1
|
Sherman MS, McMahon-Skates T, Gaston LS, Katzen SW, Majzoub JA, Goessling W. Harmonizing TUNEL with multiplexed iterative immunofluorescence enriches spatial contextualization of cell death. CELL REPORTS METHODS 2025; 5:101047. [PMID: 40359937 DOI: 10.1016/j.crmeth.2025.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/19/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025]
Abstract
Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) is an essential tool for detecting cell death in tissues, but its compatibility with spatial proteomic methods is unknown. We evaluated variations of the TUNEL protocol for compatibility with multiple iterative labeling by antibody neodeposition (MILAN) in acetaminophen-induced hepatocyte necrosis and dexamethasone-induced adrenocortical apoptosis. Using a commercial Click-iT-based assay as a standard, TUNEL signal could be reliably produced independent of the antigen retrieval method, with tissue-specific minor differences in signal to noise. In contrast, proteinase K treatment consistently reduced or even abrogated protein antigenicity, while pressure cooker treatment enhanced protein antigenicity for the targets tested. Antibody-based TUNEL with pressure cooker retrieval could be flexibly integrated into a MILAN staining series, and first-round TUNEL was also compatible with a second spatial proteomic method, cyclic immunofluorescence (CycIF). We anticipate that this harmonization of TUNEL with spatial proteomics will enhance the spatial contextualization of cell death in complex tissues.
Collapse
Affiliation(s)
- Marc S Sherman
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Thomas McMahon-Skates
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lindsey S Gaston
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Sonya W Katzen
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph A Majzoub
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Wolfram Goessling
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Malik S, Kumar D. Perspectives of nanomaterials in microbial remediation of heavy metals and their environmental consequences: A review. Biotechnol Genet Eng Rev 2024; 40:154-201. [PMID: 36871166 DOI: 10.1080/02648725.2023.2182546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023]
Abstract
Nanomaterials (NMs) have diverse applications in various sectors, such as decontaminating heavy metals from drinking water, wastewater, and soil. Their degradation efficiency can be enhanced through the application of microbes. As microbial strain releases enzymes, which leads to the degradation of HMs. Therefore, nanotechnology and microbial-assisted remediation-based methods help us develop a remediation process with practical utility, speed, and less environmental toxicity. This review focuses on the success achieved for the bioremediation of heavy metals by nanoparticles and microbial strains and in their integrated approach. Still, the use of NMs and heavy metals (HMs) can negatively affect the health of living organisms. This review describes various aspects of the bioremediation of heavy materials using microbial nanotechnology. Their safe and specific use supported by bio-based technology paves the way for their better remediation. We discuss the utility of nanomaterials for removing heavy metals from wastewater, toxicity studies and issues to the environment with their practical implications. Nanomaterial assisted heavy metal degradation coupled with microbial technology and disposal issues are described along with detection methods. Environmental impact of nanomaterials is also discussed based on the recent work conducted by the researchers. Therefore, this review opens new avenues for future research with an impact on the environment and toxicity issues. Also, applying new biotechnological tools will help us develop better heavy metal degradation routes.
Collapse
Affiliation(s)
- Sachin Malik
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Sonepat, Haryana, India
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Sonepat, Haryana, India
| |
Collapse
|
3
|
Khalef L, Lydia R, Filicia K, Moussa B. Cell viability and cytotoxicity assays: Biochemical elements and cellular compartments. Cell Biochem Funct 2024; 42:e4007. [PMID: 38593323 DOI: 10.1002/cbf.4007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/01/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Cell viability and cytotoxicity assays play a crucial role in drug screening and evaluating the cytotoxic effects of various chemicals. The quantification of cell viability and proliferation serves as the cornerstone for numerous in vitro assays that assess cellular responses to external factors. In the last decade, several studies have developed guidelines for defining and interpreting cell viability and cytotoxicity based on morphological, biochemical, and functional perspectives. As this domain continues to experience ongoing growth, revealing new mechanisms orchestrating diverse cell cytotoxicity pathways, we suggest a revised classification for multiple assays employed in evaluating cell viability and cell death. This classification is rooted in the cellular compartment and/or biochemical element involved, with a specific focus on mechanistic and essential aspects of the process. The assays are founded on diverse cell functions, encompassing metabolic activity, enzyme activity, cell membrane permeability and integrity, adenosine 5'-triphosphate content, cell adherence, reduction equivalents, dye inclusion or exclusion, constitutive protease activity, colony formation, DNA fragmentation and nuclear splitting. These assays present straightforward, reliable, sensitive, reproducible, cost-effective, and high-throughput approaches for appraising the effects of newly formulated chemotherapeutic biomolecules on the cell survival during the drug development process.
Collapse
Affiliation(s)
- Lefsih Khalef
- Département de Biochimie et Microbiologie, Laboratoire d'Ecologie, Biotechnologie et Santé, Université Mouloud Mammeri de Tizi ouzou, Tizi Ouzou, Algeria
| | - Radja Lydia
- Département de Biochimie et Microbiologie, Laboratoire d'Ecologie, Biotechnologie et Santé, Université Mouloud Mammeri de Tizi ouzou, Tizi Ouzou, Algeria
| | - Khettar Filicia
- Département de Biochimie et Microbiologie, Laboratoire d'Ecologie, Biotechnologie et Santé, Université Mouloud Mammeri de Tizi ouzou, Tizi Ouzou, Algeria
| | - Berkoud Moussa
- Département de Biochimie et Microbiologie, Laboratoire d'Ecologie, Biotechnologie et Santé, Université Mouloud Mammeri de Tizi ouzou, Tizi Ouzou, Algeria
| |
Collapse
|
4
|
Ma X, Fu H, Shen J, Zhang D, Zhou J, Tong C, Rao AM, Zhou J, Fan L, Lu B. Green Ether Electrolytes for Sustainable High-voltage Potassium Ion Batteries. Angew Chem Int Ed Engl 2023; 62:e202312973. [PMID: 37846843 DOI: 10.1002/anie.202312973] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
Ether-based electrolytes are promising for secondary batteries due to their good compatibility with alkali metal anodes and high ionic conductivity. However, they suffer from poor oxidative stability and high toxicity, leading to severe electrolyte decomposition at high voltage and biosafety/environmental concerns when electrolyte leakage occurs. Here, we report a green ether solvent through a rational design of carbon-chain regulation to elicit steric hindrance, such a structure significantly reducing the solvent's biotoxicity and tuning the solvation structure of electrolytes. Notably, our solvent design is versatile, and an anion-dominated solvation structure is favored, facilitating a stable interphase formation on both the anode and cathode in potassium-ion batteries. Remarkably, the green ether-based electrolyte demonstrates excellent compatibility with K metal and graphite anode and a 4.2 V high-voltage cathode (200 cycles with average Coulombic efficiency of 99.64 %). This work points to a promising path toward the molecular design of green ether-based electrolytes for practical high-voltage potassium-ion batteries and other rechargeable batteries.
Collapse
Affiliation(s)
- Xuemei Ma
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Hongwei Fu
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Jingyi Shen
- School of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Dianwei Zhang
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Jiawan Zhou
- School of Science, Hunan University of Technology and Business, Changsha, 410205, Hunan, P. R. China
| | - Chunyi Tong
- School of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Apparao M Rao
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC, USA
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Ling Fan
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
5
|
D'Aes T, Marlier Q, Verteneuil S, Quatresooz P, Vandenbosch R, Malgrange B. Re-Evaluating the Relevance of the Oxygen-Glucose Deprivation Model in Ischemic Stroke: The Example of Cdk Inhibition. Int J Mol Sci 2023; 24:ijms24087009. [PMID: 37108171 PMCID: PMC10138648 DOI: 10.3390/ijms24087009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Previous research has shown that cyclin-dependent kinases (Cdks) that play physiological roles in cell cycle regulation become activated in post-mitotic neurons after ischemic stroke, resulting in apoptotic neuronal death. In this article, we report our results using the widely used oxygen-glucose deprivation (OGD) in vitro model of ischemic stroke on primary mouse cortical neurons to investigate whether Cdk7, as part of the Cdk-activating kinase (CAK) complex that activates cell cycle Cdks, might be a regulator of ischemic neuronal death and may potentially constitute a therapeutic target for neuroprotection. We found no evidence of neuroprotection with either pharmacological or genetic invalidation of Cdk7. Despite the well-established idea that apoptosis contributes to cell death in the ischemic penumbra, we also found no evidence of apoptosis in the OGD model. This could explain the absence of neuroprotection following Cdk7 invalidation in this model. Neurons exposed to OGD seem predisposed to die in an NMDA receptor-dependent manner that could not be prevented further downstream. Given the direct exposure of neurons to anoxia or severe hypoxia, it is questionable how relevant OGD is for modeling the ischemic penumbra. Due to remaining uncertainties about cell death after OGD, caution is warranted when using this in vitro model to identify new stroke therapies.
Collapse
Affiliation(s)
- Tine D'Aes
- Laboratory of Developmental Neurobiology, GIGA-Stem Cells & GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium
| | - Quentin Marlier
- Laboratory of Developmental Neurobiology, GIGA-Stem Cells & GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium
- Dendrogenix, Avenue de l'Hôpital, 1-B34 +3, 4000 Liège, Belgium
| | - Sébastien Verteneuil
- Laboratory of Developmental Neurobiology, GIGA-Stem Cells & GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium
- Division of Histology, Department of Biomedical and Preclinical Sciences, University of Liège, 4000 Liège, Belgium
| | - Pascale Quatresooz
- Division of Histology, Department of Biomedical and Preclinical Sciences, University of Liège, 4000 Liège, Belgium
| | - Renaud Vandenbosch
- Laboratory of Developmental Neurobiology, GIGA-Stem Cells & GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium
- Division of Histology, Department of Biomedical and Preclinical Sciences, University of Liège, 4000 Liège, Belgium
| | - Brigitte Malgrange
- Laboratory of Developmental Neurobiology, GIGA-Stem Cells & GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
6
|
Pandey RP, Vidic J, Mukherjee R, Chang CM. Experimental Methods for the Biological Evaluation of Nanoparticle-Based Drug Delivery Risks. Pharmaceutics 2023; 15:612. [PMID: 36839932 PMCID: PMC9959606 DOI: 10.3390/pharmaceutics15020612] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Many novel medical therapies use nanoparticle-based drug delivery systems, including nanomaterials through drug delivery systems, diagnostics, or physiologically active medicinal products. The approval of nanoparticles with advanced therapeutic and diagnostic potentials for applications in medication and immunization depends strongly on their synthesizing procedure, efficiency of functionalization, and biological safety and biocompatibility. Nanoparticle biodistribution, absorption, bioavailability, passage across biological barriers, and biodistribution are frequently assessed using bespoke and biological models. These methods largely rely on in vitro cell-based evaluations that cannot predict the complexity involved in preclinical and clinical studies. Therefore, assessing the nanoparticle risk has to involve pharmacokinetics, organ toxicity, and drug interactions manifested at multiple cellular levels. At the same time, there is a need for novel approaches to examine nanoparticle safety risks due to increased constraints on animal exploitation and the demand for high-throughput testing. We focus here on biological evaluation methodologies that provide access to nanoparticle interactions with the organism (positive or negative via toxicity). This work aimed to provide a perception regarding the risks associated with the utilization of nanoparticle-based formulations with a particular focus on assays applied to assess the cytotoxicity of nanomaterials.
Collapse
Affiliation(s)
- Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131 029, Haryana, India
| | - Jasmina Vidic
- AgroParisTech, The Institut National de la Recherche Agronomique (INRAE), Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Riya Mukherjee
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City 33302, Taiwan
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City 33302, Taiwan
| | - Chung-Ming Chang
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City 33302, Taiwan
| |
Collapse
|
7
|
Gavanji S, Bakhtari A, Famurewa AC, Othman EM. Cytotoxic Activity of Herbal Medicines as Assessed in Vitro: A Review. Chem Biodivers 2023; 20:e202201098. [PMID: 36595710 DOI: 10.1002/cbdv.202201098] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Since time immemorial, human beings have sought natural medications for treatment of various diseases. Weighty evidence demonstrates the use of chemical methodologies for sensitive evaluation of cytotoxic potentials of herbal agents. However, due to the ubiquitous use of cytotoxicity methods, there is a need for providing updated guidance for the design and development of in vitro assessment. The aim of this review is to provide practical guidance on common cell-based assays for suitable assessment of cytotoxicity potential of herbal medicines and discussing their advantages and disadvantages Relevant articles in authentic databases, including PubMed, Web of Science, Science Direct, Scopus, Google Scholar and SID, from 1950 to 2022 were collected according to selection criteria of in vitro cytotoxicity assays and protocols. In addition, the link between cytotoxicity assay selection and different factors such as the drug solvent, concentration and exposure duration were discussed.
