1
|
Sasankan D, Mohan R. End Binding Proteins: Drivers of Cancer Progression. Cytoskeleton (Hoboken) 2024. [PMID: 39699076 DOI: 10.1002/cm.21972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Cancer, a complex and heterogeneous disease, continues to be a major global health concern. Despite advancements in diagnostics and therapeutics, the aggressive nature of certain cancers remain a significant challenge, necessitating a deeper understanding of the underlying molecular mechanisms driving their severity and progression. Cancer severity and progression depend on cellular properties such as cell migration, cell division, cell shape changes, and intracellular transport, all of which are driven by dynamic cellular microtubules. Dynamic properties of microtubules, in turn, are regulated by an array of proteins that influence their stability and growth. Among these regulators, End Binding (EB) proteins stand out as critical orchestrators of microtubule dynamics at their growing plus ends. Beyond their fundamental role in normal cellular functions, recent research has uncovered compelling evidence linking EB proteins to the pathogenesis of various diseases, including cancer progression. As the field of cancer research advances, the clinical implication of EB proteins role in cancer severity and aggressiveness become increasingly evident. This review aims to comprehensively explore the role of microtubule-associated EB proteins in influencing the severity and aggressiveness of cancer. We also discuss the potential significance of EB as a clinical biomarker for cancer diagnosis and prognosis and as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Dhakshmi Sasankan
- Department of Biotechnology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, India
| | - Renu Mohan
- Department of Biotechnology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, India
| |
Collapse
|
2
|
Jiang J, Xie G, Li T, Ding H, Tang R, Luo J, Li Q, Lu W, Xiao Y, Sun H. Discovery of Dehydrogenated Imipridone Derivatives as Activators of Human Caseinolytic Protease P. J Med Chem 2024; 67:15328-15352. [PMID: 39172943 DOI: 10.1021/acs.jmedchem.4c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Based on the founding member of imipridones, ONC201, a class of dehydrogenated imipridone derivatives was designed, synthesized, and evaluated in a series of biochemical and biological assays as human caseinolytic protease P (hClpP) activators. Mechanism studies for one of the most potent compounds, XT6, indicated that it can potently bind to both recombinant and cellular hClpP, effectively promote the formation of hClpP tetradecamer, efficiently induce the degradation of hClpP substrates, robustly upregulate the expression of ATF4, and strongly inhibit the phosphorylations of AKT and ERK. More importantly, XT6 exhibited a promising pharmacokinetic profile in rats and could penetrate the blood brain barrier. It showed highly potent in vivo antitumor activity in a MIAPACA2 cell line derived pancreatic cancer model in BALB/c nude mice.
Collapse
Affiliation(s)
- Jinxin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guangjun Xie
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Tong Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Ding
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Rui Tang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jiajun Luo
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Qiannan Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wugang Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiying Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Zhou Y, Chen H, Yan J, Yao Q, Kong C, Peng Y, Xiao S, Yang J. FOXA2 Activates RND1 to Regulate Arachidonic Acid Metabolism Pathway and Suppress Cisplatin Resistance in Lung Squamous Cell Carcinoma. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13814. [PMID: 39129202 PMCID: PMC11317498 DOI: 10.1111/crj.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/09/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND The primary cause of cancer-related fatalities globally is lung cancer. Although the chemotherapy drug cisplatin (DDP) has brought certain benefits to patients, the rapid development of drug resistance has greatly hindered treatment success. METHODS We used the lung squamous cell carcinoma (LUSC) mRNA data set to explore the differentially expressed gene (RND1) in LUSC and detected RND1 expression in LUSC cells and DDP-resistant cells by qRT-PCR. Meanwhile, we performed abnormal expression treatment on RND1 and conducted CCK8, colony formation, and flow cytometry to evaluate the impact of RND1 expression on cell proliferation, apoptosis, and DDP resistance. In addition, we analyzed metabolism pathways involving RND1 using GSEA. We also used online tools such as hTFtarget and JASPAR to screen for the upstream transcription factor FOXA2 of RND1 and verified their relationship through CHIP and dual luciferase experiments. Finally, we validated the role of FOXA2-RND1 in DDP resistance in LUSC through the above experiments. RESULTS RND1 was downregulated in LUSC, and overexpression of RND1 repressed proliferation and DDP resistance of LUSC cells and facilitated cell apoptosis. RND1 modulated the arachidonic acid (AA) metabolism pathway, and FOXA2 positively manipulated RND1 expression. By activating FOXA2, stabilizing RND1, and regulating AA levels, the sensitivity of LUSC cells to DDP could be enhanced. CONCLUSION Our study suggested that FOXA2 positively modulated the RND1-AA pathway, which repressed the resistance of LUSC cells to DDP.
Collapse
Affiliation(s)
- Yafu Zhou
- Department of Thoracic SurgeonsHunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Huiguo Chen
- Department of Thoracic SurgeonsHunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Jianhua Yan
- Department of Thoracic SurgeonsHunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Qi Yao
- Department of Thoracic SurgeonsHunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Chunchu Kong
- Department of RespiratoryHunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - You Peng
- Department of GeriatricHunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Shengying Xiao
- Department of OncologyHunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Jinsong Yang
- Department of Thoracic SurgeonsHunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| |
Collapse
|
4
|
Mabanglo MF, Wong KS, Barghash MM, Leung E, Chuang SHW, Ardalan A, Majaesic EM, Wong CJ, Zhang S, Lang H, Karanewsky DS, Iwanowicz AA, Graves LM, Iwanowicz EJ, Gingras AC, Houry WA. Potent ClpP agonists with anticancer properties bind with improved structural complementarity and alter the mitochondrial N-terminome. Structure 2023; 31:185-200.e10. [PMID: 36586405 PMCID: PMC9898158 DOI: 10.1016/j.str.2022.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 12/31/2022]
Abstract
The mitochondrial ClpP protease is responsible for mitochondrial protein quality control through specific degradation of proteins involved in several metabolic processes. ClpP overexpression is also required in many cancer cells to eliminate reactive oxygen species (ROS)-damaged proteins and to sustain oncogenesis. Targeting ClpP to dysregulate its function using small-molecule agonists is a recent strategy in cancer therapy. Here, we synthesized imipridone-derived compounds and related chemicals, which we characterized using biochemical, biophysical, and cellular studies. Using X-ray crystallography, we found that these compounds have enhanced binding affinities due to their greater shape and charge complementarity with the surface hydrophobic pockets of ClpP. N-terminome profiling of cancer cells upon treatment with one of these compounds revealed the global proteomic changes that arise and identified the structural motifs preferred for protein cleavage by compound-activated ClpP. Together, our studies provide the structural and molecular basis by which dysregulated ClpP affects cancer cell viability and proliferation.
Collapse
Affiliation(s)
- Mark F Mabanglo
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Keith S Wong
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Marim M Barghash
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Elisa Leung
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | | | - Afshan Ardalan
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Emily M Majaesic
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Shen Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan 410008, China
| | - Henk Lang
- Madera Therapeutics LLC, Cary, NC 27513, USA
| | | | | | - Lee M Graves
- Department of Pharmacology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
5
|
Li T, Pang W, Wang J, Zhao Z, zhang X, Cheng L. Docking-based 3D-QSAR, molecular dynamics simulation studies and virtual screening of novel ONC201 analogues targeting Mitochondrial ClpP. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Li X, Zheng NR, Wang LH, Li ZW, Liu ZC, Fan H, Wang Y, Dai J, Ni XT, Wei X, Liu MW, Li K, Li ZX, Zhou T, Zhang Y, Zhang JY, Kadeerhan G, Huang S, Wu WH, Liu WD, Wu XZ, Zhang LF, Xu JM, Gerhard M, You WC, Pan KF, Li WQ, Qin J. Proteomic profiling identifies signatures associated with progression of precancerous gastric lesions and risk of early gastric cancer. EBioMedicine 2021; 74:103714. [PMID: 34818622 PMCID: PMC8617343 DOI: 10.1016/j.ebiom.2021.103714] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022] Open
Abstract
Background Molecular features underlining the multistage progression of gastric lesions and development of early gastric cancer (GC) are poorly understood, restricting the ability to GC prevention and management. Methods We portrayed proteomic landscape and explored proteomic signatures associated with progression of gastric lesions and risk of early GC. Tissue proteomic profiling was conducted for a total of 324 subjects. A case-control study was performed in the discovery stage (n=169) based on populations from Linqu, a known high-risk area for GC in China. We then conducted two-stage validation, including a cohort study from Linqu (n = 56), with prospective follow-up for progression of gastric lesions (280–473 days), and an independent case-control study from Beijing (n = 99). Findings There was a clear distinction in proteomic features for precancerous gastric lesions and GC. We derived four molecular subtypes of gastric lesions and identified subtype-S4 with the highest progression risk. We found 104 positively-associated and 113 inversely-associated proteins for early GC, with APOA1BP, PGC, HPX and DDT associated with the risk of gastric lesion progression. Integrating these proteomic signatures, the ability to predict progression of gastric lesions was significantly strengthened (areas-under-the-curve=0.88 (95%CI: 0.78–0.99) vs. 0.56 (0.36–0.76), Delong's P = 0.002). Immunohistochemistry assays and examination at mRNA level validated the findings for four proteins. Interpretation We defined proteomic signatures for progression of gastric lesions and risk of early GC, which may have translational significance for identifying particularly high-risk population and detecting GC at an early stage, improving potential for targeted GC prevention. Funding The funders are listed in the Acknowledgement.
Collapse
Affiliation(s)
- Xue Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Nai-Ren Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lin-Heng Wang
- Department of Gastroenterology, Second Clinical Medical College of Beijing University of Chinese Medicine (Dongfang Hospital), Beijing 100078, China
| | - Zhong-Wu Li
- Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zong-Chao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hua Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jin Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiao-Tian Ni
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xin Wei
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ming-Wei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Kai Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Zhe-Xuan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Tong Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yang Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jing-Ying Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Gaohaer Kadeerhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Sha Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Wen-Hui Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Wei-Dong Liu
- Linqu County Public Health Bureau, Shandong 262600, China
| | - Xiu-Zhen Wu
- Linqu County People's Hospital, Shandong 262600, China
| | - Lan-Fu Zhang
- Linqu County People's Hospital, Shandong 262600, China
| | - Jian-Ming Xu
- Department of Gastrointestinal Oncology, The Fifth Medical Center, General Hospital of PLA, Beijing 100071, China
| | - Markus Gerhard
- PYLOTUM Key joint laboratory for upper GI cancer, Technische Universität München/Peking University Cancer Hospital & Institute, Munich/Beijing, Germany/ China
| | - Wei-Cheng You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China; PYLOTUM Key joint laboratory for upper GI cancer, Technische Universität München/Peking University Cancer Hospital & Institute, Munich/Beijing, Germany/ China
| | - Kai-Feng Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China; PYLOTUM Key joint laboratory for upper GI cancer, Technische Universität München/Peking University Cancer Hospital & Institute, Munich/Beijing, Germany/ China.
| | - Wen-Qing Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China; PYLOTUM Key joint laboratory for upper GI cancer, Technische Universität München/Peking University Cancer Hospital & Institute, Munich/Beijing, Germany/ China.
