1
|
Yang X, Dai J, Yao S, An J, Wen G, Jin H, Zhang L, Zheng L, Chen X, Yi Z, Tuo B. APOBEC3B: Future direction of liver cancer research. Front Oncol 2022; 12:996115. [PMID: 36203448 PMCID: PMC9530283 DOI: 10.3389/fonc.2022.996115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Liver cancer is one of the most common cancers in the world, and the rate of liver cancer is high due to the of its illness. The main risk factor for liver cancer is infection with the hepatitis B virus (HBV), but a considerable number of genetic and epigenetic factors are also directly or indirectly involved in the underlying pathogenesis of liver cancer. In particular, the apolipoprotein B mRNA editing enzyme, catalytic peptide-like protein (APOBEC) family (DNA or mRNA editor family), which has been the focus of virology research for more than a decade, has been found to play a significant role in the occurrence and development of various cancers, providing a new direction for the research of liver cancer. APOBEC3B is a cytosine deaminase that controls a variety of biological processes, such as protein expression, innate immunity, and embryonic development, by participating in the process of cytidine deamination to uridine in DNA and RNA. In humans, APOBEC3B has long been known as a DNA editor for limiting viral replication and transcription. APOBEC3B is widely expressed at low levels in a variety of normal tissues and organs, but it is significantly upregulated in different types of tumor tissues and tumor lines. Thus, APOBEC3B has received increasing attention in various cancers, but the role of APOBEC3B in the occurrence and development of liver cancer due to infection with HBV remains unclear. This review provides a brief introduction to the pathogenesis of hepatocellular carcinoma induced by HBV, and it further explores the latest results of APOBEC3B research in the development of HBV and liver cancer, thereby providing new directions and strategies for the treatment and prevention of liver cancer.
Collapse
Affiliation(s)
- Xingyue Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jing Dai
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xingyue Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhiqiang Yi
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, China
- *Correspondence: Biguang Tuo,
| |
Collapse
|
2
|
Fusion HBx from HBV Integrant Affects Hepatocarcinogenesis through Deregulation of ER Stress Response. Virus Res 2022; 315:198787. [DOI: 10.1016/j.virusres.2022.198787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 01/04/2023]
|
3
|
Hepatitis B Viral Protein HBx and the Molecular Mechanisms Modulating the Hallmarks of Hepatocellular Carcinoma: A Comprehensive Review. Cells 2022; 11:cells11040741. [PMID: 35203390 PMCID: PMC8870387 DOI: 10.3390/cells11040741] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
With 296 million cases estimated worldwide, chronic hepatitis B virus (HBV) infection is the most common risk factor for hepatocellular carcinoma (HCC). HBV-encoded oncogene X protein (HBx), a key multifunctional regulatory protein, drives viral replication and interferes with several cellular signalling pathways that drive virus-associated hepatocarcinogenesis. This review article provides a comprehensive overview of the role of HBx in modulating the various hallmarks of HCC by supporting tumour initiation, progression, invasion and metastasis. Understanding HBx-mediated dimensions of complexity in driving liver malignancies could provide the key to unlocking novel and repurposed combinatorial therapies to combat HCC.
Collapse
|
4
|
Zhang S, Li N, Sheng Y, Chen W, Ma Q, Yu X, Lian J, Zeng J, Yang Y, Yan J. Hepatitis B virus induces sorafenib resistance in liver cancer via upregulation of cIAP2 expression. Infect Agent Cancer 2021; 16:20. [PMID: 33757557 PMCID: PMC7988944 DOI: 10.1186/s13027-021-00359-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND HBV promotes cell survival by upregulating the expression of the cellular inhibitor of apoptosis protein 2 (cIAP2), however whether it is involved in HBV-induced sorafenib resistance in liver cancer remains unclear. METHODS cIAP2 overexpression and knockdown was adopted to assess the involvement of cIAP2 in HBV-induced sorafenib resistance. Anti-HBV drug lamivudine and Akt inhibitor were used to investigate the impact of HBV replication on cIAP2 expression and sorafenib resistance. Xenotransplantation mouse model was used to confirm the data on cell lines in vitro. RESULTS Liver cancer cell line HepG2.215 showed increased cIAP2 expression and enhanced resistance to sorafenib. Upon sorafenib treatment, overexpression of cIAP2 in HepG2 lead to decreased cleaved caspase 3 level and increased cell viability, while knockdown of cIAP2 in HepG2.215 resulted in increased level of cleaved caspase 3 and decreased cell viability, suggesting the involvement of cIAP2 in HBV-induced sorafenib resistance. Furthermore, anti-HBV treatment reduced cIAP2 expression and partially restored sorafenib sensitivity in HepG2.215 cells. Xenotransplantation mouse model further confirmed that co-treatment with lamivudine and sorafenib could reduce sorafenib-resistant HepG2.215 tumor cell growth. CONCLUSION cIAP2 is involved in HBV-induced sorafenib resistance in liver cancer and anti-HBV treatments reduce cIAP2 expression and partially restore sorafenib sensibility.
Collapse
Affiliation(s)
- Shouhua Zhang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, Jiangxi, China
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Nuoya Li
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, Jiangxi, China
| | - Yanling Sheng
- Department of Ultrasound, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wen Chen
- Department of Surgery, Jiangxi Provincial Cancer Hospital, Nanchang, China
| | - Qiangliang Ma
- Department of dermatology, Ili Kazakh Autonomous State Chinese Medicine Hospital, Xinjiang, Uygur Autonomous Region, China
| | - Xin Yu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, Jiangxi, China
| | - Jianping Lian
- Department of Oncology, The Affiliated Hospital of Jinggangshan University, Ji'an, China
| | - Junquan Zeng
- Department of Oncology, The Affiliated Hospital of Jinggangshan University, Ji'an, China
| | - Yipeng Yang
- Department of General Surgery, Xinhua Hospital of Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Shanghai, China.
| | - Jinlong Yan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, Jiangxi, China.
| |
Collapse
|
5
|
Tan SY, Visvanathan S, Abu Hassan R, Khan M. Autophagic Degradation of Misfolded Nuclear Receptor Co-repressor (NCoR) Is Linked to the Growth of Tumor Cells in HBX Positive Hepatocellular Carcinoma (HCC). Front Oncol 2019; 9:1335. [PMID: 31850220 PMCID: PMC6902082 DOI: 10.3389/fonc.2019.01335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/14/2019] [Indexed: 11/23/2022] Open
Abstract
Hepatitis B virus (HBV) is causally linked to hepatocellular injury and cell death, which are followed by hepatocellular carcinoma (HCC) after a long latent period. The HBV derived X protein (HBX) is the most potent carcinogenic factor for HCC, however, the molecular mechanism of HBX-induced transformation of hepatic cells in HCC is poorly understood. We have shown that nuclear receptor co-repressor (NCoR) is essential for the spatial repression of global transcription by the promyelocytic leukemia oncogenic domains (PODs), a frequent target of viral oncoproteins like HBX and that disintegration of PODs due to misfolded conformation dependent loss (MCDL) of NCoR is linked to promyelocytic and monocytic acute myeloid leukemia (AML). Given the key role of NCoR in cellular homeostasis across various tissue subtypes, we hypothesized that HBX-induced MCDL of NCoR might be linked to HCC through similar mechanism. Based on this hypothesis, the conformation of NCoR in HCC derived tumor cells and primary human tissue sections were analyzed and a selective MCDL of NCoR in HBX positive HCC cells was identified. HBX triggered the misfolding of NCoR through ubiquitination, followed by its degradation by autophagy, thus suggesting a cross talk between ubiquitin proteasome system (UPS) and autophagy lysosomal pathway (ALP) in MCDL of NCoR in HBX positive HCC cells. SiRNA-induced NCoR ablation selectively impaired the growth and survival of HBX positive HCC cells, suggesting a role of MCDL in the growth and survival of HBX positive HCC cells. These finding identify a possible crosstalk between UPS and ALP in the misfolding and loss of NCoR in HBX positive HCC cells and suggest a role of autophagic recycling of misfolded NCoR in the activation of oncogenic metabolic signaling in HCC. The misfolded NCoR reported in this study represents a novel conformation based molecular target which could be valuable in the design and development of tumor cell specific diagnostic and therapeutic approach for HBX positive HCC.
