1
|
Yi Y, Suo L, Ma H, Ma R, Zhao J, Zhai S, Wang H, Su Z. The role of MDM2 in angiogenesis: implications for endothelial tip cell formation. In Vitro Cell Dev Biol Anim 2024; 60:983-995. [PMID: 39134872 DOI: 10.1007/s11626-024-00946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/17/2024] [Indexed: 11/06/2024]
Abstract
In the present study, we examined the role of MDM2 in the angiogenesis process and its potential association with the sprouting of endothelial tip cells. To address this, we performed hypoxia-treated gastric cancer cells (HGC-27) to quantitative RT-PCR and Western blot analysis to measure the levels of MDM2 and VEGF-A mRNA and protein expression. Subsequently, we employed siRNA to disrupt MDM2 expression, followed by hypoxia treatment. The expression levels of MDM2 and VEGF-A mRNA and protein were subsequently reassessed. Additionally, ELISA was utilized to quantify the secretion levels of VEGF-A in each experimental group. A conditioned medium derived from HGC-27 cells treated with different agents was employed to assess its influence on the formation of EA.hy926 endothelial tip cells, using various techniques including Transwell plates migration assays, wound healing experiments, vascular formation assays, scanning electron microscopy, and immunofluorescence staining. These findings demonstrated that the in vitro knockdown of MDM2 in the conditioned medium exhibited significant inhibitory effects on endothelial cell migration, wound healing, and vascular formation. Additionally, the intervention led to a reduction in the presence of CD34+ tip cells and the formation of filopodia in endothelial cells, while partially restoring the integrity of tight junctions. Subsequent examination utilizing RNA-seq revealed that the suppression of MDM2 in HGC-27 cells resulted in the downregulation of the PI3K/AKT signaling pathway. Consequently, this downregulation led to an elevation in angiogenic effects induced by hypoxia.
Collapse
Affiliation(s)
- Yi Yi
- Department of Basic Medicine Science, Qinghai University Medical College, Xining, 810001, China
| | - Lina Suo
- Department of Basic Medicine Science, Qinghai University Medical College, Xining, 810001, China
| | - Haixiu Ma
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, 16# Kunlun Road, Xining, 810016, Qinghai, China
| | - Ronghua Ma
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, 16# Kunlun Road, Xining, 810016, Qinghai, China
| | - Jing Zhao
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, 16# Kunlun Road, Xining, 810016, Qinghai, China
| | - Shaoqian Zhai
- Department of Basic Medicine Science, Qinghai University Medical College, Xining, 810001, China
| | - Haiyan Wang
- Department of Basic Medicine Science, Qinghai University Medical College, Xining, 810001, China.
| | - Zhanhai Su
- Department of Basic Medicine Science, Qinghai University Medical College, Xining, 810001, China.
| |
Collapse
|
2
|
Nourkami-Tutdibi N, Küllmer J, Dietrich S, Monz D, Zemlin M, Tutdibi E. Serum vascular endothelial growth factor is a potential biomarker for acute mountain sickness. Front Physiol 2023; 14:1083808. [PMID: 37064896 PMCID: PMC10098311 DOI: 10.3389/fphys.2023.1083808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Background: Acute mountain sickness (AMS) is the most common disease caused by hypobaric hypoxia (HH) in high-altitude (HA) associated with high mortality when progressing to high-altitude pulmonary edema (HAPE) and/or high-altitude cerebral edema (HACE). There is evidence for a role of pro- and anti-inflammatory cytokines in development of AMS, but biological pathways and molecular mechanisms underlying AMS remain elusive. We aimed to measure changes in blood cytokine levels and their possible association with the development of AMS.Method: 15 healthy mountaineers were included into this prospective clinical trial. All participants underwent baseline normoxic testing with venous EDTA blood sampling at the Bangor University in United Kingdom (69 m). The participants started from Beni at an altitude of 869 m and trekked same routes in four groups the Dhaulagiri circuit in the Nepali Himalaya. Trekking a 14-day route, the mountaineers reached the final HA of 5,050 m at the Hidden Valley Base Camp (HVBC). Venous EDTA blood sampling was performed after active ascent to HA the following morning after arrival at 5,050 m (HVBC). A panel of 21 cytokines, chemokines and growth factors were assessed using Luminex system (IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p40, IL-1ra, sIL-2Rα, IFN-γ, TNF-α, MCP-1, MIP-1α, MIP-1β, IP-10, G-CSF, GM-CSF, EGF, FGF-2, VEGF, and TGF-β1).Results: There was a significant main effect for the gradual ascent from sea-level (SL) to HA on nearly all cytokines. Serum levels for TNF-α, sIL-2Rα, G-CSF, VEGF, EGF, TGF-β1, IL-8, MCP-1, MIP-1β, and IP-10 were significantly increased at HA compared to SL, whereas levels for IFN-γ and MIP-1α were significantly decreased. Serum VEGF was higher in AMS susceptible versus AMS resistant subjects (p < 0.027, main effect of AMS) and increased after ascent to HA in both AMS groups (p < 0.011, main effect of HA). Serum VEGF increased more from SL values in the AMS susceptible group than in the AMS resistant group (p < 0.049, interaction effect).Conclusion: Cytokine concentrations are significantly altered in HA. Within short interval after ascent, cytokine concentrations in HH normalize to values at SL. VEGF is significantly increased in mountaineers suffering from AMS, indicating its potential role as a biomarker for AMS.
Collapse
|
3
|
Song X, Xing W, Zhang X, Wang X, Ji J, Lu J, Yu B, Ruan M. Exploring the synergic mechanism of Ligusticum striatum DC. and borneol in attenuating BMECs injury and maintaining tight junctions against cerebral ischaemia based on the HIF-1α/VEGF signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115764. [PMID: 36183951 DOI: 10.1016/j.jep.2022.115764] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/11/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ligusticum striatum DC., also known as Ligusticum chuanxiong Hort. (LCH), is widely used in China for its excellent effect in ischaemic stroke (IS) patients, and borneol (BO) has been confirmed to maintain the blood‒brain barrier (BBB) after stroke. They are often used as a combination in the prescriptions of IS patients. Although the advantage of their combined treatment in improving brain ischaemia has been verified, their synergistic mechanism on BBB maintenance is still unclear. AIM OF THE STUDY This study was designed to evaluate the synergistic effect of maintaining the BBB between LCH and BO against IS and to further explore the potential mechanism. MATERIALS AND METHODS After primary mouse brain microvascular endothelial cells (BMECs) were extracted and identified, the duration of oxygen-glucose deprivation (OGD) and the doses of LCH and BO were optimized. Then, the cells were divided into five groups: control, model, LCH, BO, and LCH + BO. Cell viability, injury degree, proliferation and migration were detected by CCK-8, LDH, EdU and wound-healing assays, respectively. Hoechst 33342 staining was adopted to detect the apoptosis rate, and western blotting was employed to observe the expressions of Bax, Bcl-2, caspase-3 and cleaved caspase-3. The TEER value and NaF permeability were measured to assess tight junction (TJ) function, while ZO-1, occludin and claudin-5 were also probed by western blotting. Moreover, the HIF-1α/VEGF pathway was observed to explore the underlying mechanism of BBB maintenance. In vivo, global cerebral ischaemia/reperfusion (GCIR) surgery was performed to establish an IS model. After treatment with LCH (200 mg/kg) and/or BO (160 mg/kg), histopathological structure and BMECs repair were observed by HE staining and immunohistochemistry of vWF. Meanwhile, TJ-associated proteins in vivo were also detected by western blotting. RESULTS Basically, LCH and BO had different emphases. LCH significantly attenuated the vacuolar structure, nuclear pyknosis and neuronal loss of GCIR mice, while BO focused on promoting BMECs proliferation and angiogenesis and inhibiting the degradation of TJ-associated proteins in vivo after IS. Interestingly, their combination further enhanced these effects. OGD injury markedly reduced the viability, proliferation and migration of primary BMECs; decreased the ratio of Bcl-2/Bax, TEER value, and the expressions of ZO-1, occludin and claudin-5; induced LDH release and apoptosis; and increased the cleaved caspase-3/caspase-3 ratio and NaF permeability. Meanwhile, BO might be the main contributor to the combinative treatment in ameliorating OGD-induced damage of BMECs and degradation of TJ-related proteins, and the potential mechanism might be involved in upregulating the HIF-1α/VEGF signalling pathway. Although LCH showed no obvious improvement, it could enhance the therapeutic effect of BO. Interestingly, their combination even produced some new improvements, including the reduction of cleaved caspase-3 and increase in TEER value, none of which were exhibited in their monotherapies. CONCLUSIONS LCH and BO exhibited complementary therapeutic features in alleviating cerebral ischaemic injury by inhibiting BMECs apoptosis, maintaining the BBB and attenuating the loss of neurons. LCH preferred to protect ischaemic neurons, while BO played a key role in protecting BMECs, maintaining the BBB and TJs by activating the HIF-1α/VEGF signalling pathway.
Collapse
Affiliation(s)
- Xiaoxiong Song
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wanqing Xing
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xiaofeng Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xueqing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jing Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jinfu Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bin Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ming Ruan
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China.
| |
Collapse
|
4
|
Miao C, Zhu X, Wei X, Long M, Jiang L, Li C, Jin D, Du Y. Pro- and anti-fibrotic effects of vascular endothelial growth factor in chronic kidney diseases. Ren Fail 2022; 44:881-892. [PMID: 35618410 PMCID: PMC9154791 DOI: 10.1080/0886022x.2022.2079528] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Renal fibrosis is the inevitable common end-point of all progressive chronic kidney diseases. The underlying mechanisms of renal fibrosis are complex, and currently there is no effective therapy against renal fibrosis. Renal microvascular rarefaction contributes to the progression of renal fibrosis; however, an imbalance between proangiogenic and antiangiogenic factors leads to the loss of renal microvasculature. Vascular endothelial growth factor (VEGF) is the most important pro-angiogenic factor. Recent studies have unraveled the involvement of VEGF in the regulation of renal microvascular rarefaction and fibrosis via various mechanisms; however, it is not clear whether it has anti-fibrotic or pro-fibrotic effect. This paper reviews the available evidence pertaining to the function of VEGF in the fibrotic process and explores the associated underlying mechanisms. Our synthesis will help identify the future research priorities for developing specialized treatments for alleviating or preventing renal fibrosis. Abbreviation: VEGF: vascular endothelial growth factor; CKD: chronic kidney disease; ESKD: end-stage kidney disease; ER: endoplasmic reticulum; VEGFR: vascular endothelial growth factor receptor; AKI: acute kidney injury; EMT: epithelial-to-mesenchymal transition; HIF: hypoxia-inducible factor; α-SMA: α smooth muscle actin; UUO: unilateral ureteral obstruction; TGF-β: transforming growth factor-β; PMT: pericyte-myofibroblast transition; NO: nitric oxide; NOS: nitric oxide synthase; nNOS: neuronal nitric oxide synthase; iNOS: inducible nitric oxide synthase; eNOS: endothelial nitric oxide synthase; sGC: soluble guanylate cyclase; PKG: soluble guanylate cyclase dependent protein kinases; UP R: unfolded protein response
Collapse
Affiliation(s)
- Changxiu Miao
- Department of Nephrology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Lili Jiang
- Physical Examination Center, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Chenhao Li
- Department of Nephrology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Die Jin
- Department of Nephrology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
5
|
Xia YF, Wei J. Study on Factors Associated with High Myopia CNV in Aqueous Humor and Serum. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8592729. [PMID: 35535041 PMCID: PMC9078789 DOI: 10.1155/2022/8592729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/16/2022] [Accepted: 04/02/2022] [Indexed: 11/30/2022]
Abstract
Objective The objective is to investigate the relationship and correlation between PEDF and TGF-β in aqueous humor and serum and high myopia CNV lesions. Methods For each group of patients (namely, group A: patients with high myopia CNV (mCNV); group B: patients with high myopia without CNV; group C: patients with CNV caused by other eye diseases; and group D (control group): patients with simple cataract (without CNV and high myopia)), 20 patients were collected. A total of 40 patients have been collected since the beginning of the study in December 2020, including 7 patients in group A, 13 patients in group B, 10 patients in group C, and 10 patients in group D. Serum and aqueous humor samples were collected, and PEDF and TGF-β levels in serum and aqueous humor were detected by enzyme-linked immunosorbent assay (ELISA). SPSS 26.0 statistical software was used to process the data. Independent sample t-test was used to compare the data of the same factor in the same group between serum and aqueous humor. Comparisons of the same factors between different groups were performed using a one-way analysis of variance (ANOVA). Correlation analysis was conducted by the Pearson correlation coefficient test. P < 0.05 indicated that the difference was statistically significant. Results There were no significant differences in age, gender, and course of disease among all groups (P > 0.05). The concentration of PEDF in aqueous humor in group A and group C was higher than that in group B and group D. There was no significant correlation between serum PEDF content and the above-mentioned diseases. The concentration of TGF-β in aqueous humor in groups A, B, and C was significantly higher than that in group D. However, there was no significant correlation between TGF-β content in serum and the above-mentioned diseases. There was no significant correlation between aqueous humor and serum PEDF. There was no significant correlation between the content of TGF-β in aqueous humor and serum. Conclusion TGF-β in aqueous humor may be involved in the development of high myopia and intraocular CNV disease. However, PEDF in aqueous humor may be involved in the development of intraocular CNV disease and has no significant correlation with high myopia. At the same time, TGF-β and PEDF in serum had no significant correlation with high myopia and intraocular CNV disease. There was no significant correlation between the concentrations of TGF-β and PEDF in aqueous humor and serum.
