1
|
Mori S, Fujiwara-Tani R, Ogata R, Ohmori H, Fujii K, Luo Y, Sasaki T, Nishiguchi Y, Bhawal UK, Kishi S, Kuniyasu H. Anti-Cancer and Pro-Immune Effects of Lauric Acid on Colorectal Cancer Cells. Int J Mol Sci 2025; 26:1953. [PMID: 40076581 PMCID: PMC11901037 DOI: 10.3390/ijms26051953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Lauric acid (LAA) is a 12-carbon medium-chain fatty acid that reportedly has antitumor and muscle-protecting effects. However, the details of these antitumor effects remain unclear. Therefore, in this study, we investigated the mechanism underlying the antitumor effects of LAA in CT26 and HT29 colorectal cancer (CRC) cell lines. Our in vitro findings demonstrated that LAA suppressed CRC cell proliferation, induced mitochondrial oxidative stress (reactive oxygen species (ROS)), inhibited oxidative phosphorylation (OXPHOS), and induced apoptosis. Moreover, in vivo analysis of LAA showed a more pronounced antitumor effect in CT26 cells in a syngeneic mouse tumor model than in vitro; therefore, we further investigated its impact on host antitumor immunity. We observed that LAA increased the number of effector T cells in mouse tumors, while in vitro LAA activated mouse splenocytes (SplC) and promoted OXPHOS. In two-dimensional co-culture of SplC and CT26 cells, LAA induced cell death in cancer cells. In three-dimensional co-culture, LAA promoted SplC infiltration and suppressed the formation of tumor spheres. Thus, LAA may exert antitumor effects through increased ROS production in cancer cells and effector T cell activation via increased energy metabolism. These results suggest that LAA, when used in combination with existing anti-cancer drugs, is likely to exhibit sensitizing effects in terms of both antitumor and antitumor immune effects, and future clinical studies are anticipated.
Collapse
Grants
- 23K16621 Ministry of Education, Culture, Sports, Science and Technology
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 23K10481 Ministry of Education, Culture, Sports, Science and Technology
- 21K11223 Ministry of Education, Culture, Sports, Science and Technology
- 22K16497 Ministry of Education, Culture, Sports, Science and Technology
- 21K06926 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Shiori Mori
- Department of Molecular Pathology, School of Medicine, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (R.O.); (H.O.); (K.F.); (Y.L.); (T.S.); (Y.N.); (S.K.)
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Osaka 573-1010, Japan
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, School of Medicine, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (R.O.); (H.O.); (K.F.); (Y.L.); (T.S.); (Y.N.); (S.K.)
| | - Ruiko Ogata
- Department of Molecular Pathology, School of Medicine, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (R.O.); (H.O.); (K.F.); (Y.L.); (T.S.); (Y.N.); (S.K.)
| | - Hitoshi Ohmori
- Department of Molecular Pathology, School of Medicine, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (R.O.); (H.O.); (K.F.); (Y.L.); (T.S.); (Y.N.); (S.K.)
| | - Kiyomu Fujii
- Department of Molecular Pathology, School of Medicine, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (R.O.); (H.O.); (K.F.); (Y.L.); (T.S.); (Y.N.); (S.K.)
| | - Yi Luo
- Department of Molecular Pathology, School of Medicine, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (R.O.); (H.O.); (K.F.); (Y.L.); (T.S.); (Y.N.); (S.K.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, School of Medicine, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (R.O.); (H.O.); (K.F.); (Y.L.); (T.S.); (Y.N.); (S.K.)
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, School of Medicine, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (R.O.); (H.O.); (K.F.); (Y.L.); (T.S.); (Y.N.); (S.K.)
| | - Ujjal Kumar Bhawal
- Research Institute of Oral Science, School of Dentistry at Matsudo, Nihon University, Matsudo 271-8587, Japan;
| | - Shingo Kishi
- Department of Molecular Pathology, School of Medicine, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (R.O.); (H.O.); (K.F.); (Y.L.); (T.S.); (Y.N.); (S.K.)
- Department of Pathological Diagnosis, Nozaki Tokushukai Hospital, Daito 574-0074, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, School of Medicine, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (R.O.); (H.O.); (K.F.); (Y.L.); (T.S.); (Y.N.); (S.K.)
| |
Collapse
|
2
|
Sloseris D, Forde NR. AGEing of collagen: The effects of glycation on collagen's stability, mechanics and assembly. Matrix Biol 2025; 135:153-160. [PMID: 39805674 DOI: 10.1016/j.matbio.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025]
Abstract
Advanced Glycation End Products (AGEs) are the end result of the irreversible, non-enzymatic glycation of proteins by reducing sugars. These chemical modifications accumulate with age and have been associated with various age-related and diabetic complications. AGEs predominantly accumulate on proteins with slow turnover rates, of which collagen is a prime example. Glycation has been associated with tissue stiffening and reduced collagen fibril remodelling. In this study, we investigate the effects of glycation on the stability of type I collagen, its molecular-level mechanics and its ability to perform its physiological role of self-assembly. Collagen AGEing is induced in vitro by incubation with ribose. We confirm and assess glycation using fluorescence measurements and changes in collagen's electrophoretic mobility. Susceptibility to trypsin digestion and circular dichroism (CD) spectroscopy are used to probe changes in collagen's triple helical stability, revealing decreased stability due to glycation. Atomic Force Microscopy (AFM) imaging is used to quantify how AGEing affects collagen flexibility, where we find molecular-scale stiffening. Finally we use microscopy to show that glycated collagen molecules are unable to self-assemble into fibrils. These findings shed light on the molecular mechanisms underlying AGE-induced tissue changes, offering insight into how glycation modifies protein structure and stability.