Collapse
Affiliation(s)
- Su Yin Tan
- Bio-Rad Laboratories, Singapore, Singapore
| | | | - Radzi Abu Hassan
- Clinical Research Center, Hospital Sultanah Bahiyah, Alor Setar, Malaysia
| | - Matiullah Khan
- Department of Pathology, AIMST University, Bedong, Malaysia
| |
Collapse
|
6
|
Tse APW, Sze KMF, Shea QTK, Chiu EYT, Tsang FHC, Chiu DKC, Zhang MS, Lee D, Xu IMJ, Chan CYK, Koh HY, Wong CM, Zheng YP, Ng IOL, Wong CCL. Hepatitis transactivator protein X promotes extracellular matrix modification through HIF/LOX pathway in liver cancer. Oncogenesis 2018; 7:44. [PMID: 29799025 PMCID: PMC5968027 DOI: 10.1038/s41389-018-0052-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/16/2018] [Accepted: 04/19/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC), accounting for 90% of primary liver cancer, is a lethal malignancy that is tightly associated with chronic hepatitis B virus (HBV) infection. HBV encodes a viral onco-protein, transactivator protein X (HBx), which interacts with proteins of hepatocytes to promote oncogenesis. Our current study focused on the interaction of HBx with a transcription factor, hypoxia-inducible factor-1α (HIF-1α), which is stabilized by low O2 condition (hypoxia) and is found to be frequently overexpressed in HCC intra-tumorally due to poor blood perfusion. Here, we showed that overexpression of HBx by tetracycline-inducible systems further stabilized HIF-1α under hypoxia in HBV-negative HCC cell lines. Reversely, knockdown of HBx reduced HIF-1α protein stabilization under hypoxia in HBV-positive HCC cell lines. More intriguingly, overexpression of HBx elevated the mRNA and protein expression of a family of HIF-1α target genes, the lysyl oxidase (LOX) family in HCC. The LOX family members function to cross-link collagen in the extracellular matrix (ECM) to promote cancer progression and metastasis. By analyzing the collagens under scanning electron microscope, we found that collagen fibers were significantly smaller in size when incubated with conditioned medium from HBx knockdown HCC cells as compared to control HCC cells in vitro. Transwell invasion assay further revealed that less cells were able to invade through the matrigel which was pre-treated with conditioned medium from HBx knockdown HCC cells as compared to control HCC cells. Orthotopic and subcutaneous HCC models further showed that knockdown of HBx in HCC cells reduced collagen crosslinking and stiffness in vivo and repressed HCC growth and metastasis. Taken together, our in vitro and in vivo studies showed the HBx remodeled the ECM through HIF-1α/LOX pathway to promote HCC metastasis.
Collapse
Affiliation(s)
- Aki Pui-Wah Tse
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | | | - Queenie Tsung-Kwan Shea
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | | | | | | | - Misty Shuo Zhang
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Derek Lee
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Iris Ming-Jing Xu
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | | | - Hui-Yu Koh
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Chun-Ming Wong
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong, China. .,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
| | - Carmen Chak-Lui Wong
- Department of Pathology, The University of Hong Kong, Hong Kong, China. .,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
C-terminal truncated hepatitis B virus X protein promotes hepatocellular carcinogenesis through induction of cancer and stem cell-like properties. Oncotarget 2018; 7:24005-17. [PMID: 27006468 PMCID: PMC5029680 DOI: 10.18632/oncotarget.8209] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 03/02/2016] [Indexed: 12/12/2022] Open
Abstract
Tumor relapse after chemotherapy typifies hepatocellular carcinoma (HCC) and is believed to be attributable to residual cancer stem cells (CSCs) that survive initial treatment. Chronic infection with hepatitis B virus (HBV) has long been linked to the development of HCC. Upon infection, random HBV genome integration can lead to truncation of hepatitis B virus X (HBx) protein at the C-terminus. The resulting C-terminal-truncated HBx (HBx-ΔC) was previously shown to confer enhanced invasiveness and diminished apoptotic response in HCC cells. Here, we found HBx-ΔC to promote the appearance of a CD133 liver CSC subset and confer cancer and stem cell-like features in HCC. HBx-ΔC was exclusively detected in HCC cell lines that were raised from patients presented with a HBV background with concomitant CD133 expression. Stable overexpression of the naturally occurring HBx-ΔC mutants, HBx-Δ14 or HBx-Δ35, in HCC cells Huh7 and immortalized normal liver cells MIHA resulted in a significant increase in the cells ability to self-renew, resist chemotherapy and targeted therapy, migrate and induce angiogenesis. MIHA cells with the mutants stably overexpressed also resulted in the induction of CD133, mediated through STAT3 activation. RNA sequencing profiling of MIHA cells with or without HBx-ΔC mutants stably overexpressed identified altered FXR activation. This, together with rescue experiments using a selective FXR inhibitor suggested that C-terminal truncated HBx can mediate cancer stemness via FXR activation. Collectively, we find C-terminal truncated HBx mutants to confer cancer and stem cell-like features in vitro and to play an important role in driving tumor relapse in HCC.
Collapse
|
8
|
Pei Y, Wang C, Yan SF, Liu G. Past, Current, and Future Developments of Therapeutic Agents for Treatment of Chronic Hepatitis B Virus Infection. J Med Chem 2017; 60:6461-6479. [PMID: 28383274 DOI: 10.1021/acs.jmedchem.6b01442] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For decades, treatment of hepatitis B virus (HBV) infection has been relying on interferon (IFN)-based therapies and nucleoside/nucleotide analogues (NAs) that selectively target the viral polymerase reverse transcriptase (RT) domain and thereby disrupt HBV viral DNA synthesis. We have summarized here the key steps in the HBV viral life cycle, which could potentially be targeted by novel anti-HBV therapeutics. A wide range of next-generation direct antiviral agents (DAAs) with distinct mechanisms of actions are discussed, including entry inhibitors, transcription inhibitors, nucleoside/nucleotide analogues, inhibitors of viral ribonuclease H (RNase H), modulators of viral capsid assembly, inhibitors of HBV surface antigen (HBsAg) secretion, RNA interference (RNAi) gene silencers, antisense oligonucleotides (ASOs), and natural products. Compounds that exert their antiviral activities mainly through host factors and immunomodulation, such as host targeting agents (HTAs), programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors, and Toll-like receptor (TLR) agonists, are also discussed. In this Perspective, we hope to provide an overview, albeit by no means being comprehensive, for the recent development of novel therapeutic agents for the treatment of chronic HBV infection, which not only are able to sustainably suppress viral DNA but also aim to achieve functional cure warranted by HBsAg loss and ultimately lead to virus eradication and cure of hepatitis B.
Collapse
Affiliation(s)
- Yameng Pei
- School of Pharmaceutical Sciences, Tsinghua University , Beijing 100084, China
| | - Chunting Wang
- School of Pharmaceutical Sciences, Tsinghua University , Beijing 100084, China
| | - S Frank Yan
- Molecular Design and Chemical Biology, Roche Pharma Research and Early Development, Roche Innovation Center Shanghai , Shanghai 201203, China
| | - Gang Liu
- School of Pharmaceutical Sciences, Tsinghua University , Beijing 100084, China
| |
Collapse
|
9
|
Fu S, Zhou RR, Li N, Huang Y, Fan XG. Hepatitis B virus X protein in liver tumor microenvironment. Tumour Biol 2016; 37:15371–15381. [PMID: 27658781 PMCID: PMC5250643 DOI: 10.1007/s13277-016-5406-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/13/2016] [Indexed: 12/18/2022] Open
Abstract
Encoded by the hepatitis B virus, hepatitis B virus X protein (HBx) is a multifunctional, potentially oncogenic protein that acts primarily during the progression from chronic hepatitis B to cirrhosis and hepatocellular carcinoma (HCC). In recent decades, it has been established that chronic inflammation generates a tumor-supporting microenvironment. HCC is a typical chronic inflammation-related cancer, and inflammation is the main risk factor for HCC progression. The viral transactivator HBx plays a pivotal role in the initiation and maintenance of hepatic inflammatory processes through interactions with components of the tumor microenvironment including tumor cells and the surrounding peritumoral stroma. The complex interactions between HBx and this microenvironment are thought to regulate tumor growth, progression, invasion, metastasis, and angiogenesis. In this review, we have summarized the current evidence evaluating the function of HBx and its contribution to the inflammatory liver tumor microenvironment.
Collapse
Affiliation(s)
- Sha Fu
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan Province, Xiangya Hospital, Central South University, P. O. Box: 410008, Changsha, China
| | - Rong-Rong Zhou
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan Province, Xiangya Hospital, Central South University, P. O. Box: 410008, Changsha, China.
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan Province, Xiangya Hospital, Central South University, P. O. Box: 410008, Changsha, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan Province, Xiangya Hospital, Central South University, P. O. Box: 410008, Changsha, China.
| |
Collapse
|
10
|
Ryu SH, Jang MK, Kim WJ, Lee D, Chung YH. Metastatic tumor antigen in hepatocellular carcinoma: golden roads toward personalized medicine. Cancer Metastasis Rev 2014; 33:965-80. [PMID: 25325987 DOI: 10.1007/s10555-014-9522-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC), a prototype of hypervascular tumors, is one of the most common malignancies in the world, especially hyperendemic in the Far East where chronic hepatitis B virus (HBV) infection is highly prevalent. It is characterized by the clinical feature of a poor prognosis or a high mortality due to its already far advanced stages at diagnosis. It is so multifactorial that hepatocarcinogenesis cannot be explained by a single molecular mechanism. To date, a number of pathways have been known to contribute to the development, growth, angiogenesis, and even metastasis of HCC. Among the various factors, metastatic tumor antigens (MTAs) or metastasis-associated proteins have been vigorously investigated as an intriguing target in the field of hepatocarcinogenesis. According to recent studies including ours, MTAs are not only involved in the HCC development and growth (molecular carcinogenesis), but also closely associated with the post-operative recurrence and a poor prognosis or a worse response to post-operative anti-cancer therapy (clinical significance). Herein, we review MTAs in light of their essential structure, functions, and molecular mechanism in hepatocarcinogenesis. We will also focus in detail on the interaction between hepatitis B x protein (HBx) of HBV and MTA in order to clarify the HBV-associated HCC development. Finally, we will discuss the prognostic significance and clinical application of MTA in HCC. We believe that this review will help clinicians to understand the meaning and use of the detection of MTA in order to more effectively manage their HCC patients.