Collapse
Affiliation(s)
- Yi Fan Xia
- Henan University of Science and Technology, Luoyang, Henan Province 471000, China
| | - Jing Wei
- Henan University of Science and Technology, Luoyang, Henan Province 471000, China
| |
Collapse
|
6
|
Xu SY, Zeng CL, Ni SM, Peng YJ. The Angiogenesis Effects Of Electro-acupuncture Treatment Via Exosomal miR-210 In Cerebral Ischemia-Reperfusion Rats. Curr Neurovasc Res 2022; 19:61-72. [PMID: 35319370 DOI: 10.2174/1567202619666220321115412] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Acupuncture has been recommended as an alternative and complementary therapy for preventing and treating cerebral ischemia by the World Health Organization (WHO) for years. However, the mechanisms remain unclear. Accumulating evidence has shown that acupuncture can promote angiogenesis to attenuate brain damage after ischemic stroke. In recent years, exosome-carried microRNAs(miRNAs) activated by acupuncture has proven effective in regulating pathological changes. We, therefore, investigated whether electro-acupuncture(EA) enhanced angiogenesis in cerebral stroke via exosome-carried miR-210. METHODS We extracted and identified the exosomes from the serum of MCAO with EA treatment and injected them in MCAO rats for further observation. Simultaneously, miR-120 siRNA and HIF-1α inhibitor were transfected. Then, we evaluated the volume of infarction, pathological changes, and expression levels of angiogenic related factors of each group of rats by TTC and HE staining, transmission electron microscope(TEM), western blot, and quantitative PCR(qPCR). RESULTS Compared with the MCAO group, EA-Exosome(EA-EXO) treatment significantly decreased the infarct volume and the pathological damage, but miR-210 siRNA or HIF-1α inhibitor reversed the protective outcomes induced by EA-EXO. Moreover, EA-EXO treatment upregulated miR-210, and increases CD34、HIF-1α、VEGF、Notch1 protein and mRNA expressions compared with the MCAO group. MiR-210 siRNA or HIF-1α inhibitor treatments both down-regulated those angiogenic related proteins and mRNAs. CONCLUSION EA treatment could active the HIF-1α/VEGF/Notch 1 signal pathway to facilitate angiogenesis after ischemic stroke via exosomal miR-210.
Collapse
Affiliation(s)
- Shu-Ying Xu
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Chun-Li Zeng
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Si-Ming Ni
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yong-Jun Peng
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
7
|
Liang S, Dong S, Liu W, Wang M, Tian S, Ai Y, Wang H. Accumulated ROS Activates HIF-1α-Induced Glycolysis and Exerts a Protective Effect on Sensory Hair Cells Against Noise-Induced Damage. Front Mol Biosci 2022; 8:806650. [PMID: 35096971 PMCID: PMC8790562 DOI: 10.3389/fmolb.2021.806650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
Noise exposure causes noise-induced hearing loss (NIHL). NIHL exhibits loss of inner ear sensory hair cells and is often irreparable. Although oxidative stress is involved in hearing loss, the complex mechanisms involved in NIHL are unclear. Hypoxia-inducible factor 1α (HIF-1α) has been suggested to be essential for protecting sensory hair cells. Additionally, it has been shown that ROS is involved in modulating the stability of HIF-1α. To investigate the NIHL pathogenesis, we established a tert-butyl hydroperoxide (t-BHP)-induced oxidative stress damage model in hair-like HEI-OC1 cells and an NIHL model in C57BL/6 mice. Protein and mRNA expression were determined, and biochemical parameters including reactive oxygen species (ROS) accumulation, glucose uptake, adenosine triphosphat (ATP) production, and mitochondrial content were evaluated. In HEI-OC1 cells, t-BHP induced ROS accumulation and reduced mitochondrial content and oxygen consumption, but the ATP level was unaffected. Additionally, there was increased glucose uptake and lactate release along with elevated expression of HIF-1α, glucose transporter 1, and several glycolytic enzymes. Consistently, noise trauma induced oxidative stress and the expression of HIF-1α and glycolytic enzymes in mice. Thus, we concluded that ROS induced HIF-1α expression, which promoted glycolysis, suggesting a metabolic shift maintained the ATP level to attenuate hair cell damage in NIHL.
Collapse
Affiliation(s)
- Shuo Liang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuohui Dong
- Department of General Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shanshan Tian
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Ai
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Yu Ai, ; Haibo Wang,
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Yu Ai, ; Haibo Wang,
| |
Collapse
|
8
|
Winter C, Bjorkman T, Miller S, Nichols P, Cardinal J, O'Rourke P, Ballard E, Nasrallah F, Vegh V. Acute Mountain Sickness Following Incremental Trekking to High Altitude: Correlation With Plasma Vascular Endothelial Growth Factor Levels and the Possible Effects of Dexamethasone and Acclimatization Following Re-exposure. Front Physiol 2021; 12:746044. [PMID: 34744786 PMCID: PMC8567072 DOI: 10.3389/fphys.2021.746044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: The recognition and treatment of high-altitude illness (HAI) is increasingly important in global emergency medicine. High altitude related hypobaric hypoxia can lead to acute mountain sickness (AMS), which may relate to increased expression of vascular endothelial growth factor (VEGF), and subsequent blood-brain barrier (BBB) compromise. This study aimed to establish the relationship between AMS and changes in plasma VEGF levels during a high-altitude ascent. VEGF level changes with dexamethasone, a commonly used AMS medication, may provide additional insight into AMS. Methods: Twelve healthy volunteers ascended Mt Fuji (3,700 m) and blood samples were obtained at distinct altitudes for VEGF analysis. Oxygen saturation (SPO2) measurements were also documented at the same time-point. Six out of the 12 study participants were prescribed dexamethasone for a second ascent performed 48 h later, and blood was again collected to establish VEGF levels. Results: Four key VEGF observations could be made based on the data collected: (i) the baseline VEGF levels between the two ascents trended upwards; (ii) those deemed to have AMS in the first ascent had increased VEGF levels (23.8–30.3 pg/ml), which decreased otherwise (23.8–30.3 pg/ml); (iii) first ascent AMS participants had higher VEGF level variability for the second ascent, and similar to those not treated with dexamethasone; and (iv) for the second ascent dexamethasone participants had similar VEGF levels to non-AMS first ascent participants, and the variability was lower than for first ascent AMS and non-dexamethasone participants. SPO2 changes were unremarkable, other than reducing by around 5% irrespective of whether measurement was taken for the first or second ascent. Conclusion: First ascent findings suggest a hallmark of AMS could be elevated VEGF levels. The lack of an exercise-induced VEGF level change strengthened the notion that elevated plasma VEGF was brain-derived, and related to AMS.
Collapse
Affiliation(s)
- Craig Winter
- Kenneth Jamieson Department of Neurosurgery, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.,UQ Center for Clinical Research, University of Queensland, Brisbane, QLD, Australia.,School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Tracy Bjorkman
- UQ Center for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Stephanie Miller
- UQ Center for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Paul Nichols
- Kenneth Jamieson Department of Neurosurgery, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.,UQ Center for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - John Cardinal
- School of Human Movement Studies, University of Queensland, Brisbane, QLD, Australia
| | - Peter O'Rourke
- Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - Emma Ballard
- Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - Fatima Nasrallah
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Viktor Vegh
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia.,ARC Training Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Pereira MM, Mainigi M, Strauss JF. Secretory products of the corpus luteum and preeclampsia. Hum Reprod Update 2021; 27:651-672. [PMID: 33748839 PMCID: PMC8222764 DOI: 10.1093/humupd/dmab003] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite significant advances in our understanding of the pathophysiology of preeclampsia (PE), there are still many unknowns and controversies in the field. Women undergoing frozen-thawed embryo transfer (FET) to a hormonally prepared endometrium have been found to have an unexpected increased risk of PE compared to women who receive embryos in a natural FET cycle. The differences in risk have been hypothesized to be related to the absence or presence of a functioning corpus luteum (CL). OBJECTIVE AND RATIONALE To evaluate the literature on secretory products of the CL that could be essential for a healthy pregnancy and could reduce the risk of PE in the setting of FET. SEARCH METHODS For this review, pertinent studies were searched in PubMed/Medline (updated June 2020) using common keywords applied in the field of assisted reproductive technologies, CL physiology and preeclampsia. We also screened the complete list of references in recent publications in English (both animal and human studies) on the topics investigated. Given the design of this work as a narrative review, no formal criteria for study selection or appraisal were utilized. OUTCOMES The CL is a major source of multiple factors regulating reproduction. Progesterone, estradiol, relaxin and vasoactive and angiogenic substances produced by the CL have important roles in regulating its functional lifespan and are also secreted into the circulation to act remotely during early stages of pregnancy. Beyond the known actions of progesterone and estradiol on the uterus in early pregnancy, their metabolites have angiogenic properties that may optimize implantation and placentation. Serum levels of relaxin are almost undetectable in pregnant women without a CL, which precludes some maternal cardiovascular and renal adaptations to early pregnancy. We suggest that an imbalance in steroid hormones and their metabolites and polypeptides influencing early physiologic processes such as decidualization, implantation, angiogenesis and maternal haemodynamics could contribute to the increased PE risk among women undergoing programmed FET cycles. WIDER IMPLICATIONS A better understanding of the critical roles of the secretory products of the CL during early pregnancy holds the promise of improving the efficacy and safety of ART based on programmed FET cycles.
Collapse
Affiliation(s)
- María M Pereira
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Monica Mainigi
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Centre for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA,19104 USA
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Centre for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA,19104 USA
| |
Collapse
|
10
|
Gao J, Cao H, Zhang Q, Wang B. The effect of intermittent hypoxia and fecal microbiota of OSAS on genes associated with colorectal cancer. Sleep Breath 2020; 25:1075-1087. [PMID: 33029691 PMCID: PMC8195781 DOI: 10.1007/s11325-020-02204-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 08/31/2020] [Accepted: 09/22/2020] [Indexed: 12/29/2022]
Abstract
Purpose Colorectal cancer (CRC) is one of the common causes of cancer death worldwide. Obstructive sleep apnea syndrome (OSAS), sharing many risk factors in common with CRC, is prevalent among CRC patients. OSAS may promote the CRC development independently but the mechanism is still unknown. Intermittent hypoxia (IH) is one of the characteristics of OSAS, and hypoxia may influence the genes associated with CRC. Intestinal microbiota plays important role in CRC carcinogenesis, and OSAS patients have been shown to have intestinal microbiota dysbiosis. We hypothesized that IH and intestinal microbiota dysbiosis may be involved for CRC in patients with OSAS. Methods We established precancerous cell models of CRC with Immorto-Min colonic epithelial (IMCE) cells. First, the cells were exposed to IH in a special chamber for 4 h, 8 h, and 12 h. Feces from 6 patients with OSAS and 6 healthy controls were collected and made into sterile fecal fluid for incubation with IMCE cells for 12 h. The cells were then exposed to IH for 4 h, 8 h, and 12 h. After IH exposure, the expressions of genes and inflammation cytokines associated with CRC, such as β-catenin, STAT3, HIF-1α, IL-6, TNF-α, c-myc, and cyclinD1, were tested. Results IH activated the expression of HIF-1α and STAT3 both in mRNA and protein level (HIF-1α: P = 0.015 for mRNA level, P = 0.027 for protein level; STAT3: P = 0.023 for mRNA level, P = 0.023 for protein level), and promoted p-STAT3 shifting to the nucleus (P = 0.023). The mRNA of β-catenin (P = 0.022) and cyclinD1 (P = 0.023) was elevated, but there was no change for the β-catenin protein in the nucleus. Gut microbiota of OSAS patients promoted the expression of STAT3 (protein level: 0 h: P = 0.037; 4 h: P = 0.046; 8 h: P = 0.049; 12 h: P = 0.037), promoted p-STAT3 (4 h: P = 0.049; 8 h: P = 0.046; 12 h: P = 0.046) shifting to the nucleus, and also elevated the expression of IL-6 and TNF-α in mRNA level at 4 h (IL-6: P = 0.037, TNF-α: P = 0.037) and 8 h (IL-6: P = 0.037, TNF-α: P = 0.037). The protein of β-catenin in the nucleus was not affected by IH and gut microbiota from OSAS. Conclusions Our study demonstrated that IH and gut microbiota of patients with OSAS activated HIF-1α expression and STAT3 pathway in IMCE cells, with no influence on β-catenin pathway, which suggested that IH, STAT3 pathway, chronic inflammation, and intestinal microbiota dysbiosis may be involved in CRC carcinogenesis correlated with OSAS These findings must be interpreted cautiously and further research is necessary to clarify the causative steps in CRC development.