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| |
Collapse
|
7
|
Guo X, Yang N, Ji W, Zhang H, Dong X, Zhou Z, Li L, Shen HM, Yao SQ, Huang W. Mito-Bomb: Targeting Mitochondria for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007778. [PMID: 34510563 DOI: 10.1002/adma.202007778] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/12/2021] [Indexed: 05/22/2023]
Abstract
Cancer has been one of the most common life-threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) have been utilized for cancer treatment owing to their high selectivity, minor resistance, and minimal toxicity. Accumulating evidence has demonstrated that selective delivery of drugs to specific subcellular organelles can significantly enhance the efficiency of cancer therapy. Mitochondria-targeting therapeutic strategies are promising for cancer therapy, which is attributed to the essential role of mitochondria in the regulation of cancer cell apoptosis, metabolism, and more vulnerable to hyperthermia and oxidative damage. Herein, the rational design, functionalization, and applications of diverse mitochondria-targeting units, involving organic phosphine/sulfur salts, quaternary ammonium (QA) salts, peptides, transition-metal complexes, guanidinium or bisguanidinium, as well as mitochondria-targeting cancer therapies including PDT, PTT, CDT, and others are summarized. This review aims to furnish researchers with deep insights and hints in the design and applications of novel mitochondria-targeting agents for cancer therapy.
Collapse
Affiliation(s)
- Xiaolu Guo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Hang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Xiao Dong
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Zhiqiang Zhou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
8
|
Mabanglo MF, Bhandari V, Houry WA. Substrates and interactors of the ClpP protease in the mitochondria. Curr Opin Chem Biol 2021; 66:102078. [PMID: 34446368 DOI: 10.1016/j.cbpa.2021.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022]
Abstract
The ClpP protease is found across eukaryotic and prokaryotic organisms. It is well-characterized in bacteria where its function is important in maintaining protein homeostasis. Along with its ATPase partners, it has been shown to play critical roles in the regulation of enzymes involved in important cellular pathways. In eukaryotes, ClpP is found within cellular organelles. Proteomic studies have begun to characterize the role of this protease in the mitochondria through its interactions. Here, we discuss the proteomic techniques used to identify its interactors and present an atlas of mitochondrial ClpP substrates. The ClpP substrate pool is extensive and consists of proteins involved in essential mitochondrial processes such as the Krebs cycle, oxidative phosphorylation, translation, fatty acid metabolism, and amino acid metabolism. Discoveries of these associations have begun to illustrate the functional significance of ClpP in human health and disease.
Collapse
Affiliation(s)
- Mark F Mabanglo
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Vaibhav Bhandari
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G 1M1, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
9
|
Friedlander JE, Shen N, Zeng A, Korm S, Feng H. Failure to Guard: Mitochondrial Protein Quality Control in Cancer. Int J Mol Sci 2021; 22:ijms22158306. [PMID: 34361072 PMCID: PMC8348654 DOI: 10.3390/ijms22158306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are energetic and dynamic organelles with a crucial role in bioenergetics, metabolism, and signaling. Mitochondrial proteins, encoded by both nuclear and mitochondrial DNA, must be properly regulated to ensure proteostasis. Mitochondrial protein quality control (MPQC) serves as a critical surveillance system, employing different pathways and regulators as cellular guardians to ensure mitochondrial protein quality and quantity. In this review, we describe key pathways and players in MPQC, such as mitochondrial protein translocation-associated degradation, mitochondrial stress responses, chaperones, and proteases, and how they work together to safeguard mitochondrial health and integrity. Deregulated MPQC leads to proteotoxicity and dysfunctional mitochondria, which contributes to numerous human diseases, including cancer. We discuss how alterations in MPQC components are linked to tumorigenesis, whether they act as drivers, suppressors, or both. Finally, we summarize recent advances that seek to target these alterations for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Joseph E. Friedlander
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Ning Shen
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aozhuo Zeng
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Sovannarith Korm
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Hui Feng
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: ; Tel.: +1-617-358-4688; Fax: +1-617-358-1599
| |
Collapse
|
10
|
Perez T, Bergès R, Maccario H, Oddoux S, Honoré S. Low concentrations of vorinostat decrease EB1 expression in GBM cells and affect microtubule dynamics, cell survival and migration. Oncotarget 2021; 12:304-315. [PMID: 33659042 PMCID: PMC7899546 DOI: 10.18632/oncotarget.27892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/01/2021] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma multiform (GBM) is the most frequent primitive brain tumor with a high recurrence and mortality. Histone deacetylase inhibitors (HDACi) have evoked great interest because they are able to change transcriptomic profiles to promote tumor cell death but also induce side effects due to the lack of selectivity. We show in this paper new anticancer properties and mechanisms of action of low concentrations of vorinostat on various GBM cells which acts by affecting microtubule cytoskeleton in a non-histone 3 (H3) manner. Indeed, vorinostat induces tubulin acetylation and detyrosination, affects EB stabilizing cap on microtubule plus ends and suppresses microtubule dynamic instability. We previously identified EB1 overexpression as a marker of bad prognostic in GBM. Interestingly, we show for the first time to our knowledge, a strong decrease of EB1 expression in GBM cells by a drug. Altogether, our results suggest that low dose vorinostat, which is more selective for HDAC6 inhibition, could therefore represent an interesting therapeutic option for GBM especially in patients with EB1 overexpressing tumor with lower expected side effects. A validation of our hypothesis is needed during future clinical trials with this drug in GBM.
Collapse
Affiliation(s)
- Thomas Perez
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France.,APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| | - Raphaël Bergès
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France
| | - Hélène Maccario
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France
| | - Sarah Oddoux
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France
| | - Stéphane Honoré
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France.,APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| |
Collapse
|
11
|
Yi F, Zhang Y, Wang Z, Wang Z, Li Z, Zhou T, Xu H, Liu J, Jiang B, Li X, Wang L, Bai N, Guo Q, Guan Y, Feng Y, Mao Z, Fan G, Zhang S, Wang C, Cao L, O'Rourke BP, Wang Y, Wu Y, Wu B, You S, Zhang N, Guan J, Song X, Sun Y, Wei S, Cao L. The deacetylation-phosphorylation regulation of SIRT2-SMC1A axis as a mechanism of antimitotic catastrophe in early tumorigenesis. SCIENCE ADVANCES 2021; 7:7/9/eabe5518. [PMID: 33627431 PMCID: PMC7904255 DOI: 10.1126/sciadv.abe5518] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/12/2021] [Indexed: 05/05/2023]
Abstract
Improper distribution of chromosomes during mitosis can contribute to malignant transformation. Higher eukaryotes have evolved a mitotic catastrophe mechanism for eliminating mitosis-incompetent cells; however, the signaling cascade and its epigenetic regulation are poorly understood. Our analyses of human cancerous tissue revealed that the NAD-dependent deacetylase SIRT2 is up-regulated in early-stage carcinomas of various organs. Mass spectrometry analysis revealed that SIRT2 interacts with and deacetylates the structural maintenance of chromosomes protein 1 (SMC1A), which then promotes SMC1A phosphorylation to properly drive mitosis. We have further demonstrated that inhibition of SIRT2 activity or continuously increasing SMC1A-K579 acetylation causes abnormal chromosome segregation, which, in turn, induces mitotic catastrophe in cancer cells and enhances their vulnerability to chemotherapeutic agents. These findings suggest that regulation of the SIRT2-SMC1A axis through deacetylation-phosphorylation permits escape from mitotic catastrophe, thus allowing early precursor lesions to overcome oncogenic stress.
Collapse
Affiliation(s)
- Fei Yi
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, , No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhijun Wang
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, , No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Zhuo Wang
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, , No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Ziwei Li
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, , No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Tingting Zhou
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, , No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Hongde Xu
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, , No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Jingwei Liu
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, , No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Bo Jiang
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, , No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Xiaoman Li
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, , No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Liang Wang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Ning Bai
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, , No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Qiqiang Guo
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, , No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Yi Guan
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, , No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Yanling Feng
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, , No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200082, China
| | - Guangjian Fan
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Shengping Zhang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Chuangui Wang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Longyue Cao
- Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Brian P O'Rourke
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yang Wang
- Panjin Liaohe Oilfield Gem Flower Hospital, Panjin, Liaoning Province 124010, China
| | - Yanmei Wu
- Panjin Liaohe Oilfield Gem Flower Hospital, Panjin, Liaoning Province 124010, China
| | - Boquan Wu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Shilong You
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Junlin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiaoyu Song
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, , No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Shi Wei
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35249-7331, USA.
| | - Liu Cao
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, , No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China.
| |
Collapse
|
12
|
Luo B, Ma Y, Zhou Y, Zhang N, Luo Y. Human ClpP protease, a promising therapy target for diseases of mitochondrial dysfunction. Drug Discov Today 2021; 26:968-981. [PMID: 33460621 DOI: 10.1016/j.drudis.2021.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/02/2020] [Accepted: 01/08/2021] [Indexed: 02/05/2023]
Abstract
Human caseinolytic protease P (HsClpP), an ATP-dependent unfolding peptidase protein in the mitochondrial matrix, controls protein quality, regulates mitochondrial metabolism, and maintains the integrity and enzyme activity of the mitochondrial respiratory chain (RC). Studies show that abnormalities in HsClpP lead to mitochondrial dysfunction and various human diseases. In this review, we provide a comprehensive overview of the structure and biological function of HsClpP, and the involvement of its dysexpression or mutation in mitochondria for a panel of important human diseases. We also summarize the structural types and binding modes of known HsClpP modulators. Finally, we discuss the challenges and future directions of HsClpP targeting as promising approach for the treatment of human diseases of mitochondrial origin.
Collapse
Affiliation(s)
- Baozhu Luo
- National Center for Birth Defect Monitoring, West China Second University Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Ma
- Radiation therapy and chemotherapy for gynecological cancer, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - YuanZheng Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nannan Zhang
- National Center for Birth Defect Monitoring, West China Second University Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China.