Collapse
Affiliation(s)
- Daniel Sloseris
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
3
|
Sasaki R, Luo Y, Kishi S, Ogata R, Nishiguchi Y, Sasaki T, Ohmori H, Fujiwara-Tani R, Kuniyasu H. Oxidative High Mobility Group Box-1 Accelerates Mitochondrial Transfer from Mesenchymal Stem Cells to Colorectal Cancer Cells Providing Cancer Cell Stemness. Int J Mol Sci 2025; 26:1192. [PMID: 39940960 PMCID: PMC11818411 DOI: 10.3390/ijms26031192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Mitochondria are important organelles for cell metabolism and tissue survival. Their cell-to-cell transfer is important for the fate of recipient cells. Recently, bone marrow mesenchymal stem cells (BM-MSCs) have been reported to provide mitochondria to cancer cells and rescue mitochondrial dysfunction in cancer cells. However, the details of the mechanism have not yet been fully elucidated. In this study, we investigated the humoral factors inducing mitochondrial transfer (MT) and the mechanisms. BM-MSCs produced MT in colorectal cancer (CRC) cells damaged by 5-fluorouracil (5-FU), but were suppressed by the anti-high mobility group box-1 (HMGB1) antibody. BM-MSCs treated with oxidized HMGB1 had increased expression of MT-associated genes, whereas reduced HMGB1 did not. Inhibition of nuclear factor-κB, a downstream factor of HMGB1 signaling, significantly decreased MT-associated gene expression. CRC cells showed increased stemness and decreased 5-FU sensitivity in correlation with MT levels. In a mouse subcutaneous tumor model of CRC, 5-FU sensitivity decreased and stemness increased by the MT from host mouse BM-MSCs. These results suggest that oxidized HMGB1 induces MTs from MSCs to CRC cells and promotes cancer cell stemness. Targeting of oxidized HMGB1 may attenuate stemness of CRCs.
Collapse
Grants
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 23K10481 Ministry of Education, Culture, Sports, Science and Technology
- 22K11396 Ministry of Education, Culture, Sports, Science and Technology
- 22K11396 Ministry of Education, Culture, Sports, Science and Technology
- 21K06926 Ministry of Education, Culture, Sports, Science and Technology
- 23K19900 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Rika Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (R.S.); (Y.L.); (S.K.); (R.O.); (Y.N.); (T.S.); (H.O.); (R.F.-T.)
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (R.S.); (Y.L.); (S.K.); (R.O.); (Y.N.); (T.S.); (H.O.); (R.F.-T.)
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (R.S.); (Y.L.); (S.K.); (R.O.); (Y.N.); (T.S.); (H.O.); (R.F.-T.)
- Pathology Laboratory, Research Institute, Tokushukai Nozaki Hospital, 2-10-50 Tanigawa, Daito 574-0074, Osaka, Japan
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (R.S.); (Y.L.); (S.K.); (R.O.); (Y.N.); (T.S.); (H.O.); (R.F.-T.)
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (R.S.); (Y.L.); (S.K.); (R.O.); (Y.N.); (T.S.); (H.O.); (R.F.-T.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (R.S.); (Y.L.); (S.K.); (R.O.); (Y.N.); (T.S.); (H.O.); (R.F.-T.)
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (R.S.); (Y.L.); (S.K.); (R.O.); (Y.N.); (T.S.); (H.O.); (R.F.-T.)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (R.S.); (Y.L.); (S.K.); (R.O.); (Y.N.); (T.S.); (H.O.); (R.F.-T.)
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (R.S.); (Y.L.); (S.K.); (R.O.); (Y.N.); (T.S.); (H.O.); (R.F.-T.)
| |
Collapse
|
4
|
Fujiwara-Tani R, Luo Y, Ogata R, Fujii K, Sasaki T, Sasaki R, Nishiguchi Y, Mori S, Ohmori H, Kuniyasu H. Energy Metabolism and Stemness and the Role of Lauric Acid in Reversing 5-Fluorouracil Resistance in Colorectal Cancer Cells. Int J Mol Sci 2025; 26:664. [PMID: 39859378 PMCID: PMC11766121 DOI: 10.3390/ijms26020664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
While 5-fluorouracil (5FU) plays a central role in chemotherapy for colorectal cancer (CRC), resistance to 5FU remains a major challenge in CRC treatment, and its underlying mechanisms remain unclear. In this study, we investigated the relationship between 5FU resistance acquisition, stemness, and energy metabolism. Among the two CRC cell lines, HT29 cells exhibited glycolytic and quiescent properties, while CT26 cells relied on oxidative phosphorylation (OXPHOS) for energy. In contrast, the 5FU-resistant sublines (HT29R and CT26R), developed through continuous exposure to low concentrations of 5FU, demonstrated enhanced stemness. This was associated with glycolytic dominance, low proliferation, and reduced reactive oxygen species (ROS) production. However, treatment with the medium-chain fatty acid lauric acid shifted the cells to OXPHOS, reducing stemness, increasing ROS levels, and inducing cell death, therefore reversing 5FU resistance. These findings suggest that an enhancement in stemness and the reprogramming of energy metabolism play key roles in acquiring 5FU resistance in CRC. While lauric acid reversed 5FU resistance, further clinical studies are required.