Collapse
Affiliation(s)
- Jia Gao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, China
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, China
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, China.
| |
Collapse
|
11
|
Maleki P, Sheida SV, Mowla SJ, Soleimani V, Taheri M, Raheb J. LINK-A long non-coding RNA and VEGF RNA expression in epithelial ovarian cancer patients. Hum Antibodies 2020; 28:227-232. [PMID: 32333582 DOI: 10.3233/hab-200411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
LINK-A (long intergenic non-coding RNA for kinase activation) is a newly identified long non-coding RNA with oncogenic function, which leads to the hyperactivation of AKT and HIF1α. thereby, fosters cell proliferation, mobility and metastasis. VEGF (vascular endothelial growth factor), a well-known cytokine has an important role in angiogenesis. In this study, we quantified RNA expression of LINK-A and VEGF on 45 tumor specimens obtained from Iranian patients diagnosed with Epithelial Ovarian Cancer (EOC). Our goal was to evaluate expression of LINK-A lncRNA and VEGF mRNA in ovarian cancer tissues and find the probable correlation of LINK-A with VEGF as a major transcription target for HIF1α. LINK-A and VEGF were remarkably overexpressed in EOC tissues compared to normal tissues (P value: 0.004, 0.0001, respectively), but we did not find correlation between LINK-A and VEGF RNA expressions in this study. LINK-A was significantly overexpressed in higher stages of cancer and tumor grades. VEGF was only significantly elevated in higher stages. This study confirms importance of novel lncRNA of LINK-A in Iranian EOC patients.
Collapse
Affiliation(s)
- Parichehr Maleki
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Sadaf Valeh Sheida
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vahid Soleimani
- Pathology Department, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamshid Raheb
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
12
|
Lu T, Zhang L, Zhu W, Zhang Y, Zhang S, Wu B, Deng N. CRISPR/Cas9-Mediated OC-2 Editing Inhibits the Tumor Growth and Angiogenesis of Ovarian Cancer. Front Oncol 2020; 10:1529. [PMID: 32984003 PMCID: PMC7492522 DOI: 10.3389/fonc.2020.01529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is the leading cancer-related cause of death in women worldwide. It is of great relevance to understand the mechanism responsible for tumor progression and identify unique oncogenesis markers for a higher chance of preventing this malignant disease. The high-expression OC-2 gene has been shown to be a potential candidate for regulating oncogenesis and angiogenesis in ovarian cancer. Hence, we wished to investigate the impact of OC-2 gene on ovarian cancer aggressiveness. CRISPR/Cas9, a gene editing tool, allows for direct ablation of OC-2 at the genomic level, and we successfully generated OC-2 KO cell lines from SKOV3 and CAOV3 cells. In an apoptosis assay, OC-2 KO induced the apoptosis activation of tumor cells, with the up-regulation of Bax/Caspase-8 and the down-regulation of Bcl-2. Consequently, the proliferation, migration, and invasion of OC-2 KO cell lines were significantly inhibited. Assays of qRT-PCR and Western blotting showed that the expression levels of pro-angiogenic growth factors VEGFA, FGF2, HGF, and HIF-1α and the activation of Akt/ERK pathways were significantly down-regulated at the loss of OC-2. In the xenograft model, OC-2 KO potently suppressed the subcutaneous tumor growth, with the inhibition exceeding 56%. The down-regulation of CD31 and relevant pro-angiogenic growth factors were observed in OC-2 KO tumor tissues. Taken together, OC-2 depletion negatively regulated the ovarian cancer progression possibly by apoptosis activation and angiogenesis inhibition. This work revealed a pivotal regulator of apoptosis and angiogenesis networks in ovarian cancer, and we applied the CRISPR/Cas9 system to the transcription factor pathway for developing a broad-acting anti-tumor gene therapy.
Collapse
Affiliation(s)
- Tongyi Lu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Ligang Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Wenhui Zhu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Yinmei Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Simin Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Binhua Wu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Ning Deng
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Zhou B, Ge T, Zhou L, Jiang L, Zhu L, Yao P, Yu Q. Dimethyloxalyl Glycine Regulates the HIF-1 Signaling Pathway in Mesenchymal Stem Cells. Stem Cell Rev Rep 2020; 16:702-710. [DOI: 10.1007/s12015-019-09947-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Yuan X, Lu H, Zhao A, Ding Y, Min Q, Wang R. Transcriptional regulation of CYP3A4 by nuclear receptors in human hepatocytes under hypoxia. Drug Metab Rev 2020; 52:225-234. [PMID: 32270716 DOI: 10.1080/03602532.2020.1733004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The human hepatic cytochrome P-450 3A4 (CYP3A4), recognized as a multifunctional enzyme, has a wide range of substrates including commonly used drugs. Previous investigations demonstrated that the expression of CYP3A4 in human hepatocytes could be regulated by some nuclear receptors (NRs) at transcriptional level under diverse situations. The significance of oxygen on CYP3A4-mediated metabolism seems notable while the regulatory mode of CYP3A4 in the particular case still remains elusive. Recently, striking evidence has emerged that both CYP3A4 and its regulator NR could be inhibited by exposure to hypoxia. Therefore, it is of great importance to elucidate whether and how these NRs act in the transcriptional regulation of CYP3A4 in human hepatocytes under hypoxic conditions. In this review, we mainly summarized transcriptional regulation of the pivotal enzyme CYP3A4 by NRs and explored the possible regulatory pathways of CYP3A4 via these major NRs under hypoxia, expecting to provide favorable evidence for further clinical guidance under such pathological situations.
Collapse
Affiliation(s)
- Xuechun Yuan
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hui Lu
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Anpeng Zhao
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Yidan Ding
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qiong Min
- Pharmacy department, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Rong Wang
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Advances in the understanding of the role of type-H vessels in the pathogenesis of osteoporosis. Arch Osteoporos 2020; 15:5. [PMID: 31897773 DOI: 10.1007/s11657-019-0677-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/02/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Angiogenesis in the bone and its role in bone metabolic plays a fundamental role in the pathology of osteoporosis. Type-H vessels have been reported to exhibit distinct morphological, molecular, and functional properties. This review is aimed to illustrate the relationship between type-H vessels in the bone and bone metabolism. METHODS This manuscript reviews the articles on in vitro and in vivo experiments concerning the topic of type-H vessels and osteoporosis, and other researches in the area published by the author within the time frame from 2014 to 2019. RESULTS Current literatures have demonstrated that age-related loss of type-H vessels plays a critical role in the pathogenesis of osteoporosis. Impaired bone mass can be reserved by enhancing the formation of type-H vessels. Activation of the Notch and Hif-1α signaling pathway in bone tissue and exogenous PDGF-BB treatment increase the number of type-H vessels, along with the restoration of bone mass. The effects of osteoblasts and low-intensity pulsed ultrasound (LIPUS) on type-H vessels remain to be further studied. CONCLUSIONS These studies support unique functions for type-H vessels in the bone that may enable new therapeutic approaches to osteoporosis.
Collapse
|
16
|
Montagna R, Canonico R, Alfano L, Bucci E, Boffo S, Staiano L, Fulco B, D'Andrea E, Nicola A, Maiorano P, D'Angelo C, Chirico A, Nicola A, Giordano A. Genomic analysis reveals association of specific SNPs with athletic performance and susceptibility to injuries in professional soccer players. J Cell Physiol 2019; 235:2139-2148. [DOI: 10.1002/jcp.29118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022]
Affiliation(s)
| | - Raffaele Canonico
- Unità Operativa Complessa di Dietetica, Medicina dello Sport e Benessere Psico‐Fisico Università degli Studi della Campania Luigi Vanvitelli Naples Italy
| | - Luigi Alfano
- Cell Biology and Biotherapy Unit Istituto Nazionale Tumori ‐ IRCCS, Fondazione G. Pascale Naples Italy
| | - Enrico Bucci
- Sbarro Health Research Organization Wayne Pennsylvania
| | - Silvia Boffo
- Sbarro Health Research Organization Wayne Pennsylvania
| | - Leopoldo Staiano
- Laboratory of Cellular and Developmental Biology Stazione Zoologica Anton Dohrn Naples Italy
| | - Beniamino Fulco
- Department of Medical Biotechnologies University of Siena Italy
| | | | | | | | | | - Andrea Chirico
- Sbarro Health Research Organization Wayne Pennsylvania
- Department of Psychology of Development and Socialization Processes “Sapienza” University of Rome Italy
| | | | - Antonio Giordano
- Sbarro Health Research Organization Wayne Pennsylvania
- Department of Medical Biotechnologies University of Siena Italy
| |
Collapse
|
17
|
Cao CJ, Su Y, Sun J, Wang GY, Jia XQ, Chen HS, Xu AH. Anti-tumor Effect of Ginkgo biloba Exocarp Extracts on B16 Melanoma Bearing Mice Involving P I3K/Akt/HIF-1α/VEGF Signaling Pathways. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:803-811. [PMID: 31531063 PMCID: PMC6706712 DOI: 10.22037/ijpr.2019.1100637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The objective of this study is to investigate the anti-tumor effect of Ginkgo biloba exocarp extracts (GBEE) on B16 melanoma bearing mice and its related molecular mechanisms. The B16-F10 melanoma solid tumor model was established in C57BL/6J mice. The tumor-bearing mice were treated with GBEE (50, 100, 200 mg/kg), taking cis-Dichlorodiamineplatinum (Ⅱ) (DDP, 3 mg/kg) as positive control and normal saline (NS) as model control. After 17 days of administration, the transplanted tumors was stripped and weighed, and the inhibition rate was calculated. Quantitative Reverse Transcription Polymerase chain reaction (qRT-PCR), Western Blot and immunohistochemistry were applied to detect mRNA and protein levels of related factors in B16 transplanted tumor tissues. The results indicated that GBEE (50, 100, 200 mg/kg) inhibited the growth of B16 transplanted solid tumor in C57BL/6J mice. Meanwhile, it inhibited the expression of CD34 and reduced microvessel density (MVD) in a dose-dependent manner. Moreover, GBEE dose-dependently down-regulated the mRNA and protein levels of hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and vascular endothelial growth factor receptor 2 (VEGFR2). The phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) proteins were not changed obviously, but the protein levels of p-PI3K and p-Akt were down-regulated. Overall, the inhibitory effect of GBEE on the growth of B16 melanoma transplant tumor in mice is related to inhibiting angiogenesis, and the mechanism involves the regulation of PI3K/Akt/ HIF-lα/VEGF signaling pathway.
Collapse
Affiliation(s)
- Chen-jie Cao
- Department of Pharmacology, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, China.
- CJ. C. and Y. S. contributed equally to this work
| | - Ya Su
- Department of Pharmacology, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, China.
- CJ. C. and Y. S. contributed equally to this work
| | - Jian Sun
- Department of Combination of Traditional Chinese and Western Medicine, Medical College of Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Gui-yun Wang
- Department of Pharmacology, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, China.
| | - Xiao-qin Jia
- Department of Pathology, Medical College of Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Hua-sheng Chen
- Department of Combination of Traditional Chinese and Western Medicine, Medical College of Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Ai-hua Xu
- Department of Pharmacology, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
18
|
Fan J, Lv H, Li J, Che Y, Xu B, Tao Z, Jiang W. Roles of Nrf2/HO-1 and HIF-1α/VEGF in lung tissue injury and repair following cerebral ischemia/reperfusion injury. J Cell Physiol 2018; 234:7695-7707. [PMID: 30565676 DOI: 10.1002/jcp.27767] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022]
Abstract
Cerebral ischemia/reperfusion injury (CIRI) leads to injury in distant organs, most commonly the lungs, although limited studies have examined self-protective mechanisms during CIRI-induced lung injury. Here, we investigated self-protective mechanisms that attenuate stress-related injury and promote the angiogenetic repair of epithelial function during CIRI-induced lung injury by measuring nuclear factor erythroid-related factor 2 (Nrf2) and hypoxia-inducible factor-1α (HIF-1α) levels. A CIRI model was established in male Sprague-Dawley rats by blocking the middle cerebral artery. Rats were divided into five subgroups based on the reperfusion time (6, 12, 24, 48, and 72 hr). Lung injury was assessed using a semiquantitative score and a thiobarbituric acid-based method of determining malonaldehyde production. Lung tissue angiogenesis was detected by CD34 and CD31 immunolabeling. Changes in Nrf2, heme oxygenase-1 (HO-1), HIF-1α, vascular-endothelial growth factor (VEGF), phosphatidylinositol 3-kinase (PI3K), extracellular-regulated kinase1/2 (ERK1/2), and phospho-ERK1/2 ( p-ERK1/2) protein- and mRNA-expression levels were measured by immunohistochemistry and reverse transcription polymerase chain reactions, respectively. Oxidative stress induced by cerebral ischemia/reperfusion (CI/R) caused lung injury. Expression of the Nrf2/HO-1 antioxidative stress pathway in lung tissues increased following CI/R, peaking after 24 hr. PI3K, ERK, and p-ERK1/2, which act upstream of Nrf2/HO-1, were expressed at higher levels in the CI/R-model group, consistent with the general trends observed for Nrf2/HO-1. Within 72 hr post-CI/R, HIF-1α, and VEGF expression significantly increased versus the sham group. Thus, during CIRI-induced lung injury, the body may upregulate antioxidative stress activities and promote angiogenesis to repair the endothelial barrier through the Nrf2/HO-1 and HIF-1α/VEGF signaling pathways, enabling self-protection.