Collapse
Affiliation(s)
- Shahin Gavanji
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, 8415683111, Isfahan, Iran
| | - Azizollah Bakhtari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, 7133654361, Shiraz, Iran
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, PMB 1010, Ikwo, Ebonyi State, Nigeria.,Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576104, Manipal, Karnataka State, India
| | - Eman M Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.,Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Wuerzburg, Germany
| |
Collapse
|
8
|
ElBakary NM, Hagag SA, Ismail MA, El-Sayed WM. New thiophene derivative augments the antitumor activity of γ-irradiation against colorectal cancer in mice via anti-inflammatory and pro-apoptotic pathways. Discov Oncol 2022; 13:119. [PMID: 36326938 PMCID: PMC9633918 DOI: 10.1007/s12672-022-00583-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/17/2022] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common types of cancer worldwide and the second cause of cancer-related deaths. It usually starts as an inflammation that progresses to adenocarcinoma. The goal of the present study was to investigate the antitumor efficacy of a new thiophene derivative against CRC in mice and explore the possible associated molecular pathways. The potential of this thiophene derivative to sensitize the CRC tumor tissue to a low dose of gamma irradiation was also investigated. METHODS Adult male mice were divided into seven groups; control, group treated with dimethylhydrazine (DMH) for the induction of CRC. The DMH-group was further divided into six groups and treated with either cisplatin, thiophene derivative, γ-irradiation, cisplatin + γ-irradiation, thiophene derivative + γ-irradiation, or left untreated. RESULTS DMH induced CRC as evidenced by the macroscopic examination of colon tissues and histopathology, and elevated the activities of cyclooxygenase2 (COX2) and nitric oxide synthase (iNOS). DMH also elevated kirsten rat sarcoma (KRAS) and downregulated the peroxisome proliferator activated receptor (PPARγ) as shown by RT-PCR and Western blotting. DMH exerted anti-apoptotic activity by reducing the expression of phosphorylated p53 and cleaved caspase3 at the gene and protein levels. The flow cytometry analysis showed that DMH elevated the necrosis and reduced the apoptosis compared to the other groups. The colon tissue from DMH-treated mice showed hyperplasia, aberrant crypt foci, loss of cell polarity, typical CRC of grade 4 with lymphocytes and macrophages infiltrating mucosa, muscularis mucosa, and submucosa score 3. Treatment with thiophene derivative or γ-irradiation ameliorated most of these deleterious effects of DMH. The concomitant action of thiophene derivative + γ-irradiation was typified by the better amelioration of tumor incidence and multiplicity, iNOS, PPARγ, p53, caspase 3, and histopathology of colon. CONCLUSION Taken together, the new thiophene derivative is a promising therapeutic candidate for treatment of colorectal cancer in mice. It also sensitizes the CRC tumor to the ionizing radiation through anti-inflammatory and pro-apoptotic pathways.
Collapse
Affiliation(s)
- Nermeen M ElBakary
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Sanaa A Hagag
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Mohamed A Ismail
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, University of Ain Shams, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
9
|
Comparisons of cell proliferation and cell death from tornaria larva to juvenile worm in the hemichordate Schizocardium californicum. EvoDevo 2022; 13:13. [PMID: 35668535 PMCID: PMC9169294 DOI: 10.1186/s13227-022-00198-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/13/2022] [Indexed: 12/06/2022] Open
Abstract
Background There are a wide range of developmental strategies in animal phyla, but most insights into adult body plan formation come from direct-developing species. For indirect-developing species, there are distinct larval and adult body plans that are linked together by metamorphosis. Some outstanding questions in the development of indirect-developing organisms include the extent to which larval tissue undergoes cell death during the process of metamorphosis and when and where the tissue that will give rise to the adult originates. How do the processes of cell division and cell death redesign the body plans of indirect developers? In this study, we present patterns of cell proliferation and cell death during larval body plan development, metamorphosis, and adult body plan formation, in the hemichordate Schizocardium californium (Cameron and Perez in Zootaxa 3569:79–88, 2012) to answer these questions. Results We identified distinct patterns of cell proliferation between larval and adult body plan formation of S. californicum. We found that some adult tissues proliferate during the late larval phase prior to the start of overt metamorphosis. In addition, using an irradiation and transcriptomic approach, we describe a genetic signature of proliferative cells that is shared across the life history states, as well as markers that are unique to larval or juvenile states. Finally, we observed that cell death is minimal in larval stages but begins with the onset of metamorphosis. Conclusions Cell proliferation during the development of S. californicum has distinct patterns in the formation of larval and adult body plans. However, cell death is very limited in larvae and begins during the onset of metamorphosis and into early juvenile development in specific domains. The populations of cells that proliferated and gave rise to the larvae and juveniles have a genetic signature that suggested a heterogeneous pool of proliferative progenitors, rather than a set-aside population of pluripotent cells. Taken together, we propose that the gradual morphological transformation of S. californicum is mirrored at the cellular level and may be more representative of the development strategies that characterize metamorphosis in many metazoan animals. Supplementary Information The online version contains supplementary material available at 10.1186/s13227-022-00198-1.
Collapse
|
10
|
Tumu HCR, Cuffari BJ, Billack B. Combination of ebselen and hydrocortisone substantially reduces nitrogen mustard-induced cutaneous injury. Curr Res Toxicol 2021; 2:375-385. [PMID: 34806038 PMCID: PMC8585582 DOI: 10.1016/j.crtox.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 11/23/2022] Open
Abstract
The purpose of the present study was to investigate the vesicant countermeasure effects of hydrocortisone (HC) and ebselen (EB-1), administered as monotherapy or as a combination treatment. The mouse ear vesicant model (MEVM) was utilized and test doses of HC (0.016, 0.023, 0.031, 0.047, 0.063, 0.125 or 0.250 mg/ear), EB-1 (0.125, 0.187, 0.250, 0.375 or 0.500 mg/ear) or the combination of HC + EB-1 were topically applied at 15 min, 4 h and 8 h after nitrogen mustard exposure. Ear punch biopsies were obtained 24 h after mechlorethamine (HN2) exposure. Compared to control ears, ear tissues exposed topically to HN2 (0.500 µmol/ear) presented with an increase in ear thickness, vesication, TUNEL fluorescence and expression of matrix metalloproteinase 9 (MMP-9) and inducible nitric oxide synthase (iNOS). In contrast, HN2 exposed ears treated topically with EB-1 showed a significant decrease in morphometric thickness and vesication vs. HN2 alone. Ear tissues exposed to HN2 and then treated with HC also demonstrated reductions in morphometric thickness and vesication. Combination treatment of HC + EB-1 was found to be the most effective at reducing HN2-induced ear edema and vesication. The combination also dramatically decreased HN2-mediated cutaneous expression of iNOS and MMP-9 and decreased HN2-induced TUNEL staining. Taken together, our study demonstrates that the combination of HC + EB-1 is an efficacious countermeasure to HN2.
Collapse
Affiliation(s)
- Hemanta C Rao Tumu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY, USA
| | - Benedette J. Cuffari
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY, USA
| | - Blase Billack
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY, USA
| |
Collapse
|
11
|
Yuan T, Shao Y, Zhou X, Liu Q, Zhu Z, Zhou B, Dong Y, Stephanopoulos N, Gui S, Yan H, Liu D. Highly Permeable DNA Supramolecular Hydrogel Promotes Neurogenesis and Functional Recovery after Completely Transected Spinal Cord Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102428. [PMID: 34296471 DOI: 10.1002/adma.202102428] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Regeneration after severe spinal cord injury cannot occur naturally in mammals. Transplanting stem cells to the injury site is a highly promising method, but it faces many challenges because it relies heavily on the microenvironment provided by both the lesion site and delivery material. Although mechanical properties, biocompatibility, and biodegradability of delivery materials have been extensively explored, their permeability has rarely been recognized. Here, a DNA hydrogel is designed with extremely high permeability to repair a 2 mm spinal cord gap in Sprague-Dawley rats. The rats recover basic hindlimb function with detectable motor-evoked potentials, and a renascent neural network is formed via the proliferation and differentiation of both implanted and endogenous stem cells. The signal at the lesion area is conveyed by, on average, 15 newly formed synapses. This hydrogel system offers great potential in clinical trials. Further, it should be easily adaptable to other tissue regeneration applications.
Collapse
Affiliation(s)
- Taoyang Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100071, China
| | - Yu Shao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xu Zhou
- Center for Molecular Design and Biomimetics, The Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Qian Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100071, China
| | - Zhichao Zhu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bini Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuanchen Dong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Nicholas Stephanopoulos
- Center for Molecular Design and Biomimetics, The Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Hao Yan
- Center for Molecular Design and Biomimetics, The Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Dongsheng Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
12
|
Zhang L, Chen C, Fu J, Lilley B, Berlinicke C, Hansen B, Ding D, Wang G, Wang T, Shou D, Ye Y, Mulligan T, Emmerich K, Saxena MT, Hall KR, Sharrock AV, Brandon C, Park H, Kam TI, Dawson VL, Dawson TM, Shim JS, Hanes J, Ji H, Liu JO, Qian J, Ackerley DF, Rohrer B, Zack DJ, Mumm JS. Large-scale phenotypic drug screen identifies neuroprotectants in zebrafish and mouse models of retinitis pigmentosa. eLife 2021; 10:e57245. [PMID: 34184634 PMCID: PMC8425951 DOI: 10.7554/elife.57245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/28/2021] [Indexed: 11/25/2022] Open
Abstract
Retinitis pigmentosa (RP) and associated inherited retinal diseases (IRDs) are caused by rod photoreceptor degeneration, necessitating therapeutics promoting rod photoreceptor survival. To address this, we tested compounds for neuroprotective effects in multiple zebrafish and mouse RP models, reasoning drugs effective across species and/or independent of disease mutation may translate better clinically. We first performed a large-scale phenotypic drug screen for compounds promoting rod cell survival in a larval zebrafish model of inducible RP. We tested 2934 compounds, mostly human-approved drugs, across six concentrations, resulting in 113 compounds being identified as hits. Secondary tests of 42 high-priority hits confirmed eleven lead candidates. Leads were then evaluated in a series of mouse RP models in an effort to identify compounds effective across species and RP models, that is, potential pan-disease therapeutics. Nine of 11 leads exhibited neuroprotective effects in mouse primary photoreceptor cultures, and three promoted photoreceptor survival in mouse rd1 retinal explants. Both shared and complementary mechanisms of action were implicated across leads. Shared target tests implicated parp1-dependent cell death in our zebrafish RP model. Complementation tests revealed enhanced and additive/synergistic neuroprotective effects of paired drug combinations in mouse photoreceptor cultures and zebrafish, respectively. These results highlight the value of cross-species/multi-model phenotypic drug discovery and suggest combinatorial drug therapies may provide enhanced therapeutic benefits for RP patients.
Collapse
Affiliation(s)
- Liyun Zhang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Conan Chen
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Jie Fu
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Brendan Lilley
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Cynthia Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Baranda Hansen
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Ding Ding
- Department of Biostatistics, Johns Hopkins UniversityBaltimoreUnited States
| | - Guohua Wang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Tao Wang
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- School of Chemistry, Xuzhou College of Industrial TechnologyXuzhouChina
- College of Light Industry and Food Engineering, Nanjing Forestry UniversityNanjingChina
| | - Daniel Shou
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Ying Ye
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Timothy Mulligan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Kevin Emmerich
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Meera T Saxena
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Kelsi R Hall
- School of Biological Sciences, Victoria University of WellingtonWellingtonNew Zealand
| | - Abigail V Sharrock
- Department of Biostatistics, Johns Hopkins UniversityBaltimoreUnited States
- School of Biological Sciences, Victoria University of WellingtonWellingtonNew Zealand
| | - Carlene Brandon
- Department of Ophthalmology, Medical University of South CarolinaCharlestonUnited States
| | - Hyejin Park
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
| | - Tae-In Kam
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Institute for Cell Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Valina L Dawson
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Institute for Cell Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| | - Ted M Dawson
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Institute for Cell Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| | - Joong Sup Shim
- Faculty of Health Sciences, University of Macau, TaipaMacauChina
| | - Justin Hanes
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins UniversityBaltimoreUnited States
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins UniversityBaltimoreUnited States
- Department of Oncology, Johns Hopkins UniversityBaltimoreUnited States
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - David F Ackerley
- School of Biological Sciences, Victoria University of WellingtonWellingtonNew Zealand
| | - Baerbel Rohrer
- Department of Ophthalmology, Medical University of South CarolinaCharlestonUnited States
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
- Department of Molecular Biology and Genetics, Johns Hopkins UniversityBaltimoreUnited States
| | - Jeff S Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
13
|
Cobb AM, Yusoff S, Hayward R, Ahmad S, Sun M, Verhulst A, D'Haese PC, Shanahan CM. Runx2 (Runt-Related Transcription Factor 2) Links the DNA Damage Response to Osteogenic Reprogramming and Apoptosis of Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2021; 41:1339-1357. [PMID: 33356386 DOI: 10.1161/atvbaha.120.315206] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Animals
- Apoptosis
- Cells, Cultured
- Cellular Reprogramming
- Core Binding Factor Alpha 1 Subunit/genetics
- Core Binding Factor Alpha 1 Subunit/metabolism
- DNA Damage
- Disease Models, Animal
- Female
- Histones/metabolism
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Osteogenesis
- Phosphorylation
- Rats, Wistar
- Signal Transduction
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Mice
- Rats
Collapse
Affiliation(s)
- Andrew M Cobb
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Syabira Yusoff
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Robert Hayward
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Sadia Ahmad
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Mengxi Sun
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Anja Verhulst
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium (A.V., P.C.D.)