Collapse
Grants
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 23K19900 Ministry of Education, Culture, Sports, Science and Technology
- 23K10481 Ministry of Education, Culture, Sports, Science and Technology
- 21K11223 Ministry of Education, Culture, Sports, Science and Technology
- 22K16497 Ministry of Education, Culture, Sports, Science and Technology
- 21K06926 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Rika Sasaki
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Osaka 573-1010, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| |
Collapse
|
5
|
Fan J, Gillespie KP, Mesaros C, Blair IA. HMGB2-induced calreticulin translocation required for immunogenic cell death and ferroptosis of cancer cells are controlled by the nuclear exporter XPO1. Commun Biol 2024; 7:1234. [PMID: 39354146 PMCID: PMC11445383 DOI: 10.1038/s42003-024-06930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Cisplatin and oxaliplatin cause the secretion of high mobility group box 1 (HMGB1) protein from cancer cells, which is necessary for initiation of immunogenic cell death (ICD). Calreticulin (CRT) translocation from the endoplasmic reticulum to the plasma membrane is also required; oxaliplatin induces this translocation but cisplatin does not. We have discovered that oxaliplatin causes the secretion of both HMGB1 and HMGB2 from the cell nucleus into the extracellular milieu. We previously showed that cisplatin-mediated secretion of HMGB1 is controlled by the nuclear exporter XPO1 (chromosomal maintenance 1; CRM1). We now find that XPO1 regulates oxaliplatin-mediated secretion of both HMGB1 and HMGB2. XPO1 inhibition causes nuclear accumulation of both proteins, inhibition of oxaliplatin-mediated ferroptosis of colon cancer cells, and inhibition of CRT translocation to the plasma membrane of lung and colon cancer cells. Incubation of cancer cells with cell targeted (CT)-HMGB2 confirmed that HMGB2 is required for the CRT translocation. Furthermore, CT-HMGB2 is three orders of magnitude more potent at inducing CRT translocation than oxaliplatin.
Collapse
Affiliation(s)
- Jingqi Fan
- Penn/CHOP Center of Excellence in Friedreich's Ataxia, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin P Gillespie
- Penn/CHOP Center of Excellence in Friedreich's Ataxia, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clementina Mesaros
- Penn/CHOP Center of Excellence in Friedreich's Ataxia, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A Blair
- Penn/CHOP Center of Excellence in Friedreich's Ataxia, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Maier JA, Castiglioni S, Petrelli A, Cannatelli R, Ferretti F, Pellegrino G, Sarzi Puttini P, Fiorina P, Ardizzone S. Immune-Mediated Inflammatory Diseases and Cancer - a dangerous liaison. Front Immunol 2024; 15:1436581. [PMID: 39359726 PMCID: PMC11445042 DOI: 10.3389/fimmu.2024.1436581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Patients with Immune-Mediated Inflammatory Diseases (IMIDs) are known to have an elevated risk of developing cancer, but the exact causative factors remain subject to ongoing debate. This narrative review aims to present the available evidence concerning the intricate relationship between these two conditions. Environmental influences and genetic predisposition lead to a dysregulated immune response resulting in chronic inflammation, which is crucial in the pathogenesis of IMIDs and oncogenic processes. Mechanisms such as the inflammatory microenvironment, aberrant intercellular communication due to abnormal cytokine levels, excessive reparative responses, and pathological angiogenesis are involved. The chronic immunosuppression resulting from IMIDs treatments further adds to the complexity of the pathogenic scenario. In conclusion, this review highlights critical gaps in the current literature, suggesting potential avenues for future research. The intricate interplay between IMIDs and cancer necessitates more investigation to deepen our understanding and improve patient management.
Collapse
Affiliation(s)
- Jeanette A Maier
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Alessandra Petrelli
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | | | | | | | - Piercarlo Sarzi Puttini
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
- IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milano, Italy
| | - Paolo Fiorina
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Sandro Ardizzone
- Gastroenterology Unit, ASST Fatebenefratelli-Sacco, Milano, Italy
| |
Collapse
|
7
|
Zhang YY, Li YJ, Xue CD, Li S, Gao ZN, Qin KR. Effects of T2DM on cancer progression: pivotal precipitating factors and underlying mechanisms. Front Endocrinol (Lausanne) 2024; 15:1396022. [PMID: 39290325 PMCID: PMC11405243 DOI: 10.3389/fendo.2024.1396022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder affecting people worldwide. It is characterized by several key features, including hyperinsulinemia, hyperglycemia, hyperlipidemia, and dysbiosis. Epidemiologic studies have shown that T2DM is closely associated with the development and progression of cancer. T2DM-related hyperinsulinemia, hyperglycemia, and hyperlipidemia contribute to cancer progression through complex signaling pathways. These factors increase drug resistance, apoptosis resistance, and the migration, invasion, and proliferation of cancer cells. Here, we will focus on the role of hyperinsulinemia, hyperglycemia, and hyperlipidemia associated with T2DM in cancer development. Additionally, we will elucidate the potential molecular mechanisms underlying their effects on cancer progression. We aim to identify potential therapeutic targets for T2DM-related malignancies and explore relevant directions for future investigation.