Collapse
Affiliation(s)
- Jianhua Fan
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hui Lv
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jie Li
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuqin Che
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Baoning Xu
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zuo Tao
- Department of China Medical University, Shenyang, China
| | - Wenjun Jiang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
19
|
Lu T, Wu B, Yu Y, Zhu W, Zhang S, Zhang Y, Guo J, Deng N. Blockade of ONECUT2 expression in ovarian cancer inhibited tumor cell proliferation, migration, invasion and angiogenesis. Cancer Sci 2018; 109:2221-2234. [PMID: 29737581 PMCID: PMC6029829 DOI: 10.1111/cas.13633] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022] Open
Abstract
One cut homeobox 2 (ONECUT2 or OC-2) is a newly discovered transcription factor. Aberrant expression of OC-2 is closely related to cell proliferation, migration, invasion, and angiogenesis. In this study, we found that OC-2 expression was upregulated in ovarian adenocarcinoma cells, by Western blot analysis. The results of immunohistochemistry showed that the expression of OC-2 was also increased in malignant ovarian cancer tissue. In order to explore the role of OC-2 in the development of ovarian cancer, siRNAs that specifically targets OC-2 were designed. The siRNA targeting OC-2 could effectively inhibit the vascular endothelial growth factor A (VEGFA) expression, but silence and overexpression of VEGFA did not affect OC-2 expression. In addition, OC2-siRNA could block the proliferation, migration, and invasion, and inhibit epithelial-mesenchymal transition and the AKT/ERK signaling pathway, of human ovarian cancer cells in vitro. In a mouse model of ovarian cancer xenograft tumors, OC2-siRNA could significantly inhibit tumor cell growth and the tumor inhibition rate reached approximately 73%. The results of immunohistochemistry showed that the densities of microvessels stained with CD31, the expression of OC-2 and VEGFA were significantly decreased in tumors. These data indicated that OC-2 was an upstream regulator of VEGFA and silencing OC-2 could inhibit ovarian cancer angiogenesis and tumor growth.
Collapse
Affiliation(s)
- Tongyi Lu
- Guangdong Province Engineering Research Center for Antibody Drug and ImmunoassayDepartment of BiologyJinan UniversityGuangzhouChina
| | - Binhua Wu
- Guangdong Province Engineering Research Center for Antibody Drug and ImmunoassayDepartment of BiologyJinan UniversityGuangzhouChina
| | - Yunfei Yu
- Guangdong Province Engineering Research Center for Antibody Drug and ImmunoassayDepartment of BiologyJinan UniversityGuangzhouChina
| | - Wenhui Zhu
- Guangdong Province Engineering Research Center for Antibody Drug and ImmunoassayDepartment of BiologyJinan UniversityGuangzhouChina
| | - Simin Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and ImmunoassayDepartment of BiologyJinan UniversityGuangzhouChina
| | - Yinmei Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and ImmunoassayDepartment of BiologyJinan UniversityGuangzhouChina
| | - Jiaying Guo
- Guangdong Province Engineering Research Center for Antibody Drug and ImmunoassayDepartment of BiologyJinan UniversityGuangzhouChina
| | - Ning Deng
- Guangdong Province Engineering Research Center for Antibody Drug and ImmunoassayDepartment of BiologyJinan UniversityGuangzhouChina
| |
Collapse
|
20
|
Baay-Guzman GJ, Duran-Padilla MA, Rangel-Santiago J, Tirado-Rodriguez B, Antonio-Andres G, Barrios-Payan J, Mata-Espinosa D, Klunder-Klunder M, Vega MI, Hernandez-Pando R, Huerta-Yepez S. Dual role of hypoxia-inducible factor 1 α in experimental pulmonary tuberculosis: its implication as a new therapeutic target. Future Microbiol 2018; 13:785-798. [PMID: 29848058 DOI: 10.2217/fmb-2017-0168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIM Investigate the role of hypoxia-inducible factor-1α (HIF-1α) in pulmonary tuberculosis (TB). METHODS & RESULTS A model of progressive pulmonary TB in BALB/c mice, immunohistochemistry and digital pathology were used. High HIF-1α expression was observed during early TB in activated macrophages. During late TB, even higher HIF-1α expression was observed in foamy macrophages, which are resistant to apoptosis. Blocking HIF-1α during early infection with 2-methoxyestradiol worsened the disease, while during late TB, it induced macrophage apoptosis and decreased bacillary loads. CONCLUSION HIF-1α has a dual role in experimental TB. This finding could have therapeutic implications because combined treatment with 2-methoxyestradiol and antibiotics appeared to eliminate mycobacteria more efficiently than conventional chemotherapy during advanced disease.
Collapse
Affiliation(s)
- Guillermina J Baay-Guzman
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City, Mexico
| | - Marco A Duran-Padilla
- Servicio de Patologia del Hospital General de Mexico, Facultad de Medicina de la UNAM, Mexico City, Mexico
| | - Jesus Rangel-Santiago
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City, Mexico
| | - Belen Tirado-Rodriguez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City, Mexico
| | - Gabriela Antonio-Andres
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City, Mexico
| | - Jorge Barrios-Payan
- Section of Experimental Pathology, National Institute of Medical Sciences & Nutrition 'Salvador Zubirán', Mexico City, Mexico
| | - Dulce Mata-Espinosa
- Section of Experimental Pathology, National Institute of Medical Sciences & Nutrition 'Salvador Zubirán', Mexico City, Mexico
| | - Miguel Klunder-Klunder
- Departamento de Investigación en Salud Comunitaria, Hospital Infantil de Mexico, Federico Gomez, Mexico City, Mexico
| | - Mario I Vega
- Oncology Research Unit, Oncology Hospital, CMN SXXI, IMSS, Mexico City, Mexico.,Department of Medicine, Hematology-Oncology Division, VA West Los Angeles Medical Center BBRI, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, California, USA
| | - Rogelio Hernandez-Pando
- Section of Experimental Pathology, National Institute of Medical Sciences & Nutrition 'Salvador Zubirán', Mexico City, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City, Mexico
| |
Collapse
|
21
|
Logue OC, Mahdi F, Chapman H, George EM, Bidwell GL. A Maternally Sequestered, Biopolymer-Stabilized Vascular Endothelial Growth Factor (VEGF) Chimera for Treatment of Preeclampsia. J Am Heart Assoc 2017; 6:e007216. [PMID: 29629873 PMCID: PMC5779036 DOI: 10.1161/jaha.117.007216] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/30/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Preeclampsia is a hypertensive syndrome that complicates 3% to 5% of pregnancies in the United States. Preeclampsia originates from an improperly vascularized and ischemic placenta that releases factors that drive systemic pathophysiology. One of these factors, soluble fms-like tyrosine kinase-1, is believed to sequester vascular endothelial growth factor (VEGF), leading to systemic endothelial dysfunction and hypertension. With the goal of targeting soluble fms-like tyrosine kinase-1 while simultaneously preventing fetal exposure to VEGF, we fused VEGF to elastin-like polypeptide, a biopolymer carrier that does not cross the placental barrier (ELP-VEGF). METHODS AND RESULTS ELP-VEGF restored in vitro endothelial cell tube formation in the presence of plasma from placental ischemic rats. Long-term administered ELP-VEGF in pregnant rats accumulated in maternal kidneys, aorta, liver, and placenta, but the protein was undetectable in the pups when administered at therapeutic doses in dams. Long-term administration of ELP-VEGF in a placental ischemia rat model achieved dose-dependent attenuation of hypertension, with blood pressure equal to sham controls at a dose of 5 mg/kg per day. ELP-VEGF infusion increased total plasma soluble fms-like tyrosine kinase-1 levels but dramatically reduced free plasma soluble fms-like tyrosine kinase-1 and induced urinary excretion of nitrate/nitrite, indicating enhanced renal nitric oxide signaling. ELP-VEGF at up to 5 mg/kg per day had no deleterious effect on maternal or fetal body weight. However, dose-dependent adverse events were observed, including ascites production and neovascular tissue encapsulation around the minipump. CONCLUSIONS ELP-VEGF has the potential to treat the preeclampsia maternal syndrome, but careful dosing and optimization of the delivery route are necessary.
Collapse
Affiliation(s)
- Omar C Logue
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
| | - Fakhri Mahdi
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
| | - Heather Chapman
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Eric M George
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS
| | - Gene L Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
22
|
Zhou T, Guo S, Wang S, Li Q, Zhang M. Protective effect of sevoflurane on myocardial ischemia-reperfusion injury in rat hearts and its impact on HIF-1α and caspase-3 expression. Exp Ther Med 2017; 14:4307-4311. [PMID: 29104643 PMCID: PMC5658739 DOI: 10.3892/etm.2017.5078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/18/2017] [Indexed: 12/03/2022] Open
Abstract
This study was designed to investigate possible protective effects of sevoflurane on myocardial ischemia-reperfusion injury (MIRI) and its impact on expression of HIF-1α and caspase-3 in rats, so as to provide new insights for the treatment of MIRI. Forty SD rats were randomly divided into four groups (n=10) including Sham operation (Sham), ischemia-reperfusion (IR), sevoflurane preconditioning group (Sevo-Pre) and sevoflurane post-conditioning (Sevo-Post) groups. Perfusion was performed using ex vivo heart perfusion. The baseline values of cardiac function were recorded in each group at the end of balanced perfusion and after 60 min of reperfusion. Myocardial infarct size (MIS) was calculated at the end of perfusion using TTC staining. Levels of HIF-1α and caspase-3 protein and HIF-1α (western blotting) and Bcl-2 mRNA (RT-qPCR) were detected at the end of reperfusion. Our results showed no significant differences in cardiac function between the groups at the end of the balanced perfusion. After reperfusion for 60 min, however, the cardiac functions of the Sevo-Pre and Sevo-Post groups were significantly better than those in the IR group, and the MIS at the end of reperfusion was significantly decreased. Western blotting and RT-qPCR showed that expression of HIF-1α protein was significantly increased, expression of caspase-3 protein was significantly decreased and expression of HIF-1α and Bcl-2 mRNA were significantly increased in Sevo-Pre and Sevo-Post groups compared with the levels in the IR group at the end of reperfusion. There were no significant differences in experimental results between Sevo-Pre and Sevo-Post groups. Our data support the idea that sevoflurane can improve MIRI in rats by improving cardiac function and reducing MIS. This protective effect seems to be achieved by activation of HIF-1α and inhibition of caspase-3.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Anesthesiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Shanliang Guo
- Department of Anesthesiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Shaolin Wang
- Department of Anesthesiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Qiong Li
- Department of Anesthesiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Mingsheng Zhang
- Department of Anesthesiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
23
|
Berkane N, Liere P, Oudinet JP, Hertig A, Lefèvre G, Pluchino N, Schumacher M, Chabbert-Buffet N. From Pregnancy to Preeclampsia: A Key Role for Estrogens. Endocr Rev 2017; 38:123-144. [PMID: 28323944 DOI: 10.1210/er.2016-1065] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 02/28/2017] [Indexed: 02/08/2023]
Abstract
Preeclampsia (PE) results in placental dysfunction and is one of the primary causes of maternal and fetal mortality and morbidity. During pregnancy, estrogen is produced primarily in the placenta by conversion of androgen precursors originating from maternal and fetal adrenal glands. These processes lead to increased plasma estrogen concentrations compared with levels in nonpregnant women. Aberrant production of estrogens could play a key role in PE symptoms because they are exclusively produced by the placenta and they promote angiogenesis and vasodilation. Previous assessments of estrogen synthesis during PE yielded conflicting results, possibly because of the lack of specificity of the assays. However, with the introduction of reliable analytical protocols using liquid chromatography/mass spectrometry or gas chromatography/mass spectrometry, more recent studies suggest a marked decrease in estradiol levels in PE. The aim of this review is to summarize current knowledge of estrogen synthesis, regulation in the placenta, and biological effects during pregnancy and PE. Moreover, this review highlights the links among the occurrence of PE, estrogen biosynthesis, angiogenic factors, and cardiovascular risk factors. A close link between estrogen dysregulation and PE occurrence might validate estrogen levels as a biomarker but could also reveal a potential approach for prevention or cure of PE.