Collapse
Affiliation(s)
- Soo Hyung Ryu
- Department of Internal Medicine, Inje University College of Medicine, Seoul Paik Hospital, Seoul, South Korea
| | | | | | | | | |
Collapse
|
11
|
Yu G, Bing Y, Li W, Xia L, Liu Z. Hepatitis B virus inhibits the expression of CD82 through hypermethylation of its promoter in hepatoma cells. Mol Med Rep 2014; 10:2580-6. [PMID: 25119390 DOI: 10.3892/mmr.2014.2495] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/23/2014] [Indexed: 12/20/2022] Open
Abstract
The tumor suppressor gene CD82, also known as KAI1, may act as a general suppressor of metastasis in numerous types of cancer. It is hypothesized that downregulation of CD82 gene expression may be an important factor in the induction of hepatocellular carcinoma (HCC), however the mechanism for this requires further study. In the present study, the relative mRNA and protein expression levels of the CD82 gene were determined in HCC and adjacent non‑tumor tissues. The association between the CD82 gene and the hepatitis B virus (HBV) was also investigated, by quantitative polymerase chain reaction, western blotting, luciferase reporter assays and mass spectrometry with matrix‑assisted laser desorption/ionization time‑of‑flight mass array. CD82 expression was shown to be suppressed in response to HCC promoter methylation. Relative CD82 mRNA and protein expression levels were downregulated in HCC tissues (P<0.05). HBx protein inhibited CD82 promoter activity and subsequently the mRNA and protein expression levels. Furthermore, it was demonstrated that HBV could inhibit the expression of CD82 at the transcriptional level, and repress the activity of the CD82 promoter through hypermethylation. In addition, the methyl enzyme inhibitor 5‑aza‑CdR could induce the CD82 promoter activity and the relative expression level of CD82 mRNA, as observed by an increase in luciferase activity driven by the CD82 promoter. The observations of the present study suggest that hypermethylation of the CD82 promoter may be an event leading to the development of HCC. Low expression of CD82 is likely to be involved in tumor progression. HBV may inhibit the expression of CD82 through hypermethylation of the promoter in hepatoma cells.
Collapse
Affiliation(s)
- Guozheng Yu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yuntao Bing
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Li
- Department of Head and Neck Surgery, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| | - Lin Xia
- Department of Internal Medicine Oncology, Huangshi Central Hospital, Huangshi, Hubei 435005, P.R. China
| | - Zhisu Liu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
12
|
Ali A, Abdel-Hafiz H, Suhail M, Al-Mars A, Zakaria MK, Fatima K, Ahmad S, Azhar E, Chaudhary A, Qadri I. Hepatitis B virus, HBx mutants and their role in hepatocellular carcinoma. World J Gastroenterol 2014; 20:10238-10248. [PMID: 25132741 PMCID: PMC4130832 DOI: 10.3748/wjg.v20.i30.10238] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/30/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of death induced by cancer in the modern world and majority of the cases are related to chronic hepatitis B virus (HBV) infection. HBV-encoded X protein (HBx) is known to play a pivotal role in the pathogenesis of viral induced HCC. HBx is a multifunctional protein of 17 kDa which modulates several cellular processes by direct or indirect interaction with a repertoire of host factors resulting in HCC. HBX might interfere with several cellular processes such as oxidative stress, DNA repair, signal transduction, transcription, protein degradation, cell cycle progression and apoptosis. A number of reports have indicated that HBx is one of the most common viral ORFs that is often integrated into the host genome and its sequence variants play a crucial role in HCC. By mutational or deletion analysis it was shown that carboxy terminal of HBx has a likely role in protein-protein interactions, transcriptional transactivation, DNA repair, cell, signaling and pathogenesis of HCC. The accumulated evidence thus far suggests that it is difficult to understand the mechanistic nature of HBx associated HCC, and HBx mediated transcriptional transactivation and signaling pathways may be a major determinant. This article addresses the role of HBx in the development of HCC with particular emphasis on HBx mutants and their putative targets.
Collapse
|
13
|
Yang CH, Cho M. Hepatitis B virus X gene differentially modulates cell cycle progression and apoptotic protein expression in hepatocyte versus hepatoma cell lines. J Viral Hepat 2013; 20:50-8. [PMID: 23231084 DOI: 10.1111/j.1365-2893.2012.01625.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The hepatitis B virus (HBV) X gene, which encodes the hepatitis B virus x protein (HBx), is essential for viral infection and genome replication, virus-associated liver disease, and development of hepatocellular carcinoma. However, the exact role(s) of HBx remain controversial. In this study, we focus on studying the role of HBx in the regulation of cell cycle and apoptosis in normal liver and hepatoma cell lines. We established the Huh7-X and Chang-X cell lines that constitutively express HBx. There were differences between the two cell lines in terms of cell cycle regulation and expression of p27 and transforming growth factor-β. Expression of HBx proteins dramatically increases expression of Bcl-2 and reduces levels of cleaved PARP protein in Chang-X cells, and it inhibits apoptosis under unfavourable conditions, such as serum starvation, in both cell lines. Our findings provide clues about the intracellular roles of HBx and demonstrate that expression of this protein is important for multiple cellular processes, that is, cell cycle progression and apoptosis, in hepatoma cells and normal liver cell lines.
Collapse
Affiliation(s)
- C H Yang
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju, Korea
| | | |
Collapse
|
14
|
Fan W, Cheng J, Zhang S, Liu X. Cloning and functions of the HBxAg-binding protein XBP1. Mol Med Rep 2012; 7:618-22. [PMID: 23241634 DOI: 10.3892/mmr.2012.1232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/24/2012] [Indexed: 11/05/2022] Open
Abstract
In the present study the hepatitis B virus X antigen binding protein 1 (XBP1) was cloned by inducing its expression, and its subcellular localization and function were examined. Total RNA was extracted from HepG2 cells and XBP1 was amplified using reverse transcription polymerase chain reaction (RT-PCR), followed by restriction enzyme digestion of the pGBKT7 yeast plasmid and identification by enzyme digestion. The plasmid was transformed into AH109 yeast via the lithium acetate method and protein extracts were prepared. XBP1 protein expression in the eukaryotic cells was determined using polyacrylamide gel electrophoresis and western blot analysis. The gene encoding the XBP1-binding protein was screened in liver cells using yeast two-hybrid technology. We transfected a human hepatocellular carcinoma cell line and observed the intracellular localization of the gene expression protein using a fluorescence microscope, followed by prokaryotic expression and XBP1 gene identification. A 921-bp XBP1 gene fragment was obtained via RT-PCR amplification and 20 proteins with known functions that interact with XBP1 were screened, including metallothionein, smooth muscle cell-related protein, asialoglycoprotein receptor, pyruvate dehydrogenase kinase 1 and a sequence with unknown functions. A green fluorescent protein expression plasmid pEGFP-C1-XBP1 of XBP1 was constructed successfully and its expression protein was localized in the cytoplasm. A 56-kDa recombinant protein was successfully obtained via prokaryotic expression and was demonstrated to have good specificity using western blot analysis. The XBP1 gene, which expresses the XBP1 protein, is located in the cytoplasm and plays a role in the intracellular structure, cell growth, intracellular metabolism and signal transduction pathway, as well as DNA duplication, transcription, recombination and repair.
Collapse
Affiliation(s)
- Wanhu Fan
- Department of Infectious Diseases, The First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | | | | | | |
Collapse
|
15
|
Fukuhara Y, Suda T, Kobayashi M, Tamura Y, Igarashi M, Waguri N, Kawai H, Aoyagi Y. Identification of cellular genes showing differential expression associated with hepatitis B virus infection. World J Hepatol 2012; 4:139-48. [PMID: 22567186 PMCID: PMC3345538 DOI: 10.4254/wjh.v4.i4.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 09/06/2011] [Accepted: 04/24/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the impact of hepatitis B virus (HBV) infection on cellular gene expression, by conducting both in vitro and in vivo studies. METHODS Knockdown of HBV was targeted by stable expression of short hairpin RNA (shRNA) in huH-1 cells. Cellular gene expression was compared using a human 30K cDNA microarray in the cells and quantified by real-time reverse transcription-polymerase chain reaction (RT-PCR) (qRT-PCR) in the cells, hepatocellular carcinoma (HCC) and surrounding non-cancerous liver tissues (SL). RESULTS The expressions of HBsAg and HBx protein were markedly suppressed in the cells and in HBx transgenic mouse liver, respectively, after introduction of shRNA. Of the 30K genes studied, 135 and 103 genes were identified as being down- and up-regulated, respectively, by at least twofold in the knockdown cells. Functional annotation revealed that 85 and 62 genes were classified into four up-regulated and five down-regulated functional categories, respectively. When gene expression levels were compared between HCC and SL, eight candidate genes that were confirmed to be up- or down-regulated in the knockdown cells by both microarray and qRT-PCR analyses were not expressed as expected from HBV reduction in HCC, but had similar expression patterns in HBV- and hepatitis C virus-associated cases. In contrast, among the eight genes, only APM2 was constantly repressed in HBV non-associated tissues irrespective of HCC or SL. CONCLUSION The signature of cellular gene expression should provide new information regarding the pathophysiological mechanisms of persistent hepatitis and hepatocarcinogenesis that are associated with HBV infection.