Collapse
Affiliation(s)
- Yu-Yuan Zhang
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, China
| | - Yong-Jiang Li
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, China
| | - Chun-Dong Xue
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, China
| | - Shen Li
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
| | - Zheng-Nan Gao
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
| | - Kai-Rong Qin
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
8
|
Liu M, Jiang H, Momeni MR. Epigenetic regulation of autophagy by non-coding RNAs and exosomal non-coding RNAs in colorectal cancer: A narrative review. Int J Biol Macromol 2024; 273:132732. [PMID: 38823748 DOI: 10.1016/j.ijbiomac.2024.132732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
One of the major diseases affecting people globally is colorectal cancer (CRC), which is primarily caused by a lack of effective medical treatment and a limited understanding of its underlying mechanisms. Cellular autophagy functions to break down and eliminate superfluous proteins and substances, thereby facilitating the continual replacement of cellular elements and generating vital energy for cell processes. Non-coding RNAs and exosomal ncRNAs have a crucial impact on regulating gene expression and essential cellular functions such as autophagy, metastasis, and treatment resistance. The latest research has indicated that specific ncRNAs and exosomal ncRNA to influence the process of autophagy in CRC cells, which could have significant consequences for the advancement and treatment of this disease. It has been determined that a variety of ncRNAs have a vital function in regulating the genes essential for the formation and maturation of autophagosomes. Furthermore, it has been confirmed that ncRNAs have a considerable influence on the signaling pathways associated with autophagy, such as those involving AMPK, AKT, and mTOR. Additionally, numerous ncRNAs have the potential to affect specific genes involved in autophagy. This study delves into the control mechanisms of ncRNAs and exosomal ncRNAs and examines how they simultaneously influence autophagy in CRC.
Collapse
Affiliation(s)
- Minghua Liu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Hongfang Jiang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| | - Mohammad Reza Momeni
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
9
|
Luo Y, Fujiwara-Tani R, Kawahara I, Goto K, Nukaga S, Nishida R, Nakashima C, Sasaki T, Miyagawa Y, Ogata R, Fujii K, Ohmori H, Kuniyasu H. Cancerous Conditions Accelerate the Aging of Skeletal Muscle via Mitochondrial DNA Damage. Int J Mol Sci 2024; 25:7060. [PMID: 39000167 PMCID: PMC11241065 DOI: 10.3390/ijms25137060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Skeletal muscle aging and sarcopenia result in similar changes in the levels of aging markers. However, few studies have examined cancer sarcopenia from the perspective of aging. Therefore, this study investigated aging in cancer sarcopenia and explored its causes in vitro and in vivo. In mouse aging, in vitro cachexia, and mouse cachexia models, skeletal muscles showed similar changes in aging markers including oxidative stress, fibrosis, reduced muscle differentiation potential, and telomere shortening. Furthermore, examination of mitochondrial DNA from skeletal muscle revealed a 5 kb deletion in the major arc; truncation of complexes I, IV, and V in the electron transport chain; and reduced oxidative phosphorylation (OXPHOS). The mouse cachexia model demonstrated high levels of high-mobility group box-1 (HMGB1) and tumor necrosis factor-α (TNFα) in cancer ascites. Continuous administration of neutralizing antibodies against HMGB1 and TNFα in this model reduced oxidative stress and abrogated mitochondrial DNA deletion. These results suggest that in cancer sarcopenia, mitochondrial oxidative stress caused by inflammatory cytokines leads to mitochondrial DNA damage, which in turn leads to decreased OXPHOS and the promotion of aging.
Collapse
Grants
- 21K06926 Ministry of Education, Culture, Sports, Science and Technology
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 22K11423 Ministry of Education, Culture, Sports, Science and Technology
- 22K17655 Ministry of Education, Culture, Sports, Science and Technology
- 23K16547 Ministry of Education, Culture, Sports, Science and Technology
- 21K11223 Ministry of Education, Culture, Sports, Science and Technology
- 23K10481 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Yi Luo
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Shota Nukaga
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Ryoichi Nishida
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Chie Nakashima
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Yoshihiro Miyagawa
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| |
Collapse
|
10
|
Ryan AT, Kim M, Lim K. Immune Cell Migration to Cancer. Cells 2024; 13:844. [PMID: 38786066 PMCID: PMC11120175 DOI: 10.3390/cells13100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Immune cell migration is required for the development of an effective and robust immune response. This elegant process is regulated by both cellular and environmental factors, with variables such as immune cell state, anatomical location, and disease state that govern differences in migration patterns. In all cases, a major factor is the expression of cell surface receptors and their cognate ligands. Rapid adaptation to environmental conditions partly depends on intrinsic cellular immune factors that affect a cell's ability to adjust to new environment. In this review, we discuss both myeloid and lymphoid cells and outline key determinants that govern immune cell migration, including molecules required for immune cell adhesion, modes of migration, chemotaxis, and specific chemokine signaling. Furthermore, we summarize tumor-specific elements that contribute to immune cell trafficking to cancer, while also exploring microenvironment factors that can alter these cellular dynamics within the tumor in both a pro and antitumor fashion. Specifically, we highlight the importance of the secretome in these later aspects. This review considers a myriad of factors that impact immune cell trajectory in cancer. We aim to highlight the immunotherapeutic targets that can be harnessed to achieve controlled immune trafficking to and within tumors.