Collapse
Affiliation(s)
- Nadia Berkane
- Department of Gynecology and Obstetrics of University Hospital of Geneva, 1205, Genève, Switzerland.,U1195, INSERM and University Paris Sud, 94276 Kremlin Bicêtre, France
| | - Philippe Liere
- U1195, INSERM and University Paris Sud, 94276 Kremlin Bicêtre, France
| | - Jean-Paul Oudinet
- U1195, INSERM and University Paris Sud, 94276 Kremlin Bicêtre, France
| | - Alexandre Hertig
- Department of Nephrology, Tenon Hospital, APHP, 75020 Paris, France.,University of Pierre and Marie Curie, Sorbonne University, Paris 06, 75005 Paris, France.,Unité Mixte de Recherche Scientifique 1155, F-75020 Paris, France
| | - Guillaume Lefèvre
- University of Pierre and Marie Curie, Sorbonne University, Paris 06, 75005 Paris, France.,Department of Biochemistry and Hormonology, Tenon Hospital, APHP, F-75020 Paris, France
| | - Nicola Pluchino
- Department of Gynecology and Obstetrics of University Hospital of Geneva, 1205, Genève, Switzerland
| | | | - Nathalie Chabbert-Buffet
- University of Pierre and Marie Curie, Sorbonne University, Paris 06, 75005 Paris, France.,Department of Obstetrics, Gynecology and Reproductive Medicine, Tenon Hospital, APHP, F-75020 Paris, France.,INSERM, UMR-S938, Centre de Recherche Saint-Antoine, F-75012 Paris, France
| |
Collapse
|
24
|
Der Sarkissian S, Lévesque T, Noiseux N. Optimizing stem cells for cardiac repair: Current status and new frontiers in regenerative cardiology. World J Stem Cells 2017; 9:9-25. [PMID: 28154736 PMCID: PMC5253186 DOI: 10.4252/wjsc.v9.i1.9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/20/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023] Open
Abstract
Cell therapy has the potential to improve healing of ischemic heart, repopulate injured myocardium and restore cardiac function. The tremendous hope and potential of stem cell therapy is well understood, yet recent trials involving cell therapy for cardiovascular diseases have yielded mixed results with inconsistent data thereby readdressing controversies and unresolved questions regarding stem cell efficacy for ischemic cardiac disease treatment. These controversies are believed to arise by the lack of uniformity of the clinical trial methodologies, uncertainty regarding the underlying reparative mechanisms of stem cells, questions concerning the most appropriate cell population to use, the proper delivery method and timing in relation to the moment of infarction, as well as the poor stem cell survival and engraftment especially in a diseased microenvironment which is collectively acknowledged as a major hindrance to any form of cell therapy. Indeed, the microenvironment of the failing heart exhibits pathological hypoxic, oxidative and inflammatory stressors impairing the survival of transplanted cells. Therefore, in order to observe any significant therapeutic benefit there is a need to increase resilience of stem cells to death in the transplant microenvironment while preserving or better yet improving their reparative functionality. Although stem cell differentiation into cardiomyocytes has been observed in some instance, the prevailing reparative benefits are afforded through paracrine mechanisms that promote angiogenesis, cell survival, transdifferentiate host cells and modulate immune responses. Therefore, to maximize their reparative functionality, ex vivo manipulation of stem cells through physical, genetic and pharmacological means have shown promise to enable cells to thrive in the post-ischemic transplant microenvironment. In the present work, we will overview the current status of stem cell therapy for ischemic heart disease, discuss the most recurring cell populations employed, the mechanisms by which stem cells deliver a therapeutic benefit and strategies that have been used to optimize and increase survival and functionality of stem cells including ex vivo preconditioning with drugs and a novel “pharmaco-optimizer” as well as genetic modifications.
Collapse
|
25
|
Adrenomedullin promotes angiogenesis in epithelial ovarian cancer through upregulating hypoxia-inducible factor-1α and vascular endothelial growth factor. Sci Rep 2017; 7:40524. [PMID: 28091613 PMCID: PMC5238385 DOI: 10.1038/srep40524] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/07/2016] [Indexed: 01/18/2023] Open
Abstract
Adrenomedullin (ADM) is a multi-functional peptide related to many kinds of tumors. This study was aimed to investigate the role of ADM on angiogenesis in epithelial ovarian cancer (EOC) and its possible mechanism. The expressions of ADM, vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1α (HIF-1α) and CD34 were examined by immunohistochemistry staining. The relationship among ADM, HIF-1α, VEGF and micro-vessel density (MVD) was assessed in 56 EOC tissues. CAOV3 cells were stably transfected with pcDNA-ADM (plasmid overexpressing ADM gene) or pRNA-shADM (small interfering RNA for ADM gene). Real-time PCR and western blot analysis were performed to detect the expressions of HIF-1α and VEGF. The MTT, transwell migration assay and in vitro tube formation analysis were used to evaluate the proliferation, migration, and tube formation ability of human umbilical vein endothelial cells (HUVECs) which were pretreated with ADM or ADM receptor antagonist ADM22-52. Our findings showed that ADM expression was positively correlated with the expressions of HIF-1α, VEGF or MVD in EOC. ADM upregulated expression of HIF-1α and VEGF in CAOV3 cells. ADM promoted HUVECs proliferation, migration and tube formation. In conclusion, ADM was an upstream molecule of HIF-1α/VEGF and it promoted angiogenesis through upregulating HIF-1α/VEGF in EOC.
Collapse
|
26
|
Saad A, Zhu XY, Herrmann S, Hickson L, Tang H, Dietz AB, van Wijnen AJ, Lerman L, Textor S. Adipose-derived mesenchymal stem cells from patients with atherosclerotic renovascular disease have increased DNA damage and reduced angiogenesis that can be modified by hypoxia. Stem Cell Res Ther 2016; 7:128. [PMID: 27612459 PMCID: PMC5016873 DOI: 10.1186/s13287-016-0389-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/27/2016] [Accepted: 08/23/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Adipose-derived MSC (AMSCs) possess angiogenic and immunomodulatory properties that may modulate kidney regeneration. Whether these properties are retained in older patients with atherosclerotic vascular disease is poorly understood. Hypoxic conditions are known to modify properties and growth characteristics of AMSCs. We tested the hypothesis that AMSCs from older patients with atherosclerotic renovascular disease (RVD) differ from normal kidney donors, and whether hypoxia changes their functional and molecular properties to promote angiogenesis. METHODS AMSCs from 11 patients with RVD (mean age =74.5 years) and 10 healthy kidney donors (mean age = 51.2 years) were cultured under normoxia (20 % O2) and hypoxia (1 % O2) for 3-4 days until they reached 80 % confluency. We analyzed expression of genes and microRNAs using RNA sequencing and real-time quantitative rt-PCR. Protein expression of selected angiogenic factors (VEGF, IGF, HGF and EGF) were quantified in conditioned media using ELISAs. Apoptosis was tested using Annexin IV staining. RESULTS Normoxic AMSC from RVD patients grew normally, but exhibited increased DNA damage and reduced migration. VEGF protein secretion was significantly lower in the RVD AMSCs (0.08 vs 2.4 ng/mL/ cell, p <0.05) while HGF was higher. Both trends were reversed during growth under hypoxic conditions. Hypoxia upregulated pro-angiogenic mRNAs expression in AMSCs (VEGF, FGF, STC and ANGPTL4), and downregulated expression of many miRNAs (e.g., miR-15a, miR-16, miR-93, miR-424, 126, 132, 221) except miR-210. CONCLUSIONS Thus, although AMSC from patients with RVD had increased DNA damage and reduced migration, hypoxia stimulated pro-angiogenic responses via increased expression of angiogenic genes, VEGF secretion and induction of the hypoxia-inducible miR-210, while downregulating angiogenesis-related miRNAs.
Collapse
Affiliation(s)
- Ahmed Saad
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester Minnesota, 200 First Street SW, Rochester, MN USA
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester Minnesota, 200 First Street SW, Rochester, MN USA
| | - Sandra Herrmann
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester Minnesota, 200 First Street SW, Rochester, MN USA
| | - LaTonya Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester Minnesota, 200 First Street SW, Rochester, MN USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester Minnesota, 200 First Street SW, Rochester, MN USA
| | - Allan B. Dietz
- Division of Transfusion Medicine, Mayo Clinic, Rochester Minnesota, 200 First Street SW, Rochester, MN USA
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Biochemistry and Molecular Biology, Mayo Clinic, Rochester Minnesota, 200 First Street SW, Rochester, MN USA
| | - Lilach Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester Minnesota, 200 First Street SW, Rochester, MN USA
| | - Stephen Textor
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester Minnesota, 200 First Street SW, Rochester, MN USA
| |
Collapse
|
27
|
Park SY, Piao Y, Jeong KJ, Dong J, de Groot JF. Periostin (POSTN) Regulates Tumor Resistance to Antiangiogenic Therapy in Glioma Models. Mol Cancer Ther 2016; 15:2187-97. [PMID: 27307601 DOI: 10.1158/1535-7163.mct-15-0427] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/06/2016] [Indexed: 01/12/2023]
Abstract
Periostin (POSTN) interacts with multiple integrins to coordinate a variety of cellular processes, including epithelial-to-mesenchymal transition (EMT) and cell migration. In our previous study, anti-VEGF-A therapy was associated with resistance and EMT. This study sought to determine the role of POSTN in the resistance of glioma stem cells (GSC) to antiangiogenic therapy. In mouse xenograft models of human glioma, POSTN expression was associated with acquired resistance to anti-VEGF-A therapy and had a synergistic effect with bevacizumab in prolonging survival and decreasing tumor volume. Resistance to anti-VEGF-A therapy regulated by POSTN was associated with increased expression of TGFβ1 and hypoxia-inducible factor-1α (HIF1α) in GSCs. At the molecular level, POSTN regulated invasion and expression of EMT (caveolin-1) and angiogenesis-related genes (HIF1α and VEGF-A) through activation of STAT3. Moreover, recombinant POSTN increased GSC invasion. Collectively, our findings suggest that POSTN plays an important role in glioma invasion and resistance to antiangiogenic therapy. Mol Cancer Ther; 15(9); 2187-97. ©2016 AACR.
Collapse
Affiliation(s)
- Soon Young Park
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuji Piao
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kang Jin Jeong
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianwen Dong
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John F de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
28
|
Dong D, Reece EA, Lin X, Wu Y, AriasVillela N, Yang P. New development of the yolk sac theory in diabetic embryopathy: molecular mechanism and link to structural birth defects. Am J Obstet Gynecol 2016; 214:192-202. [PMID: 26432466 PMCID: PMC4744545 DOI: 10.1016/j.ajog.2015.09.082] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 12/12/2022]
Abstract
Maternal diabetes mellitus is a significant risk factor for structural birth defects, including congenital heart defects and neural tube defects. With the rising prevalence of type 2 diabetes mellitus and obesity in women of childbearing age, diabetes mellitus-induced birth defects have become an increasingly significant public health problem. Maternal diabetes mellitus in vivo and high glucose in vitro induce yolk sac injuries by damaging the morphologic condition of cells and altering the dynamics of organelles. The yolk sac vascular system is the first system to develop during embryogenesis; therefore, it is the most sensitive to hyperglycemia. The consequences of yolk sac injuries include impairment of nutrient transportation because of vasculopathy. Although the functional relationship between yolk sac vasculopathy and structural birth defects has not yet been established, a recent study reveals that the quality of yolk sac vasculature is related inversely to embryonic malformation rates. Studies in animal models have uncovered key molecular intermediates of diabetic yolk sac vasculopathy, which include hypoxia-inducible factor-1α, apoptosis signal-regulating kinase 1, and its inhibitor thioredoxin-1, c-Jun-N-terminal kinases, nitric oxide, and nitric oxide synthase. Yolk sac vasculopathy is also associated with abnormalities in arachidonic acid and myo-inositol. Dietary supplementation with fatty acids that restore lipid levels in the yolk sac lead to a reduction in diabetes mellitus-induced malformations. Although the role of the human yolk in embryogenesis is less extensive than in rodents, nevertheless, human embryonic vasculogenesis is affected negatively by maternal diabetes mellitus. Mechanistic studies have identified potential therapeutic targets for future intervention against yolk sac vasculopathy, birth defects, and other complications associated with diabetic pregnancies.