Collapse
Affiliation(s)
- Yasuo Fukuhara
- Yasuo Fukuhara, Takeshi Suda, Makoto Kobayashi, Yasushi Tamura, Masato Igarashi, Nobuo Waguri, Hirokazu Kawai, Yutaka Aoyagi, Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata 951-8122, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Chronic hepatitis B virus (HBV) infection has been identified as a major risk factor in hepatocellular carcinoma (HCC), which is one of the most common cancers worldwide. The pathogenesis of HBV-mediated hepatocarcinogenesis is, however, incompletely understood. Evidence suggests that the HBV X protein (HBx) plays a crucial role in HCC development. HBx is a multifunctional regulator that modulates transcription, signal transduction, cell cycle progression, apoptosis, protein degradation pathways, and genetic stability through interaction with host factors. This review describes the current state of knowledge of the molecular pathogenesis of HBV-induced HCC, with a focus on the role of HBx in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Sue-Ann Ng
- University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
17
|
Jin MJ, Liu HT, Zhao GQ. Hepatitis B virus X protein enhances COX-2 expression in human liver cell line L-02. Shijie Huaren Xiaohua Zazhi 2011; 19:1874-1879. [DOI: 10.11569/wcjd.v19.i18.1874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of hepatitis B virus X protein (HBx) on COX-2 expression in human liver cell line L-02.
METHODS: HBx expression vector pIRES2-AcGFP-HBx was constructed and transfected into L-02 cells. The expression of COX-2 mRNA and protein was detected by RT-PCR and Western blot, respectively. The effect of HBx protein on cell division and proliferation was evaluated by plotting cell growth curve and analyzing cell cycle. Moreover, pGL3-COX-2 plasmid, in which the COX-2 promoter has been linked to the luciferase reporter gene, was transfected into L-02 cells and luciferase activities were measured.
RESULTS: RT-PCR results revealed that HBx mRNA was expressed only in cells transfected with the HBx gene, and that COX-2 mRNA expression in cells transfected with the HBx gene was higher than that in cells untranfected or transfected with an empty vector (0.76 ± 0.12 vs 0.28 ± 0.04, 0.25 ± 0.03, both P < 0.01). Western blot analysis showed that HBx protein was expressed only in cells transfected with the HBx gene, and COX-2 protein expression in this group was higher than that in the two control groups. The proliferation of cells transfected with the HBx gene was faster than that of control cells (both P < 0.05). The numbers of cells in S and G2-M phases significantly increased while those in G0-G1 phase decreased in cells transfected with the HBx gene compared to control cells (all P < 0.05). The luciferase activity in cells transfected with the HBx gene was higher than that in control cells (1 675.2 ± 84.9 vs 657.7 ± 34.7, 739.3 ± 45.3, both P < 0.05).
CONCLUSION: HBx protein can enhance COX-2 expression by up-regulating the activity of COX-2 promoter and promote cell growth, division and proliferation in human liver cell line L-02.
Collapse
|
18
|
Zhao R, Wang TZ, Kong D, Zhang L, Meng HX, Jiang Y, Wu YQ, Yu ZX, Jin XM. Hepatoma cell line HepG2.2.15 demonstrates distinct biological features compared with parental HepG2. World J Gastroenterol 2011; 17:1152-9. [PMID: 21448419 PMCID: PMC3063907 DOI: 10.3748/wjg.v17.i9.1152] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 11/29/2010] [Accepted: 12/06/2010] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the biological features of hepatitis B virus (HBV)-transfected HepG2.2.15 cells.
METHODS: The cell ultrastructure, cell cycle and apoptosis, and the abilities of proliferation and invasion of HBV-transfected HepG2.2.15 and the parent HepG2 cells were examined by electron microscopy, flow cytometry, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and trans-well assay. Oncogenicity of the two cell lines was compared via subcutaneous injection and orthotopic injection or implantation in nude mice, and the pathological analysis of tumor formation was performed. Two cytoskeletal proteins were detected by Western blotting.
RESULTS: Compared with HepG2 cells, HepG2.2.15 cells showed organelle degeneration and filopodia disappearance under electron microscope. HepG2.2.15 cells proliferated and migrated slowly in vitro, and hardly formed tumor and lung metastasis in nude mice. Flow cytometry showed that the majority of HepG2.2.15 cells were arrested in G1 phase, and apoptosis was minor in both cell lines. Furthermore, the levels of cytoskeletal proteins F-actin and Ezrin were decreased in HepG2.2.15 cells.
CONCLUSION: HepG2.2.15 cells demonstrated a lower proliferation and invasion ability than the HepG2 cells due to HBV transfection.
Collapse
|
19
|
Abstract
Hepatocellular carcinoma (HCC) is a fatal disease that represents the fifth most common human cancer. Although remarkable progress has been achieved in HCC treatment in China, the overall incidence and mortality rates of HCC show no obvious changes. Pharmacological treatment can not improve the prognosis of patients with unresectable HCC. This emphasizes the need to identify new targets for early diagnosis, chemoprevention, and treatment of the disease. An effort to understand the molecular mechanisms responsible for tumor initiation and progression has led to the identification of several potential molecular targets for HCC. The majority of these targets are involved in receptor tyrosine kinase-activated pathways, such as the Raf/MEK/ERK, PI-3K/Akt/mTOR, and Jak/Stat pathways. Sorafenib is a multikinase inhibitor that has attracted wide attention. This review describes the potential targets for HCC and recent progress in targeted therapy of the disease.
Collapse
|
20
|
Liu Q, Chen J, Liu L, Zhang J, Wang D, Ma L, He Y, Liu Y, Liu Z, Wu J. The X protein of hepatitis B virus inhibits apoptosis in hepatoma cells through enhancing the methionine adenosyltransferase 2A gene expression and reducing S-adenosylmethionine production. J Biol Chem 2011; 286:17168-80. [PMID: 21247894 PMCID: PMC3089560 DOI: 10.1074/jbc.m110.167783] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The X protein (HBx) of hepatitis B virus (HBV) is involved in the development of hepatocellular carcinoma (HCC), and methionine adenosyltransferase 2A (MAT2A) promotes the growth of liver cancer cells through altering S-adenosylmethionine homeostasis. Thus, we speculated that a link between HBx and MAT2A may contribute to HCC development. In this study, the effects of HBx on MAT2A expression and cell apoptosis were investigated, and the molecular mechanism by which HBx and MAT2A regulate tumorigenesis was evaluated. Results from immunohistochemistry analyses of 37 pairs of HBV-associated liver cancer tissues/corresponding peritumor tissues showed that HBx and MAT2A are highly expressed in most liver tumor tissues. Our in vitro results revealed that HBx activates MAT2A expression in a dose-dependent manner in hepatoma cells, and such regulation requires the cis-regulatory elements NF-κB and CREB on the MAT2A gene promoter. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) further demonstrated that HBx facilitates the binding of NF-κB and CREB to MAT2A gene promoter. In addition, overexpression of HBx or MAT2A inhibits cell apoptosis, whereas knockdown of MAT2A expression stimulates apoptosis in hepatoma cells. Furthermore, we demonstrated that HBx reduces MAT1A expression and AdoMet production but enhances MAT2β expression. Thus, we proposed that HBx activates MAT2A expression through NF-κB and CREB signaling pathways to reduce AdoMet production, inhibit hepatoma cell apoptosis, and perhaps enhance HCC development. These findings should provide new insights into our understanding how the molecular mechanisms underline the effects of HBV infection on the production of MAT2A and the development of HCC.
Collapse
Affiliation(s)
- Quanyan Liu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital, Wuhan 430071, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kew MC. Hepatitis B virus x protein in the pathogenesis of hepatitis B virus-induced hepatocellular carcinoma. J Gastroenterol Hepatol 2011; 26 Suppl 1:144-52. [PMID: 21199526 DOI: 10.1111/j.1440-1746.2010.06546.x] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently available evidence supports a role for the hepatitis B virus (HBV) x gene and protein in the pathogenesis of HBV-induced hepatocellular carcinoma (HCC). HBx gene is often included, and remains functionally active, in the HBV DNA that is frequently integrated into cellular DNA during hepatocellular carcinogenesis. HBx protein promotes cell cycle progression, inactivates negative growth regulators, and binds to and inhibits the expression of p53 tumour suppressor gene and other tumour suppressor genes and senescence-related factors. However, the molecular mechanisms responsible for HBx protein-induced HCC remain uncertain. Only some of the more fully documented or more recently recognised mechanisms are reviewed. During recent years evidence has accumulated that HBx protein modulates transcription of methyl transferases, causing regional hypermethylation of DNA that results in silencing of tumour suppressor genes, or global hypomethylation that results in chromosomal instability, thereby playing a role in hepatocarcinogenesis. HBx protein has both anti-apoptotic and pro-apoptotic actions, apparently contradictory effects that have yet to be explained. Particularly important among the anti-apoptotic properties is inhibition of p53. Recent experimental observations suggest that HBx protein may increase the expression of TERT and telomerase activity, prolonging the life-span of hepatocytes and contributing to malignant transformation. The protein also interferes with nucleotide excision repair through both p53-dependent and p53- independent mechanisms. Carboxy-terminal truncated HBx protein loses its inhibitory effects on cell proliferation and pro-apoptotic properties, and it may enhance the protein's ability to transform oncogenes. Dysregulation of IGF-II enhances proliferation and anti-apoptotic effects of oncogenes, resulting in uncontrolled cell growth.