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium (A.V., P.C.D.)
| | - Catherine M Shanahan
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| |
Collapse
|
14
|
Khodavirdipour A, Piri M, Jabbari S, Keshavarzi S, Safaralizadeh R, Alikhani MY. Apoptosis Detection Methods in Diagnosis of Cancer and Their Potential Role in Treatment: Advantages and Disadvantages: a Review. J Gastrointest Cancer 2021; 52:422-430. [PMID: 33392962 DOI: 10.1007/s12029-020-00576-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Interruption of regulation of apoptosis can play a leading role in cancers where elevated apoptosis causes neurodegeneration, autoimmunity, AIDS, and ischemia. One famous example can be p53's downregulation, which is a tumor suppressor gene, which consequently can cause a decrease in apoptosis rate and intense tumor growth and progression and development and inactivation of 53; it can be extended to many cancers in human. Anyhow, apoptosis is a double-edge sword. There are many trials and studies are going on observation and understanding of different steps involved in apoptosis. Apoptosis has a very major role in carcinogenesis and the treatment of cancer. AIM In this updated-cum-comprehensive review, we would like to cover what is apoptosis and cancer and also, will discuss all known methods of apoptosisdetection, their applicability in the treatment of cancer, and their advantages, disadvantages, and limitations. MATERIAL AND METHODS Published articles on indexing sources such as PubMed, Scopus from 2000 to date. RESULT By considering all above information including each methods pros and cons, these routine methods could be great tool with distinctive qualities in treatmentwhich can be great help from patient perspective and as well from government ad health care system point of view. CONCLUSION Accurate diagnosis of cell apoptotic biopathways at different stages assists in evaluating near to exact apoptotic index, which is the perfect sign andindicator for metastasis and also prognosis, thus foreseeing treatment outcome.
Collapse
Affiliation(s)
- Amir Khodavirdipour
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.,Division of Human Genetics, Department of Anatomy, St. John's Hospital, Bangalore, India
| | - Motahareh Piri
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Sarvin Jabbari
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Shiva Keshavarzi
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
15
|
Yang Y, Yin L, Zhu M, Song S, Sun C, Han X, Xu Y, Zhao Y, Qi Y, Xu L, Peng JY. Protective effects of dioscin on vascular remodeling in pulmonary arterial hypertension via adjusting GRB2/ERK/PI3K-AKT signal. Biomed Pharmacother 2021; 133:111056. [PMID: 33378960 DOI: 10.1016/j.biopha.2020.111056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and lethal cardiopulmonary. Pulmonary vascular remodeling (PVR) caused by excessive proliferation and apoptosis resistance of pulmonary artery smooth muscle cells (PASMCs) is the chief pathological feature of PAH. Dioscin is a natural product that possesses multiple pharmacological activities, but its effect on PAH remains unclear. In this study, effect of dioscin on vascular remodeling in PAH was assessed in hypoxia-induced PASMCs, hypoxia-induced and monocrotaline (MCT)-induced rats. Western blot, Real-time PCR and siRNA transfection tests were applied to evaluate the possible mechanisms of dioscin. In vitro experiments, results showed dioscin markedly inhibited the proliferation and migration, and promoted apoptosis of hypoxic PASMCs. In vivo, dioscin significantly decreased the right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI), and improved pulmonary vascular stenosis in rats induced by hypoxia or MCT. Molecular mechanism studies showed that dioscin significantly reduced the expression of growth factor receptor-bound protein 2 (GRB2). Subsequently, dioscin reduced the expressions of Ras, Cyclin D1, CDK4, c-Fos, PCNA and p-ERK to inhibit proliferation and migration of PASMCs, inhibited p-PI3K and p-AKT levels and increased Bax/Bcl2 ratio to promote cell apoptosis. GRB2 siRNA transfection in PASMCs further confirmed that the inhibitory action of dioscin in PAH was evoked by adjusting GRB2/ERK/PI3K-AKT signal. Taken together, our study indicated that dioscin attenuates PAH through adjusting GRB2/ERK/PI3K-AKT signal to inhibit PASMCs proliferation and migration, and promote apoptosis, and dioscin may be developed as a therapeutic strategy for treating PAH in the future.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Diosgenin/analogs & derivatives
- Diosgenin/pharmacology
- Disease Models, Animal
- Extracellular Signal-Regulated MAP Kinases/metabolism
- GRB2 Adaptor Protein/genetics
- GRB2 Adaptor Protein/metabolism
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Phosphatidylinositol 3-Kinase/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Pulmonary Arterial Hypertension/drug therapy
- Pulmonary Arterial Hypertension/enzymology
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Artery/drug effects
- Pulmonary Artery/enzymology
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Signal Transduction
- Vascular Remodeling/drug effects
- Rats
Collapse
Affiliation(s)
- Yueyue Yang
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Manning Zhu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Shasha Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Changjie Sun
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yanyan Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, China.
| | - J-Y Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China; Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
16
|
Apoptosis of germ cells in the normal testis of the Japanese quail (Coturnix coturnix japonica). Tissue Cell 2020; 67:101450. [PMID: 33091765 DOI: 10.1016/j.tice.2020.101450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
It has been established that excess germ cells in normal and in pathological conditions are removed from testicular tissue by the mechanism of apoptosis. Studies on germ cell apoptosis in avian species are grossly lacking, and there are only a few reports on induced germ cell degenerations in the testis tissue of birds. This study was designed to investigate the process of apoptosis of germ cells in the Japanese quail (Coturnix coturnix japonica). Germ cell degenerations were investigated in birds of all age groups, namely pre-pubertal, pubertal, adult, and aged. Apoptosis of germ cells in the quails, as shown by hematoxylin & eosin (H&E), TdT dUTP Nick End Labeling (TUNEL) assay and electron microscopy, was similar to that observed in previous studies of germ cells and somatic cells of mammalian species. The observed morphological features of these apoptotic cells ranged from irregular plasma and nuclear membranes in the early stage of apoptosis to rupture of the nuclear membrane, condensation of nuclear material, as well as fragments of apoptotic bodies, in later stages of apoptosis. In the TUNEL-positive cell counts, there was a significant difference between the mean cell counts for the four age groups (P < 0.05). Post hoc analysis revealed a highly significant difference in the aged group relative to the pubertal and adult age groups, while the cell counts of the pre-pubertal group were significantly higher than those of the pubertal group. However, there was no significant difference between cell counts of the pre-pubertal and the adult, and between the pre-pubertal and the aged groups.
Collapse
|
17
|
Harkins KM, Schaefer NK, Troll CJ, Rao V, Kapp J, Naughton C, Shapiro B, Green RE. A novel NGS library preparation method to characterize native termini of fragmented DNA. Nucleic Acids Res 2020; 48:e47. [PMID: 32112100 PMCID: PMC7192605 DOI: 10.1093/nar/gkaa128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 12/22/2022] Open
Abstract
Biological and chemical DNA fragmentation generates DNA molecules with a variety of termini, including blunt ends and single-stranded overhangs. We have developed a Next Generation Sequencing (NGS) assay, XACTLY, to interrogate the termini of fragmented DNA, information traditionally lost in standard NGS library preparation methods. Here we describe the XACTLY method, showcase its sensitivity and specificity, and demonstrate its utility in in vitro experiments. The XACTLY assay is able to report relative abundances of all lengths and types (5′ and 3′) of single-stranded overhangs, if present, on each DNA fragment with an overall accuracy between 80–90%. In addition, XACTLY retains the sequence of each native DNA molecule after fragmentation and can capture the genomic landscape of cleavage events at single nucleotide resolution. The XACTLY assay can be applied as a novel research and discovery tool for fragmentation analyses and in cell-free DNA.
Collapse
Affiliation(s)
| | - Nathan K Schaefer
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Varsha Rao
- Claret Bioscience LLC, Santa Cruz, CA 95060, USA
| | - Joshua Kapp
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| | | | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, CA 95064, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
18
|
Matteucci F, Maesen B, Vernooy K, De Asmundis C, Maessen JG, La Meir M, Gelsomino S. One-Stage Versus Sequential Hybrid Radiofrequency Ablation: An In Vitro Evaluation. INNOVATIONS-TECHNOLOGY AND TECHNIQUES IN CARDIOTHORACIC AND VASCULAR SURGERY 2020; 15:338-345. [DOI: 10.1177/1556984520930070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective To compare lesion size and depth between a 1-step, a sequential, and a delayed radio-frequency ablation in a hybrid setup. Methods Left atrium tissues obtained from fresh porcine hearts were mounted into the ABLABOX simulator. Based on the time differences between the index epicardial (epi) and consequent endocardial (endo) ablation, 3 study groups were compared: a 1-stage (SEQ- 0) group (0-minute delay), an SEQ 1 group (60-minute delay), and an SEQ 2 group (240-minute delay). During the experiment, a constant epicardial (300 gr) and endocardial (30 gr) force were applied. Per group, 20 samples were studied, and the resulting lesion size and depth were quantified with morphometric evaluation. Results Overall, no transmural lesion was obtained. Lesions in SEQ 0 had better maximum and minimum diameters ( P < 0.001), a larger total area ( P < 0.001), and volume ( P < 0.001) than SEQ 1 and SEQ 2. There was no statistical difference in morphometric parameters (all, P > 0.05) between the delayed procedures (SEQ 1 and SEQ 2). Conclusions In our in vitro model, different time sequences of combined epi–endo ablation did not result in transmural lesions. However, simultaneous epi–endo ablation produced broader and deeper lesions. Our findings need to be confirmed by further research.
Collapse
Affiliation(s)
| | - Bart Maesen
- Cardiothoracic Department Maastricht University Hospital, The Netherlands
| | - Kevin Vernooy
- Cardiothoracic Department Maastricht University Hospital, The Netherlands
| | | | - Jos G. Maessen
- Cardiothoracic Department Maastricht University Hospital, The Netherlands
| | - Mark La Meir
- Cardiothoracic Department Maastricht University Hospital, The Netherlands
- Cardiothoracic Department Brussels University Hospital, Belgium
| | - Sandro Gelsomino
- Cardiothoracic Department Maastricht University Hospital, The Netherlands
- Cardiothoracic Department Brussels University Hospital, Belgium
| |
Collapse
|
19
|
Durmaz Engin C, Cilaker Miçili S, Yilmaz O, Bağriyanik HA, Ergür BU, Önen F, Saatci AO. Ocular toxicity of intravitreal golimumab in a rabbit model. Turk J Med Sci 2020; 50:1111-1122. [PMID: 32151118 PMCID: PMC7379407 DOI: 10.3906/sag-1911-11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/05/2020] [Indexed: 01/13/2023] Open
Abstract
Background/aim To investigate the effect of intravitreal golimumab on rabbit retina histopathology. Materials and methods Sixteen albino New Zealand rabbits were divided into three groups. The right eye of each rabbit in groups I, II, and III received a single intravitreal injection of 5 mg/0.05 mL (6 eyes), 10 mg/0.1 mL (6 eyes), or 20 mg/0.2 mL (4 eyes) golimumab, while left eyes served as controls with the same volume of a balanced salt solution injection. All animals were examined using slit-lamp biomicroscopy and indirect ophthalmoscopy before and after intravitreal injection and at days 1 and 7. Animals were euthanized on day 7 and the eyes were enucleated for immunohistochemistry evaluation and electron microscopic examination of the retinas. Results For groups I, II, and III, the number of cells in the outer nuclear layer and the inner nuclear layer was decreased compared to those in the control groups. In group I, the percentage of caspase-3 staining of the outer nuclear layer was significantly higher than that in the control. For groups II and III, TUNEL and caspase-3 staining percentages in the outer and inner nuclear layers were found to be significantly higher than those for the control groups. In the ganglion cell layer, for groups I, II, and III, neither TUNEL nor caspase-3 staining percentages showed any significant difference between two groups. No significant dose-dependent relationship was found for increasing doses of golimumab in all layers. Myelin figures and karyorrhexis in the photoreceptor cells were prominent in electron microscopy of the golimumab-injected eyes. Conclusion Golimumab caused apoptosis in both photoreceptors and bipolar cells of the rabbit retina. Potential retinal toxicity of intravitreal golimumab should be considered if an intravitreal administration is planned.