Collapse
Affiliation(s)
- Daoyin Dong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - E Albert Reece
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Xue Lin
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Yanqing Wu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Natalia AriasVillela
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
29
|
Zhou YN, Mu YP, Fu WW, Ning BB, Du GL, Chen JM, Sun MY, Zhang H, Hu YY, Liu CH, Xu LM, Liu P. Yiguanjian decoction and its ingredients inhibit angiogenesis in carbon tetrachloride-induced cirrhosis mice. Altern Ther Health Med 2015; 15:342. [PMID: 26427787 PMCID: PMC4591631 DOI: 10.1186/s12906-015-0862-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/16/2015] [Indexed: 01/06/2023]
Abstract
Background Cirrhosis is associated with angiogenesis and disruption of hepatic vascular architecture. Yiguanjian (YGJ) decoction, a prescription from traditional Chinese medicine, is widely used for treating liver diseases. We studied whether YGJ or its ingredients (iYGJ) had an anti-angiogenic effect and explored possible mechanisms underlying this process. Methods Cirrhosis was induced with carbon tetrachloride (CCl4) (ip) in C57BL/6 mice for 6 weeks. From week 4 to week 6, cirrhotic mice were randomly divided into four groups: sorafenib-treated, YGJ-treated and iYGJ-treated mice and placebo. Serum biochemistries, hydroxyproline (Hyp) content and histopathological changes of hepatic tissues were measured as were α-smooth muscle actin (α-SMA), collagen I, CD31, vascular endothelial growth factor (VEGF), VEGF receptor (VEGFR) 2 and hypoxia-inducible factor (HIF)-1α. Results Both YGJ and iYGJ improved serum biochemistries. Changes of histopathology showed that YGJ and iYGJ reduced hepatic tissue necroinflammatory and collagen fiber deposition in cirrhosis mice. Compared to the CCl4 treated animals, Hyp, α-SMA, collagen I, CD31, VEGF, VEGFR, and HIF-1α expression decreased in YGJ and iYGJ groups. Conclusions YGJ and iYGJ inhibited liver angiogenesis in cirrhotic mice treated with CCl4 by inhibiting the HIF-1α/VEGF signaling pathway, suggesting that anti-angiogenic effects of YGJ and iYGJ are associated with improving the hepatic hypoxic microenvironment.
Collapse
|
30
|
Field KM, Jordan JT, Wen PY, Rosenthal MA, Reardon DA. Bevacizumab and glioblastoma: Scientific review, newly reported updates, and ongoing controversies. Cancer 2015; 121:997-1007. [DOI: 10.1002/cncr.28935] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Kathryn M. Field
- Department of Medical Oncology; Royal Melbourne Hospital; Melbourne Victoria Australia
| | - Justin T. Jordan
- Center for Neuro-Oncology; Dana-Farber Cancer Institute; Boston Massachusetts
| | - Patrick Y. Wen
- Center for Neuro-Oncology; Dana-Farber Cancer Institute; Boston Massachusetts
| | - Mark A. Rosenthal
- Department of Medical Oncology; Royal Melbourne Hospital; Melbourne Victoria Australia
| | - David A. Reardon
- Center for Neuro-Oncology; Dana-Farber Cancer Institute; Boston Massachusetts
| |
Collapse
|
31
|
Expression of hypoxia-inducible factors and vascular endothelial growth factor during pregnancy in the feline uterus. Theriogenology 2015; 84:24-33. [PMID: 25794839 DOI: 10.1016/j.theriogenology.2015.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 12/23/2022]
Abstract
Hypoxia-inducible factors (HIFs) and vascular endothelial growth factor (VEGF) have critical roles during the development of the fetomaternal unit. The HIFs regulate placentation and vascularization by stimulation of VEGF gene expression. This study aimed to investigate the expression profiles of HIF gene family and VEGF in the cat uterus during pregnancy. Tissue samples of the whole uterine wall were collected after ovariohysterectomy and allocated to the following groups: embryo positive (group 1 [G1], n = 7, 7 days after mating), early pregnancy (group 2 [G2], n = 7, 20 days after mating), mid-pregnancy (group 3 [G3], n = 7, 24 days after mating), late pregnancy (group 4 [G4], n = 7, 30-45 days after mating), and oocyte positive groups (group 5 [G5], n = 7, 7 days after induction of ovulation with GnRH analog). Relative mRNA levels were determined by real-time polymerase chain reaction. As housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase was used. The relative gene expression of HIF1A in G5 was found to be significantly higher than that of other groups (G1, G2, G3, and G4) (P < 0.05). In addition, the expression of HIF2A in G5 was higher than that of G1 and HIF2A gene expression at placentation sites of G4 was higher than in G1, G2, and G3 (P < 0.05). Immunohistochemistry indicated that HIF1A, HIF2A, and VEGF expressions were observed in different cell types of uterine and placental tissues in late pregnancy and oocyte groups. The expression of HIF3A did not change significantly in any group investigated. These observations suggest that HIFs and VEGF may play a role in the establishment and development of pregnancy.
Collapse
|
32
|
Yuan Y, Zhang Y, Yao S, Shi H, Huang X, Li Y, Wei Y, Lin S. The translation initiation factor eIF3i up-regulates vascular endothelial growth factor A, accelerates cell proliferation, and promotes angiogenesis in embryonic development and tumorigenesis. J Biol Chem 2014; 289:28310-23. [PMID: 25147179 DOI: 10.1074/jbc.m114.571356] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Vascular endothelial growth factor A (VEGFA) is a critical proangiogenic factor that is activated by hypoxia at both the transcriptional and post-transcriptional levels. In hypoxia conditions, stabilized hypoxia-inducible factor 1α (HIF1A) is the key regulator for transcriptional activation of VEGFA. However, the post-transcriptional control of VEGFA expression remains poorly understood. Here, we report that the eukaryotic translation initiation factor 3i (eIF3i) is required for VEGFA protein expression in both normal embryonic and tumorigenic angiogenesis. eIF3i is dynamically expressed in the early stages of zebrafish embryogenesis and in human hepatocellular carcinoma tissues. eIF3i homozygous mutant zebrafish embryos show severe angiogenesis defects and human hepatocellular cancer cells with depletion of eIF3i to induce less angiogenesis in tumor models. Under hypoxia, the HIF1A protein can interact with its binding sequence in the eIF3i promoter and activate eIF3i transcription. The expression of VEGFA, which should rise in hypoxia, is significantly inhibited by eIF3i siRNA treatment. Moreover, eIF3i knockdown did not cause a general translation repression but specifically reduced the translation efficiency of the VEGFA mRNAs. Taken together, our results suggest that eIF3i is induced by HIF1A under hypoxia and controls normal and tumorigenic angiogenesis through regulating VEGFA protein translation.
Collapse
Affiliation(s)
- Yike Yuan
- From the State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaguang Zhang
- From the State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shaohua Yao
- From the State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China,
| | - Huashan Shi
- From the State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China, the Department of Head and Neck Oncology, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xi Huang
- From the State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuhao Li
- the Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, China, and
| | - Yuquan Wei
- From the State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuo Lin
- From the State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China, the Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, California 90095-1606
| |
Collapse
|
33
|
Ha XQ, Zhao M, Li XY, Peng JH, Dong JZ, Deng ZY, Zhao HB, Zhao Y, Zhang YY. Distribution of endothelial progenitor cells in tissues from patients with gastric cancer. Oncol Lett 2014; 7:1695-1700. [PMID: 24765203 PMCID: PMC3997668 DOI: 10.3892/ol.2014.1944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 01/27/2014] [Indexed: 01/04/2023] Open
Abstract
It is accepted that endothelial progenitor cells (EPCs) are recruited into tumor sites and take part in the neovascularization of tumors. However, few articles have discussed the specific distribution of EPCs in vivo in tissues of gastric cancer patients. For this reason, the present study sought to elucidate EPC distribution in vivo in tissues of patients with gastric cancer. Fresh tumor tissues were collected from 26 newly diagnosed patients with histologically confirmed gastric cancer (mean age, 51 years; range, 21–81 years; 7 females, 19 males). All patients were treated surgically with curative intent. One portion of the fresh tissues was prepared for flow cytometric analysis and another was immediately snap frozen in liquid nitrogen and stored at −80°C for later use in quantitative polymerase chain reaction. The analysis was based on two groups of tissues, namely the cancer group and cancer-adjacent group. The presence of CD34/CD133 double-positive cells was determined in cancer-adjacent and cancer tissues by flow cytometry. The analysis revealed that the total number of EPCs in cancer tissue was slightly greater than the number in the cancer-adjacent tissue, but not to the point of statistical significance. The number of EPCs in cancer-adjacent and cancer tissues of patients with early-stage gastric cancer was higher than the EPC count in late-stage gastric cancer patients, and significant differences were identified in the number of EPCs in cancer tissue between patients of different tumor stages. Levels of cluster of differentiation (CD)34, CD133 and vascular endothelial growth factor receptor 2 were not significantly different in cancer-adjacent tissue compared with cancer tissue. These results suggest that cancer-adjacent and cancer tissue of gastric cancer patients may be used as a reference index in the clinical and pathological staging of tumors.
Collapse
Affiliation(s)
- Xiao-Qin Ha
- Department of Clinical Laboratory, Lanzhou Military Command General Hospital of the People's Liberation Army; Key Laboratory of Stem Cell and Gene Medicine of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Man Zhao
- Department of Clinical Laboratory, Lanzhou Military Command General Hospital of the People's Liberation Army; Key Laboratory of Stem Cell and Gene Medicine of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Xiao-Yun Li
- Department of Clinical Laboratory, Lanzhou Military Command General Hospital of the People's Liberation Army; Key Laboratory of Stem Cell and Gene Medicine of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Jun-Hua Peng
- Department of Clinical Laboratory, Lanzhou Military Command General Hospital of the People's Liberation Army; Key Laboratory of Stem Cell and Gene Medicine of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Ju-Zi Dong
- Department of Clinical Laboratory, Lanzhou Military Command General Hospital of the People's Liberation Army; Key Laboratory of Stem Cell and Gene Medicine of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Zhi-Yun Deng
- Department of Clinical Laboratory, Lanzhou Military Command General Hospital of the People's Liberation Army; Key Laboratory of Stem Cell and Gene Medicine of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Hong-Bin Zhao
- Department of Clinical Laboratory, Lanzhou Military Command General Hospital of the People's Liberation Army; Key Laboratory of Stem Cell and Gene Medicine of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Yong Zhao
- Department of Clinical Laboratory, Lanzhou Military Command General Hospital of the People's Liberation Army; Key Laboratory of Stem Cell and Gene Medicine of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Yuan-Yuan Zhang
- Department of Clinical Laboratory, Lanzhou Military Command General Hospital of the People's Liberation Army; Key Laboratory of Stem Cell and Gene Medicine of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
34
|
Tan HY, Wang N, Tsao SW, Zhang Z, Feng Y. Suppression of vascular endothelial growth factor via inactivation of eukaryotic elongation factor 2 by alkaloids in Coptidis rhizome in hepatocellular carcinoma. Integr Cancer Ther 2013; 13:425-34. [PMID: 24363282 DOI: 10.1177/1534735413513635] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM OF STUDY To investigate the inhibitory effect of Coptidis rhizome aqueous extract (CRAE) on vascular endothelial growth factor (VEGF) expression and tumor angiogenesis in hepatocellular carcinoma (HCC). METHODS Quality control of CRAE was determined. Secretion of VEGF protein and expression of its mRNA in MHCC97L and Hep G2 cells were measured with enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction. Synthesis of nascent protein was determined by AHA-protein-labeling technologies. The in vivo antiangiogenic effect of CRAE was evaluated with a xenograft model. RESULTS Absence of organochlorine pesticides in CRAE was found, and phytochemical analysis showed that its components were in proportion of magnoflorine 2.2%, jatrorrhizine 1.68%, palmatine 4.4%, and berberine 13.8%. CRAE exhibited significant inhibition on VEGF secretion from MHCC97L and HepG2 cells at nontoxic doses. The mRNA transcripts of VEGF could not be inhibited by CRAE; however, synthesis of VEGF nascent protein was potently blocked by CRAE. CRAE intervention increased the phosphorylation of eukaryotic elongation factor 2 (eEF2) in HCC cells, which blocked eEF2 activity for proceeding nascent protein synthesis. The activity of eEF2 was restored in CRAE-treated HCC cells in the presence of A484594, leading to the recovery of VEGF expression. Berberine was found to be the major active component in CRAE; however, CRAE is more effective in inhibiting eEF2 activity compared to berberine treatment alone, suggesting the additive effect of other components present. Reduction of tumor size and neovascularization were observed in mice xenograft model. CONCLUSION Our study postulates the antiangiogenic effect of CRAE on hepatocellular carcinoma via an eEF2-driven pathway.
