleukin 4 in an autocrine mechanism resulting in the development of concanavalin A-induced hepatitis. J Exp Med 2000; 191:105-14. [PMID: 10620609 PMCID: PMC2195789 DOI: 10.1084/jem.191.1.105] [Citation(s) in RCA: 327] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The administration of concanavalin A (Con A) induces a rapid severe injury of hepatocytes in mice. Although the Con A-induced hepatitis is considered to be an experimental model of human autoimmune hepatitis, the precise cellular and molecular mechanisms that induce hepatocyte injury remain unclear. Here, we demonstrate that Valpha14 NKT cells are required and sufficient for induction of this hepatitis. Moreover, interleukin (IL)-4 produced by Con A-activated Valpha14 NKT cells is found to play a crucial role in disease development by augmenting the cytotoxic activity of Valpha14 NKT cells in an autocrine fashion. Indeed, short-term treatment with IL-4 induces an increase in the expression of granzyme B and Fas ligand (L) in Valpha14 NKT cells. Moreover, Valpha14 NKT cells from either perforin knock-out mice or FasL-mutant gld/gld mice fail to induce hepatitis, and hence perforin-granzyme B and FasL appear to be effector molecules in Con A-induced Valpha14 NKT cell-mediated hepatocyte injury.
Collapse
Affiliation(s)
- Yoshikatsu Kaneko
- From CREST (Core Research for Evolutional Science and Technology) and the Department of Molecular Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Michishige Harada
- From CREST (Core Research for Evolutional Science and Technology) and the Department of Molecular Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tetsu Kawano
- From CREST (Core Research for Evolutional Science and Technology) and the Department of Molecular Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masakatsu Yamashita
- From CREST (Core Research for Evolutional Science and Technology) and the Department of Molecular Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Youichi Shibata
- From CREST (Core Research for Evolutional Science and Technology) and the Department of Molecular Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Fumitake Gejyo
- Department of Internal Medicine, School of Medicine, Niigata University, Niigata 951-8510, Japan
| | - Toshinori Nakayama
- From CREST (Core Research for Evolutional Science and Technology) and the Department of Molecular Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masaru Taniguchi
- From CREST (Core Research for Evolutional Science and Technology) and the Department of Molecular Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|