Collapse
Affiliation(s)
- Ceren Durmaz Engin
- Department of Ophthalmology, Karadeniz Ereğli State Hospital, Zonguldak, Turkey
| | - Serap Cilaker Miçili
- Department of Histology and Embryology, School of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Osman Yilmaz
- Department of Laboratory Animals Science, School of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Hüsnü Alper Bağriyanik
- Department of Histology and Embryology, School of Medicine, Dokuz Eylül University, İzmir, Turkey,İzmir Biomedicine and Genome Center (iBG), İzmir, Turkey
| | - Bekir Uğur Ergür
- Department of Histology and Embryology, School of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Fatoş Önen
- Department of Internal Medicine, Division of Rheumatology, School of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Ali Osman Saatci
- Department of Ophthalmology, School of Medicine, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
20
|
Shukla I, Azmi L, Rao CV, Jawaid T, Kamal M, Awaad AS, Alqasoumi SI, Alkhamees OA, Alsanad SM. Hepatoprotective activity of depsidone enriched Cladonia rangiferina extract against alcohol-induced hepatotoxicity targeting cytochrome P450 2E1 induced oxidative damage. Saudi Pharm J 2020; 28:519-527. [PMID: 32273813 PMCID: PMC7132611 DOI: 10.1016/j.jsps.2020.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/04/2020] [Indexed: 12/31/2022] Open
Abstract
Alcoholic liver disease (ALD) is a broad-spectrum disorder, covering fatty liver, cirrhosis, alcoholic hepatitis and in extreme untreated condition hepatocellular carcinoma (HCC) may also develop. Cladonia rangiferina (CR) is a class of lichen having a broad spectrum of pharmacological activity. It is used like traditional natural sources in ancient times in India, China, Sri Lanka, etc. Folkloric record about CR has reported their use as an antimicrobial, antitumor, antioxidant, anti-inflammatory activities, etc. Hence, the present study was requested to ascertain the effect of the ethanolic extract of Cladonia rangiferina (CRE) on alcohol-induced hepatotoxicity. The animals were evaluated for the estimation of the liver in vivo biochemical antioxidant parameters. The liver tissues were further evaluated histopathologically and western blotting examination for localization of apoptotic gene expression that plays a pivotal role in hepatotoxicity. The results of this study reveal that CRE proves to be helpful in the treatment of alcohol-induced hepatotoxicity and oxidative stress. Results of different markers have shown that among all, CRE has demonstrated the best hepatoprotective activity. These observations say about the importance of the components of the extract. The ameliorative action of CRE in alcoholic liver damage may exist due to antioxidant, anti-inflammatory, and anti-apoptotic activities.
Collapse
Key Words
- ALD, Alcoholic liver disease
- Apoptosis
- CMC, Carboxymethylcellulose
- CR, Cladonia rangiferina
- CRE, Cladonia rangiferina extract
- CTRL, Control
- Cladonia rangiferina
- DAB, 3,3-diaminobenzidine tetrahydrochloride
- GGT, γ- glutamyl transferase
- GSH, Glutathione
- Hepatotoxicity
- Inflammation
- MDA, Malondialdehyde
- ROS, Reactive oxygen species
- RT-PCR, Reverse Transcription Polymerase Chain Reaction
- WHO, World Health organization
Collapse
Affiliation(s)
- Ila Shukla
- Department of Pharmacology, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Lubna Azmi
- Department of Chemistry, University of Lucknow, Lucknow, India
| | - Ch V Rao
- Department of Pharmacology, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box No. 173, Al Kharj 11942, Saudi Arabia
| | - Amani S Awaad
- Gateway to United Kingdom Education Ltd., Bradford, United Kingdom
| | - Saleh I Alqasoumi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Osama A Alkhamees
- Department of Pharmacology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Saud M Alsanad
- Department of Pharmacology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| |
Collapse
|
21
|
Garofalo AM, Lorente-Ros M, Goncalvez G, Carriedo D, Ballén-Barragán A, Villar-Fernández A, Peñuelas Ó, Herrero R, Granados-Carreño R, Lorente JA. Histopathological changes of organ dysfunction in sepsis. Intensive Care Med Exp 2019; 7:45. [PMID: 31346833 PMCID: PMC6658642 DOI: 10.1186/s40635-019-0236-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/07/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Sepsis is a highly lethal disorder. Organ dysfunction in sepsis is not defined as a clinicopathological entity but rather by changes in clinical, physiological, or biochemical parameters. Pathogenesis and specific treatment of organ dysfunction in sepsis are unknown. The study of the histopathological correlate of organ dysfunction in sepsis will help understand its pathogenesis. METHODS We searched in PubMed, EMBASE, and Scielo for original articles on kidney, brain, and liver dysfunction in human sepsis. A defined search strategy was designed, and pertinent articles that addressed the histopathological changes in sepsis were retrieved for review. Only studies considered relevant in the field were discussed. RESULTS Studies on acute kidney injury (AKI) in sepsis reveal that acute tubular necrosis is less prevalent than other changes, indicating that kidney hypoperfusion is not the predominant pathogenetic mechanism of sepsis-induced AKI. Other more predominant histopathological changes are apoptosis, interstitial inflammation, and, to a lesser extent, thrombosis. Brain pathological findings include white matter hemorrhage and hypercoagulability, microabscess formation, central pontine myelinolysis, multifocal necrotizing leukoencephalopathy, metabolic changes, ischemic changes, and apoptosis. Liver pathology in sepsis includes steatosis, cholangiolitis and intrahepatic cholestasis, periportal inflammation, and apoptosis. There is no information on physiological or biochemical biomarkers of the histopathological findings. CONCLUSIONS Histopathological studies may provide important information for a better understanding of the pathogenesis of organ dysfunction in sepsis and for the design of potentially effective therapies. There is a lack of clinically available biomarkers for the identification of organ dysfunction as defined by the histological analysis.
Collapse
Affiliation(s)
- Antonio M. Garofalo
- Hospital Universitario de Getafe, Madrid, Spain
- Universidad Europea de Madrid, Madrid, Spain
| | | | | | | | | | | | - Óscar Peñuelas
- Hospital Universitario de Getafe, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Raquel Herrero
- Hospital Universitario de Getafe, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | | | - José A. Lorente
- Hospital Universitario de Getafe, Madrid, Spain
- Universidad Europea de Madrid, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
22
|
Aupanun S, Poapolathep S, Phuektes P, Giorgi M, Zhang Z, Oswald IP, Poapolathep A. Individual and combined mycotoxins deoxynivalenol, nivalenol, and fusarenon-X induced apoptosis in lymphoid tissues of mice after oral exposure. Toxicon 2019; 165:83-94. [PMID: 31054920 DOI: 10.1016/j.toxicon.2019.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 11/26/2022]
Abstract
Lymphocytes are involved in the adaptive immune response and are highly sensitive to type B trichothecenes. In grains and their products, deoxynivalenol (DON) is the most widely distributed trichothecene. It usually co-occurs with other type B members, such as nivalenol (NIV) and fusarenon-X (FX), because they are all produced by the same Fusarium fungi. However, the combined effects of mycotoxins are complex and cannot be predicted based on individual toxicity. Thus, the adverse effects of combined toxins are of increasing concern. The aim of this study was to compare the toxicity to lymphoid tissues of mice of DON alone or mixed with NIV or FX. Forty, 3-week-old male ICR mice were given a single oral administration of a vehicle control, one toxin, binary, or ternary mixtures and then sacrificed at 12 h after exposure. Mice treated with FX alone showed marked nuclear condensation and fragmentation of lymphocytes in the cortical thymus and germinal center of Peyer's patches and spleen. Similarly, these animals clearly displayed TUNEL- and Caspase-3-positive cells in the regions. In contrast, minimal changes were noticed in the lymphoid tissues of mice receiving combined toxins when compared to this toxin alone. In addition, oral exposure to FX alone significantly up-regulated the relative expression of Bax, Caspase-3, Caspase-9, and Trp53. These data increase our understanding of the toxic actions of DON, NIV, and FX alone or in combination to lymphocytes and can be used to assess the possible risk associated with their co-occurrences in foodstuffs to human and animal health.
Collapse
Affiliation(s)
- Sawinee Aupanun
- .Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand; Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, CASAF, NRU-KU, Bangkok, 10900, Thailand
| | - Saranya Poapolathep
- .Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand; Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, CASAF, NRU-KU, Bangkok, 10900, Thailand
| | - Patchara Phuektes
- Department of Pathobiology, Faculty of Veterinary Medicine, Khonkaen University, Khonkaen, 40002, Thailand
| | - Mario Giorgi
- Department of Veterinary Sciences, University of Pisa, Via Livornese, San Piero a Grado, 56122, Pisa, Italy
| | - Zhaowei Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Amnart Poapolathep
- .Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand; Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, CASAF, NRU-KU, Bangkok, 10900, Thailand.
| |
Collapse
|
23
|
Liu H, Liao HM, Li B, Tsai S, Hung GC, Lo SC. Comparative Genomics, Infectivity and Cytopathogenicity of American Isolates of Zika Virus that Developed Persistent Infections in Human Embryonic Kidney (HEK293) Cells. Int J Mol Sci 2019; 20:ijms20123035. [PMID: 31234341 PMCID: PMC6628096 DOI: 10.3390/ijms20123035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Zika virus (ZIKV) transmission can cause serious fetal neurological abnormalities. ZIKV persistence in various human cells and tissues can serve as infectious reservoirs and post serious threats to public health. The human embryonic kidney (HEK293) cell line with known neuronal developmental properties was readily infected by ZIKV in a strain-dependent fashion. Significant cytopathic effect in HEK293 cells infected by the prototype MR 766 strain of ZIKV resulted in complete loss of cells, while small numbers of HEK293 cells infected by contemporary ZIKV isolates (PRV or FLR strain) continued to survive and regrow to confluency in the culture around two months after initial infection. Most, if not all, of the cells in the two resulting persistently ZIKV-infected HEK293 cell lines tested positive for ZIKV antigen. Compared to HEK293 control cells, the persistently ZIKV-infected HEK293 cells had slower growth rates with some cells undergoing apoptosis in culture. The "persistent ZIKVs" produced constitutively by both PRV and FLR strains ZIKV-infected HEK293 cells had significantly attenuated cell infectivity and/or cytopathogenicity. Comparative genome sequence analyses between the persistent ZIKVs and the original inoculum ZIKVs showed no clonal selection with specific gene mutations in the prolonged process of establishing persistently PRV strain ZIKV-infected HEK293 cells; while selection of ZIKV subclones with mutations in the envelope, protein pr and multiple NS genes was evident in developing persistently FLR strain ZIKV-infected HEK293 cell line. Our study provides molecular insights into the complex interplays of ZIKV and human host cells in establishing ZIKV persistence.
Collapse
Affiliation(s)
- Hebing Liu
- Tissue Microbiology Laboratory, Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Hsiao-Mei Liao
- Tissue Microbiology Laboratory, Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Bingjie Li
- Tissue Microbiology Laboratory, Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Shien Tsai
- Tissue Microbiology Laboratory, Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Guo-Chiuan Hung
- Tissue Microbiology Laboratory, Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Shyh-Ching Lo
- Tissue Microbiology Laboratory, Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
24
|
Ismail NI, Othman I, Abas F, H Lajis N, Naidu R. Mechanism of Apoptosis Induced by Curcumin in Colorectal Cancer. Int J Mol Sci 2019; 20:E2454. [PMID: 31108984 PMCID: PMC6566943 DOI: 10.3390/ijms20102454] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the top three cancer with higher incident and mortality rate worldwide. It is estimated that about over than 1.1 million of death and 2.2 million new cases by the year 2030. The current treatment modalities with the usage of chemo drugs such as FOLFOX and FOLFIRI, surgery and radiotherapy, which are usually accompanied with major side effects, are rarely cured along with poor survival rate and at higher recurrence outcome. This trigger the needs of exploring new natural compounds with anti-cancer properties which possess fewer side effects. Curcumin, a common spice used in ancient medicine was found to induce apoptosis by targeting various molecules and signaling pathways involved in CRC. Disruption of the homeostatic balance between cell proliferation and apoptosis could be one of the promoting factors in colorectal cancer progression. In this review, we describe the current knowledge of apoptosis regulation by curcumin in CRC with regard to molecular targets and associated signaling pathways.