Collapse
Affiliation(s)
- Hor Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sai-Wah Tsao
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhangjin Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
35
|
Enhancing stem cell survival in vivo for tissue repair. Biotechnol Adv 2013; 31:736-43. [DOI: 10.1016/j.biotechadv.2012.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/01/2012] [Accepted: 11/03/2012] [Indexed: 12/19/2022]
|
36
|
Samanfar B, Omidi K, Hooshyar M, Laliberte B, Alamgir M, Seal AJ, Ahmed-Muhsin E, Viteri DF, Said K, Chalabian F, Golshani A, Wainer G, Burnside D, Shostak K, Bugno M, Willmore WG, Smith ML, Golshani A. Large-scale investigation of oxygen response mutants in Saccharomyces cerevisiae. MOLECULAR BIOSYSTEMS 2013; 9:1351-9. [PMID: 23467670 DOI: 10.1039/c3mb25516f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A genome-wide screen of a yeast non-essential gene-deletion library was used to identify sick phenotypes due to oxygen deprivation. The screen provided a manageable list of 384 potentially novel as well as known oxygen responding (anoxia-survival) genes. The gene-deletion mutants were further assayed for sensitivity to ferrozine and cobalt to obtain a subset of 34 oxygen-responsive candidate genes including the known hypoxic gene activator, MGA2. With each mutant in this subset a plasmid based β-galactosidase assay was performed using the anoxic-inducible promoter from OLE1 gene, and 17 gene deletions were identified that inhibit induction under anaerobic conditions. Genetic interaction analysis for one of these mutants, the RNase-encoding POP2 gene, revealed synthetic sick interactions with a number of genes involved in oxygen sensing and response. Knockdown experiments for CNOT8, human homolog of POP2, reduced cell survival under low oxygen condition suggesting a similar function in human cells.
Collapse
Affiliation(s)
- Bahram Samanfar
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Apparent versus true gene expression changes of three hypoxia-related genes in autopsy derived tissue and the importance of normalisation. Int J Legal Med 2012; 127:335-44. [DOI: 10.1007/s00414-012-0787-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/16/2012] [Indexed: 01/21/2023]
|
38
|
Bhang SH, Lee S, Shin JY, Lee TJ, Kim BS. Transplantation of cord blood mesenchymal stem cells as spheroids enhances vascularization. Tissue Eng Part A 2012; 18:2138-47. [PMID: 22559333 PMCID: PMC3463282 DOI: 10.1089/ten.tea.2011.0640] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 05/02/2012] [Indexed: 01/21/2023] Open
Abstract
Despite promising results from the therapeutic use of stem cells for treating ischemic diseases, the poor survival of cells transplanted into ischemic regions is one of the major problems that undermine the efficacy of stem cell therapy. Cord blood mononuclear cells (CBMNCs) are an alternative source of mesenchymal stem cells (MSCs) without disadvantages, such as the painful and invasive harvesting procedure, of MSCs derived from bone marrow or adipose tissue. In the present study, we investigated whether the angiogenic efficacy of cord blood mesenchymal stem cells (CBMSCs) can be enhanced by grafting as spheroids in a mouse hindlimb ischemia model. Human CBMSC (hCBMSC) spheroids were prepared by using the hanging-drop method. Mouse hindlimb ischemia was induced by excising the femoral artery and its branches. After surgery, the animals were divided into no-treatment, dissociated hCBMSC, and spheroid hCBMSC groups (n=8 per group) and received corresponding hCBMSC treatments. After surgery, the ischemic hindlimbs were monitored for 4 weeks, and then, the ischemic hindlimb muscles were harvested for histological analysis. Apoptotic signaling, angiogenesis-related signal pathways, and blood vessel formation were investigated in vitro and/or in vivo. The transplantation of hCBMSCs as spheroids into mouse ischemic hindlimbs significantly improved the survival of the transplanted cells by suppressing apoptotic signaling while activating antiapoptotic signaling. Furthermore, the transplantation of hCBMSCs as spheroids significantly increased the number of microvessels and smooth muscle α-actin-positive vessels in the ischemic limbs of mice, and attenuated limb loss and necrosis. Human CBMNC can be considered an alternative source of MSC, and spheroid-based hCBMSC delivery can be considered a simple and effective strategy for enhancing the therapeutic efficacy of hCBMSCs.
Collapse
Affiliation(s)
- Suk Ho Bhang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seahyoung Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jung-Youn Shin
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Tae-Jin Lee
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
- Institute of Bioengineering, Institute of Chemical Processes, Engineering Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Wu S, Cheng Z, Yu L, Song W, Tao Y. [Expression of CD82/KAI1 and HIF-1α in non-small cell lung cancer and their relationship to vasculogenic mimicry]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2012; 14:918-25. [PMID: 22152691 PMCID: PMC6000186 DOI: 10.3779/j.issn.1009-3419.2011.12.04] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
背景与目的 新近研究显示血管生成拟态存在于多种高侵袭性肿瘤中, 并与肿瘤细胞的侵袭、转移特性有关, 在形成血管生成拟态的肿瘤中有多种基因表达异常。本研究旨在寻找能预测非小细胞肺癌(non-small cell lung cancer, NSCLC)浸润、转移及术后生存率的指标。 方法 采用免疫组化ElivisionTM plus法和特殊组织化学法检测160例NSCLC和20例正常肺组织中缺氧诱导因子-1α(hypoxia inducible factor-1α, HIF-1α)、CD82/KAI1的表达和血管生成拟态(vasculogenic mimicry, VM)情况。 结果 在正常肺组织中HIF-1α、CD82/KAI1的表达率和VM分别为0、95.0%和0, 在NSCLC组织中分别为48.8%、37.5%和36.9%, 差异有统计学意义(P < 0.01);其水平与肿瘤细胞分化程度、淋巴结转移、临床分期和术后生存期有关(P < 0.01);CD82/KAI1的表达与HIF-1α的表达以及VM呈负相关, HIF-1α的表达水平与VM呈正相关(P < 0.05);CD82/KAI1、HIF-1α的表达以及VM均与微血管密度(microvessel density, MVD)有关联性(P < 0.01)。Kaplan-Meier生存分析表明HIF-1α的过表达和VM均与患者的生存率有关, 阳性的患者生存率明显低于阴性者(P < 0.01);而CD82/KAI1阳性表达的患者生存率明显高于阴性者(P < 0.01);MVD≥22的5年生存率明显低于MVD < 22的生存率(P < 0.01)。多因素分析:pTNM分期、CD82/KAI1、HIF-1α的表达以及VM是影响NSCLC根治术后患者预后的独立因素(P < 0.01)。 结论 CD82/KAI1、HIF-1α在NSCLC组织中的表达水平以及VM与肿瘤的分化程度、转移和预后等均有关, CD82/KAI1、HIF-1α和VM联合检测对NSCLC的进展及预后判断有重要意义。
Collapse
Affiliation(s)
- Shiwu Wu
- Department of Pathology, Bengbu Medical College, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | | | | | | | | |
Collapse
|
40
|
T cells are not required for pathogenesis in the Syrian hamster model of hantavirus pulmonary syndrome. J Virol 2011; 85:9929-44. [PMID: 21775442 DOI: 10.1128/jvi.05356-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Andes virus (ANDV) is associated with a lethal vascular leak syndrome in humans termed hantavirus pulmonary syndrome (HPS). In hamsters, ANDV causes a respiratory distress syndrome closely resembling human HPS. The mechanism for the massive vascular leakage associated with HPS is poorly understood; however, T cell immunopathology has been implicated on the basis of circumstantial and corollary evidence. Here, we show that following ANDV challenge, hamster T cell activation corresponds with the onset of disease. However, treatment with cyclophosphamide or specific T cell depletion does not impact the course of disease or alter the number of surviving animals, despite significant reductions in T cell number. These data demonstrate, for the first time, that T cells are not required for hantavirus pathogenesis in the hamster model of human HPS. Depletion of T cells from Syrian hamsters did not significantly influence early events in disease progression. Moreover, these data argue for a mechanism of hantavirus-induced vascular permeability that does not involve T cell immunopathology.
Collapse
|
41
|
Nilles E, Sayward H, D'Onofrio G. Vascular endothelial growth factor and acute mountain sickness. J Emerg Trauma Shock 2011; 2:6-9. [PMID: 19561948 PMCID: PMC2700574 DOI: 10.4103/0974-2700.44675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 11/18/2008] [Indexed: 12/13/2022] Open
Abstract
Study Objective: Despite causing significant morbidity throughout the mountainous regions of the world, the pathophysiology of acute mountain sickness (AMS) remains poorly understood. This study aims to improve the understanding of altitude illness by determining if vascular endothelial growth factor (VEGF) plays a role in the development of AMS. The purpose of this study was to determine if elevated plasma VEGF correlates with increased symptoms of AMS at high altitude. Patients and Methods: This is a prospective study of a cohort of healthy climbers on Denali (Mount McKinley) in Alaska at 14, 200 feet. Baseline demographics, medications, rates of ascent, and AMS scores were recorded. Pulse oximetry measurements and venous blood samples were obtained. Comparisons were made between mountaineers with and without AMS. Results: Seventy-two climbers were approached for participation in the study; 21 (29%) refused. Of the 51 climbers participating in the study, 14 subjects (27.5%) had symptoms of AMS and 37 subjects (72.5%) were free of symptoms of AMS. Plasma VEGF levels were 79.14 pg/dl (SD: 121.44) and 57.57pg/dl (SD: 102.71) in the AMS and non-AMS groups, respectively. These results were nonsignificant. Similarly, comparison of sex, age, rate of ascent, pulse oximetry values, or history of altitude illness did not reveal significant differences between the AMS and non-AMS groups. Conclusion: This study does not provide evidence in support of the theory that plasma VEGF correlates with symptoms of AMS.
Collapse
Affiliation(s)
- Eric Nilles
- Department of Emergency Medicine, University of Iowa, Iowa City IA 52242-1009, USA
| | | | | |
Collapse
|
42
|
Yang P, Reece EA. Role of HIF-1α in maternal hyperglycemia-induced embryonic vasculopathy. Am J Obstet Gynecol 2011; 204:332.e1-7. [PMID: 21345401 DOI: 10.1016/j.ajog.2011.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 01/03/2011] [Accepted: 01/11/2011] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Maternal diabetes adversely impacts embryonic vasculogenesis, which results in embryonic vasculopathy. The purpose of our study is to determine whether hypoxia inducible factor (HIF)-1α plays a role in diabetic embryonic vasculopathy. STUDY DESIGN Levels of HIF-1α were determined in mouse conceptuses. Conceptuses on day 7 of pregnancy were cultured under euglycemic (150 mg/dL glucose) and hyperglycemic (300 mg/dL) conditions with or without AdCA5, or in the presence or absence of 2.0 μg/mL human recombinant thioredoxin, an endogenous antioxidant protein. AdCA5 is an adenovirus encoding a constitutively active form of HIF-1α. RESULTS Maternal diabetes significantly reduced HIF-1α protein expression. The administration of 1 μL (1 × 10(7) infectious units/mL) per 1 mL culture medium AdCA5 completely reversed hyperglycemia-reduced vasculature morphological scores and vascular endothelial growth factor expression. Thioredoxin treatment reversed hyperglycemia-reduced HIF-1α levels. CONCLUSION We conclude that reduced HIF-1α plays a critical role in the induction of diabetic embryonic vasculopathy, and that oxidative stress is implicated in hyperglycemia-induced HIF-1α reduction.
Collapse
Affiliation(s)
- Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
43
|
Inhibition of hypoxia-induced retinal neovascularization in mice with short hairpin RNA targeting Rac1, possibly via blockading redox signaling. Exp Eye Res 2011; 92:473-81. [PMID: 21414312 DOI: 10.1016/j.exer.2011.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 03/03/2011] [Accepted: 03/06/2011] [Indexed: 02/05/2023]
Abstract
NADPH oxidase-derived reactive oxygen species are involved in angiogenesis in vitro and regulated by ras-related C3 botulinum toxin substrate 1 (Rac1). This study has employed vector-based short hairpin RNA targeting Rac1 (Rac1-shRNA) to investigate the inhibitory effect on hypoxia-induced retinal neovascularization (RN) in vivo and the underlying mechanism. pSUPER-Rac1-shRNA was intravitreally injected into the mouse model of oxygen-induced retinopathy. RN was evaluated by FITC-dextran angiography and quantitated histologically. Expressions of Rac1, nuclear factor kappa B (NF-κB) subunit p65, hypoxia-inducible factor-1 alpha (HIF-1α), and vascular endothelial growth factor (VEGF) were determined by real-time quantitative RT-PCR and western blotting. After intravitreal administration of pSUPER-Rac1-shRNA, retinal Rac1 gene expression was reduced by 72% at postnatal day 17 (P17). Retinal flat mount and quantification of the neovascular nuclei demonstrated that RN was significantly inhibited. Meanwhile, the expression levels of NF-κB and HIF-1α, the redox-dependent transcription factors, were significantly downregulated. HIF-1α and its downstream gene VEGF were found to be significantly decreased at both transcriptional and translational levels. Our findings not only suggest that Rac1 may be involved in the process of RN in mouse oxygen-induced retinopathy via regulating the redox signaling, but may also provide a novel therapeutic target for hypoxia-induced retinal neovascular diseases.