Collapse
Affiliation(s)
- Michael C Kew
- Department of Medicine, University of Cape Town, Groote Schuur Hospital, South Africa.
| |
Collapse
|
22
|
Qian J, Yao D, Dong Z, Wu W, Qiu L, Yao N, Li S, Bian Y, Wang Z, Shi G. Characteristics of hepatic igf-ii expression and monitored levels of circulating igf-ii mRNA in metastasis of hepatocellular carcinoma. Am J Clin Pathol 2010; 134:799-806. [PMID: 20959664 DOI: 10.1309/ajcptfdse2v3lczp] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The prognosis of hepatocellular carcinoma (HCC) remains dismal. Insulin-like growth factor II (IGF-II), a fetal growth factor, is highly expressed during HCC development. We examined serum IGF-II levels and circulating IGF-II messenger RNA (mRNA) expression and analyzed the clinicopathologic characteristics in patients with liver diseases. The higher IGF-II level in the serum of patients with HCC could be correlated with hepatitis B virus infection but not with patient sex, age, tumor size, or α-fetoprotein (AFP) level. Total RNAs were extracted from liver tissues or peripheral blood mononuclear cells, and IGF-II complementary DNA (cDNA) and AFP cDNA were synthesized through random primers and reverse transcriptase; gene fragments were amplified by nested polymerase chain reaction and confirmed by sequencing. The incidence of the hepatic IGF-II gene was 100% in HCC, 54.3% in paracancerous tissues, and none in noncancerous tissues. The incidence rates for circulating IGF-II and AFP genes were 34.3% and 52.7%, respectively, and for both, 61.6% in patients with HCC. They were 100% in cases with extrahepatic metastasis. The IGF-II abnormality associates with HCC, and circulating IGF-II and IGF-II mRNA are useful molecular markers for HCC differential diagnosis and hematogenous metastasis.
Collapse
|
23
|
Zhu YZ, Zhu R, Shi LG, Mao Y, Zheng GJ, Chen Q, Zhu HG. Hepatitis B virus X protein promotes hypermethylation of p16(INK4A) promoter through upregulation of DNA methyltransferases in hepatocarcinogenesis. Exp Mol Pathol 2010; 89:268-75. [PMID: 20620135 DOI: 10.1016/j.yexmp.2010.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 06/29/2010] [Indexed: 12/13/2022]
Abstract
The hepatitis B virus×protein (HBx) has been implicated as a potential trigger of the epigenetic deregulation of some genes, but the underlying mechanism remains unknown. The aim of this study is to identify underlying mechanisms involved in HBx-mediated epigenetic modification in the process of HBx induced p16(INK4A) promoter hypermethylation. Liver cell lines were stably transfected with HBx-expressing vector. The methylation status of p16(INK4A) was examined by methyl-specific polymerase chain reaction (MSP) and bisulfite sequencing. Reverse transcription and real-time polymerase chain reaction (real-time RT-PCR), Western blot and immunohistochemistry were used to analyze the expression of HBx, HBx-mediated DNA methylation abnormalities and p16(INK4A). Some cases of HCC and corresponding noncancerous liver tissues were studied. HBx up-regulates DNMT1 and DNMT3A expression in both mRNA level and protein level, and HBx represses p16(INK4A) expression through inducing hypermethylation of p16(INK4A) promoter. Moreover, HBx induces hypermethylation of p16(INK4A) promoter through DNMT1 and DNMT3A. Regulation of DNMT1 and DNMT3A by HBx promoted hypermethylation of p16(INK4A) promoter region. HBx-DNMTs-p16(INK4A) promoter hypermethylation may suggest a mechanism for tumorigenesis during hepatocarcinogenesis.
Collapse
Affiliation(s)
- Ya-Zhen Zhu
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Holotnakova T, Tylkova L, Takacova M, Kopacek J, Petrik J, Pastorekova S, Pastorek J. Role of the HBx oncoprotein in carbonic anhydrase 9 induction. J Med Virol 2010; 82:32-40. [PMID: 19950233 DOI: 10.1002/jmv.21671] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Carbonic anhydrase 9 (CA9), as one of the most hypoxia-responsive genes, has been associated almost exclusively with hypoxic tumors. Its principal role is in pH regulation which helps tumor cells overcome intracellular acidosis and survive extended periods of time with low oxygen. Hypoxia-inducible factor 1 (HIF-1) is the main transcriptional activator of CA9. Hepatitis B virus X protein (HBx) has been shown to increase the transcriptional activity of HIF-1. HBx is often expressed from the gene integrated in the hepatocytes infected persistently and contributes significantly to alterations in host gene expression that can lead to the development of hepatocellular carcinoma (HCC) associated with Hepatitis B virus (HBV). The aim of this study was to determine the effect of HBx on expression of CA9. Transient transfection of HBx led to an increase in the expression of CA9 as assessed by RT-PCR and Western blotting. HBx was able to increase CA9 promoter activity significantly in several cell lines. The effect was mediated via HIF-1 and a functional HRE element located -10/-3 bp upstream of the CA9 transcription initiation site. These data suggest that CA9 may be involved in the development of HCC by contributing to the survival of hepatocytes infected with HBV in liver tissue with fibrosis.
Collapse
Affiliation(s)
- Tereza Holotnakova
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | | | | | |
Collapse
|
25
|
Cheng B, Zheng Y, Guo X, Wang Y, Liu C. Hepatitis B viral X protein alters the biological features and expressions of DNA repair enzymes in LO2 cells. Liver Int 2010; 30:319-26. [PMID: 19968784 DOI: 10.1111/j.1478-3231.2009.02167.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES This study aimed at examining the effects of hepatitis B viral X protein (HBx) on the biological features and the expression of DNA repair enzymes in non-tumour human hepatic LO2 cells in vitro. METHODS The HBx gene was transfected into LO2 cells to establish stably HBx-expressing LO2/HBx cells. The morphological features, cell growth, cell cycle, apoptosis and colony formation of LO2/HBx cells, vector-transfected LO2/pcDNA3.1 cells and unmanipulated LO2 cells were studied. The expressions of DNA repair enzymes and DNA oxidative stress-related 8-hydroxydeoxyguanosine (8-OHdG) were determined by a real-time quantitative polymerase chain reaction assay and high-performance liquid chromatography coupled with electrochemical detection respectively. RESULTS In comparison with controls, significant morphological changes, faster growth, higher frequency of cells at the S phase, but lower at G0/G1 and M/G2 phases, a lower frequency of natural cell apoptosis and a higher percentage of colony formation were observed in the LO2/HBx cells. Furthermore, significantly higher levels of intracellular 8-OHdG and lower levels of human DNA glycosylase alpha (hMYHalpha) mRNA transcripts, but no significant change in human 8-oxoguanine DNA glycosylase 1 (hOGG1), were detected in the LO2/HBx cells. CONCLUSIONS Our data indicated that HBx promoted growth and malignant transformation of non-tumour hepatic LO2 cells in vitro, which was associated with the downregulation of hMYHalpha expression and accumulation of mutagenic DNA adduct 8-OHdG.
Collapse
Affiliation(s)
- Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | |
Collapse
|
26
|
Zhang L, Zeng D, Huang H, Wang J, Tao Q, Pan C, Xu J, Zhang B, Wang A. Tissue inhibitor of metalloproteinase-2 inhibits ameloblastoma growth in a new mouse xenograft disease model. J Oral Pathol Med 2010; 39:94-102. [DOI: 10.1111/j.1600-0714.2009.00812.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Abstract
AIM To explore the mechanism of hepatocarcinogenesis associated with the hepatitis B virus X protein (HBx), we investigated the role of HBx in transformation using human liver L-O2 cells stably transfected with HBx as a model. METHODS Plasmids encoding HBx were stably transfected into immortalized human liver L-O2 cells and rodent fibroblast NIH/3T3 cells. The expression of alfa-fetoprotein (AFP), c-Myc, HBx, and survivin in the engineered cells was examined by Western blotting. The malignant phenotype of the cells was demonstrated by anchorage-independent colony formation and tumor formation in nude mice. RNA interference assays, Western blotting, luciferase reporter gene assays and flow cytometry analysis were performed. The number of centrosomes in the L-O2-X cells was determined by gamma-tubulin immunostaining. The effect of HBx on the transcriptional activity of human telomerase reverse transcriptase (hTERT) and hTERT activity in L-O2-X cells and/or 3T3-X cells was detected by the luciferase reporter gene assay and telomerase repeat amplification protocol (TRAP). RESULTS Stable HBx transfection resulted in a malignant phenotype in the engineered cells in vivo and in vitro. Meanwhile, HBx was able to increase the transcription of the NF-kappaB, AP-1, and survivin genes and to upregulate the expression levels of c-Myc and survivin. Abnormal centrosome duplication and activated hTERT were responsible for the transformation. CONCLUSION Stable HBx transfection leads to genomic instability of host cells, which is responsible for hepatocarcinogenesis; meanwhile, transactivation by the HBx protein contributes to the development of hepatocellular carcinoma (HCC). The L-O2-X cell line is an ideal model for investigating the mechanism of HBx-mediated transformation.
Collapse
|
28
|
Wang YL, Yao DF, Wu W, Yu HB, Sai WL, Qian J, Li SS, Bian YZ. Nuclear-transcription factor-κB expression and HBV replication and their clinicopathological features in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2009; 17:265-269. [DOI: 10.11569/wcjd.v17.i3.265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of nuclear-transcription factor-κB (NF-κB) in different tissues of hepatocellular carcinoma (HCC) and its correlation with the clinicopathological features of HCC.
METHODS: Immunohistochemistry was used to detect NF-κB expression in 35 HCC tissues and in their corresponding non-cancerous tissues. Liver HBV-DNA was detected by in situ molecular hybridization technique. The relationship between NF-κB expression and HBV replication, and clinical pathological characteristics was analyzed. Fisher's exact test was used to analyze the numeration data, and rank sum test was used to analyze the ranked data.