Collapse
Affiliation(s)
- Nor Isnida Ismail
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
- UniKL MESTECH, A1-1 Jalan TKS1, Taman Kajang Sentral, 43000 Kajang, Malaysia.
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia, UPM, 43400 Serdang, Malaysia.
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, UPM, 434000 Serdang, Malaysia.
| | - Nordin H Lajis
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia, UPM, 43400 Serdang, Malaysia.
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
| |
Collapse
|
25
|
Sun X, Guo S, Yao J, Wang H, Peng C, Li B, Wang Y, Jiang Y, Wang T, Yang Y, Cheng J, Wang W, Cao Z, Zhao X, Li X, Sun J, Yang J, Tian F, Chen X, Li Q, Gao W, Shen J, Zhou Q, Wang P, Li Z, Tian Z, Zhang Z, Cao W, Li M, Tian Y. Rapid inhibition of atherosclerotic plaque progression by sonodynamic therapy. Cardiovasc Res 2019; 115:190-203. [PMID: 29878150 DOI: 10.1093/cvr/cvy139] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/30/2018] [Indexed: 01/29/2023] Open
Abstract
Aims Currently, efficient regimens to reverse atherosclerotic plaques are not available in the clinic. Herein, we present sonodynamic therapy (SDT) as a novel methodology to rapidly inhibit progression of atherosclerotic plaques. Methods and results In atherosclerotic rabbit and apoE-deficient mouse models, SDT efficiently decreased the atherosclerotic burden within 1 week, revealing a decrease in the size of the atherosclerotic plaque and enlarged lumen. The shrunken atherosclerotic plaques displayed compositional alterations, with a reduction in lesional macrophages and lipids. The rapid efficacy of SDT may be due to its induction of macrophage apoptosis, enhancement of efferocytosis, and amelioration of inflammation in the atherosclerotic plaque. Compared with atorvastatin, the standard of care for atherosclerosis, SDT showed more significant plaque shrinkage and lumen enlargement during 1 week treatment. Furthermore, SDT displayed good safety without obvious side effects. In a pilot clinical trial recruiting the patients suffering atherosclerotic peripheral artery disease, combination therapy of SDT with atorvastatin efficiently reduced progression of atherosclerotic plaque within 4 weeks, and its efficacy was able to last for at least 40 weeks. Conclusion SDT is a non-invasive and efficacious regimen to inhibit atherosclerotic plaque progression.
Collapse
Affiliation(s)
- Xin Sun
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, 23 Youzheng Street, Harbin, PR China
| | - Shuyuan Guo
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, 23 Youzheng Street, Harbin, PR China
| | - Jianting Yao
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, 23 Youzheng Street, Harbin, PR China
| | - Huan Wang
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, 23 Youzheng Street, Harbin, PR China
| | - Chenghai Peng
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, 23 Youzheng Street, Harbin, PR China
| | - Bicheng Li
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, 23 Youzheng Street, Harbin, PR China
| | - Yu Wang
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, 23 Youzheng Street, Harbin, PR China
| | - Yongxing Jiang
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, 23 Youzheng Street, Harbin, PR China
| | - Tengyu Wang
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, 23 Youzheng Street, Harbin, PR China
| | - Yang Yang
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, 23 Youzheng Street, Harbin, PR China
| | - Jiali Cheng
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, 23 Youzheng Street, Harbin, PR China
| | - Wei Wang
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, 23 Youzheng Street, Harbin, PR China
| | - Zhengyu Cao
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, 23 Youzheng Street, Harbin, PR China
| | - Xuezhu Zhao
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, 23 Youzheng Street, Harbin, PR China
| | - Xiang Li
- Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, 157 Baojian Street, Harbin, PR China
| | - Jing Sun
- Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, 157 Baojian Street, Harbin, PR China
| | - Jiemei Yang
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, 23 Youzheng Street, Harbin, PR China
| | - Fang Tian
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, 23 Youzheng Street, Harbin, PR China
| | - Xi Chen
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, 23 Youzheng Street, Harbin, PR China
| | - Qiannan Li
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, 23 Youzheng Street, Harbin, PR China
| | - Weiwei Gao
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, 23 Youzheng Street, Harbin, PR China
| | - Jing Shen
- Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, 157 Baojian Street, Harbin, PR China
| | - Qi Zhou
- Department of Condensed Matter Science and Technology, Laboratory of Photo- and Sono-theranostic Technologies, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, PR China
| | - Peng Wang
- Department of Condensed Matter Science and Technology, Laboratory of Photo- and Sono-theranostic Technologies, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, PR China
| | - Zhitao Li
- Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, 157 Baojian Street, Harbin, PR China
| | - Zhen Tian
- Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, 157 Baojian Street, Harbin, PR China
| | - Zhiguo Zhang
- Department of Condensed Matter Science and Technology, Laboratory of Photo- and Sono-theranostic Technologies, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, PR China
| | - Wenwu Cao
- Department of Condensed Matter Science and Technology, Laboratory of Photo- and Sono-theranostic Technologies, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, PR China
- Department of Materials Research, The Pennsylvania State University, 201 Old Main, University Park, Pennsylvania, USA
| | - Min Li
- Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, USA
| | - Ye Tian
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, 23 Youzheng Street, Harbin, PR China
- Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, 157 Baojian Street, Harbin, PR China
| |
Collapse
|
26
|
Washausen S, Scheffel T, Brunnett G, Knabe W. Possibilities and limitations of three-dimensional reconstruction and simulation techniques to identify patterns, rhythms and functions of apoptosis in the early developing neural tube. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2018; 40:55. [PMID: 30159859 DOI: 10.1007/s40656-018-0222-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
The now classical idea that programmed cell death (apoptosis) contributes to a plethora of developmental processes still has lost nothing of its impact. It is, therefore, important to establish effective three-dimensional (3D) reconstruction as well as simulation techniques to decipher the exact patterns and functions of such apoptotic events. The present study focuses on the question whether and how apoptosis promotes neurulation-associated processes in the spinal cord of Tupaia belangeri (Tupaiidae, Scandentia, Mammalia). Our 3D reconstructions demonstrate that at least two craniocaudal waves of apoptosis consecutively pass through the dorsal spinal cord. The first wave appears to be involved in neural fold fusion and/or in selection processes among premigratory neural crest cells. The second one seems to assist in establishing the dorsal signaling center known as the roof plate. In the hindbrain, in contrast, apoptosis among premigratory neural crest cells progresses craniocaudally but discontinuously, in a segment-specific manner. Unlike apoptosis in the spinal cord, these segment-specific apoptotic events, however, precede later ones that seemingly support neural fold fusion and/or postfusion remodeling. Arguing with Whitehead that biological patterns and rhythms differ in that biological rhythms depend "upon the differences involved in each exhibition of the pattern" (Whitehead in An enquiry concerning the principles of natural knowledge. Cambridge University Press, London, 1919, p. 198) we show that 3D reconstruction and simulation techniques can contribute to distinguish between (static) patterns and (dynamic) rhythms of apoptosis. By deciphering novel patterns and rhythms of developmental apoptosis, our reconstructions help to reconcile seemingly inconsistent earlier findings in chick and mouse embryos, and to create rules for computer simulations.
Collapse
Affiliation(s)
- Stefan Washausen
- Department Prosektur Anatomie, Westfälische Wilhelms-University, Vesaliusweg 2-4, 48149, Münster, Germany
| | - Thomas Scheffel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Brandenburg Medical School, Campus Neuruppin, 16816, Neuruppin, Germany
| | - Guido Brunnett
- Department of Informatics, Technical University, 09107, Chemnitz, Germany
| | - Wolfgang Knabe
- Department Prosektur Anatomie, Westfälische Wilhelms-University, Vesaliusweg 2-4, 48149, Münster, Germany.
| |
Collapse
|
27
|
Klein J, Lam WW, Czarnota GJ, Stanisz GJ. Chemical exchange saturation transfer MRI to assess cell death in breast cancer xenografts at 7T. Oncotarget 2018; 9:31490-31501. [PMID: 30140385 PMCID: PMC6101146 DOI: 10.18632/oncotarget.25844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/12/2018] [Indexed: 12/23/2022] Open
Abstract
Purpose Detecting cell death and predicting tumor response early in a course of chemotherapy could help optimize treatment regimens and improve clinical outcomes. Chemical exchange saturation transfer (CEST) MRI was investigated in vivo to study properties that may be able to detect cancer death. Results Using a magnetization transfer ratio (MTR) cutoff of 0.12 at 1.8 ppm was able to differentiate between viable tumor and cell death regions. Comparison of MTR values at this frequency showed significant differences (p < 0.0001) between viable tumor and cell death regions, matching patterns seen on histology. Using this cutoff, the mean increase in cell death index (± standard error of the mean) after chemotherapy was 4 ± 4%, 10% ± 7%, 10 ± 8%, and 4 ± 9% at 4, 8, 12, and 24 h, respectively. Conclusions CEST MRI can detect cell death in MDA-231 xenografts but further work is needed to characterize the clinical applications of this finding. Maximum response to chemotherapy occurred at 8-12 h after chemotherapy injection in this in vivo tumor model. Materials and Methods Breast cancer xenografts (MDA-MB-231) were scanned using 7 T MRI before and after chemotherapy. As a measure of CEST effect at 0.5 µT saturation amplitude, MTR values at frequency offsets of 1.8 and -3.3 ppm were evaluated. CEST signals after chemotherapy treatment were compared to cell-death histopathology of tumors.
Collapse
Affiliation(s)
- Jonathan Klein
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.,Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Wilfred W Lam
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.,Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Greg J Stanisz
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
28
|
Majtnerová P, Roušar T. An overview of apoptosis assays detecting DNA fragmentation. Mol Biol Rep 2018; 45:1469-1478. [DOI: 10.1007/s11033-018-4258-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023]
|
29
|
Lefevre S, Stecyk JAW, Torp MK, Løvold LY, Sørensen C, Johansen IB, Stensløkken KO, Couturier CS, Sloman KA, Nilsson GE. Re-oxygenation after anoxia induces brain cell death and memory loss in the anoxia-tolerant crucian carp. ACTA ACUST UNITED AC 2018; 220:3883-3895. [PMID: 29093186 DOI: 10.1242/jeb.165118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/01/2017] [Indexed: 01/15/2023]
Abstract
Crucian carp (Carassius carassius) survive without oxygen for several months, but it is unknown whether they are able to protect themselves from cell death normally caused by the absence, and particularly return, of oxygen. Here, we quantified cell death in brain tissue from crucian carp exposed to anoxia and re-oxygenation using the terminal deoxy-nucleotidyl transferase dUTP nick-end labelling (TUNEL) assay, and cell proliferation by immunohistochemical staining for proliferating cell nuclear antigen (PCNA) as well as PCNA mRNA expression. We also measured mRNA and protein expression of the apoptosis executer protease caspase 3, in laboratory fish exposed to anoxia and re-oxygenation and fish exposed to seasonal anoxia and re-oxygenation in their natural habitat over the year. Finally, a behavioural experiment was used to assess the ability to learn and remember how to navigate in a maze to find food, before and after exposure to anoxia and re-oxygenation. The number of TUNEL-positive cells in the telencephalon increased after 1 day of re-oxygenation following 7 days of anoxia, indicating increased cell death. However, there were no consistent changes in whole-brain expression of caspase 3 in either laboratory-exposed or naturally exposed fish, indicating that cell death might occur via caspase-independent pathways or necrosis. Re-oxygenated crucian carp appeared to have lost the memory of how to navigate in a maze (learnt prior to anoxia exposure), while the ability to learn remained intact. PCNA mRNA was elevated after re-oxygenation, indicating increased neurogenesis. We conclude that anoxia tolerance involves not only protection from damage but also repair after re-oxygenation.