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Aiyama T, Orimo T, Yokoo H, Ohata T, Hatanaka KC, Hatanaka Y, Fukai M, Kamiyama T, Taketomi A. Adenomatous polyposis coli-binding protein end-binding 1 promotes hepatocellular carcinoma growth and metastasis. PLoS One 2020; 15:e0239462. [PMID: 32956413 PMCID: PMC7505586 DOI: 10.1371/journal.pone.0239462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/08/2020] [Indexed: 02/05/2023] Open
Abstract
This study was performed to determine the clinical significance of adenomatous polyposis coli (APC)-binding protein end-binding 1 (EB1) in hepatocellular carcinoma (HCC) and to characterize its biochemical role in comparison with previous reports. We performed immunohistochemical staining to detect EB1 expression in tissues from 235 patients with HCC and investigated its correlations with clinicopathological features and prognosis. We also investigated the roles of EB1 in cell proliferation, migration, and tumorigenesis in vitro and in vivo by siRNA- and CRISPR/Cas9-mediated modulation of EB1 expression in human HCC cell lines. The results showed that EB1 expression was significantly correlated with several important factors associated with tumor malignancy, including histological differentiation, portal vein invasion status, and intrahepatic metastasis. Patients with high EB1 expression in HCC tissue had poorer overall survival and higher recurrence rates than patients with low EB1 expression. EB1 knockdown and knockout in HCC cells reduced cell proliferation, migration, and invasion in vitro and inhibited tumor growth in vivo. Further, genes encoding Dlk1, HAMP, and SLCO1B3 that were differentially expressed in association with EB1 were identified using RNA microarray analysis. In conclusion, elevated expression of EB1 promotes tumor growth and metastasis of HCC. EB1 may serve as a new biomarker for HCC, and genes coexpressed with EB1 may represent potential targets for therapy.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Carcinoma, Hepatocellular/complications
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Differentiation
- Cell Line, Tumor
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Gene Knockout Techniques
- Genes, APC
- Hepatitis, Viral, Human/complications
- Heterografts
- Humans
- Kaplan-Meier Estimate
- Liver Neoplasms/complications
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Microtubule-Associated Proteins/antagonists & inhibitors
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/physiology
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Metastasis
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Portal Vein/pathology
- Prognosis
- RNA Interference
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- RNA, Small Interfering/genetics
- Recombinant Proteins/metabolism
- Recurrence
- Survival Rate
- Tissue Array Analysis
Collapse
Affiliation(s)
- Takeshi Aiyama
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Tatsuya Orimo
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Hideki Yokoo
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Takanori Ohata
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Kanako C. Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Yutaka Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Moto Fukai
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Toshiya Kamiyama
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
14
|
Wong KS, Houry WA. Chemical Modulation of Human Mitochondrial ClpP: Potential Application in Cancer Therapeutics. ACS Chem Biol 2019; 14:2349-2360. [PMID: 31241890 DOI: 10.1021/acschembio.9b00347] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human ClpP proteolytic complex (HsClpP) is a serine protease located in the mitochondrial matrix and participates in the maintenance of the mitochondrial proteome among other cellular functions. HsClpP typically forms a multimeric complex with the AAA+ protein unfoldase HsClpX. Notably, compared to that of normal, healthy cells, the expression of HsClpP in many types of solid and nonsolid cancers is found to be upregulated. While the exact role of HsClpP in tumorigenesis is not clear, certain types of cancers are highly dependent on the protease for cell proliferation and metastasis. In light of these observations, recent research has focused on the discovery and characterization of small organic molecules that can target and modulate HsClpP activity. These include compounds that inhibit HsClpP's proteolytic activity via covalent modification of its catalytic Ser residue as well as those that activate and dysregulate HsClpP by displacing HsClpX to negate its regulatory role. Importantly, several of these compounds have been shown to induce HsClpP-dependent apoptotic cell death in a variety of cancerous cells. This review provides an overview of these research efforts and highlights the various types of small molecule modulators of HsClpP activity with respect to their potential use as cancer therapeutics.
Collapse
Affiliation(s)
- Keith S. Wong
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
15
|
Mouly L, Gilhodes J, Lemarié A, Cohen-Jonathan Moyal E, Toulas C, Favre G, Sordet O, Monferran S. The RND1 Small GTPase: Main Functions and Emerging Role in Oncogenesis. Int J Mol Sci 2019; 20:ijms20153612. [PMID: 31344837 PMCID: PMC6696182 DOI: 10.3390/ijms20153612] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/10/2019] [Accepted: 07/21/2019] [Indexed: 02/07/2023] Open
Abstract
The Rho GTPase family can be classified into classic and atypical members. Classic members cycle between an inactive Guanosine DiPhosphate -bound state and an active Guanosine TriPhosphate-bound state. Atypical Rho GTPases, such as RND1, are predominantly in an active GTP-bound conformation. The role of classic members in oncogenesis has been the subject of numerous studies, while that of atypical members has been less explored. Besides the roles of RND1 in healthy tissues, recent data suggest that RND1 is involved in oncogenesis and response to cancer therapeutics. Here, we present the current knowledge on RND1 expression, subcellular localization, and functions in healthy tissues. Then, we review data showing that RND1 expression is dysregulated in tumors, the molecular mechanisms involved in this deregulation, and the role of RND1 in oncogenesis. For several aggressive tumors, RND1 presents the features of a tumor suppressor gene. In these tumors, low expression of RND1 is associated with a bad prognosis for the patients. Finally, we highlight that RND1 expression is induced by anticancer agents and modulates their response. Of note, RND1 mRNA levels in tumors could be used as a predictive marker of both patient prognosis and response to anticancer agents.
Collapse
Affiliation(s)
- Laetitia Mouly
- Cancer Research Center of Toulouse, INSERM UMR1037, 31037 Toulouse, France
- Faculty of Pharmacy and Medecine, Université Toulouse III, 31062 Toulouse, France
| | - Julia Gilhodes
- Institut Claudius Regaud, IUCT-O, 31059 Toulouse, France
| | - Anthony Lemarié
- Cancer Research Center of Toulouse, INSERM UMR1037, 31037 Toulouse, France
- Faculty of Pharmacy and Medecine, Université Toulouse III, 31062 Toulouse, France
| | - Elizabeth Cohen-Jonathan Moyal
- Cancer Research Center of Toulouse, INSERM UMR1037, 31037 Toulouse, France
- Faculty of Pharmacy and Medecine, Université Toulouse III, 31062 Toulouse, France
- Institut Claudius Regaud, IUCT-O, 31059 Toulouse, France
| | - Christine Toulas
- Cancer Research Center of Toulouse, INSERM UMR1037, 31037 Toulouse, France
- Institut Claudius Regaud, IUCT-O, 31059 Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse, INSERM UMR1037, 31037 Toulouse, France
- Faculty of Pharmacy and Medecine, Université Toulouse III, 31062 Toulouse, France
- Institut Claudius Regaud, IUCT-O, 31059 Toulouse, France
| | - Olivier Sordet
- Cancer Research Center of Toulouse, INSERM UMR1037, 31037 Toulouse, France
| | - Sylvie Monferran
- Cancer Research Center of Toulouse, INSERM UMR1037, 31037 Toulouse, France.
- Faculty of Pharmacy and Medecine, Université Toulouse III, 31062 Toulouse, France.
| |
Collapse
|
16
|
Wong KS, Houry WA. Recent Advances in Targeting Human Mitochondrial AAA+ Proteases to Develop Novel Cancer Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:119-142. [PMID: 31452139 DOI: 10.1007/978-981-13-8367-0_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mitochondrion is a vital organelle that performs diverse cellular functions. In this regard, the cell has evolved various mechanisms dedicated to the maintenance of the mitochondrial proteome. Among them, AAA+ ATPase-associated proteases (AAA+ proteases) such as the Lon protease (LonP1), ClpXP complex, and the membrane-bound i-AAA, m-AAA and paraplegin facilitate the clearance of misfolded mitochondrial proteins to prevent the accumulation of cytotoxic protein aggregates. Furthermore, these proteases have additional regulatory functions in multiple biological processes that include amino acid metabolism, mitochondria DNA transcription, metabolite and cofactor biosynthesis, maturation and turnover of specific respiratory and metabolic proteins, and modulation of apoptosis, among others. In cancer cells, the increase in intracellular ROS levels promotes tumorigenic phenotypes and increases the frequency of protein oxidation and misfolding, which is compensated by the increased expression of specific AAA+ proteases as part of the adaptation mechanism. The targeting of AAA+ proteases has led to the discovery and development of novel anti-cancer compounds. Here, we provide an overview of the molecular characteristics and functions of the major mitochondrial AAA+ proteases and summarize recent research efforts in the development of compounds that target these proteases.
Collapse
Affiliation(s)
- Keith S Wong
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada. .,Department of Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Simonetti G, Bruno S, Padella A, Tenti E, Martinelli G. Aneuploidy: Cancer strength or vulnerability? Int J Cancer 2018; 144:8-25. [PMID: 29981145 PMCID: PMC6587540 DOI: 10.1002/ijc.31718] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022]
Abstract
Aneuploidy is a very rare and tissue‐specific event in normal conditions, occurring in a low number of brain and liver cells. Its frequency increases in age‐related disorders and is one of the hallmarks of cancer. Aneuploidy has been associated with defects in the spindle assembly checkpoint (SAC). However, the relationship between chromosome number alterations, SAC genes and tumor susceptibility remains unclear. Here, we provide a comprehensive review of SAC gene alterations at genomic and transcriptional level across human cancers and discuss the oncogenic and tumor suppressor functions of aneuploidy. SAC genes are rarely mutated but frequently overexpressed, with a negative prognostic impact on different tumor types. Both increased and decreased SAC gene expression show oncogenic potential in mice. SAC gene upregulation may drive aneuploidization and tumorigenesis through mitotic delay, coupled with additional oncogenic functions outside mitosis. The genomic background and environmental conditions influence the fate of aneuploid cells. Aneuploidy reduces cellular fitness. It induces growth and contact inhibition, mitotic and proteotoxic stress, cell senescence and production of reactive oxygen species. However, aneuploidy confers an evolutionary flexibility by favoring genome and chromosome instability (CIN), cellular adaptation, stem cell‐like properties and immune escape. These properties represent the driving force of aneuploid cancers, especially under conditions of stress and pharmacological pressure, and are currently under investigation as potential therapeutic targets. Indeed, promising results have been obtained from synthetic lethal combinations exploiting CIN, mitotic defects, and aneuploidy‐tolerating mechanisms as cancer vulnerability.
Collapse
Affiliation(s)
- Giorgia Simonetti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Samantha Bruno
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Antonella Padella
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Elena Tenti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Giovanni Martinelli
- Scientific Directorate, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
18
|
Eremina L, Pashintseva N, Kovalev L, Kovaleva M, Shishkin S. Proteomics of mammalian mitochondria in health and malignancy: From protein identification to function. Anal Biochem 2018; 552:4-18. [DOI: 10.1016/j.ab.2017.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/07/2017] [Accepted: 03/23/2017] [Indexed: 12/28/2022]
|
19
|
Gemoll T, Kollbeck SL, Karstens KF, Hò GG, Hartwig S, Strohkamp S, Schillo K, Thorns C, Oberländer M, Kalies K, Lehr S, Habermann JK. EB1 protein alteration characterizes sporadic but not ulcerative colitis associated colorectal cancer. Oncotarget 2017; 8:54939-54950. [PMID: 28903393 PMCID: PMC5589632 DOI: 10.18632/oncotarget.18978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/17/2017] [Indexed: 12/29/2022] Open
Abstract
Background While carcinogenesis in Sporadic Colorectal Cancer (SCC) has been thoroughly studied, less is known about Ulcerative Colitis associated Colorectal Cancer (UCC). This study aimed to identify and validate differentially expressed proteins between clinical samples of SCC and UCC to elucidate new insights of UCC/SCC carcinogenesis and progression. Results Multiplex-fluorescence two-dimensional gel electrophoresis (2-D DIGE) and mass spectrometry identified 67 proteoforms representing 43 distinct proteins. After analysis by Ingenuity Pathway Analysis® (IPA), subsequent Western blot validation proofed the differential expression of Heat shock 27 kDA protein 1 (HSPB1) and Microtubule-associated protein R/EB family, member 1 (EB1) while the latter one showed also expression differences by immunohistochemistry. Materials and Methods Fresh frozen tissue of UCC (n = 10) matched with SCC (n = 10) was investigated. Proteins of cancerous intestinal mucosal cells were obtained by Laser Capture Microdissection (LCM) and compared by 2-D DIGE. Significant spots were identified by mass spectrometry. After IPA, three proteins [EB1, HSPB1, and Annexin 5 (ANXA5)] were chosen for further validation by Western blotting and tissue microarray-based immunohistochemistry. Conclusions This study identified significant differences in protein expression of colorectal carcinoma cells from UCC patients compared to patients with SCC. Particularly, EB1 was validated in an independent clinical cohort.