Collapse
Affiliation(s)
- Allison T. Ryan
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Kihong Lim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
11
|
Fujiwara-Tani R, Sasaki T, Bhawal UK, Mori S, Ogata R, Sasaki R, Ikemoto A, Kishi S, Fujii K, Ohmori H, Sho M, Kuniyasu H. Nuclear MAST4 Suppresses FOXO3 through Interaction with AKT3 and Induces Chemoresistance in Pancreatic Ductal Carcinoma. Int J Mol Sci 2024; 25:4056. [PMID: 38612866 PMCID: PMC11012408 DOI: 10.3390/ijms25074056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly malignant, with a 5-year survival rate of less than 10%. Furthermore, the acquisition of anticancer drug resistance makes PDAC treatment difficult. We established MIA-GEM cells, a PDAC cell line resistant to gemcitabine (GEM), a first-line anticancer drug, using the human PDAC cell line-MIA-PaCa-2. Microtubule-associated serine/threonine kinase-4 (MAST4) expression was increased in MIA-GEM cells compared with the parent cell line. Through inhibitor screening, dysregulated AKT signaling was identified in MIA-GEM cells with overexpression of AKT3. MAST4 knockdown effectively suppressed AKT3 overexpression, and both MAST4 and AKT3 translocation into the nucleus, phosphorylating forkhead box O3a (FOXO3) in MIA-GEM cells. Modulating FOXO3 target gene expression in these cells inhibited apoptosis while promoting stemness and proliferation. Notably, nuclear MAST4 demonstrated higher expression in GEM-resistant PDAC cases compared with that in the GEM-sensitive cases. Elevated MAST4 expression correlated with a poorer prognosis in PDAC. Consequently, nuclear MAST4 emerges as a potential marker for GEM resistance and poor prognosis, representing a novel therapeutic target for PDAC.
Collapse
Grants
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
- 23K10481 Ministry of Education, Culture, Sports, Science and Technology
- 22K11396 Ministry of Education, Culture, Sports, Science and Technology
- 21K11223 Ministry of Education, Culture, Sports, Science and Technology
- 22H04922 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (T.S.); (S.M.); (R.O.); (A.I.); (S.K.); (K.F.); (H.O.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (T.S.); (S.M.); (R.O.); (A.I.); (S.K.); (K.F.); (H.O.)
| | - Ujjal Kumar Bhawal
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan;
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (T.S.); (S.M.); (R.O.); (A.I.); (S.K.); (K.F.); (H.O.)
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (T.S.); (S.M.); (R.O.); (A.I.); (S.K.); (K.F.); (H.O.)
| | - Rika Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (T.S.); (S.M.); (R.O.); (A.I.); (S.K.); (K.F.); (H.O.)
| | - Ayaka Ikemoto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (T.S.); (S.M.); (R.O.); (A.I.); (S.K.); (K.F.); (H.O.)
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (T.S.); (S.M.); (R.O.); (A.I.); (S.K.); (K.F.); (H.O.)
- Pathology Laboratory, Research Institute, Tokushukai Nozaki Hospital, 2-10-50 Tanigawa, Daito 574-0074, Osaka, Japan
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (T.S.); (S.M.); (R.O.); (A.I.); (S.K.); (K.F.); (H.O.)
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (T.S.); (S.M.); (R.O.); (A.I.); (S.K.); (K.F.); (H.O.)
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, Kashihara 634-8522, Nara, Japan;
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (T.S.); (S.M.); (R.O.); (A.I.); (S.K.); (K.F.); (H.O.)
| |
Collapse
|
12
|
Fujii K, Fujiwara-Tani R, Nukaga S, Ohmori H, Luo Y, Nishida R, Sasaki T, Miyagawa Y, Nakashima C, Kawahara I, Ogata R, Ikemoto A, Sasaki R, Kuniyasu H. Involvement of Ferroptosis Induction and Oxidative Phosphorylation Inhibition in the Anticancer-Drug-Induced Myocardial Injury: Ameliorative Role of Pterostilbene. Int J Mol Sci 2024; 25:3015. [PMID: 38474261 DOI: 10.3390/ijms25053015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/25/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Patients with cancer die from cardiac dysfunction second only to the disease itself. Cardiotoxicity caused by anticancer drugs has been emphasized as a possible cause; however, the details remain unclear. To investigate this mechanism, we treated rat cardiomyoblast H9c2 cells with sunitinib, lapatinib, 5-fluorouracil, and cisplatin to examine their effects. All anticancer drugs increased ROS, lipid peroxide, and iron (II) levels in the mitochondria and decreased glutathione peroxidase-4 levels and the GSH/GSSG ratio. Against this background, mitochondrial iron (II) accumulates through the unregulated expression of haem oxygenase-1 and ferrochelatase. Anticancer-drug-induced cell death was suppressed by N-acetylcysteine, deferoxamine, and ferrostatin, indicating ferroptosis. Anticancer drug treatment impairs mitochondrial DNA and inhibits oxidative phosphorylation in H9c2 cells. Similar results were observed in the hearts of cancer-free rats treated with anticancer drugs in vitro. In contrast, treatment with pterostilbene inhibited the induction of ferroptosis and rescued the energy restriction induced by anticancer drugs both in vitro and in vivo. These findings suggest that induction of ferroptosis and inhibition of oxidative phosphorylation are mechanisms by which anticancer drugs cause myocardial damage. As pterostilbene ameliorates these mechanisms, it is expected to have significant clinical applications.