Collapse
Affiliation(s)
- Sjannie Lefevre
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Jonathan A W Stecyk
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - May-Kristin Torp
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Lisa Y Løvold
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Christina Sørensen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Ida B Johansen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Kåre-Olav Stensløkken
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Christine S Couturier
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Katherine A Sloman
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, PA1 2BE, UK
| | - Göran E Nilsson
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|
30
|
Fu YB, Ahmed Z, Yang H, Horbach C. TUNEL Assay and DAPI Staining Revealed Few Alterations of Cellular Morphology in Naturally and Artificially Aged Seeds of Cultivated Flax. PLANTS 2018; 7:plants7020034. [PMID: 29652802 PMCID: PMC6027480 DOI: 10.3390/plants7020034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 11/16/2022]
Abstract
In a search for useful seed aging signals as biomarkers for seed viability prediction, we conducted an experiment using terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay and 4′,6-diamidino-2-phenylindole (DAPI) staining to analyze morphological and molecular changes in naturally aged (NA) and artificially aged (AA) flax (Linum usitatissimum L.) seeds. A total of 2546 sections were performed from 112 seeds of 12 NA and AA seed samples with variable germination rates. Analyzing 1384 micrographs generated from TUNEL assay and DAPI staining revealed few alterations of the cellular morphology of the NA and AA seeds. Also, the revealed DNA degradations in the aged flax seeds appeared to be associated with seed samples of low germination rates. These results suggest that oily flax seed aging may alter the cellular morphology differently than starchy wheat seed aging. The results also imply that the TUNEL assay and DAPI staining may not yield informative assessments on cellular alterations and DNA degradation after the aging of oily seeds.
Collapse
Affiliation(s)
- Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
| | - Zaheer Ahmed
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
| | - Hui Yang
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
| | - Carolee Horbach
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
| |
Collapse
|
31
|
Abstract
In concert with the increased understanding that there are many ways for cells to die, several methods have been developed to detect cell death. The classification of cell death posed some difficulties that were overcome by implementing strict selection criteria that should also apply to the detection methods. The selection of assays is based on morphological criteria and distinguishable marks of apoptotic patways. The detection of apoptosis includes methods related to membrane alterations, DNA fragmentation, cytotoxicity and cell proliferation, mitochondrial damage, immunological detection and mechanism based assays. Other less frequently used detections of apoptosis are: (a) light-scattering flow cytometry to avoid underestimating the extent and timing of apoptosis, (b) time-lapse microscopy perfusion platform to support the temporal aspects of detection, to measure cell surface area and cellular adhesion, and (c) genotoxicity specific chromatin changes. Attention is called to the advantages and limitations of various methods.
Collapse
Affiliation(s)
- Gaspar Banfalvi
- Department of Biotechnology and Microbiology, University of Debrecen, Debrecen,, 4010, Hungary.
| |
Collapse
|
32
|
Carmona-Gutierrez D, Bauer MA, Zimmermann A, Aguilera A, Austriaco N, Ayscough K, Balzan R, Bar-Nun S, Barrientos A, Belenky P, Blondel M, Braun RJ, Breitenbach M, Burhans WC, Büttner S, Cavalieri D, Chang M, Cooper KF, Côrte-Real M, Costa V, Cullin C, Dawes I, Dengjel J, Dickman MB, Eisenberg T, Fahrenkrog B, Fasel N, Fröhlich KU, Gargouri A, Giannattasio S, Goffrini P, Gourlay CW, Grant CM, Greenwood MT, Guaragnella N, Heger T, Heinisch J, Herker E, Herrmann JM, Hofer S, Jiménez-Ruiz A, Jungwirth H, Kainz K, Kontoyiannis DP, Ludovico P, Manon S, Martegani E, Mazzoni C, Megeney LA, Meisinger C, Nielsen J, Nyström T, Osiewacz HD, Outeiro TF, Park HO, Pendl T, Petranovic D, Picot S, Polčic P, Powers T, Ramsdale M, Rinnerthaler M, Rockenfeller P, Ruckenstuhl C, Schaffrath R, Segovia M, Severin FF, Sharon A, Sigrist SJ, Sommer-Ruck C, Sousa MJ, Thevelein JM, Thevissen K, Titorenko V, Toledano MB, Tuite M, Vögtle FN, Westermann B, Winderickx J, Wissing S, Wölfl S, Zhang ZJ, Zhao RY, Zhou B, Galluzzi L, Kroemer G, Madeo F. Guidelines and recommendations on yeast cell death nomenclature. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:4-31. [PMID: 29354647 PMCID: PMC5772036 DOI: 10.15698/mic2018.01.607] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/29/2017] [Indexed: 12/18/2022]
Abstract
Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel-lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the defi-nition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differ-ential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death rou-tines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the au-thors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the pro-gress of this vibrant field of research.
Collapse
Affiliation(s)
| | - Maria Anna Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Andrés Aguilera
- Centro Andaluz de Biología, Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Sevilla, Spain
| | | | - Kathryn Ayscough
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Rena Balzan
- Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Shoshana Bar-Nun
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Antonio Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, USA
- Department of Neurology, University of Miami Miller School of Medi-cine, Miami, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, USA
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Etablissement Français du Sang Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Ralf J. Braun
- Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany
| | | | - William C. Burhans
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Sabrina Büttner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Katrina F. Cooper
- Dept. Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, USA
| | - Manuela Côrte-Real
- Center of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | - Ian Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Martin B. Dickman
- Institute for Plant Genomics and Biotechnology, Texas A&M University, Texas, USA
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Birthe Fahrenkrog
- Laboratory Biology of the Nucleus, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Kai-Uwe Fröhlich
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Ali Gargouri
- Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Center de Biotechnologie de Sfax, Sfax, Tunisia
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Campbell W. Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Chris M. Grant
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael T. Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada
| | - Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | | | - Jürgen Heinisch
- Department of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Eva Herker
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Sebastian Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | | | - Helmut Jungwirth
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Dimitrios P. Kontoyiannis
- Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Minho, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Stéphen Manon
- Institut de Biochimie et de Génétique Cellulaires, UMR5095, CNRS & Université de Bordeaux, Bordeaux, France
| | - Enzo Martegani
- Department of Biotechnolgy and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Cristina Mazzoni
- Instituto Pasteur-Fondazione Cenci Bolognetti - Department of Biology and Biotechnology "C. Darwin", La Sapienza University of Rome, Rome, Italy
| | - Lynn A. Megeney
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Department of Medicine, Division of Cardiology, University of Ottawa, Ottawa, Canada
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Heinz D. Osiewacz
- Institute for Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, United Kingdom
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Dina Petranovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Stephane Picot
- Malaria Research Unit, SMITh, ICBMS, UMR 5246 CNRS-INSA-CPE-University Lyon, Lyon, France
- Institut of Parasitology and Medical Mycology, Hospices Civils de Lyon, Lyon, France
| | - Peter Polčic
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Ted Powers
- Department of Molecular and Cellular Biology, College of Biological Sciences, UC Davis, Davis, California, USA
| | - Mark Ramsdale
- Biosciences, University of Exeter, Exeter, United Kingdom
| | - Mark Rinnerthaler
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Patrick Rockenfeller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Raffael Schaffrath
- Institute of Biology, Division of Microbiology, University of Kassel, Kassel, Germany
| | - Maria Segovia
- Department of Ecology, Faculty of Sciences, University of Malaga, Malaga, Spain
| | - Fedor F. Severin
- A.N. Belozersky Institute of physico-chemical biology, Moscow State University, Moscow, Russia
| | - Amir Sharon
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stephan J. Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Cornelia Sommer-Ruck
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Maria João Sousa
- Center of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | | | - Michel B. Toledano
- Institute for Integrative Biology of the Cell (I2BC), SBIGEM, CEA-Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Mick Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - F.-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee, Belgium
| | | | - Stefan Wölfl
- Institute of Pharmacy and Molecu-lar Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Zhaojie J. Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, USA
| | - Bing Zhou
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Université Paris Descartes/Paris V, Paris, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Cell Biology and Metabolomics Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
- INSERM, U1138, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
33
|
Lee JM, Park JH, Kim BY, Kim IH. Terminal Deoxynucleotidyl Transferase-Mediated Deoxyuridine Triphosphate Nick End Labeling (TUNEL) Assay to Characterize Histopathologic Changes Following Thermal Injury. Ann Dermatol 2017; 30:41-46. [PMID: 29386831 PMCID: PMC5762475 DOI: 10.5021/ad.2018.30.1.41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 06/04/2017] [Accepted: 07/26/2017] [Indexed: 01/18/2023] Open
Abstract
Background Despite the wide application of lasers and radiofrequency (RF) surgery in dermatology, it is difficult to find studies showing the extent of damage dependent on cell death. Objective We evaluated histopathologic changes following in vivo thermal damage generated by CO2 laser, 1,444 nm long-pulsed neodymium:yttrium-aluminum-garnet (LP Nd:YAG) laser and RF emitting electrosurgical unit. Methods Thermal damage was induced by the above instruments on ventral skin of rat. Specimens were stained with hematoxylin and eosin, along with a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) assay, to highlight the degree of irreversible cellular injury. Results The volume of vaporization was largest with the CO2 laser. Area of cell death area identified by TUNEL assay, when arranged from widest to narrowest, was 1,444 nm LP Nd:YAG laser, CO2 laser, and RF emitting electrosurgical unit. Conclusion This histopathologic evaluation of the acute characterization of injury across devices may be advantageous for attaining better treatment outcomes.
Collapse
Affiliation(s)
- Ji Min Lee
- Department of Dermatology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Ji Hyun Park
- Department of Dermatology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Bo Young Kim
- Department of Dermatology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Il-Hwan Kim
- Department of Dermatology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| |
Collapse
|
34
|
|
35
|
Hu X, Luan L, Guan W, Zhang S, Li B, Ji W, Fan H. Hydrogen sulfide attenuates isoflurane-induced neuroapoptosis and cognitive impairment in the developing rat brain. BMC Anesthesiol 2017; 17:123. [PMID: 28870150 PMCID: PMC5584335 DOI: 10.1186/s12871-017-0419-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 08/27/2017] [Indexed: 11/23/2022] Open
Abstract
Background Isoflurane-induced neuroapoptosis and cognitive impairment has been previously reported. Hydrogen sulfide (H2S) has been shown to be a neuromodulator that is thought to have anti-apoptotic, anti-inflammatory, and anti-oxidative benefits. However, it is not known if H2S is protective against anesthesia-induced apoptosis and cognitive defects. Methods In this study, postnatal day 7 (P7) Sprague-Dawley rats were randomly divided into four groups: control group (normal saline), H2S group (NaHS 28 μM/kg), isoflurane group (normal saline +0.75% isoflurane) and H2S preconditioning group (NaHS 28 μM/kg + 0.75% isoflurane). After exposure to isoflurane for 6 h, half the numbers of rats in each group were euthanized, and the hippocampus and cerebral cortex were dissected and examined for apoptosis by the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) technique and western blot. After 6 weeks, the remaining rats were subjected to a Morris water maze (MWM) test for behavioral assessment. Results The TUNEL assay and western blot showed that when rats were preconditioned with NaHS, neuroapoptosis decreased significantly both in hippocampus and cerebral cortex compering with the isofulrane group. The MWM showed that P7 rats administration of NaHS improved cognitive impairments induced by isoflurane. Conclusions The current study demonstrates that H2S attenuates isoflurane-induced neuroapoptosis and improves cognitive impairments in the developing rat brain.