Collapse
Affiliation(s)
- Timo Gemoll
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Sophie L Kollbeck
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Karl F Karstens
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Gia G Hò
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Düsseldorf, Leibniz Center for Diabetes Research, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Sarah Strohkamp
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Katharina Schillo
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Christoph Thorns
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Martina Oberländer
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, D-23538 Lübeck, Germany
| | - Stefan Lehr
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Düsseldorf, Leibniz Center for Diabetes Research, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Jens K Habermann
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| |
Collapse
|
20
|
Cirillo L, Gotta M, Meraldi P. The Elephant in the Room: The Role of Microtubules in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:93-124. [DOI: 10.1007/978-3-319-57127-0_5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Dai L, Li J, Tsay JCJ, Yie TA, Munger JS, Pass H, Rom WN, Tan EM, Zhang JY. Identification of autoantibodies to ECH1 and HNRNPA2B1 as potential biomarkers in the early detection of lung cancer. Oncoimmunology 2017. [PMID: 28638733 DOI: 10.1080/2162402x.2017.1310359] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Identification of biomarkers for early detection of lung cancer (LC) is important, in turn leading to more effective treatment and reduction of mortality. Serological proteome analysis (SERPA) was used to identify proteins around 34 kD as ECH1 and HNRNPA2B1, which had been recognized by serum autoantibody from 25 LC patients. In the validation study, including 90 sera from LC patients and 89 sera from normal individuals, autoantibody to ECH1 achieved an area under the curve (AUC) of 0.799 with sensitivity of 62.2% and specificity of 95.5% in discriminating LC from normal individuals, and showed negative correlation with tumor size (rs = -0.256, p = 0.023). Autoantibody to HNRNPA2B1 performed an AUC of 0.874 with sensitivity of 72.2% and specificity of 95.5%, and showed negative correlation with lymph node metastasis (rs = -0.279, p = 0.012). By using longitudinal preclinical samples, autoantibody to ECH1 showed an AUC of 0.763 with sensitivity of 60.0% and specificity of 89.3% in distinguishing early stage LC from matched normal controls, and elevated autoantibody levels could be detected greater than 2 y before LC diagnosis. ECH1 and HNRNPA2B1 are autoantigens that elicit autoimmune responses in LC and their autoantibody can be the potential biomarkers for the early detection of LC.
Collapse
Affiliation(s)
- Liping Dai
- Institute of Medical and Pharmaceutical Sciences & Henan Key Laboratory for Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China.,Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Jitian Li
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Jun-Chieh J Tsay
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Ting-An Yie
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - John S Munger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Harvey Pass
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York, NY, USA
| | - William N Rom
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Eng M Tan
- The Scripps Research Institute, La Jolla, CA, USA
| | - Jian-Ying Zhang
- Institute of Medical and Pharmaceutical Sciences & Henan Key Laboratory for Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China.,Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
22
|
Transposon insertional mutagenesis in mice identifies human breast cancer susceptibility genes and signatures for stratification. Proc Natl Acad Sci U S A 2017; 114:E2215-E2224. [PMID: 28251929 PMCID: PMC5358385 DOI: 10.1073/pnas.1701512114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite concerted efforts to identify causal genes that drive breast cancer (BC) initiation and progression, we have yet to establish robust signatures to stratify patient risk. Here we used in vivo transposon-based forward genetic screening to identify potentially relevant BC driver genes. Integrating this approach with survival prediction analysis, we identified six gene pairs that could prognose human BC subtypes into high-, intermediate-, and low-risk groups with high confidence and reproducibility. Furthermore, we identified susceptibility gene sets for basal and claudin-low subtypes (21 and 16 genes, respectively) that stratify patients into three relative risk subgroups. These signatures offer valuable prognostic insight into the genetic basis of BC and allow further exploration of the interconnectedness of BC driver genes during disease progression. Robust prognostic gene signatures and therapeutic targets are difficult to derive from expression profiling because of the significant heterogeneity within breast cancer (BC) subtypes. Here, we performed forward genetic screening in mice using Sleeping Beauty transposon mutagenesis to identify candidate BC driver genes in an unbiased manner, using a stabilized N-terminal truncated β-catenin gene as a sensitizer. We identified 134 mouse susceptibility genes from 129 common insertion sites within 34 mammary tumors. Of these, 126 genes were orthologous to protein-coding genes in the human genome (hereafter, human BC susceptibility genes, hBCSGs), 70% of which are previously reported cancer-associated genes, and ∼16% are known BC suppressor genes. Network analysis revealed a gene hub consisting of E1A binding protein P300 (EP300), CD44 molecule (CD44), neurofibromin (NF1) and phosphatase and tensin homolog (PTEN), which are linked to a significant number of mutated hBCSGs. From our survival prediction analysis of the expression of human BC genes in 2,333 BC cases, we isolated a six-gene-pair classifier that stratifies BC patients with high confidence into prognostically distinct low-, moderate-, and high-risk subgroups. Furthermore, we proposed prognostic classifiers identifying three basal and three claudin-low tumor subgroups. Intriguingly, our hBCSGs are mostly unrelated to cell cycle/mitosis genes and are distinct from the prognostic signatures currently used for stratifying BC patients. Our findings illustrate the strength and validity of integrating functional mutagenesis screens in mice with human cancer transcriptomic data to identify highly prognostic BC subtyping biomarkers.
Collapse
|
23
|
Mohri Y, Toiyama Y, Kusunoki M. Progress and prospects for the discovery of biomarkers for gastric cancer: a focus on proteomics. Expert Rev Proteomics 2016; 13:1131-1139. [PMID: 27744719 DOI: 10.1080/14789450.2016.1249469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Patient outcomes from gastric cancer vary due to the complexity of stomach carcinogenesis. Recent research using proteomic technologies has targeted components of all of these systems in order to develop biomarkers to aid the early diagnosis of gastric cancer and to assist in prognostic stratification. Areas covered: This review is comprised of evidence obtained from literature searches from PubMed. It covers the evidence of diagnostic, prognostic, and predictive biomarkers for gastric cancer using proteomic technologies, and provides up-to-date references. Expert commentary: The proteomic technologies have not only enabled the screening of a large number of samples, but also enabled the identification of diagnostic, prognostic and predictive biomarkers for gastric cancer. While major challenges still remain, to date, proteomic studies in gastric cancer have provided a wealth of information in revealing proteome alterations associated with the disease.
Collapse
Affiliation(s)
- Yasuhiko Mohri
- a Department of Gastrointestinal and Pediatric Surgery , Mie University Graduate School of Medicine , Mie , Japan
| | - Yuji Toiyama
- a Department of Gastrointestinal and Pediatric Surgery , Mie University Graduate School of Medicine , Mie , Japan
| | - Masato Kusunoki
- a Department of Gastrointestinal and Pediatric Surgery , Mie University Graduate School of Medicine , Mie , Japan
| |
Collapse
|
24
|
Al-Eisawi Z, Beale P, Chan C, Yu JQ, Proschogo N, Molloy M, Huq F. Changes in the in vitro activity of platinum drugs when administered in two aliquots. BMC Cancer 2016; 16:688. [PMID: 27566066 PMCID: PMC5002105 DOI: 10.1186/s12885-016-2731-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 06/28/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The management of ovarian cancer remains a challenge. Because of the lack of early symptoms, it is often diagnosed at a late stage when it is likely to have metastasized beyond ovaries. Currently, platinum based chemotherapy is the primary treatment for the disease. However acquired drug resistance remains an on-going problem. As cisplatin brings about apoptosis by intrinsic and extrinsic pathways, this study aimed to determine changes in activity of platinum drugs when administered in two aliquots as against a bolus and sought to determine association with changes in GSH, speciation of platinum drugs and changes in protein expression. METHODS The efficacy of administering cisplatin, carboplatin and oxaliplatin in two aliquots with a time gap was investigated in ovarian A2780, A2780(cisR), A2780(ZD0473R) and SKOV-3 cell lines. The cellular accumulation of platinum, level of platinum - DNA binding and cellular glutathione level were determined, and proteomic studies were carried out to identify key proteins associated with platinum resistance in ovarian A2780(cisR) cancer cell line. RESULTS Much greater cell kill was observed with solutions left standing at room temperature than with freshly prepared solutions, indicating that the increase in activity on ageing was related to speciation of the drug in solution. Proteomic studies identified 72 proteins that were differentially expressed in A2780 and A2780(cisR) cell lines; 22 of them were restored back to normal levels as a result of synergistic treatments, indicating their relevance in enhanced drug action. CONCLUSIONS The proteins identified are relevant to several different cellular functions including invasion and metastasis, cell cycle regulation and proliferation, metabolic and biosynthesis processes, stress-related proteins and molecular chaperones, mRNA processing, cellular organization/cytoskeleton, cellular communication and signal transduction. This highlights the multifactorial nature of platinum resistance in which many different proteins with diverse functions play key roles. This means multiple strategies can be harnessed to overcome platinum resistance in ovarian cancer. The results of the studies can be significant both from fundamental and clinical view points.