Collapse
Grants
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
- 23K10481 Ministry of Education, Culture, Sports, Science and Technology
- 21K06926 Ministry of Education, Culture, Sports, Science and Technology
- 21K11223 Ministry of Education, Culture, Sports, Science and Technology
- 22K11423 Ministry of Education, Culture, Sports, Science and Technology
- 23K16547 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Shota Nukaga
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Ryoichi Nishida
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Yoshihiro Miyagawa
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Ayaka Ikemoto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Rika Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| |
Collapse
|
13
|
Nishiguch Y, Fujiwara-Tani R, Nukaga S, Nishida R, Ikemoto A, Sasaki R, Mori S, Ogata R, Kishi S, Hojo Y, Shinohara H, Sho M, Kuniyasu H. Pterostilbene Induces Apoptosis from Endoplasmic Reticulum Stress Synergistically with Anticancer Drugs That Deposit Iron in Mitochondria. Int J Mol Sci 2024; 25:2611. [PMID: 38473857 DOI: 10.3390/ijms25052611] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Anticancer agents are playing an increasing role in the treatment of gastric cancer (GC); however, novel anticancer agents have not been fully developed. Therefore, it is important to investigate compounds that improve sensitivity to the existing anticancer drugs. We have reported that pterostilbene (PTE), a plant stilbene, enhances the antitumor effect of low doses of sunitinib in gastric cancer cells accumulating mitochondrial iron (II) (mtFe) at low doses. In this study, we investigated the relationship between the mtFe deposition and the synergistic effect of PTE and different anticancer drugs. For this study, we used 5-fluorouracil (5FU), cisplatin (CPPD), and lapatinib (LAP), which are frequently used in the treatment of GC, and doxorubicin (DOX), which is known to deposit mtFe. A combination of low-dose PTE and these drugs suppressed the expression of PDZ domain-containing 8 (PDZD8) and increased mtFe accumulation and mitochondrial H2O2. Consequently, reactive oxygen species-associated hypoxia inducible factor-1α activation induced endoplasmic reticulum stress and led to apoptosis, but not ferroptosis. In contrast, 5FU and CDDP did not show the same changes as those observed with PTE and DOX or LAP, and there was no synergistic effect with PTE. These results indicate that the combination of PTE with iron-accumulating anticancer drugs exhibits a strong synergistic effect. These findings would help in developing novel therapeutic strategies for GC. However, further clinical investigations are required.
Collapse
Grants
- 22K16497 Ministry of Education, Culture, Sports, Science and Technology
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 23K19900 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Yukiko Nishiguch
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Shota Nukaga
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Ryoichi Nishida
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Ayaka Ikemoto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Rika Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
- Pathology Laboratory, Research Institute, Tokushukai Nozaki Hospital, 2-10-50 Tanigawa, Daito 574-0074, Osaka, Japan
| | - Yudai Hojo
- Department of Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Hyogo, Japan
| | - Hisashi Shinohara
- Department of Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Hyogo, Japan
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, Kashihara 634-8522, Nara, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| |
Collapse
|
14
|
Gyoten M, Luo Y, Fujiwara-Tani R, Mori S, Ogata R, Kishi S, Kuniyasu H. Lovastatin Treatment Inducing Apoptosis in Human Pancreatic Cancer Cells by Inhibiting Cholesterol Rafts in Plasma Membrane and Mitochondria. Int J Mol Sci 2023; 24:16814. [PMID: 38069135 PMCID: PMC10706654 DOI: 10.3390/ijms242316814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Resistance to anticancer drugs is a problem in the treatment of pancreatic ductal carcinoma (PDAC) and overcoming it is an important issue. Recently, it has been reported that statins induce apoptosis in cancer cells but the mechanism has not been completely elucidated. We investigated the antitumor mechanisms of statins against PDAC and their impact on resistance to gemcitabine (GEM). Lovastatin (LOVA) increased mitochondrial oxidative stress in PDAC cells, leading to apoptosis. LOVA reduced lipid rafts in the plasma membrane and mitochondria, suppressed the activation of epithelial growth factor receptor (EGFR) and AKT in plasma membrane rafts, and reduced B-cell lymphoma 2 (BCL2)-Bcl-2-associated X protein (BAX) binding and the translocation of F1F0 ATPase in mitochondrial rafts. In the three GEM-resistant cell lines derived from MIA and PANC1, the lipid rafts in the cell membrane and the mitochondria were increased to activate EGFR and AKT and to increase BCL2-BAX binding, which suppressed apoptosis. LOVA abrogated these anti-apoptotic effects by reducing the rafts in the resistant cells. By treating the resistant cells with LOVA, GEM sensitivity improved to the level of the parental cells. Therefore, cholesterol rafts contribute to drug resistance in PDAC. Further clinical research is warranted on overcoming anticancer drug resistance by statin-mediated intracellular cholesterol regulation.
Collapse
Grants
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
- 23K16621 Ministry of Education, Culture, Sports, Science and Technology
- 23K19900 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Momoko Gyoten
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (M.G.); (Y.L.); (S.M.); (R.O.); (S.K.)