Collapse
Affiliation(s)
- Xueyuan Hu
- Department of Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600 of Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China
| | - Li Luan
- Department of Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600 of Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China
| | - Wei Guan
- Department of Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600 of Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China
| | - Shuai Zhang
- Department of Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600 of Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China
| | - Bei Li
- Department of Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600 of Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China
| | - Wei Ji
- Department of Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600 of Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China
| | - Honggang Fan
- Department of Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600 of Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China.
| |
Collapse
|
36
|
Phyn CVC, Stelwagen K, Davis SR, McMahon CD, Dobson JM, Singh K. Tight Junction Protein Abundance and Apoptosis During Involution of Rat Mammary Glands. J Cell Physiol 2017; 232:2075-2082. [DOI: 10.1002/jcp.25591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/07/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Claire V. C. Phyn
- AgResearch Ltd.; Ruakura Research Centre; Hamilton New Zealand
- DairyNZ Ltd.; Hamilton New Zealand
| | - Kerst Stelwagen
- AgResearch Ltd.; Ruakura Research Centre; Hamilton New Zealand
- SciLactis Ltd.; Hamilton New Zealand
| | - Stephen R. Davis
- AgResearch Ltd.; Ruakura Research Centre; Hamilton New Zealand
- LIC; Hamilton New Zealand
| | - Christopher D. McMahon
- AgResearch Ltd.; Ruakura Research Centre; Hamilton New Zealand
- ManukaMed Ltd.; Hamilton New Zealand
| | - Joanne M. Dobson
- AgResearch Ltd.; Ruakura Research Centre; Hamilton New Zealand
- Carne Technologies Ltd.; Cambridge New Zealand
| | - Kuljeet Singh
- AgResearch Ltd.; Ruakura Research Centre; Hamilton New Zealand
- Science Consultancy; Hamilton New Zealand
| |
Collapse
|
37
|
Mohan G, Lay EYA, Berka H, Ringwood L, Kot A, Chen H, Yao W, Lane NE. A Novel Hybrid Compound LLP2A-Ale Both Prevented and Rescued the Osteoporotic Phenotype in a Mouse Model of Glucocorticoid-Induced Osteoporosis. Calcif Tissue Int 2017; 100:67-79. [PMID: 27679514 PMCID: PMC5215964 DOI: 10.1007/s00223-016-0195-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/19/2016] [Indexed: 12/12/2022]
Abstract
Prolonged glucocorticoid (GC) administration causes secondary osteoporosis (GIOP) and non-traumatic osteonecrosis. LLP2A-Ale is a novel bone-seeking compound that recruits mesenchymal stem cells to the bone surface, stimulates bone formation, and increases bone mass. The purpose of this study was to determine if treatment with LLP2A-Ale alone or in combination with parathyroid hormone (PTH) could prevent or treat GIOP in a mouse model. Four-month-old male Swiss-Webster mice were randomized to a prevention study with placebo, GC (day 1-28), and GC + LLP2A-Ale (IV, day 1) or a treatment study with placebo, GC (days 1-56), GC + LLP2A-Ale (IV, day 28), GC + PTH, and GC + LLP2A-Ale + PTH (days 28-56). Mice were killed on day 28 (prevention study) or on day 56 (treatment study). The study endpoints included bone mass, bone strength, serum markers of bone turnover (P1NP and CTX-I) and angiogenesis (VEGF-A), surface-based bone turnover, and blood vessel density. LLP2A-Ale prevented GC-induced bone loss and increased mechanical strength in the vertebral body (days 28 and 56) and femur (day 56). LLP2A-Ale, PTH, and LLP2A-Ale + PTH treatment significantly increased the mineralizing surface, bone formation rate, mineral apposition rate, double-labeled surface, and serum P1NP level on day 56. LLP2A-Ale and PTH treatment increased femoral blood vessel density and LLP2A-Ale increased serum VEGF-A on day 28. Therefore, LLP2A-Ale monotherapy could be a potential option to both prevent and treat GC-induced osteoporosis and bone fragility.
Collapse
Affiliation(s)
- Geetha Mohan
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, 4625 2nd Avenue, Suite 2006, Sacramento, CA, 95817, USA
| | - Evan Yu-An Lay
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, 4625 2nd Avenue, Suite 2006, Sacramento, CA, 95817, USA
| | - Haley Berka
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, 4625 2nd Avenue, Suite 2006, Sacramento, CA, 95817, USA
| | - Lorna Ringwood
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, 4625 2nd Avenue, Suite 2006, Sacramento, CA, 95817, USA
| | - Alexander Kot
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, 4625 2nd Avenue, Suite 2006, Sacramento, CA, 95817, USA
| | - Haiyan Chen
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, 4625 2nd Avenue, Suite 2006, Sacramento, CA, 95817, USA
| | - Wei Yao
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, 4625 2nd Avenue, Suite 2006, Sacramento, CA, 95817, USA
| | - Nancy E Lane
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, 4625 2nd Avenue, Suite 2006, Sacramento, CA, 95817, USA.
| |
Collapse
|
38
|
Lim S, Lee GY, Park HS, Lee DH, Tae Jung O, Kyoung Min K, Kim YB, Jun HS, Hak Chul J, Park KS. Attenuation of carotid neointimal formation after direct delivery of a recombinant adenovirus expressing glucagon-like peptide-1 in diabetic rats. Cardiovasc Res 2016; 113:183-194. [PMID: 27702762 DOI: 10.1093/cvr/cvw213] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/28/2016] [Accepted: 09/29/2016] [Indexed: 12/31/2022] Open
Abstract
AIMS Enhancement of glucagon-like peptide-1 (GLP-1) reduces glucose levels and preserves pancreatic β-cell function, but its effect against restenosis is unknown. METHODS AND RESULTS We investigated the effect of subcutaneous injection of exenatide or local delivery of a recombinant adenovirus expressing GLP-1 (rAd-GLP-1) into carotid artery, in reducing the occurrence of restenosis following balloon injury. As a control, we inserted β-galactosidase cDNA in the same vector (rAd-βGAL). Otsuka Long-Evans Tokushima rats were assigned to three groups (n = 12 each): (1) normal saline plus rAd-βGAL delivery (NS + rAd-βGAL), (2) exenatide plus rAd-βGAL delivery (Exenatide + rAd-βGAL), and (3) normal saline plus rAd-GLP-1 delivery (NS + rAd-GLP-1). Normal saline or exenatide were administered subcutaneously from 1 week before to 2 weeks after carotid injury. After 3 weeks, the NS + rAd-βGAL group showed the highest intima-media ratio (IMR; 3.73 ± 0.90), the exenatide + rAd-βGAL treatment was the next highest (2.80 ± 0.51), and NS + rAd-GLP-1 treatment showed the lowest IMR (1.58 ± 0.48, P < 0.05 vs. others). The proliferation and migration of vascular smooth muscle cells and monocyte adhesion were decreased significantly after rAd-GLP-1 treatment, showing the same overall patterns as the IMR. In injured vessels, the apoptosis was greater and MMP2 expression was less in the NS + rAd-GLP-1 than in the exenatide or rAd-βGAL groups. In vitro expressions of matrix metalloproteinases-2 and monocyte chemoattractant protein-1 and nuclear factor-kappa-B-p65 translocation were decreased more in the NS + rAd-GLP-1 group than in the other two groups (all P < 0.05). CONCLUSION Direct GLP-1 overexpression showed better protection against restenosis after balloon injury via suppression of vascular smooth muscle cell migration, increased apoptosis, and decreased inflammatory processes than systemic exenatide treatment. This has potential therapeutic implications for treating macrovascular complications in diabetes.
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Gha Young Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ho Seon Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Hwa Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Oh Tae Jung
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kim Kyoung Min
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; and
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Department of Medicine, Gachon University of Medicine and Science, Incheon, Korea
| | - Jang Hak Chul
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea;
| |
Collapse
|
39
|
Zhang SN, Yang NB, Ni SL, Dong JZ, Shi CW, Li SS, Zhang SG, Tang XY, Lu MQ. Splenic CD11c(low)CD45RB(high) dendritic cells derived from endotoxin-tolerant mice attenuate experimental acute liver failure. Sci Rep 2016; 6:33206. [PMID: 27625297 PMCID: PMC5021931 DOI: 10.1038/srep33206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/22/2016] [Indexed: 01/20/2023] Open
Abstract
Endotoxin tolerance (ET) is suggested to attenuate the severity of acute liver failure (ALF) in mice, possibly through both innate and adaptive immunity. However, the involvement of regulatory dendritic cells (DCregs) in ET has not been fully elucidated. In this study, their effect on ALF in mice was investigated. Splenic DCregs from ET-exposed mice (ET-DCregs) showed lower expression levels of CD40, CD80, and MHC-II markers and stronger inhibition of allogenic T cells and regulation of IL-10 and IL-12 secretion than splenic DCregs from normal mice (nDCregs). Moreover, the mRNA and protein levels of TNF-α and P65 in splenic ET-DCregs were significantly lower than those in the splenic nDCregs. The survival rate was significantly increased and liver injury was mitigated in mice with ALF treated with splenic ET-DCregs. In addition, A20 expression was decreased in the liver of ALF mice, but elevated after infusion of splenic nDCregs and ET-DCregs, and a much higher elevation was observed after infusing the latter cells. The functionality of splenic DCregs was altered after ET exposure, contributing to protection of the livers against D-GalN/LPS-induced ALF.
Collapse
Affiliation(s)
- Sai-Nan Zhang
- Department of Infection Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P. R. China
| | - Nai-Bin Yang
- Department of Infection Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P. R. China
| | - Shun-Lan Ni
- Department of Infection Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P. R. China
| | - Jin-Zhong Dong
- Department of Intensive Care Unit, The First Hospital of Ningbo, Ningbo 315010, Zhejiang, P. R. China
| | - Chun-Wei Shi
- Department of Infection Diseases, The First Hospital of Xiaoshan, Hangzhou 311200, Zhejiang, P. R. China
| | - Shan-Shan Li
- Department of Infection Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P. R. China
| | - Sheng-Guo Zhang
- Department of Infection Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P. R. China
| | - Xin-Yue Tang
- Department of Infection Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P. R. China
| | - Ming-Qin Lu
- Department of Infection Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P. R. China
| |
Collapse
|
40
|
Shih HJ, Yen JC, Chiu AW, Chow YC, Pan WH, Huang CJ. FTY720 inhibits germ cell apoptosis in testicular torsion/detorsion. J Surg Res 2016; 202:155-64. [DOI: 10.1016/j.jss.2015.12.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/03/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
|
41
|
Tripathi A, Chaube SK. Roscovitine inhibits extrusion of second polar body and induces apoptosis in rat eggs cultured in vitro. Pharmacol Rep 2015; 67:866-74. [DOI: 10.1016/j.pharep.2015.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 11/16/2022]
|
42
|
Lim S, Lee KS, Lee JE, Park HS, Kim KM, Moon JH, Choi SH, Park KS, Kim YB, Jang HC. Effect of a new PPAR-gamma agonist, lobeglitazone, on neointimal formation after balloon injury in rats and the development of atherosclerosis. Atherosclerosis 2015; 243:107-19. [PMID: 26363808 DOI: 10.1016/j.atherosclerosis.2015.08.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 08/17/2015] [Accepted: 08/26/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The ligand-activated transcription factor peroxisome proliferator-activated receptor gamma (PPARγ) is a key factor in adipogenesis, insulin sensitivity, and cell cycle regulation. Activated PPARγ might also have anti-inflammatory and antiatherogenic properties. We tested whether lobeglitazone, a new PPARγ agonist, might protect against atherosclerosis. METHODS A rat model of balloon injury to the carotid artery, and high-fat, high-cholesterol diet-fed apolipoprotein E gene knockout (ApoE(-/-)) mice were studied. RESULTS After the balloon injury, lobeglitazone treatment (0.3 and 0.9 mg/kg) caused a significant decrease in the intima-media ratio compared with control rats (2.2 ± 0.9, 1.8 ± 0.8, vs. 3.3 ± 1.2, P < 0.01). Consistent with this, in ApoE(-/-) mice fed a high-fat diet, lobeglitazone treatment (1, 3, and 10 mg/kg) for 8 weeks reduced atherosclerotic lesion sizes in the aorta compared with the control mice in a dose-dependent manner. Treatment of vascular smooth muscle cells with lobeglitazone inhibited proliferation and migration and blocked the cell cycle G0/G1 to S phase progression dose-dependently. In response to lobeglitazone, tumor necrosis factor alpha (TNFα)-induced monocyte-endothelial cell adhesion was decreased by downregulating the levels of adhesion molecules. TNFα-induced nuclear factor kappa-B (NF-κB) p65 translocation into the nucleus was also blocked in endothelial cells. Insulin resistance was decreased by lobeglitazone treatment. Circulating levels of high sensitivity C-reactive protein and monocyte chemoattractant protein-1 were decreased while adiponectin levels were increased by lobeglitazone in the high-fat diet-fed ApoE(-/-) mice. CONCLUSION Lobeglitazone has antiatherosclerotic properties and has potential for treating patients with diabetes and cardiovascular risk.