Collapse
Affiliation(s)
- Zaynab Al-Eisawi
- Discipline of Biomedical Science, Sydney Medical School, University of Sydney, Sydney, NSW 2141 Australia
- Department of Medical Laboratory Sciences, Faculty of Allied Health Science, Hashemite University, Zarqa, Hashemite Kingdom of Jordan
| | - Philip Beale
- Sydney Cancer Centre, Concord Hospital, Sydney, NSW 2139 Australia
| | - Charles Chan
- Department of Pathology, Concord Hospital, Sydney, NSW 2139 Australia
| | - Jun Qing Yu
- Discipline of Biomedical Science, Sydney Medical School, University of Sydney, Sydney, NSW 2141 Australia
| | - Nicholas Proschogo
- Mass Spectrometry Unit, School of Chemistry, University of Sydney, Sydney, NSW 2006 Australia
| | - Mark Molloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109 Australia
| | - Fazlul Huq
- Discipline of Biomedical Science, Sydney Medical School, University of Sydney, Sydney, NSW 2141 Australia
- Discipline of Biomedical Science, School of Medical Sciences, Sydney Medical School, The University of Sydney, Cumberland Campus C42, 75 East Street, Lidcombe, NSW 1825 Australia
| |
Collapse
|
25
|
Kumar M, Mehra S, Thakar A, Shukla NK, Roychoudhary A, Sharma MC, Ralhan R, Chauhan SS. End Binding 1 (EB1) overexpression in oral lesions and cancer: A biomarker of tumor progression and poor prognosis. Clin Chim Acta 2016; 459:45-52. [PMID: 27208742 DOI: 10.1016/j.cca.2016.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Oral squamous cell carcinoma (OSCC) patients are at high risk of loco-regional recurrence and despite the improvement in treatment strategy, 5-year survival rates are about 50%. Identification of patients at high risk of recurrence may enable rigorous personalized post-treatment management. In an earlier proteomics study we observed overexpression of End Binding Protein (EB1) in OSCC. In the present study we investigated the diagnostic and prognostic significance of alterations in expression of EB1 in oral cancer. METHODS In this retrospective study, the expression of EB1 protein was evaluated in 259 OSCCs, 41 dysplasia, 166 hyperplasia and 126 normal tissues using immunohistochemistry and correlated with clinical-pathological parameters and prognosis of OSCC patients over a follow-up period of up to 91months. RESULTS Significantly higher expression of cytoplasmic EB1 was observed in hyperplasia [p<0.001, OR=7.2, 95% CI=4.1-12.8], dysplasia (p<0.001, OR=21.8, CI=8.8-50.2) and OSCCs (p<0.001, OR=10.1, CI=5.8-17.4) in comparison with normal mucosa. Univariate analysis revealed cytoplasmic EB1 association with tumor grade, tumor size and recurrence of the disease. Kaplan Meier survival analysis of EB1 expression showed significantly reduced disease free survival (DFS) (p=0.003). Notably, OSCC patients showing cytoplasmic EB1 overexpression demonstrated significantly reduced DFS (p=0.004, HR=2.1). CONCLUSION EB1 overexpression is an early event in oral tumorigenesis and cytoplasmic EB1 accumulation is associated with poor prognosis and tumor recurrence in OSCC patients.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Siddharth Mehra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Alok Thakar
- Department of Otorhinolaryngology, All India Institute of Medical Sciences, New Delhi, India
| | - Nootan Kumar Shukla
- Department of Surgery, Dr. B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Ajoy Roychoudhary
- Department of Dental Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Ranju Ralhan
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Mount Sinai Hospital, Toronto, Ontario, Canada; Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Department of Otolaryngology - Head and Neck Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Ontario, Canada.
| | - Shyam Singh Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
26
|
Leal MF, Wisnieski F, de Oliveira Gigek C, do Santos LC, Calcagno DQ, Burbano RR, Smith MC. What gastric cancer proteomic studies show about gastric carcinogenesis? Tumour Biol 2016; 37:9991-10010. [PMID: 27126070 DOI: 10.1007/s13277-016-5043-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/28/2016] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer is a complex, heterogeneous, and multistep disease. Over the past decades, several studies have aimed to determine the molecular factors that lead to gastric cancer development and progression. After completing the human genome sequencing, proteomic technologies have presented rapid progress. Differently from the relative static state of genome, the cell proteome is dynamic and changes in pathologic conditions. Proteomic approaches have been used to determine proteome profiles and identify differentially expressed proteins between groups of samples, such as neoplastic and nonneoplastic samples or between samples of different cancer subtypes or stages. Therefore, proteomic technologies are a useful tool toward improving the knowledge of gastric cancer molecular pathogenesis and the understanding of tumor heterogeneity. This review aimed to summarize the proteins or protein families that are frequently identified by using high-throughput screening methods and which thus may have a key role in gastric carcinogenesis. The increased knowledge of gastric carcinogenesis will clearly help in the development of new anticancer treatments. Although the studies are still in their infancy, the reviewed proteins may be useful for gastric cancer diagnosis, prognosis, and patient management.
Collapse
Affiliation(s)
- Mariana Ferreira Leal
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038-032, São Paulo, São Paulo, Brazil. .,Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil.
| | - Fernanda Wisnieski
- Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil
| | - Carolina de Oliveira Gigek
- Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil
| | - Leonardo Caires do Santos
- Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, 66073-000, Belém, Pará, Brazil
| | - Rommel Rodriguez Burbano
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Pará, Brazil
| | - Marilia Cardoso Smith
- Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil
| |
Collapse
|
27
|
Lopez BJ, Valentine MT. The +TIP coordinating protein EB1 is highly dynamic and diffusive on microtubules, sensitive to GTP analog, ionic strength, and EB1 concentration. Cytoskeleton (Hoboken) 2016; 73:23-34. [PMID: 26663881 DOI: 10.1002/cm.21267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 01/06/2023]
Abstract
Using single-molecule fluorescence microscopy, we investigated the dynamics of dye-labeled EB1, a +TIP microtubule binding protein. To promote EB1 binding along the entire microtubule length, we formed microtubules using the nonhydrolyzable GTP analogs GMPCPP and GTPγS. Through precise tracking of the motions of individual dye-labeled proteins, we found EB1 to be highly dynamic and continuously diffusive while bound to a microtubule, with a diffusion coefficient and characteristic binding lifetime that were sensitive to both the choice of GTP analog and the buffer ionic strength. Using fluorescence-based equilibrium binding measurements, we found EB1 binding to be cooperative and also sensitive to GTP analog and ionic strength. By tracking the motion of a small number of individually-labeled EB1 proteins within a bath of unlabeled EB1 proteins, we determined the effects of increasing the total EB1 concentration on binding and dynamics. We found that the diffusion coefficient decreased with increasing EB1 concentration, which may be due at least in part, to the cooperativity of EB1 binding. Our results may have important consequences for the assembly and organization of the growing microtubule plus-end.
Collapse
Affiliation(s)
- Benjamin J Lopez
- Department of Mechanical Engineering and the Neuroscience Research Institute, University of California, Santa Barbara, California
| | - Megan T Valentine
- Department of Mechanical Engineering and the Neuroscience Research Institute, University of California, Santa Barbara, California
| |
Collapse
|
28
|
Fischer F, Langer JD, Osiewacz HD. Identification of potential mitochondrial CLPXP protease interactors and substrates suggests its central role in energy metabolism. Sci Rep 2015; 5:18375. [PMID: 26679294 PMCID: PMC4683621 DOI: 10.1038/srep18375] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/17/2015] [Indexed: 12/11/2022] Open
Abstract
Maintenance of mitochondria is achieved by several mechanisms, including the regulation of mitochondrial proteostasis. The matrix protease CLPXP, involved in protein quality control, has been implicated in ageing and disease. However, particularly due to the lack of knowledge of CLPXP’s substrate spectrum, only little is known about the pathways and mechanisms controlled by this protease. Here we report the first comprehensive identification of potential mitochondrial CLPXP in vivo interaction partners and substrates using a combination of tandem affinity purification and differential proteomics. This analysis reveals that CLPXP in the fungal ageing model Podospora anserina is mainly associated with metabolic pathways in mitochondria, e.g. components of the pyruvate dehydrogenase complex and the tricarboxylic acid cycle as well as subunits of electron transport chain complex I. These data suggest a possible function of mitochondrial CLPXP in the control and/or maintenance of energy metabolism. Since bioenergetic alterations are a common feature of neurodegenerative diseases, cancer, and ageing, our data comprise an important resource for specific studies addressing the role of CLPXP in these adverse processes.
Collapse
Affiliation(s)
- Fabian Fischer
- Johann Wolfgang Goethe University, Faculty for Biosciences &Cluster of Excellence 'Macromolecular Complexes' Frankfurt, Institute for Molecular Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Julian D Langer
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt, Germany
| | - Heinz D Osiewacz
- Johann Wolfgang Goethe University, Faculty for Biosciences &Cluster of Excellence 'Macromolecular Complexes' Frankfurt, Institute for Molecular Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
29
|
Abstract
The Database of Human Gastric Cancer (DBGC) is a comprehensive database that integrates various human gastric cancer-related data resources. Human gastric cancer-related transcriptomics projects, proteomics projects, mutations, biomarkers and drug-sensitive genes from different sources were collected and unified in this database. Moreover, epidemiological statistics of gastric cancer patients in China and clinicopathological information annotated with gastric cancer cases were also integrated into the DBGC. We believe that this database will greatly facilitate research regarding human gastric cancer in many fields. DBGC is freely available at http://bminfor.tongji.edu.cn/dbgc/index.do
Collapse
|
30
|
Berges R, Baeza-Kallee N, Tabouret E, Chinot O, Petit M, Kruczynski A, Figarella-Branger D, Honore S, Braguer D. End-binding 1 protein overexpression correlates with glioblastoma progression and sensitizes to Vinca-alkaloids in vitro and in vivo. Oncotarget 2015; 5:12769-87. [PMID: 25473893 PMCID: PMC4350359 DOI: 10.18632/oncotarget.2646] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/26/2014] [Indexed: 01/08/2023] Open
Abstract
End-binding 1 protein (EB1) is a key player in the regulation of microtubule (MT) dynamics. Here, we investigated the role of EB1 in glioblastoma (GBM) tumor progression and its potential predictive role for response to Vinca-alkaloid chemotherapy. Immunohistological analysis of the 109 human GBM cases revealed that EB1 overexpression correlated with poor outcome including progression-free survival and overall survival. Downregulation of EB1 by shRNA inhibited cell migration and proliferation in vitro. Conversely, EB1 overexpression promoted them and accelerated tumor growth in orthotopically-transplanted nude mice. Furthermore, EB1 was largely overexpressed in stem-like GBM6 that display in vivo a higher tumorigenicity with a more infiltrative pattern of migration than stem-like GBM9. GBM6 showed strong and EB1-dependent migratory potential. The predictive role of EB1 in the response of GBM cells to chemotherapy was investigated. Vinflunine and vincristine increased survival of EB1-overexpressing U87 bearing mice and were more effective to inhibit cell migration and proliferation in EB1-overexpressing clones than in controls. Vinca inhibited the increase of MT growth rate and growth length induced by EB1 overexpression. Altogether, our results show that EB1 expression level has a prognostic value in GBM, and that Vinca-alkaloid chemotherapy could improve the treatment of GBM patients with EB1-overexpressing tumor.
Collapse
Affiliation(s)
- Raphael Berges
- Aix-Marseille Université, INSERM, CRO2 UMR_S 911, Marseille 13385, France
| | | | - Emeline Tabouret
- Aix-Marseille Université, INSERM, CRO2 UMR_S 911, Marseille 13385, France. APHM, CHU Timone, Marseille 13385, France
| | - Olivier Chinot
- Aix-Marseille Université, INSERM, CRO2 UMR_S 911, Marseille 13385, France. APHM, CHU Timone, Marseille 13385, France
| | - Marie Petit
- Aix-Marseille Université, INSERM, CRO2 UMR_S 911, Marseille 13385, France. APHM, CHU Timone, Marseille 13385, France
| | - Anna Kruczynski
- Centre de Recherche d'Oncologie Expérimentale, Institut de Recherche Pierre Fabre, Toulouse, France
| | - Dominique Figarella-Branger
- Aix-Marseille Université, INSERM, CRO2 UMR_S 911, Marseille 13385, France. APHM, CHU Timone, Marseille 13385, France
| | - Stephane Honore
- Aix-Marseille Université, INSERM, CRO2 UMR_S 911, Marseille 13385, France. APHM, CHU Timone, Marseille 13385, France
| | - Diane Braguer
- Aix-Marseille Université, INSERM, CRO2 UMR_S 911, Marseille 13385, France. APHM, CHU Timone, Marseille 13385, France
| |
Collapse
|
31
|
Li JJ, Qi RZ, Ng GKH, Xie D. Proteomics in gastric cancer research: Benefits and challenges. Proteomics Clin Appl 2015; 3:185-96. [PMID: 26238618 DOI: 10.1002/prca.200800151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Indexed: 12/14/2022]
Abstract
Among various cancers, gastric cancer (GC) exhibits relatively high morbidity and mortality rate worldwide. The lack of effective methods in early detection and diagnosis, and immediate therapies makes treating such disease a challenge for both clinicians and oncologists. Proteomics has emerged as a promising technology platform for rationally identifying biomarkers and novel therapeutic targets for GC, as well as discovering underlying mechanisms of carcinogenesis. Its application has greatly benefited mechanistic studies of this disease. This review will demonstrate the applications of proteomic technology in GC research. The advantages and shortcomings of this technology, as reflected by current studies, will also be discussed to improve and expand its application in the field of cancer research.