RESULTS: The positive NF-κB material was brown granule-like stained substance, the NF-κB with dot-nest-like staining was localized in nucleus and cytoplasm in HCC, and only in cytoplasm in its surrounding tissues. Its expression in HCC was well-distributed and stronger than its surrounding tissues. The incidence of NF-κB positive expression was 100% in HCC tissues, and 68.6% in its surrounding tissues, respectively. Significant difference was found between the two groups (Fisher's exact = 0.000). No positive relationship presented itself between NF-κB expression and histological differentiation grading, the number of tumor, the size of tumor or the level of AFP and ALT. The expression level of NF-κB was significantly higher in HBV-DNA-positive HCC group than that in HBV-DNA- negative ones (t = 4.7347, P = 0.000).
CONCLUSION: The overexpression of hepatic NF-κB was closely associated with the occurrence and development of HCC, and it could be a marker for early diagnosis and prognosis of HCC.
Collapse
|
29
|
Ma Z, Shen QH, Chen GM, Zhang DZ. Biological impact of hepatitis B virus X-hepatitis C virus core fusion gene on human hepatocytes. World J Gastroenterol 2008; 14:5412-8. [PMID: 18803352 PMCID: PMC2744172 DOI: 10.3748/wjg.14.5412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the biological impact of hepatitis B virus X- hepatitis C virus core (HBV X-HCV C) fusion gene on hepatoma cells.
METHODS: The recombinant adenoviruses Ad-XC, Ad-X and Ad-C expressing HBV X-HCV C fusion gene, HBV X gene and HCV C gene were constructed, respectively. Hepatoma cells were infected with different recombinant adenoviruses. MTT, colony-forming experiment, FCM, TUNEL assay were performed to observe the biological impact of the HBV X-HCV C fusion gene on liver cells.
RESULTS: MTT showed that the Ad-XC group cells grew faster than the other group cells. Colony-forming experiment showed that the colony-forming rate for the Ad-XC group cells was significantly higher than that for the other group cells. FCM analysis showed that Ad-XC/Ad-X/Ad-C infection enhanced the progression of G1→S phase in the HepG2 cell cycle. The apoptosis index of the Ad-XC, Ad-X, Ad-C group cells was significantly lower than that of the Ad0 and control group cells. Semi-quantitative RT-PCR showed that the expression level of c-myc was the highest in Ad-XC infected cells. Tumor formation was found at the injected site of mice inoculated with Ad-XC-infected LO2 cells, but not in control mice.
CONCLUSION: Ad-XC, Ad-X and Ad-C facilitate the proliferation activity of HepG2 cells and inhibit their apoptosis in vitro. The effect of Ad-XC is significantly stronger than that of Ad-X and Ad-C. Up-regulation of c-myc may be one of the mechanisms underlying the synergism of HBV X and HCV C genes on hepatocarcinogenesis in athymic nude mice.
Collapse
|
30
|
Feitelson MA, Reis HMGPV, Pan J, Clayton M, Sun B, Satiroglu-Tufan NL, Lian Z. HBV X protein: elucidating a role in oncogenesis. Future Virol 2008. [DOI: 10.2217/17460794.3.5.455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chronic HBV infection is associated with the development of hepatocellular carcinoma (HCC). HBV contributes to tumorigenesis by encoding hepatitis B x antigen (HBxAg), which is a trans-regulatory protein that appears to contribute to HCC by altering patterns of host gene expression. In this review, recent data is presented that outlines some of the putative mechanisms whereby HBxAg contributes to HCC. With the development of animal models of HBxAg-mediated HCC, the relevance and temporal order of putative steps in this process can now be dissected to elucidate what is rate limiting and when. This will have a profound impact on the design of novel and specific therapeutics for HCC.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Biology, College of Science & Technology, Temple University, PA 19122, USA. and, Center for Biotechnology, College of Science & Technology, Temple University, PA 19122, USA
| | - Helena MGPV Reis
- MIT Portugal Program, Av. Antonio Jose de Almeida, 12 1000–043 Lisboa, Portugal
| | - Jingbo Pan
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, PA 19107, USA
| | - Marcy Clayton
- Department of Biology, College of Science & Technology, Temple University, PA 19122, USA
| | - Bill Sun
- Department of Biology, College of Science & Technology, Temple University, PA 19122, USA
| | - N Lale Satiroglu-Tufan
- Department of Medical Biology, Pamukkale University School of Medicine, Kinikli Kampusu Morfoloji Binasi, 20020 Denizli, Turkey
| | - Zhaorui Lian
- Department of Biology, College of Science & Technology, Temple University, PA 19122, USA
| |
Collapse
|
31
|
Yao DF, Gu WJ, Li YM. Expression and dynamic alteration of hepatoma-related growth factors during malignant transformation of hepatocytes. Shijie Huaren Xiaohua Zazhi 2008; 16:2570-2575. [DOI: 10.11569/wcjd.v16.i23.2570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common hepatic malignancy worldwide. Its nature of rapid growth results in a grave prognosis. Its treatment is challenging because the mechanisms underlying tumor progression are still largely unknown. Recently, new molecular targets have been confirmed and various targeted agents are now being investigated for the treatment of HCC. The progression of HCC is closely associated with expression of hepatic growth factors that may be molecular targets for HCC treatment. This paper concludes the expression characters and dynamic changes of several hepatoma-related growth factors such as IGF-Ⅱ, VEGF, TGF-β1 and HGF.
Collapse
|
32
|
Chan DW, Lee JMF, Chan PCY, Ng IOL. Genetic and epigenetic inactivation of T-cadherin in human hepatocellular carcinoma cells. Int J Cancer 2008; 123:1043-52. [PMID: 18553387 DOI: 10.1002/ijc.23634] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T-cadherin is an atypical cadherin and growing evidence has indicated that T-cadherin exerts tumor-suppressive effects on cancers of epithelial cell type and also causes positive effects on tumor angiogenesis. Human hepatocellular carcinoma (HCC) is a hypervascular tumor and T-cadherin has been shown to be overexpressed in intratumoral endothelial cells of HCCs. However, the expression status and functions of T-cadherin in hepatocytes or HCC cells remain unclear. Here, we demonstrated that T-cadherin was underexpressed in HCC cells (26.5%, 13/49 cases), but was frequently (77.6%, 38/49) overexpressed in intratumoral endothelial cells immunohistochemically. Semiquantitative RT-PCR analysis also showed that the T-cadherin gene was underexpressed in 7 of 11 HCC cell lines. Loss of heterozygosity analysis revealed that 32-38% of the 42 human HCC samples had allelic losses at this locus. Upon pharmacological treatment with demethylating agent 5-aza-2'-deoxycytidine or histone deacetylase inhibitor trichostatin A, T-cadherin promoter hypermethylation and/or histone deacetylation was frequently observed in HCC samples and cell lines. Functionally, enforced expression of T-cadherin induced G(2)/M cell cycle arrest, reduced cell proliferation in low serum medium, suppressed anchorage-independent growth in soft agar and increased sensitivity to TNFalpha-mediated apoptosis in HCC cells. Intriguingly, we found that T-cadherin significantly suppressed the activity of c-Jun, a crucial oncoprotein constitutively activated in HCC cells. To conclude, T-cadherin was differentially expressed in human HCCs. The underexpression of T-cadherin in HCC cells suggests it may be another critical event in addition to T-cadherin-mediated angiogenesis during HCC development.
Collapse
Affiliation(s)
- David W Chan
- Liver Cancer and Hepatitis Research Laboratory and SH Ho Foundation Research Laboratories, Department of Pathology, The University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
33
|
Chan DW, Liu VWS, Tsao GSW, Yao KM, Furukawa T, Chan KKL, Ngan HYS. Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells. Carcinogenesis 2008; 29:1742-50. [PMID: 18632752 DOI: 10.1093/carcin/bgn167] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The RAS-RAF-MEK-extracellular signal-regulated kinase (ERK) pathway plays a pivotal role in various cellular responses, including cellular growth, differentiation, survival and motility. Constitutive activation of the ERK pathway has been linked to the development and progression of human cancers. Here, we reported that mitogen-activated protein kinase phosphatase (MKP)-3, a negative regulator of ERK1/2, lost its expression particularly in the protein level, was significantly correlated with high ERK1/2 activity in primary human ovarian cancer cells using quantitative reverse transcription-polymerase chain reaction and western blot analyses. Intriguingly, the loss of MKP3 protein was associated with ubiquitination/proteosome degradation mediated by high intracellular reactive oxygen species (ROS) accumulation such as hydrogen peroxide in ovarian cancer cells. Functionally, short hairpin RNA knock down of endogenous MKP3 resulted in increased ERK1/2 activity, cell proliferation rate, anchorage-independent growth ability and resistance to cisplatin in ovarian cancer cells. Conversely, enforced expression of MKP3 in MKP3-deficient ovarian cancer cells significantly reduced ERK1/2 activity and inhibited cell proliferation, anchorage-independent growth ability and tumor development in nude mice. Furthermore, the enforced expression of MKP3 succeeded to sensitize ovarian cancer cells to cisplatin-induced apoptosis in vitro and in vivo. These results suggest a molecular mechanism by which the accumulation of ROS during ovarian cancer progression may cause the degradation of MKP3, which in turn leads to aberrant ERK1/2 activation and contributes to tumorigenicity and chemoresistance of human ovarian cancer cells.