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (M.G.); (Y.L.); (S.M.); (R.O.); (S.K.)
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (M.G.); (Y.L.); (S.M.); (R.O.); (S.K.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (M.G.); (Y.L.); (S.M.); (R.O.); (S.K.)
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (M.G.); (Y.L.); (S.M.); (R.O.); (S.K.)
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (M.G.); (Y.L.); (S.M.); (R.O.); (S.K.)
- Research Institute, Nozaki Tokushukai Hospital, 2-10-50 Tanigawa, Daito 574-0074, Osaka, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (M.G.); (Y.L.); (S.M.); (R.O.); (S.K.)
| |
Collapse
|
15
|
Liao WL, Lin H, Li YH, Yang TY, Chen MC. RAGE potentiates EGFR signaling and interferes with the anticancer effect of gefitinib on NSCLC cells. Am J Physiol Cell Physiol 2023; 325:C1313-C1325. [PMID: 37746694 DOI: 10.1152/ajpcell.00494.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
The receptor for advanced glycation end-products (RAGE) has been implicated in tumorigenesis, whereas epidermal growth factor receptor (EGFR) signaling plays a vital role in lung cancer progression. Both RAGE and EGFR are transmembrane receptors that transmit intracellular signals through ligand binding, and their downstream signaling cascades show substantial overlap. However, the interplay between these two molecules remains poorly understood. In the present study, we evaluated the correlation between RAGE and EGFR in the tumorigenesis of non-small cell lung cancer (NSCLC) and evaluated the impact of RAGE on the response of NSCLC cells to gefitinib, an EGFR-tyrosine kinase inhibitor (TKI). The expression and activation of EGFR and the phosphorylation of its downstream molecules, signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase (Erk), were increased in RAGE-overexpressed A549 (A549-RAGE) cells. Notably, ligand-triggered activation of EGFR signaling was significantly greater in A549-RAGE compared with A549-parental cells. In addition, gefitinib had less effect on the inhibition of EGFR signaling in A549-RAGE cells. These findings were validated in other NSCLC cell lines, H1299 and H1975. Furthermore, upon gefitinib administration, the antiapoptotic marker B-cell lymphoma 2 (Bcl-2) expression was upregulated in A549-RAGE cells, whereas the apoptotic markers Bcl-2 associated X protein (Bax) and Bcl-2 interacting mediator (Bim) remained at lower levels compared with A549-parental cells. Importantly, our findings provide evidence that RAGE interferes with the anticancer effect of gefitinib by modulating the activation of EGFR-STAT3 and EGFR-Erk pathways. Overall, these significant findings deepen our understanding of the intricate relationship between RAGE and EGFR signaling in NSCLC tumorigenesis and provide new considerations for the clinical treatment of NSCLC.NEW & NOTEWORTHY This study represents a pioneering endeavor in comprehending the intricate interplay between RAGE and EGFR signaling within NSCLC. The findings reveal that RAGE serves to enhance EGFR phosphorylation and activation, consequently modulating apoptosis regulators through the EGFR-STAT3 and EGFR-Erk1/2 signaling pathways. Through this mechanism, RAGE potentially imparts resistance to the toxicity induced by EGFR-TKIs in NSCLC cells.
Collapse
Affiliation(s)
- Wan-Ling Liao
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Hsuan Li
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Ying Yang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Mei-Chih Chen
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
16
|
Chang TY, Lan KC, Wu CH, Sheu ML, Yang RS, Liu SH. Nε-(1-Carboxymethyl)-L-lysine, an advanced glycation end product, exerts malignancy on chondrosarcoma via the activation of cancer stemness. Arch Toxicol 2023; 97:2231-2244. [PMID: 37314482 DOI: 10.1007/s00204-023-03539-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
Despite epidemiological evidence that suggests diabetes mellitus is a risk factor for cancer, the link between diabetes mellitus and primary bone cancer is rarely discussed. Chondrosarcomas are primary malignant cartilage tumors with poor prognosis and high metastatic potential. It remains unclear whether hyperglycemia affects the stemness and malignancy of chondrosarcoma cells. Nε-(1-Carboxymethyl)-L-lysine (CML), an advanced glycation end product (AGE), is a major immunological epitope detected in the tissue proteins of diabetic patients. We hypothesized that CML could enhance cancer stemness in chondrosarcoma cells. CML enhanced tumor-sphere formation and the expression of cancer stem cell markers in human chondrosarcoma cell lines. Migration and invasion ability and the epithelial-mesenchymal transition (EMT) process were also induced by CML treatment. Moreover, CML increased the protein expression levels of the receptor for AGE (RAGE), phosphorylated NFκB-p65, and decreased the phosphorylation of AKT and GSK-3. We also found that hyperglycemia with high CML levels facilitated tumor metastasis, whereas tumor growth was not affected in the streptozotocin (STZ)-induced diabetic NOD/SCID tumor xenograft mouse models. Our results indicate that CML enhances chondrosarcoma stemness and metastasis, which may reveal the relationship between AGE and bone cancer metastasis.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Cheng Lan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Hung Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Rong-Sen Yang
- Department of Orthopedics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shing-Hwa Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei, Taiwan.