Collapse
Affiliation(s)
- Jing-Jing Li
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Robert Z Qi
- Department of Biochemistry, Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Gary Kar Ho Ng
- Department of Biochemistry, Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Dong Xie
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China.
| |
Collapse
|
32
|
Zhang J, Ibrahim MM, Sun M, Tang J. Enoyl-coenzyme A hydratase in cancer. Clin Chim Acta 2015; 448:13-7. [PMID: 25636653 DOI: 10.1016/j.cca.2015.01.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/18/2015] [Accepted: 01/23/2015] [Indexed: 11/28/2022]
Abstract
Enoyl-CoA hydratase (Ech) catalyzes the second step in the physiologically important beta-oxidation pathway of fatty acid metabolism. The enzyme was reported to be associated with the progression, metastasis and drug resistance of cancers. It might function as a tumor promoter or a tumor suppressor for certain cancers depending on the particular type or stage of tumor cells/tissues. In this review, Ech's association with malignant tumors as well as its potential mechanisms is discussed and summarized. The enzyme might be useful in the diagnosis, treatment and prognosis determination of certain tumors.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - M M Ibrahim
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Mingzhong Sun
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Jianwu Tang
- Key Laboratory of Tumor Metastasis of Liaoning Province University, Dalian 116044, China.
| |
Collapse
|
33
|
Thomas GE, Sreeja JS, Gireesh KK, Gupta H, Manna TK. +TIP EB1 downregulates paclitaxel‑induced proliferation inhibition and apoptosis in breast cancer cells through inhibition of paclitaxel binding on microtubules. Int J Oncol 2014; 46:133-46. [PMID: 25310526 DOI: 10.3892/ijo.2014.2701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/09/2014] [Indexed: 11/06/2022] Open
Abstract
Microtubule plus‑end‑binding protein (+TIP) EB1 has been shown to be upregulated in breast cancer cells and promote breast tumor growth in vivo. However, its effect on the cellular actions of microtubule‑targeted drugs in breast cancer cells has remained poorly understood. By using cellular and biochemical assays, we demonstrate that EB1 plays a critical role in regulating the sensitivity of breast cancer cells to anti‑microtubule drug, paclitaxel (PTX). Cell viability assays revealed that EB1 expression in the breast cancer cell lines correlated with the reduction of their sensitivity to PTX. Knockdown of EB1 by enzymatically‑prepared siRNA pools (esiRNAs) increased PTX‑induced cytotoxicity and sensitized cells to PTX‑induced apoptosis in three breast cancer cell lines, MCF‑7, MDA MB‑231 and T47D. Apoptosis was associated with activation of caspase‑9 and an increase in the cleavage of poly(ADP‑ribose) polymerase (PARP). p53 and Bax were upregulated and Bcl2 was downregulated in the EB1‑depleted PTX‑treated MCF‑7 cells, indicating that the apoptosis occurs via a p53‑dependent pathway. Following its upregulation, the nuclear accumulation of p53 and its association with cellular microtubules were increased. EB1 depletion increased PTX‑induced microtubule bundling in the interphase cells and induced formation of multiple spindle foci with abnormally elongated spindles in the mitotic MCF‑7 cells, indicating that loss of EB1 promotes PTX‑induced stabilization of microtubules. EB1 inhibited PTX‑induced microtubule polymerization and diminished PTX binding to microtubules in vitro, suggesting that it modulates the binding sites of PTX at the growing microtubule ends. Results demonstrate that EB1 downregulates inhibition of PTX‑induced proliferation and apoptosis in breast cancer cells through a mechanism in which it impairs PTX‑mediated stabilization of microtubule polymerization and inhibits PTX binding on microtubules.
Collapse
Affiliation(s)
- Geethu Emily Thomas
- School of Biology, Indian Institute of Science Education and Research, CET Campus, Thiruvananthapuram 695016, Kerala, India
| | - Jamuna S Sreeja
- School of Biology, Indian Institute of Science Education and Research, CET Campus, Thiruvananthapuram 695016, Kerala, India
| | - K K Gireesh
- School of Biology, Indian Institute of Science Education and Research, CET Campus, Thiruvananthapuram 695016, Kerala, India
| | - Hindol Gupta
- School of Biology, Indian Institute of Science Education and Research, CET Campus, Thiruvananthapuram 695016, Kerala, India
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, CET Campus, Thiruvananthapuram 695016, Kerala, India
| |
Collapse
|
34
|
Lopez BJ, Valentine MT. Mechanical effects of EB1 on microtubules depend on GTP hydrolysis state and presence of paclitaxel. Cytoskeleton (Hoboken) 2014; 71:530-41. [PMID: 25160006 DOI: 10.1002/cm.21190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/19/2014] [Indexed: 01/08/2023]
Abstract
Using the nonhydrolyzable GTP analog GMPCPP and the slowly hydrolyzable GTPγS, we polymerize microtubules that recapitulate the end binding behavior of the plus end interacting protein (+TIP) EB1 along their entire length, and use these to investigate the impact of EB1 binding on microtubule mechanics. To measure the stiffness of single filaments, we use a spectral analysis method to determine the ensemble of shapes adopted by a freely diffusing, fluorescently labeled microtubule. We find that the presence of EB1 can stiffen microtubules in a manner that depends on the hydrolysis state of the tubulin-bound nucleotide, as well as the presence of the small-molecule stabilizer paclitaxel. We find that the magnitude of the EB1-induced stiffening is not proportional to the EB1-microtubule binding affinity, suggesting that the stiffening effect does not arise purely from an increase in the total amount of bound EB1. Additionally, we find that EB1 binds cooperatively to microtubules in manner that depends on tubulin-bound nucleotide state.
Collapse
Affiliation(s)
- Benjamin J Lopez
- Department of Mechanical Engineering and the Neuroscience Research Institute, University of California, Santa Barbara, California
| | | |
Collapse
|
35
|
Stypula-Cyrus Y, Mutyal NN, Dela Cruz M, Kunte DP, Radosevich AJ, Wali R, Roy HK, Backman V. End-binding protein 1 (EB1) up-regulation is an early event in colorectal carcinogenesis. FEBS Lett 2014; 588:829-35. [PMID: 24492008 DOI: 10.1016/j.febslet.2014.01.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/20/2014] [Indexed: 11/19/2022]
Abstract
End-binding protein (EB1) is a microtubule protein that binds to the tumor suppressor adenomatous polyposis coli (APC). While EB1 is implicated as a potential oncogene, its role in cancer progression is unknown. Therefore, we analyzed EB1/APC expression at the earliest stages of colorectal carcinogenesis and in the uninvolved mucosa ("field effect") of human and animal tissue. We also performed siRNA-knockdown in colon cancer cell lines. EB1 is up-regulated in early and field carcinogenesis in the colon, and the cellular/nano-architectural effect of EB1 knockdown depended on the genetic context. Thus, dysregulation of EB1 is an important early event in colon carcinogenesis.
Collapse
Affiliation(s)
- Yolanda Stypula-Cyrus
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA.
| | - Nikhil N Mutyal
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA
| | - Mart Dela Cruz
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Dhananjay P Kunte
- Department of Internal Medicine, NorthShore University Health System, Evanston, IL 60201, USA
| | - Andrew J Radosevich
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA
| | - Ramesh Wali
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Hemant K Roy
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA.
| | - Vadim Backman
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
36
|
Wang X, Yuegao, Bai L, Ibrahim MM, Ma W, Zhang J, Huang Y, Wang B, Song L, Tang J. Evaluation of Annexin A7, Galectin-3 and Gelsolin as possible biomarkers of hepatocarcinoma lymphatic metastasis. Biomed Pharmacother 2014; 68:259-65. [PMID: 24529848 DOI: 10.1016/j.biopha.2013.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/31/2013] [Indexed: 01/25/2023] Open
Abstract
We have previously demonstrated that Annexin A7 is involved in the lymphatic metastasis of hepatocarcinoma in vitro. The expression of Galectin-3 and Gelsolin, which were also relevant to tumor lymphatic metastasis, had shown the same tendency concordantly with the expression of Annexin A7 alteration by qRT-PCR and Western blot analysis. Here, we gain an insight into the role that Annexin A7 is playing in Hca-P, PAnxa7-upregulated and PAnxa7-downregulated cells in vivo. Then, Hca-P, PAnxa7-upregulated and PAnxa7-downregulated cells were injected into a mouse footpad to establish primary tumors in mice. On the fourth week after HCC cells inoculation, the mice were sacrificed for inspection the expression of Annexin A7, Galectin-3 and Gelsolin in primary tumors and in serum. Our work indicates that Annexin A7 and Gelsolin are both valuable in tumors and in serum evaluating lymph node metastasis in mice with hepatocarcinoma; Galectin-3 in tumors is significant but no much contribution in serum.