Collapse
|
44
|
Zhou B, Zhang PJ, Tian T, Jin C, Li Y, Feng M, Liu XY, Jie L, Tao LD. Role of vascular endothelial growth factor in protection of intrahepatic cholangiocytes mediated by hypoxic preconditioning after liver transplantation in rats. Transplant Proc 2011; 42:2457-62. [PMID: 20832524 DOI: 10.1016/j.transproceed.2010.04.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 04/21/2010] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To investigate the effect on intrahepatic cholangiocytes mediated by hypoxic preconditioning (HP) after liver transplantation and the role of vascular endothelial growth factor (VEGF). MATERIALS AND METHODS This experiment was based on a model of rat orthotopic liver autotransplantation. Sprague-Dawley rats were randomly divided into 3 groups: normal control, autotransplantation (AT), and HP. The HP group was subjected to 8% oxygen atmosphere for 90 minutes before surgery. At 6, 12, 24, and 48 hours after autotransplantation, the rats were killed for testing .Serum total bilirubin, direct bilirubin, and alkaline phosphatase concentrations were determined. The microstructure of cholangiocytes and the ultramicrostructure of cholangioles were determined. Immunohistochemistry was used to detect the expression of VEGF and the proliferation rate of cholangiocytes. RESULTS Total bilirubin, direct bilirubin, and alkaline phosphatase concentrations in the AT group increased considerably more than in the HP group during the entire interval (P < .05). Light microscopy demonstrated that the microstructure of cholangiocytes in the AT group was damaged more seriously than in the HP group. At transmission electron microscopy, the ultramicrostructure of cholangioles was changed more obviously than in the HP group. The expression of VEGF on cholangiocytes and the proliferation rate of cholangiocytes were higher in the HP group than in the AT group over the entire experiment (P < .05). CONCLUSION Hypoxic preconditioning has a protective effect on cholangiocytes after liver autotransplantation. The mechanism may be related to HP-induced overexpression of VEGF on cholangiocytes.
Collapse
Affiliation(s)
- B Zhou
- Institute of General Surgical Research, Second Affiliated Hospital, Yangzhou University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
HBO1 is required for H3K14 acetylation and normal transcriptional activity during embryonic development. Mol Cell Biol 2010; 31:845-60. [PMID: 21149574 DOI: 10.1128/mcb.00159-10] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We report here that the MYST histone acetyltransferase HBO1 (histone acetyltransferase bound to ORC; MYST2/KAT7) is essential for postgastrulation mammalian development. Lack of HBO1 led to a more than 90% reduction of histone 3 lysine 14 (H3K14) acetylation, whereas no reduction of acetylation was detected at other histone residues. The decrease in H3K14 acetylation was accompanied by a decrease in expression of the majority of genes studied. However, some genes, in particular genes regulating embryonic patterning, were more severely affected than "housekeeping" genes. Development of HBO1-deficient embryos was arrested at the 10-somite stage. Blood vessels, mesenchyme, and somites were disorganized. In contrast to previous studies that reported cell cycle arrest in HBO1-depleted cultured cells, no defects in DNA replication or cell proliferation were seen in Hbo1 mutant embryo primary fibroblasts or immortalized fibroblasts. Rather, a high rate of cell death and DNA fragmentation was observed in Hbo1 mutant embryos, resulting initially in the degeneration of mesenchymal tissues and ultimately in embryonic lethality. In conclusion, the primary role of HBO1 in development is that of a transcriptional activator, which is indispensable for H3K14 acetylation and for the normal expression of essential genes regulating embryonic development.
Collapse
|
46
|
Bermudez O, Jouandin P, Rottier J, Bourcier C, Pagès G, Gimond C. Post-transcriptional regulation of the DUSP6/MKP-3 phosphatase by MEK/ERK signaling and hypoxia. J Cell Physiol 2010; 226:276-84. [PMID: 20665674 DOI: 10.1002/jcp.22339] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DUSP6/MKP-3 is a cytoplasmic dual-specificity phosphatase specific for the MAP kinases ERK1/2. Previous data have shown that the MEK/ERK axis exerts a retro-control on its own signaling through transcriptional and post-translational regulation of DUSP6. We first confirm the key role of MEK/ERK in maintaining the levels of dusp6 mRNA, while PI3K/mTOR, p38 MAPK, and JNK signaling pathways had no significant effects. We further show that regulation of dusp6 mRNA stability plays a critical role in ERK-dependent regulation of dusp6 expression. Luciferase reporter constructs indicated that MEK/ERK signaling increased the half-life of dusp6 mRNA in a 3'untranslated region (3'UTR)-dependent manner. In addition, hypoxia, a hallmark of tumor growth, was found to increase both endogenous levels of dusp6 mRNA and the stability of the luciferase reporter constructs containing its 3'UTR, in a HIF-1-dependent manner. Nevertheless, a basal ERK activity was required for the response to hypoxia. Finally, Tristetraprolin (TTP), a member of the TIS11 CCCH zinc finger protein family, and PUM2, an homolog of drosophila pumilio, two proteins regulating mRNA stability reduced the levels of endogenous dusp6 mRNA and the activity of the dusp6/3'UTR luciferase reporter constructs. This study shows that post-transcriptional regulation is a key process in the control of DUSP6 expression.
Collapse
Affiliation(s)
- Olga Bermudez
- Institute of Developmental Biology and Cancer, CNRS UMR 6543, Université de Nice-Sophia Antipolis, Nice, France
| | | | | | | | | | | |
Collapse
|
47
|
Woods AK, Hoffmann DS, Weydert CJ, Butler SD, Zhou Y, Sharma RV, Davisson RL. Adenoviral delivery of VEGF121 early in pregnancy prevents spontaneous development of preeclampsia in BPH/5 mice. Hypertension 2010; 57:94-102. [PMID: 21079047 DOI: 10.1161/hypertensionaha.110.160242] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An imbalance in circulating proangiogenic and antiangiogenic factors is postulated to play a causal role in preeclampsia (PE). We have described an inbred mouse strain, BPH/5, which spontaneously develops a PE-like syndrome including late-gestational hypertension, proteinuria, and poor feto-placental outcomes. Here we tested the hypothesis that an angiogenic imbalance during pregnancy in BPH/5 mice leads to the development of PE-like phenotypes in this model. Similar to clinical findings, plasma from pregnant BPH/5 showed reduced levels of free vascular endothelial growth factor (VEGF) and placental growth factor (PGF) compared to C57BL/6 controls. This was paralleled by a marked decrease in VEGF protein and Pgf mRNA in BPH/5 placentae. Surprisingly, antagonism by the soluble form of the FLT1 receptor (sFLT1) did not appear to be the cause of this reduction, as sFLT1 levels were unchanged or even reduced in BPH/5 compared to controls. Adenoviral-mediated delivery of VEGF(121) (Ad-VEGF) via tail vein at embryonic day 7.5 normalized both the plasma-free VEGF levels in BPH/5 and restored the in vitro angiogenic capacity of serum from these mice. Ad-VEGF also reduced the incidence of fetal resorptions and prevented the late-gestational spike in blood pressure and proteinuria observed in BPH/5. These data underscore the importance of dysregulation of angiogenic factors in the pathogenesis of PE and suggest the potential utility of early proangiogenic therapies in treating this disease.
Collapse
Affiliation(s)
- Ashley K Woods
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853-6401, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Ischemia and hypoxia have been implicated in the pathophysiology of age related macular degeneration (AMD). This has mostly been based on studies on choroidal perfusion, which is not the only contributor to retinal hypoxia found in AMD eyes. Other features of AMD may also interfere with retinal oxygen metabolism including confluent drusen, serous or hemorrhagic retinal detachment, retinal edema and vitreoretinal adhesion. Each of these features contributes to retinal hypoxia: the drusen and retinal elevation by increasing the distance between the choriocapillaris and retina; vitreoretinal adhesion by reducing diffusion and convection of oxygen towards and vascular endothelial growth factor (VEGF) away from hypoxic retinal areas. Hypoxia-inducible-factor is known to exist in subretinal neovascularization and hypoxia is the main stimulus for the production of VEGF. Each feature may not by itself create enough hypoxia and VEGF accumulation to stimulate wet AMD, but they may combine to do so. Choroidal ischemia in AMD has been demonstrated by many researchers, using different technologies. Choroidal ischemia obviously decreases oxygen delivery to the outer retina. Confluent drusen, thickening of Bruch's membrane and any detachment of retina or retinal pigment epithelium, increases the distance between the choriocapillaris and the retina and thereby reduces the oxygen flux from the choroid to the outer retina according to Fick's law of diffusion. Retinal elevation and choroidal ischemia may combine forces to reduce choroidal oxygen delivery to the outer retina, produce retinal hypoxia. Hypoxia leads to production of VEGF leading to neovascularization and tissue edema. A vicious cycle may develop, where VEGF production increases effusion, retinal detachment and edema, further increasing hypoxia and VEGF production. Adhesion of the viscous posterior vitreous cortex to the retina maintains a barrier to diffusion and convection currents in the vitreous cavity according to the laws of Fick's, Stokes-Einstein and Hagen-Poiseuille. If the vitreous is detached from the surface of the retina, the low viscosity fluid transports oxygen and nutrients towards an ischemic area of the retina, and cytokines away from the retina, at a faster rate than through attached vitreous gel. Vitreoretinal adhesion can exacerbate retinal hypoxia and accumulation of cytokines, such as VEGF. Vitreoretinal traction can also cause hypoxia by retinal elevation. Conceivably, the basic features of AMD, drusen, choroidal ischemia, and vitreoretinal adhesion are independently determined by genetics and environment and may combine in variable proportions. If the resulting hypoxia and consequent VEGF accumulation crosses a threshold, this will trigger effusion and neovascularization.
Collapse
Affiliation(s)
- Einar Stefánsson
- University of Iceland, National University Hospital, 101 Reykjavík, Iceland.
| | | | | |
Collapse
|
49
|
Khabar KSA. Post-transcriptional control during chronic inflammation and cancer: a focus on AU-rich elements. Cell Mol Life Sci 2010; 67:2937-55. [PMID: 20495997 PMCID: PMC2921490 DOI: 10.1007/s00018-010-0383-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/01/2010] [Accepted: 04/21/2010] [Indexed: 12/21/2022]
Abstract
A considerable number of genes that code for AU-rich mRNAs including cytokines, growth factors, transcriptional factors, and certain receptors are involved in both chronic inflammation and cancer. Overexpression of these genes is affected by aberrations or by prolonged activation of several signaling pathways. AU-rich elements (ARE) are important cis-acting short sequences in the 3'UTR that mediate recognition of an array of RNA-binding proteins and affect mRNA stability and translation. This review addresses the cellular and molecular mechanisms that are common between inflammation and cancer and that also govern ARE-mediated post-transcriptional control. The first part examines the role of the ARE-genes in inflammation and cancer and sequence characteristics of AU-rich elements. The second part addresses the common signaling pathways in inflammation and cancer that regulate the ARE-mediated pathways and how their deregulations affect ARE-gene regulation and disease outcome.
Collapse
Affiliation(s)
- Khalid S A Khabar
- Program in BioMolecular Research, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
50
|
Leger AJ, Altobelli A, Mosquea LM, Belanger AJ, Song A, Cheng SH, Jiang C, Yew NS. Inhibition of osteoclastogenesis by prolyl hydroxylase inhibitor dimethyloxallyl glycine. J Bone Miner Metab 2010; 28:510-9. [PMID: 20300790 DOI: 10.1007/s00774-010-0171-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 02/03/2010] [Indexed: 12/22/2022]
Abstract
Studies examining the effects of hypoxia upon osteoclast biology have consistently revealed a stimulatory effect; both osteoclast differentiation and resorption activity have been shown to be enhanced in the presence of hypoxia. In the present study we examined the effects of the hypoxia mimetics dimethyloxallyl glycine (DMOG) and desferrioxamine (DFO) upon osteoclastogenesis. In contrast to hypoxia, our studies revealed a dose-dependent inhibition of osteoclast formation from macrophages treated with DMOG and DFO. Moreover, expression of a constitutively active form of hypoxia-inducible factor 1alpha (HIF-1alpha) did not enhance osteoclastogenesis and actually attenuated the differentiation process. DMOG did not affect cell viability or receptor activator of nuclear factor kappaB ligand (RANKL)-dependent phosphorylation of mitogen-activated protein (MAP) kinases. However, RANKL-dependent transcription of tartrate-resistant acid phosphatase (TRAP) was reduced in the presence of DMOG. Additionally, DMOG promoted transcription of the pro-apoptotic mediator B-Nip3. These studies suggest that a hypoxia-responsive factor other than HIF-1alpha is necessary for enhancing the formation of osteoclasts in hypoxic settings.
Collapse
Affiliation(s)
- Andrew J Leger
- Genzyme Corporation, 49 New York Avenue, Framingham, MA 01701-9322, USA.
| | | | | | | | | | | | | | | |
Collapse
|