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul, 110-744, South Korea
| | - Kuy-Sook Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea; Biomedical Research Institute, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea
| | - Jie Eun Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul, 110-744, South Korea
| | - Ho Seon Park
- Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul, 110-744, South Korea
| | - Kyoung Min Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul, 110-744, South Korea
| | - Jae Hoon Moon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul, 110-744, South Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul, 110-744, South Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul, 110-744, South Korea; Biomedical Research Institute, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea
| | - Young Bum Kim
- Biomedical Research Institute, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 110-744, South Korea; Division of Endocrinology, Metabolism and Diabetes, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Hak Chul Jang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul, 110-744, South Korea.
| |
Collapse
|
43
|
Li Z, Sun X, Guo S, Wang L, Wang T, Peng C, Wang W, Tian Z, Zhao R, Cao W, Tian Y. Rapid stabilisation of atherosclerotic plaque with 5-aminolevulinic acid-mediated sonodynamic therapy. Thromb Haemost 2015; 114:793-803. [PMID: 26179778 DOI: 10.1160/th14-12-1030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/07/2015] [Indexed: 01/07/2023]
Abstract
5-Aminolevulinic acid-mediated sonodynamic therapy (ALA-SDT) effectively induces the apoptosis of atherogenic macrophages, but whether it can stabilise atherosclerotic plaque in vivo is unclear. Here, we used an animal model to evaluate the effects of ALA-SDT on plaque stabilisation. Sixty rabbits were induced atherosclerotic plaques in the femoral artery with a combination of silastic tube placement with atherogenic diet, and randomly assigned into control (n = 12) and SDT (n = 48) groups. In the SDT group, after intravenous injected with ALA (60 mg/kg) animals underwent the treatment of ultrasound with intensities of 0.75, 1.00, 1.50 and 2.00 W/cm(²) (n = 12 for each intensity). Seven days after the treatment, the plaque disruption assay was performed to test plaque stability. We found that ALA-SDT with ultrasound intensity of 1.5 W/cm(²) showed the strongest efficacy to stabilise plaques. Under this condition, the frequency of plaque disruption decreased by 88% (p<0.01), positive area of macrophages reduced by 94% (p<0.001) and percentage content of lipids dropped by 60% (p < 0.001), while percentage content of collagens increased by 127% (p<0.001). We also found that the plaque stabilisation by ALA-SDT was associated with increased macrophage apoptosis and apoptotic cell clearance. Moreover, ALA-SDT decreased the contents and activities of matrix metalloproteinase-2,9 and increased the levels of tissue inhibitors of matrix metalloproteinase-1,2 in plaques. Our studies demonstrate that ALA-SDT promotes plaque stabilisation by inducing macrophage elimination and inhibiting matrix degradation. This method might be a promising regimen for atherosclerosis therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ye Tian
- Ye Tian, Division of Cardiology, First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China, Tel.: +86 451 85555943, Fax: +86 451 87530341, E-mail:
| |
Collapse
|
44
|
Sura R, Settivari RS, LeBaron MJ, Craig Rowlands J, Carney EW, Bhaskar Gollapudi B. A critical assessment of the methodologies to investigate the role of inhibition of apoptosis in rodent hepatocarcinogenesis. Toxicol Mech Methods 2015; 25:192-200. [DOI: 10.3109/15376516.2015.1007541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
45
|
Alcalde M, Campuzano O, Allegue C, Torres M, Arbelo E, Partemi S, Iglesias A, Brugada J, Oliva A, Carracedo A, Brugada R. Sequenom MassARRAY approach in the arrhythmogenic right ventricular cardiomyopathy post-mortem setting: clinical and forensic implications. Int J Legal Med 2015; 129:1-10. [PMID: 24832006 DOI: 10.1007/s00414-014-0996-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 04/16/2014] [Indexed: 01/08/2023]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare cardiac disease characterized by myocardial fibrofatty replacement, which can lead to sudden death. Previous studies have described a reduction of plakoglobin (PKG) protein at the level of intercalated disks as the hallmark of ARVC. The main objective of this study was to investigate the involvement of desmosome mutations in the histological phenotype of ARVC. We performed a genetic analysis of ARVC cases, and histological characterization of ARVC heart tissue samples. We genetically analyzed 48 ARVC cases distributed into two groups: 42 human tissue heart samples with conclusive diagnoses of ARVC after post-mortem examination; and six DNA samples from peripheral blood of living patients who were clinically diagnosed. Sequenom MassARRAY analysis revealed three ARVC-associated variants in three patients in 42 tissue samples (7.14 %). Three individuals carried one single pathogenic mutation, p.R811S _PKP2, p.S824L_DSC2, and p.T526M_PKP2 in postmortem samples. In the living patients group, Sequenom MassARRAY revealed no mutation, however, later Sanger sequencing analysis identified three ARVC mutations in 2/6 patients not included in the Sequenom design. In post-mortem tissue samples we performed immunohistochemical labeling for desmosomal proteins and Connexin 43. This study revealed that PKP2 carriers present either absent or clearly reduced PKG immunolabeling, while the DSC2 carrier showed PKG immunolabeling similar to control samples. Immunolabeling for Cx43 did not show any differences compared to controls. The present Sequenom MassARRAY design is a useful tool for post-mortem genetic diagnosis of ARVC. Plakoglobin reduction occurs at intercalated disks, while other desmosome proteins and Cx43 remain unaltered.
Collapse
Affiliation(s)
- M Alcalde
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fayzullina S, Martin LJ. Detection and analysis of DNA damage in mouse skeletal muscle in situ using the TUNEL method. J Vis Exp 2014:52211. [PMID: 25549099 PMCID: PMC4396960 DOI: 10.3791/52211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Terminal deoxynucleotidyl transferase (TdT) deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) is the method of using the TdT enzyme to covalently attach a tagged form of dUTP to 3' ends of double- and single-stranded DNA breaks in cells. It is a reliable and useful method to detect DNA damage and cell death in situ. This video describes dissection, tissue processing, sectioning, and fluorescence-based TUNEL labeling of mouse skeletal muscle. It also describes a method of semi-automated TUNEL signal quantitation. Inherent normal tissue features and tissue processing conditions affect the ability of the TdT enzyme to efficiently label DNA. Tissue processing may also add undesirable autofluorescence that will interfere with TUNEL signal detection. Therefore, it is important to empirically determine tissue processing and TUNEL labeling methods that will yield the optimal signal-to-noise ratio for subsequent quantitation. The fluorescence-based assay described here provides a way to exclude autofluorescent signal by digital channel subtraction. The TUNEL assay, used with appropriate tissue processing techniques and controls, is a relatively fast, reproducible, quantitative method for detecting apoptosis in tissue. It can be used to confirm DNA damage and apoptosis as pathological mechanisms, to identify affected cell types, and to assess the efficacy of therapeutic treatments in vivo.
Collapse
Affiliation(s)
- Saniya Fayzullina
- Division of Neuropathology, Department of Pathology, Pathobiology Graduate Program, Johns Hopkins School of Medicine;
| | - Lee J Martin
- Division of Neuropathology, Department of Pathology, Pathobiology Graduate Program, Johns Hopkins School of Medicine
| |
Collapse
|
47
|
Abstract
At least two distinct modalities of cell death, apoptosis and necrosis, can be distinguished based on differences in morphological, biochemical, and molecular changes of dying cells. Cell death is involved both in physiological and pathological conditions of the skeleton: for example, apoptosis is a crucial event during limb development. Therefore, detection of cell death by using a simple stain is a powerful tool to study molecular and cellular mechanisms of skeletal development and repair.
Collapse
|
48
|
Tripathi A, Chaube SK. Reduction of phosphorylated Thr-161 Cdk1 level participates in roscovitine-induced Fas ligand-mediated apoptosis in rat eggs cultured in vitro. In Vitro Cell Dev Biol Anim 2014; 51:174-82. [PMID: 25148827 DOI: 10.1007/s11626-014-9812-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/17/2014] [Indexed: 12/28/2022]
Abstract
The present study was aimed to find out whether roscovitine reduces phosphorylated Thr-161 of cyclin-dependent kinase 1 (Cdk1) level and induces egg apoptosis through Fas ligand (FasL)-mediated pathway. For this purpose, ovulated eggs were cultured in media 199 with or without various concentrations of roscovitine (0, 25, 50, 100, 200 μM) for 3 h in vitro. The morphological apoptotic changes, phosphorylation status of Cdk1, FasL concentration, caspase-8 and caspase-3 activities, and DNA fragmentation were analyzed. Data of the present study suggest that roscovitine significantly reduced Thr-161 phosphorylated Cdk1 level without altering the total level of Cdk1 and induced cytoplasmic fragmentation, a morphological apoptotic feature in a concentration-dependent manner. The roscovitine-induced cytoplasmic fragmentation was associated with increased FasL concentration. The increased FasL concentration induced caspase-8 followed by caspase-3 activities. The increased caspases activity finally induced DNA fragmentation in eggs that showed cytoplasmic fragmentation. Taken together, these results suggest that roscovitine reduced phosphorylated Thr-161 of Cdk1 level and induces apoptosis through FasL-mediated pathway in rat eggs cultured in vitro.
Collapse
Affiliation(s)
- Anima Tripathi
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | | |
Collapse
|
49
|
Grimm M, Cetindis M, Lehmann M, Biegner T, Munz A, Teriete P, Kraut W, Reinert S. Association of cancer metabolism-related proteins with oral carcinogenesis - indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma? J Transl Med 2014; 12:208. [PMID: 25048361 PMCID: PMC4110933 DOI: 10.1186/1479-5876-12-208] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
Background Tumor metabolism is a crucial factor for the carcinogenesis of oral squamous cell carcinoma (OSCC). Methods Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, PFK-1, LDHA, TKTL1), mitochondrial enzymes (SDHA, SDHB, ATP synthase) were analyzed in normal oral mucosa (n = 5), oral precursor lesions (simple hyperplasia, n = 11; squamous intraepithelial neoplasia, SIN I-III, n = 35), and OSCC specimen (n = 42) by immunohistochemistry and real-time polymerase chain reaction (qPCR) analysis in OSCC cell lines. Metabolism-related proteins were correlated with proliferation activity (Ki-67) and apoptotic properties (TUNEL assay) in OSCC. Specificity of antibodies was confirmed by western blotting in cancer cell lines. Results Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, LDHA, TKTL1), and mitochondrial enzymes (SDHA, SDHB, ATP synthase) were significantly increased in the carcinogenesis of OSCC. Metabolic active regions of OSCC were strongly correlated with proliferating cancer (Ki-67+) cells without detection of apoptosis (TUNEL assay). Conclusions This study provides the first evidence of the expression of IGF-R1, glycolysis-related proteins GLUT-1, HK 2, PFK-1, LDHA, and TKTL1, as well as mitochondrial enzymes SDHA, SDHB, and ATP synthase in the multi-step carcinogenesis of OSCC. Both, hypoxia-related glucose metabolism and mitochondrial oxidative phosphorylation characteristics are associated with the carcinogenesis of OSCC. Acidosis and OXPHOS may drive a metabolic shift towards the pentose phosphate pathway (PPP). Therefore, inhibition of the PPP, glycolysis, and targeted anti-mitochondrial therapies (ROS generation) by natural compounds or synthetic vitamin derivatives may act as sensitizer for apoptosis in cancer cells mediated by adjuvant therapies in OSCC.
Collapse
Affiliation(s)
- Martin Grimm
- Department of Oral and Maxillofacial Surgery, University Hospital Tuebingen, Osianderstrasse 2-8, Tuebingen 72076, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Gómez-Cabañas L, Delgado-Martín C, López-Cotarelo P, Escribano-Diaz C, Alonso-C LM, Riol-Blanco L, Rodríguez-Fernández JL. Detecting apoptosis of leukocytes in mouse lymph nodes. Nat Protoc 2014; 9:1102-12. [PMID: 24743418 DOI: 10.1038/nprot.2014.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although there are multiple methods for analyzing apoptosis in cultured cells, methodologies for analyzing apoptosis in vivo are sparse. In this protocol, we describe how to detect apoptosis of leukocytes in mouse lymph nodes (LNs) via the detection of apoptotic caspases. We have previously used this protocol to study factors that modulate dendritic cell (DC) survival in LNs; however, it can also be used to analyze other leukocytes that migrate to the LNs. DCs labeled with a fluorescent cell tracker are subcutaneously injected in the posterior footpads of mice. Once the labeled DCs reach the popliteal LN (PLN), the animals are intravenously injected with FLIVO, a permeant fluorescent reagent that selectively marks active caspases and consequently apoptotic cells. Explanted PLNs are then examined under a two-photon microscope to look for the presence of apoptotic cells among the DCs injected. The protocol requires 6-6.5 h for preparation and analysis plus an additional 34-40 h to allow apoptosis of the injected DCs in the PLN.
Collapse
Affiliation(s)
- Laura Gómez-Cabañas
- 1] Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas, Madrid, Spain. [2]
| | - Cristina Delgado-Martín
- 1] Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas, Madrid, Spain. [2]
| | - Pilar López-Cotarelo
- Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Cristina Escribano-Diaz
- Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Luis M Alonso-C
- Centro de Microscopía y Citometría, Universidad Complutense, Madrid, Spain
| | - Lorena Riol-Blanco
- 1] Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas, Madrid, Spain. [2]
| | | |
Collapse
|