Collapse
Affiliation(s)
- Xianyan Wang
- Department of Pathology, Dalian Medical University, Key Laboratory of Tumor Metastasis of Liaoning Province University, 9, West Lvshun Southern Road, Dalian, 116044 Liaoning, China; Department of Pathology, Qiqihar Medical College, 161006 Heilongjiang, China
| | - Yuegao
- Department of Pathology, Dalian Medical University, Key Laboratory of Tumor Metastasis of Liaoning Province University, 9, West Lvshun Southern Road, Dalian, 116044 Liaoning, China
| | - Lulu Bai
- Department of Pathology, Dalian Medical University, Key Laboratory of Tumor Metastasis of Liaoning Province University, 9, West Lvshun Southern Road, Dalian, 116044 Liaoning, China
| | - Mohammed Mohammed Ibrahim
- Department of Pathology, Dalian Medical University, Key Laboratory of Tumor Metastasis of Liaoning Province University, 9, West Lvshun Southern Road, Dalian, 116044 Liaoning, China
| | - Wei Ma
- Department of Human Anatomy, Dalian Medical University, 9, West Lvshun Southern Road, Dalian, 116044 Liaoning, China
| | - Jun Zhang
- Department of Pathology, Dalian Medical University, Key Laboratory of Tumor Metastasis of Liaoning Province University, 9, West Lvshun Southern Road, Dalian, 116044 Liaoning, China
| | - Yuhong Huang
- Department of Pathology, Dalian Medical University, Key Laboratory of Tumor Metastasis of Liaoning Province University, 9, West Lvshun Southern Road, Dalian, 116044 Liaoning, China
| | - Bo Wang
- Department of Pathology, Dalian Medical University, Key Laboratory of Tumor Metastasis of Liaoning Province University, 9, West Lvshun Southern Road, Dalian, 116044 Liaoning, China
| | - Lin Song
- Department of Pathology, Dalian Medical University, Key Laboratory of Tumor Metastasis of Liaoning Province University, 9, West Lvshun Southern Road, Dalian, 116044 Liaoning, China
| | - Jianwu Tang
- Department of Pathology, Dalian Medical University, Key Laboratory of Tumor Metastasis of Liaoning Province University, 9, West Lvshun Southern Road, Dalian, 116044 Liaoning, China.
| |
Collapse
|
37
|
Ebert M, Xing X, Burgermeister E, Schmid R, Röcken C. Perspectives of clinical proteomics in gastrointestinal cancer. Expert Rev Anticancer Ther 2014; 7:465-9. [PMID: 17428167 DOI: 10.1586/14737140.7.4.465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Every year approximately 2 million Europeans develop a malignancy; the group of gastrointestinal cancers is the single largest group, with approximately 600,000 new cancers annually. Despite recent innovations and developments in the diagnosis and management of these cancers, prognosis remains poor and treatment options limited. In recent years, new technological advances in proteome analysis and its application to patient management have been made and are the subject of ongoing clinical studies. The identification of biomarkers and biomarker patterns has raised hope that noninvasive diagnosis of cancers in their early stages may soon be an option. However, before the results of proteome analysis can be implemented in the management of cancer patients, further validation of these markers and the issues of sensitivity, specificity, reproducibility and accuracy need to be addressed and solved.
Collapse
Affiliation(s)
- Matthias Ebert
- Technische Universität München, Department of Medicine II, Klinikum rechts der Isar, München, Germany.
| | | | | | | | | |
Collapse
|
38
|
Lee YJ, Lee DM, Jeong DJ, Shim JH, Lee CH, Choi YJ, Nam HS, Cho MK, Lee SH. Knockdown of cysteine-rich 61 inhibits proliferation, migration, and invasiveness of prostate carcinoma PC-3 cells. Anim Cells Syst (Seoul) 2013. [DOI: 10.1080/19768354.2013.830647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
39
|
Ichikawa H, Kanda T, Kosugi SI, Kawachi Y, Sasaki H, Wakai T, Kondo T. Laser microdissection and two-dimensional difference gel electrophoresis reveal the role of a novel macrophage-capping protein in lymph node metastasis in gastric cancer. J Proteome Res 2013; 12:3780-91. [PMID: 23782053 DOI: 10.1021/pr400439m] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To reveal the proteomic background of lymph node metastasis (LNM) in gastric cancer, we performed a proteomic study of tumor and matched nontumor tissues obtained from surgically resected specimens of 22 patients with or without LNM. Using laser microdissection, we recovered specific populations of tumor and nontumor cells. We used two-dimensional difference gel electrophoresis with a large format electrophoresis apparatus to obtain protein expression profiles consisting of 3228 protein spots, and we classified them according to their expression pattern. We found that macrophage-capping protein (CapG) was up-regulated in the tumor tissues of patients with LNM, whereas it showed an equivalent expression level between nontumor and tumor tissues of patients without LNM. It was reported that CapG associated with invasion and metastasis in various malignancies. However, CapG was not investigated in gastric cancer until our study. Western blotting of the laser microdissected tissue samples confirmed up-regulation of CapG in the tumor tissues of patients with LNM. Functional assays demonstrated that CapG promoted tumor cell invasion, but not cell proliferation. The association between CapG expression and LNM is a novel finding in gastric cancer. Further investigation for a prognostic utility of CapG may lead to a risk stratification therapy for gastric cancer.
Collapse
Affiliation(s)
- Hiroshi Ichikawa
- Division of Pharmacoproteomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Goard CA, Schimmer AD. Mitochondrial matrix proteases as novel therapeutic targets in malignancy. Oncogene 2013; 33:2690-9. [PMID: 23770858 DOI: 10.1038/onc.2013.228] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/23/2013] [Accepted: 04/30/2013] [Indexed: 12/30/2022]
Abstract
Although mitochondrial function is often altered in cancer, it remains essential for tumor viability. Tight control of protein homeostasis is required for the maintenance of mitochondrial function, and the mitochondrial matrix houses several coordinated protein quality control systems. These include three evolutionarily conserved proteases of the AAA+ superfamily-the Lon, ClpXP and m-AAA proteases. In humans, these proteases are proposed to degrade, process and chaperone the assembly of mitochondrial proteins in the matrix and inner membrane involved in oxidative phosphorylation, mitochondrial protein synthesis, mitochondrial network dynamics and nucleoid function. In addition, these proteases are upregulated by a variety of mitochondrial stressors, including oxidative stress, unfolded protein stress and imbalances in respiratory complex assembly. Given that tumor cells must survive and proliferate under dynamic cellular stress conditions, dysregulation of mitochondrial protein quality control systems may provide a selective advantage. The association of mitochondrial matrix AAA+ proteases with cancer and their potential for therapeutic modulation therefore warrant further consideration. Although our current knowledge of the endogenous human substrates of these proteases is limited, we highlight functional insights gained from cultured human cells, protease-deficient mouse models and other eukaryotic model organisms. We also review the consequences of disrupting mitochondrial matrix AAA+ proteases through genetic and pharmacological approaches, along with implications of these studies on the potential of these proteases as anticancer therapeutic targets.
Collapse
Affiliation(s)
- C A Goard
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - A D Schimmer
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Pustylnik S, Fiorino C, Nabavi N, Zappitelli T, da Silva R, Aubin JE, Harrison RE. EB1 levels are elevated in ascorbic Acid (AA)-stimulated osteoblasts and mediate cell-cell adhesion-induced osteoblast differentiation. J Biol Chem 2013; 288:22096-110. [PMID: 23740245 DOI: 10.1074/jbc.m113.481515] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Osteoblasts are differentiated mesenchymal cells that function as the major bone-producing cells of the body. Differentiation cues including ascorbic acid (AA) stimulation provoke intracellular changes in osteoblasts leading to the synthesis of the organic portion of the bone, which includes collagen type I α1, proteoglycans, and matrix proteins, such as osteocalcin. During our microarray analysis of AA-stimulated osteoblasts, we observed a significant up-regulation of the microtubule (MT) plus-end binding protein, EB1, compared with undifferentiated osteoblasts. EB1 knockdown significantly impaired AA-induced osteoblast differentiation, as detected by reduced expression of osteoblast differentiation marker genes. Intracellular examination of AA-stimulated osteoblasts treated with EB1 siRNA revealed a reduction in MT stability with a concomitant loss of β-catenin distribution at the cell cortex and within the nucleus. Diminished β-catenin levels in EB1 siRNA-treated osteoblasts paralleled an increase in phospho-β-catenin and active glycogen synthase kinase 3β, a kinase known to target β-catenin to the proteasome. EB1 siRNA treatment also reduced the expression of the β-catenin gene targets, cyclin D1 and Runx2. Live immunofluorescent imaging of differentiated osteoblasts revealed a cortical association of EB1-mcherry with β-catenin-GFP. Immunoprecipitation analysis confirmed an interaction between EB1 and β-catenin. We also determined that cell-cell contacts and cortically associated EB1/β-catenin interactions are necessary for osteoblast differentiation. Finally, using functional blocking antibodies, we identified E-cadherin as a major contributor to the cell-cell contact-induced osteoblast differentiation.
Collapse
Affiliation(s)
- Sofia Pustylnik
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Uppal DS, Powell SM. Genetics/genomics/proteomics of gastric adenocarcinoma. Gastroenterol Clin North Am 2013; 42:241-60. [PMID: 23639639 DOI: 10.1016/j.gtc.2013.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hereditary diffuse gastric cancer can be caused by epithelial cadherin mutations for which genetic testing is available. Inherited cancer predisposition syndromes including Lynch, Li-Fraumeni, and Peutz-Jeghers syndromes, can be associated with gastric cancer. Chromosomal and microsatellite instability occur in gastric cancers. Several consistent genetic and molecular alterations including chromosomal instability, microsatellite instability, and epigenetic alterations have been identified in gastric cancers. Biomarkers and molecular profiles are being discovered with potential for diagnostic, prognostic, and treatment guidance implications.
Collapse
Affiliation(s)
- Dushant S Uppal
- Division of Gastroenterology/Hepatology, Department of Medicine, University of Virginia, Charlottesville, VA 22908-0708, USA
| | | |
Collapse
|
43
|
Zhang J, Sun M, Li R, Liu S, Mao J, Huang Y, Wang B, Hou L, Ibrahim MM, Tang J. Ech1 is a potent suppressor of lymphatic metastasis in hepatocarcinoma. Biomed Pharmacother 2013; 67:557-60. [PMID: 23809371 DOI: 10.1016/j.biopha.2013.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 03/10/2013] [Indexed: 01/15/2023] Open
Abstract
We have previously demonstrated that Ech1 is involved in the lymphatic metastasis of tumors in vitro. Here, we gain an insight into the role that Ech1 is playing in Hca-F cell. The expression of Annexin A7, Gelsolin and Clic1 genes, which were also relevant to tumor lymphatic metastasis, had been inhibited due to downregulation Ech1 gene by Western blot analysis. And downregulated of Ech1 inhibits the metastasic capability of Hca-F cells to peripheral lymph nodes in vivo. Our work indicates although the involvement of Ech1 in tumor metastasis development and progression, but the subcellular location of Ech1 has not much contribution to that.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Pathology, Dalian Medical University, Key Laboratory of Tumor Metastasis of Liaoning Province University, 9, West Lvshun Southern Road, Dalian, 116044 Liaoning, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jiang JX, Gao S, Pan YZ, Sun CY. Quantitative proteomic analysis of differentially expressed proteins in pancreatic cancer stem cells. Shijie Huaren Xiaohua Zazhi 2013; 21:145-152. [DOI: 10.11569/wcjd.v21.i2.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To screen and identify differentially expressed proteins in pancreatic cancer stem cells.
METHODS: MIA-PaCa2 (TIChigh) and BxPc-3 (TIClow) were used in the study. Differentially expressed proteins between MIA-PaCa2 (TIChigh) and BxPc-3 (TIClow) cells were isolated and screened by 2D-DIGE analysis. Protein identification was performed by peptide mass fingerprinting with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF). Western blot was performed to verify the differential expression of TRIM28.
RESULTS: Fluorescent differential protein expression patterns were obtained between MIA-PaCa2 (TIChigh) and BxPc-3 (TIClow) cells. Analyses with DeCyder v6.5 software showed a total of 23 differentially expressed protein spots (>1.5 folds), and these protein spots were identified by mass spectrometry as 19 proteins, which are involved in cell communication and signal transduction, immune response, transcription and cell cycle regulation, adipocyte differentiation and lipid droplet formation, cytoskeletal formation, cell adhesion, transport, and translation. Western blot analysis revealed that TRIM28 was highly expressed in MIA-PaCa2 (TIChigh) cells but not expressed in BxPc-3 (TIClow) cells. Among the 19 identified proteins, 8 were up-regulated and 11 down-regulated in MIA-PaCa2 (TIChigh) cells.