Collapse
Affiliation(s)
- David W Chan
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, TheUniversity of Hong Kong, Hong Kong SAR, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
34
|
Yoo YG, Na TY, Seo HW, Seong JK, Park CK, Shin YK, Lee MO. Hepatitis B virus X protein induces the expression of MTA1 and HDAC1, which enhances hypoxia signaling in hepatocellular carcinoma cells. Oncogene 2008; 27:3405-13. [PMID: 18264140 DOI: 10.1038/sj.onc.1211000] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 11/06/2007] [Indexed: 02/06/2023]
Abstract
Expression level of metastasis-associated protein 1 (MTA1) is closely related to tumor growth and metastasis in various cancers. Although increased expression level of MTA1 was observed in hepatocellular carcinoma (HCC), role of MTA1 complex containing histone deacetylase (HDAC) in hepatitis B virus (HBV)-associated hepatocarcinogenesis has not been studied. Here, we demonstrated that HBx strongly induced the expression of MTA1 and HDAC1 genes at transcription level. MTA1 and HDAC1/2 physically associated with hypoxia-inducible factor-1 alpha (HIF-1 alpha) in vivo in the presence of HBx, which was abolished by knockdown of MTA1 by short interfering RNA (siRNA). HBx induced deacetylation of the oxygen-dependent degradation domain of HIF-1 alpha, which was accompanied with dissociation of prolyl hydroxylases and von Hippel-Lindau tumor suppressor from HIF-1 alpha. These results indicate that HBx-induced deacetylation is important for proteasomal degradation of HIF-1 alpha. Further, we observed that protein levels of MTA1 and HDAC1 were increased in the liver of HBx-transgenic mice. Also, there was a higher expression of HDAC1 in HCC than in the adjacent non-tumorous cirrhotic nodules in 10 out of 12 human HBV-associated HCC specimens. Together, our data indicate a positive cross talk between HBx and the MTA1/HDAC complex in stabilizing HIF-1 alpha, which may play a critical role in angiogenesis and metastasis of HBV-associated HCC.
Collapse
Affiliation(s)
- Y-G Yoo
- College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Kim SY, Kim JC, Kim JK, Kim HJ, Lee HM, Choi MS, Maeng PJ, Ahn JK. Hepatitis B virus X protein enhances NFκB activity through cooperating with VBP1. BMB Rep 2008; 41:158-63. [DOI: 10.5483/bmbrep.2008.41.2.158] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
36
|
Yao DF, Dong ZZ, Gu QQ, Yao M. Specific diagnosis of gamma-glutamyl transferase subfraction and its genotyping for hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2007; 15:3775-3781. [DOI: 10.11569/wcjd.v15.i36.3775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abnormal expression of total γ-glutamyl transferase (GGT, EC 2.3.2.2) activity can be found in patients with different liver diseases and extrahepatic tumors. Circulating GGT from hepatocellular carcinoma (HCC) patients can be divided into different isoforms (Ⅰ, Ⅰ', Ⅱ, Ⅱ', β, δ, ε, φA, ⅦB, φC, γA, γB) by using PAGE. Some of these isoforms (Ⅰ', Ⅱ and Ⅱ', and hepatoma-specific GGT, HS-GGT) can be detected in sera of HCC patients. Hepatic GGT gene expression may be closely related to the development of HCC. The human cDNA sequences from fetal liver, placenta and HepG2 cells (H) were investigated. The genotype H was predominant in cancerous tissues of HCC. Both HS-GGT and genotype H were confirmed as useful specific HCC markers, with higher specificity and sensitivity, and their analysis may be useful for HCC diagnosis and differentiation.
Collapse
|
37
|
Xu R, Zhang X, Zhang W, Fang Y, Zheng S, Yu XF. Association of human APOBEC3 cytidine deaminases with the generation of hepatitis virus B x antigen mutants and hepatocellular carcinoma. Hepatology 2007; 46:1810-20. [PMID: 17847074 DOI: 10.1002/hep.21893] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Human APOBEC3 (apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3) cytidine deaminases have been shown to be potent inhibitors of diverse retroviruses including Vif-deficient human immunodeficiency virus 1 (HIV-1), hepatitis virus B (HBV), adeno-associated virus, and endogenous retroelements. Despite the fact that these enzymes are known to be potential DNA mutators and to target retroviral DNA for cytidine deamination, the pathological effects of their deregulated expression in human diseases are not yet clear. Mutants of the viral HBx protein have been implicated in the carcinogenesis of hepatocellular carcinoma (HCC); however, little is known about how or why such mutants are generated in the human liver. Here, we report that a number of APOBEC3 deaminases preferentially edit the HBx region of HBV DNA and generate C-terminally truncated HBx mutants. Our functional studies indicated that APOBEC3-mediated HBx mutants, especially the C-terminally truncated mutants, cause a gain of function that enhances the colony-forming ability and proliferative capacity of neoplastic cells. Furthermore, we detected G-to-A hypermutation-mediated HBx mutants in preneoplastic liver tissues of selected patients with active chronic HBV infections. We also observed that the APOBEC3B (A3B) cytidine deaminase was widely up-regulated in HCC tumor tissues; it also promoted the growth of neoplastic human HepG2 liver cells and up-regulated heat shock transcription factor1 (HSF1) expression. CONCLUSION These findings suggest that some of the APOBEC3 deaminases play a role in the carcinogenesis of HCC through the generation of HBx mutants, providing preneoplastic and neoplastic hepatocytes with a selective clonal growth advantage. Deregulated expression of A3B in liver tissues may also have the potential to promote genetic instability and tumorigenesis.
Collapse
Affiliation(s)
- Rongzhen Xu
- Second Affiliated Hospital, Cancer Institute, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
38
|
Hussain SP, Schwank J, Staib F, Wang XW, Harris CC. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene 2007; 26:2166-76. [PMID: 17401425 DOI: 10.1038/sj.onc.1210279] [Citation(s) in RCA: 435] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and the major risk factors include chronic infections with the hepatitis B (HBV) or C (HCV) virus, and exposure to dietary aflatoxin B(1) (AFB(1)) or alcohol consumption. Multiple genetic and epigenetic changes are involved in the molecular pathogenesis of HCC, for example, somatic mutations in the p53 tumor suppressor gene (TP53) and the activation of the WNT signal transduction pathway. AFB(1) frequently induces G:C to T:A transversions at the third base in codon 249 of TP53 and cooperates with HBV in causing p53 mutations in HCC. The detection of TP53 mutant DNA in plasma is a biomarker of both AFB(1) exposure and HCC risk. Chronic infection with HBV and HCV viruses, and oxyradical disorders including hemochromatosis, also generate reactive oxygen/nitrogen species that can both damage DNA and mutate cancer-related genes such as TP53. Certain mutant p53 proteins may exhibit a 'gain of oncogenic function'. The p53 biological network is a key responder to this oxidative and nitrosative stress. Depending on the extent of the DNA damage, p53 regulates the transcription of protective antioxidant genes and with extensive DNA damage, transactivates pro-oxidant genes that contribute to apoptosis. The X gene of HBV (HBx) is the most common open reading frame integrated into the host genome in HCC and the integrated HBx is frequently mutated. Mutant HBx proteins still retain their ability to bind to p53, and attenuate DNA repair and p53-mediated apoptosis. In summary, both viruses and chemicals are implicated in the etiology of TP53 mutations during the molecular pathogenesis of HCC.
Collapse
Affiliation(s)
- S P Hussain
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4258, USA
| | | | | | | | | |
Collapse
|
39
|
Gao J, Chen C, Hong L, Wang J, Du Y, Song J, Shao X, Zhang J, Han H, Liu J, Fan D. Expression of Jagged1 and its association with hepatitis B virus X protein in hepatocellular carcinoma. Biochem Biophys Res Commun 2007; 356:341-7. [PMID: 17359939 DOI: 10.1016/j.bbrc.2007.02.130] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 02/14/2007] [Indexed: 12/26/2022]
Abstract
Jagged1 is one of the ligands of Notch signaling pathway, which controls cellular proliferation and differentiation, and also plays important roles in various malignant tumors. However, the expression of Jagged1 in hepatocellular carcinoma (HCC) has not been elucidated, nor whether it is associated with hepatitis B virus X protein (HBx). In this study, we found that Jagged1 was highly expressed in 79.2% (42/53) of HCC tissues compared with adjacent nontumor liver (P <0.05), and its expression was found to be closely related with HBx (rs=0.522, P <0.001) in HCC tissues. Our in vitro study also showed that alteration of HBx expression in HCC cell lines led to a consistent change of Jagged1. Moreover, Jagged1 was found to co-localize and directly interact with HBx in HCC tissues and HBx expressed HCC cell lines. Our results reveal that Jagged1, which is regulated by HBx, may contribute to the development of HCC.
Collapse
Affiliation(s)
- Juan Gao
- Institute of Digestive Diseases, State Key Laboratory of Cancer Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pang R, Lee TKW, Poon RTP, Fan ST, Wong KB, Kwong YL, Tse E. Pin1 interacts with a specific serine-proline motif of hepatitis B virus X-protein to enhance hepatocarcinogenesis. Gastroenterology 2007; 132:1088-103. [PMID: 17383430 DOI: 10.1053/j.gastro.2006.12.030] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 11/30/2006] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS The peptidyl prolyl isomerase Pin1 frequently is overexpressed in hepatocellular carcinoma (HCC). Hepatitis B virus (HBV) is the most common etiologic agent in HCC, and its encoded X-protein (HBx) is oncogenic and possesses a serine-proline motif that may bind Pin1. The role of Pin1 in hepatocarcinogenesis, particularly in HBV-related HCC, was investigated. METHODS Immunohistochemical staining was performed to evaluate the prevalence of Pin1 overexpression in HCCs of different etiologies. Glutathione S-transferase pull-down and co-immunoprecipitation experiments were used to validate the physical interaction between Pin1 and HBx. Reporter assay, cell proliferation assay, and xenotransplantation experiments were used to show the functional consequence and importance of Pin1-HBx interaction in hepatocarcinogenesis. RESULTS We showed preferential Pin1 overexpression in HBV-related tumors and confirmed the interaction between Pin1 and HBx at the specific serine-proline motif. Pin1 overexpression increased the protein stability of HBx. Furthermore, HBx-mediated transactivation was enhanced by co-expression of Pin1. HepG2 expressing Pin1 and HBx showed a synergistic increase in cellular proliferation, as compared with cells expressing Pin1 or HBx alone. Furthermore, concomitant expression of Pin1 and HBx in the nontumorigenic human hepatocyte cell line MIHA led to a synergistic increase in tumor growth. Finally, in Hep3B cells with suppressed Pin1 expression, HBx-enhanced tumor growth in nude mice was abrogated. CONCLUSIONS Pin1 binds HBx to enhance hepatocarcinogenesis in HBV-infected hepatocytes. The discovery of an interaction between Pin1 and HBx will further our understanding of the molecular pathogenic mechanism of HBV-related HCC in human beings.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/virology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Hepatitis B/complications
- Hepatitis B/genetics
- Hepatitis B/metabolism
- Hepatitis B/pathology
- Hepatitis B/virology
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/virology
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/virology
- Mice
- Mice, Nude
- NIMA-Interacting Peptidylprolyl Isomerase
- Peptidylprolyl Isomerase/genetics
- Peptidylprolyl Isomerase/metabolism
- Phosphorylation
- Proline
- Protein Binding
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Messenger/metabolism
- Reproducibility of Results
- Serine
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factor RelA/genetics
- Transcription Factor RelA/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Transplantation, Heterologous
- Up-Regulation
- Viral Regulatory and Accessory Proteins
- bcl-X Protein/genetics
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Roberta Pang
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
41
|
Cheng ASL, Wong N, Tse AMY, Chan KYY, Chan KK, Sung JJY, Chan HLY. RNA interference targeting HBx suppresses tumor growth and enhances cisplatin chemosensitivity in human hepatocellular carcinoma. Cancer Lett 2007; 253:43-52. [PMID: 17296261 DOI: 10.1016/j.canlet.2007.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Revised: 12/31/2006] [Accepted: 01/05/2007] [Indexed: 12/22/2022]
Abstract
The X protein of hepatitis B virus (HBx) is often expressed in human hepatocellular carcinoma (HCC) but its role on tumor growth is not fully clarified. In this study, RNA interference was employed to knockdown HBx expression in Hep3B HCC cells, which naturally express carboxyl-end truncated form of HBx frequently found in HCC tissues. Specific knockdown of HBx strongly inhibited cell growth and tumorigenicity in xenograft model. HBx repression induced apoptosis in Hep3B cells and significantly increased cell sensitivity to cisplatin-induced apoptosis. These results suggest that RNA interference-mediated HBx suppression exerts potent anti-proliferative and chemosensitizing effects in human HCC.
Collapse
Affiliation(s)
- Alfred S L Cheng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
42
|
Kim JS, Rho BY, Lee TH, Lee JM, Kim SJ, Park JH. The interaction of hepatitis B virus X protein and protein phosphatase type 2 Calpha and its effect on IL-6. Biochem Biophys Res Commun 2006; 351:253-8. [PMID: 17055456 DOI: 10.1016/j.bbrc.2006.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 10/08/2006] [Indexed: 11/16/2022]
Abstract
HBx has been suggested as an important determinant mediating the pathological effects of HBV via interacting with various cellular proteins. To identify new HBx-interacting proteins and elucidate a possible mechanism associated with HBx and HBx-interacting proteins in hepatocellular carcinoma, yeast two-hybrid screening was performed. We identified a novel HBx-interacting protein, serine/threonine protein phosphatase PP2Calpha, and investigated the effects of PP2Calpha on HBx-mediated IL-6 regulation. The interaction between endogenous PP2Calpha, and HBx was confirmed by co-immunoprecipitation. Recombinant HBx dose-dependently reduced enzyme activity of recombinant PP2Calphain vitro. While ectopically expressed PP2Calpha in Cos-7 and Huh-7 cells reduced the expression of IL-6, overexpressed HBx with recombinant HBx-expressing adenovirus overcame PP2Calpha-mediated IL-6 downregulation. In the response of IL-6, HBx phosphorylated STAT3 and recovered PP2Calpha-mediated dephosphorylation of STAT3. These results supported that HBx might play a crucial role in HBV-associated hepatocarcinogenesis even in cases where cells express a negative regulator, PP2Calpha.
Collapse
Affiliation(s)
- Ji Su Kim
- Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | | | | | | | | | | |
Collapse
|
43
|
Tang H, Oishi N, Kaneko S, Murakami S. Molecular functions and biological roles of hepatitis B virus x protein. Cancer Sci 2006; 97:977-83. [PMID: 16984372 PMCID: PMC11159107 DOI: 10.1111/j.1349-7006.2006.00299.x] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic infection of hepatitis B virus (HBV) is one of the major causes of hepatocellular carcinoma (HCC) in the world. Hepatitis B virus X protein (HBx) has been long suspected to be involved in hepatocarcinogenesis, although its oncogenic role remains controversial. HBx is a multifunctional regulator that modulates transcription, signal transduction, cell cycle progress, protein degradation pathways, apoptosis, and genetic stability by directly or indirectly interacting with host factors. This review focuses on the biological roles of HBx in HBV replication and cellular transformation in terms of the molecular functions of HBx. Using the transient HBV replication assay, ectopically expressed HBx could stimulate HBV transcription and replication with the X-defective replicon to the level of those with the wild one. The transcription coactivation is mainly contributing to the stimulatory role of HBx on HBV replication although the other functions may affect HBV replication. Effect of HBx on cellular transformation remains controversial and was never addressed with human primary or immortal cells. Using the human immortalized primary cells, HBx was found to retain the ability to overcome active oncogene RAS-induced senescence that requires full-length HBx. At least two functions of HBx, the coactivation function and the ability to overcome oncogene-induced senescence, may be cooperatively involved in HBV-related hepatocarcinogenesis.
Collapse
Affiliation(s)
- Hong Tang
- Division of Biotherapy of Infectious Diseases, Key Laboratory of Biotherapy of Human Diseases, Ministry of Education, Chengdu, Sichuan, China
| | | | | | | |
Collapse
|
44
|
Abstract
Silencing gene expression through a process known as RNA interference (RNAi) has been known in the plant world for many years. In recent years, knowledge of the prevalence of RNAi and the mechanism of gene silencing through RNAi has started to unfold. It is now believed that RNAi serves in part as an innate response against invading viral pathogens and, indeed, counter silencing mechanisms aimed at neutralizing RNAi have been found in various viral pathogens. During the past few years, it has been demonstrated that RNAi, induced by specifically designed double‐stranded RNA (dsRNA) molecules, can silence gene expression of human viral pathogens both in acute and chronic viral infections. Furthermore, it is now apparent that in in vitro and in some in vivo models, the prospects for this technology in developing therapeutic applications are robust. However, many key questions and obstacles in the translation of RNAi into a potential therapeutic platform still remain, including the specificity and longevity of the silencing effect, and, most importantly, the delivery of the dsRNA that induces the system. It is expected that for the specific examples in which the delivery issue could be circumvented or resolved, RNAi may hold promise for the development of gene‐specific therapeutics. Copyright © 2006 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mali Ketzinel‐Gilad
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
45
|
Qiu LW, Yao DF, Wu XH, Wu W, Su XQ, Zou L. Correlations of insulin-like growth factor-II expression with hepatitis B virus DNA replication and clinical pathological characteristics in human hepatocelullar carcinoma. Shijie Huaren Xiaohua Zazhi 2006; 14:1267-1271. [DOI: 10.11569/wcjd.v14.i13.1267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of insulin-like growth factor-II (IGF-II) in hepatocellular carcinoma (HCC) as well as its correlations with the pathogenesis, development and prognosis of HCC.
METHODS: IGF-II expression was detected by immunohistochemistry in 30 HCC and their corresponding non-cancerous tissues. Liver HBV DNA was detected by in situ molecular hybridization technique and the relationship was analyzed between IGF-II expression and HBV replication or the clinical pathological characteristics.
RESULTS: The stronger expression of IGF-II was found in liver cancer tissues. The positive rate of IGF-II expression was 83.3% in HCC, and 46.7% in non-cancerous liver tissues (P < 0.01), respectively. The expression of IGF-II was significantly higher in HCC with moderate or low differentiation than that with well differentiation (90.0%, 100% vs 42.9%, P < 0.05 or P < 0.01). IGF-II expression was markedly lower in HCC without serosa invasion than that with serosa invasion (95.0% vs 60.0%, P < 0.05). IGF-II expression was also correlated with tumor size (< 5 cm vs ≥ 5 cm: 58.3% vs 100%, P < 0.01), but with tumor number (P > 0.05). The level of IGF-II expression in HBV DNA-positive HCC was significantly higher than that in HBV DNA-negative ones (94.7% vs 63.6%, P < 0.05).
CONCLUSION: IGF-II is highly expressed in HCC, and the aberrant expression of IGF-II is correlated with the degree of differentiation, invasion and tumor size, and it may be used as a marker for development and prognosis of HCC.
Collapse
|