CONCLUSION: The identified differentially expressed proteins, such as TRIM28, are associated with the genesis, development and regulation of pancreatic cancer stem cells. They may become new therapeutic targets for pancreatic cancer.
Collapse
|
45
|
Li QW, Lu XY, You Y, Sun H, Liu XY, Ai JZ, Tan RZ, Chen TL, Chen MZ, Wang HL, Wei YQ, Zhou Q. Comparative proteomic analysis suggests that mitochondria are involved in autosomal recessive polycystic kidney disease. Proteomics 2012; 12:2556-70. [PMID: 22718539 DOI: 10.1002/pmic.201100590] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD), characterized by ectatic collecting duct, is an infantile form of PKD occurring in 1 in 20 000 births. Despite having been studied for many years, little is known about the underlying mechanisms. In the current study, we employed, for the first time, a MS-based comparative proteomics approach to investigate the differently expressed proteins between kidney tissue samples of four ARPKD and five control individuals. Thirty two differently expressed proteins were identified and six of the identified protein encoding genes performed on an independent group (three ARPKD subjects, four control subjects) were verified by semi-quantitative RT-PCR, and part of them were further validated by Western blot and immunohistochemistry. Moreover, similar alteration tendency was detected after downregulation of PKHD1 by small interfering RNA in HEK293T cell. Interestingly, most of the identified proteins are associated with mitochondria. This implies that mitochondria may be implicated in ARPKD. Furthermore, the String software was utilized to investigate the biological association network, which is based on known and predicted protein interactions. In conclusion, our findings depicted a global understanding of ARPKD progression and provided a promising resource of targeting protein, and shed some light further investigation of ARPKD.
Collapse
Affiliation(s)
- Qing-Wei Li
- Core Facility of Genetically Engineered Mice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lam KWK, Lo SCL. Discovery of diagnostic serum biomarkers of gastric cancer using proteomics. Proteomics Clin Appl 2012; 2:219-28. [PMID: 21136826 DOI: 10.1002/prca.200780015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gastric cancer has significant morbidity and mortality worldwide and locally. Good prognosis relies on an early diagnosis. However, this remains a challenge due to the lack of specific and sensitive serum biomarkers for early detection. Hence, there is a constant search for these biomarkers for screening purposes. Proteomic profiling enables a new approach to the discovery of biomarkers in disease. This review presents recent attempts in search of gastric cancer serum biomarker using proteomics. Different methodologies and different types of samples were employed by different groups of researchers. Major difficulties were encountered in the discovery processes, including interference from abundant proteins and continuous changing serum proteomes from different individuals.
Collapse
Affiliation(s)
- Katie Wing-Kei Lam
- The Proteomic Task Force, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | | |
Collapse
|
47
|
Takadate T, Onogawa T, Fukuda T, Motoi F, Suzuki T, Fujii K, Kihara M, Mikami S, Bando Y, Maeda S, Ishida K, Minowa T, Hanagata N, Ohtsuka H, Katayose Y, Egawa S, Nishimura T, Unno M. Novel prognostic protein markers of resectable pancreatic cancer identified by coupled shotgun and targeted proteomics using formalin-fixed paraffin-embedded tissues. Int J Cancer 2012; 132:1368-82. [PMID: 22915188 DOI: 10.1002/ijc.27797] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 08/07/2012] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer is among the most lethal malignancies worldwide. We aimed to identify novel prognostic markers by applying mass spectrometry (MS)-based proteomic analysis to formalin-fixed paraffin-embedded (FFPE) tissues. Resectable, node positive pancreatic ductal adenocarcinoma (PDAC) with poor (n = 4) and better (n = 4) outcomes, based on survival duration, with essentially the same clinicopathological backgrounds, and noncancerous pancreatic ducts (n = 5) were analyzed. Cancerous and noncancerous cells collected from FFPE tissue sections by laser microdissection (LMD) were processed for liquid chromatography (LC)-tandem MS (MS/MS). Candidate proteins were identified by semiquantitative comparison and then analyzed quantitatively using selected reaction monitoring (SRM)-based MS. To confirm the associations between candidate proteins and outcomes, we immunohistochemically analyzed a cohort of 87 cases. In result, totally 1,229 proteins were identified and 170 were selected as candidate proteins for SRM-based targeted proteomics. Fourteen proteins overexpressed in cancerous as compared to noncancerous tissue showed different expressions in the poor and better outcome groups. Among these proteins, we found that three novel proteins ECH1, OLFM4 and STML2 were overexpressed in poor group than in better group, and that one known protein GTR1 was expressed reciprocally. Kaplan-Meier analysis showed high expressions of all four proteins to correlate with significantly worse overall survival (p < 0.05). In conclusion, we identified four proteins as candidates of prognostic marker of PDAC. The combination of shotgun proteomics verified by SRM and validated by immunohistochemistry resulted in the prognostic marker discovery that will contribute the understanding of PDAC biology and therapeutic development.
Collapse
Affiliation(s)
- Tatsuyuki Takadate
- Division of Gastroenterological Surgery, Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Leal MF, Chung J, Calcagno DQ, Assumpção PP, Demachki S, da Silva IDCG, Chammas R, Burbano RR, de Arruda Cardoso Smith M. Differential proteomic analysis of noncardia gastric cancer from individuals of northern Brazil. PLoS One 2012; 7:e42255. [PMID: 22860099 PMCID: PMC3408468 DOI: 10.1371/journal.pone.0042255] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 07/03/2012] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is the second leading cause of cancer-related death worldwide. The identification of new cancer biomarkers is necessary to reduce the mortality rates through the development of new screening assays and early diagnosis, as well as new target therapies. In this study, we performed a proteomic analysis of noncardia gastric neoplasias of individuals from Northern Brazil. The proteins were analyzed by two-dimensional electrophoresis and mass spectrometry. For the identification of differentially expressed proteins, we used statistical tests with bootstrapping resampling to control the type I error in the multiple comparison analyses. We identified 111 proteins involved in gastric carcinogenesis. The computational analysis revealed several proteins involved in the energy production processes and reinforced the Warburg effect in gastric cancer. ENO1 and HSPB1 expression were further evaluated. ENO1 was selected due to its role in aerobic glycolysis that may contribute to the Warburg effect. Although we observed two up-regulated spots of ENO1 in the proteomic analysis, the mean expression of ENO1 was reduced in gastric tumors by western blot. However, mean ENO1 expression seems to increase in more invasive tumors. This lack of correlation between proteomic and western blot analyses may be due to the presence of other ENO1 spots that present a slightly reduced expression, but with a high impact in the mean protein expression. In neoplasias, HSPB1 is induced by cellular stress to protect cells against apoptosis. In the present study, HSPB1 presented an elevated protein and mRNA expression in a subset of gastric cancer samples. However, no association was observed between HSPB1 expression and clinicopathological characteristics. Here, we identified several possible biomarkers of gastric cancer in individuals from Northern Brazil. These biomarkers may be useful for the assessment of prognosis and stratification for therapy if validated in larger clinical study sets.
Collapse
Affiliation(s)
- Mariana Ferreira Leal
- Genetics Division, Department of Morphology and Genetic, Federal University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Xu Y, Zhang J, Liu QS, Dong WG. Knockdown of liver-intestine cadherin decreases BGC823 cell invasiveness and metastasis in vivo. World J Gastroenterol 2012; 18:3129-37. [PMID: 22791949 PMCID: PMC3386327 DOI: 10.3748/wjg.v18.i24.3129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 05/06/2011] [Accepted: 05/12/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess BGC823 gastric cancer (GC) cell metastasis after knockdown of liver-intestine cadherin (CDH17) and the therapeutic value of CDH17-RNAi-lentivirus in vivo.
METHODS: We evaluated primary tumor growth and assessed local infiltration and systemic tumor dissemination using an orthotopic implantation technique. The therapeutic value of CDH17 knockdown was examined by intratumoral administration of CDH17-RNA interference (RNAi)-lentivirus in an established GC tumor xenograft mouse model. Furthermore, a comparative proteomic approach was utilized to identify differentially expressed proteins in BGC823 and lenti-CDH17-miR-neg cells following CDH17 knockdown.
RESULTS: Metastases in the liver and lung appeared earlier and more frequently in animals with tumors derived from BGC823 or lenti-CDH17-miR-neg cells than in tumors derived from lenti-CDH17-miR-B cells. Average tumor weight and volume in the CDH17-RNAi-lentivirus-treated group were significantly lower than those in the control group (tumor volume: 0.89 ± 0.04 cm3vs 1.16 ± 0.06 cm3, P < 0.05; tumor weight: 1.15 ± 0.58 g vs 2.09 ± 0.08 g, P < 0.05). Fifteen differentially expressed proteins were identified after CDH17 silencing in BGC823 cells, including a variety of cytoskeletal and chaperone proteins as well as proteins involved in metabolism, immunity/defense, cell proliferation and differentiation, cell cycle, and signal transduction.
CONCLUSION: Our data establish a foundation for future studies of the comprehensive protein expression patterns and effects of CDH17 in GC.
Collapse
|
50
|
Sugihara Y, Taniguchi H, Kushima R, Tsuda H, Kubota D, Ichikawa H, Sakamoto K, Nakamura Y, Tomonaga T, Fujita S, Kondo T. Proteomic-based identification of the APC-binding protein EB1 as a candidate of novel tissue biomarker and therapeutic target for colorectal cancer. J Proteomics 2012; 75:5342-55. [PMID: 22735596 DOI: 10.1016/j.jprot.2012.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/11/2012] [Accepted: 06/14/2012] [Indexed: 01/18/2023]
Abstract
Novel candidates of biomarker and therapeutic target in colorectal cancer (CRC) were investigated using a proteomic approach. The proteome of normal colorectal epithelial tissues was compared with that of the tumor ones in 59 CRC patients using two-dimensional difference gel electrophoresis. Of 3458 protein spots, 110 exhibited statistically significant (p<0.01) differences in intensity (more than 2.5-folds) between the normal and tumor tissue groups. Of 67 unique gene products that were identified for 105 of the 110 protein spots, we focused on the higher expression of the adenoma polyposis coli-binding protein EB1 (EB1). EB1 was originally discovered as a binding protein of APC, which is a tumor suppressor gene product, and the expression of EB1 has been associated with poor prognosis in several malignancies but not in CRC. Immunohistochemical analysis of the 132 CRC cases revealed that EB1 was overexpressed in tumor cells in correlation with poor prognosis. Suppression of EB1 by RNAi inhibited CRC cell proliferation and invasion. In this study, the overexpression of EB1 in CRC tissues correlating with prognosis, and its functional contribution to the malignant phenotypes of CRC cells are described. The present findings indicate that EB1 is a potential biomarker and therapeutic target in CRC.
Collapse
Affiliation(s)
- Yutaka Sugihara
- Division of Pharmacoproteomics, National Cancer Center Research Institute, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|