| |
Collapse
|
17
|
DU K, Wu X, Ji X, Liang N, Li Z. Early growth response 1 promoted the invasion of glioblastoma multiforme by elevating HMGB1. J Neurosurg Sci 2023; 67:422-430. [PMID: 33297605 DOI: 10.23736/s0390-5616.20.05107-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common and deadly glioma subtype. Early growth response 1 (EGR1) participates in the progression of several cancer types, but the expression and function of EGR1 in GBM was rarely investigated. METHODS The expressions of EGR1 in GBM were detected with qRT-PCR and immunohistochemistry in 12 pairs of fresh GBM tissues and 116 paraffin-embedded specimens. The patients were divided into high and low EGR1 groups according to the IHC score of EGR1, and the prognostic significances of different groups were evaluated with univariate and multivariate analyses. With in-vitro experiments, we assessed the role of EGR1 in the proliferation and invasion of GBM cells. RESULTS In our study, EGR1 was up-regulated in GBM tissues compared with tumor-adjacent normal tissues. High expression of EGR1 or HMGB1 were unfavorable prognostic biomarkers of GBM. Coexpression of EGR1 and HMGB1 could predict the prognosis of GBM more sensitively. EGR1 facilitated the proliferation and invasion of GBM cells. Moreover, EGR1 promoted the invasion, instead of proliferation, of GBM cells by elevating the expression of HMGB1. CONCLUSIONS ERG1 was a prognostic biomarker of GBM, and ERG1 and HMGB1 synergistically could predict the GBM prognosis more precisely. ERG1 could promote GBM cell invasion by inducing HMGB1 expression.
Collapse
Affiliation(s)
- Kai DU
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, China
| | - Xiaoyou Wu
- Department of Pediatrics, Yidu Central Hospital of Weifang, Weifang, China
| | - Xiaofei Ji
- Department of Pediatrics, Yidu Central Hospital of Weifang, Weifang, China
| | - Nan Liang
- Department of Neurosurgery, the Second Hospital of Shandong First Medical University, Taian, China
| | - Zheng Li
- Department of Neurosurgery, the Second Hospital of Shandong First Medical University, Taian, China -
| |
Collapse
|
18
|
Magna M, Hwang GH, McIntosh A, Drews-Elger K, Takabatake M, Ikeda A, Mera BJ, Kwak T, Miller P, Lippman ME, Hudson BI. RAGE inhibitor TTP488 (Azeliragon) suppresses metastasis in triple-negative breast cancer. NPJ Breast Cancer 2023; 9:59. [PMID: 37443146 DOI: 10.1038/s41523-023-00564-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic cancer subtype, which is generally untreatable once it metastasizes. We hypothesized that interfering with the Receptor for Advanced Glycation End-products (RAGE) signaling with the small molecule RAGE inhibitors (TTP488/Azeliragon and FPS-ZM1) would impair TNBC metastasis and impair fundamental mechanisms underlying tumor progression and metastasis. Both TTP488 and FPS-ZM1 impaired spontaneous and experimental metastasis of TNBC models, with TTP488 reducing metastasis to a greater degree than FPS-ZM1. Transcriptomic analysis of primary xenograft tumor and metastatic tissue revealed high concordance in gene and protein changes with both drugs, with TTP488 showing greater potency against metastatic driver pathways. Phenotypic validation of transcriptomic analysis by functional cell assays revealed that RAGE inhibition impaired TNBC cell adhesion to multiple extracellular matrix proteins (including collagens, laminins, and fibronectin), migration, and invasion. Neither RAGE inhibitor impaired cellular viability, proliferation, or cell cycle in vitro. Proteomic analysis of serum from tumor-bearing mice revealed RAGE inhibition affected metastatic driver mechanisms, including multiple cytokines and growth factors. Further mechanistic studies by phospho-proteomic analysis of tumors revealed RAGE inhibition led to decreased signaling through critical BC metastatic driver mechanisms, including Pyk2, STAT3, and Akt. These results show that TTP488 impairs metastasis of TNBC and further clarifies the signaling and cellular mechanisms through which RAGE mediates metastasis. Importantly, as TTP488 displays a favorable safety profile in human studies, our study provides the rationale for evaluating TTP488 in clinical trials to treat or prevent metastatic TNBC.
Collapse
Affiliation(s)
- Melinda Magna
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Gyong Ha Hwang
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alec McIntosh
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Katherine Drews-Elger
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Masaru Takabatake
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Adam Ikeda
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Barbara J Mera
- Department of Cell Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Taekyoung Kwak
- Department of Cell Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Philip Miller
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Marc E Lippman
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Barry I Hudson
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA.
- Department of Cell Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
19
|
Dorf J, Pryczynicz A, Matowicka-Karna J, Zaręba K, Żukowski P, Zalewska A, Maciejczyk M. Could circulating biomarkers of nitrosative stress and protein glycoxidation be useful in patients with gastric cancer? Front Oncol 2023; 13:1213802. [PMID: 37503318 PMCID: PMC10369187 DOI: 10.3389/fonc.2023.1213802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Background Nitrosative stress leads to protein glycoxidation, but both processes may be strongly related to the cancer development. Therefore, the aim of this study was to assess the nitrosative stress and protein glycoxidation products in patients with gastric cancer in comparison with healthy controls. We are also the first to evaluate the diagnostic utility of nitrosative stress and protein glycoxidation markers in gastric cancer patients in respect to histopathological classifications (TNM, Lauren's and Goseki's classification) and histopathological parameters such as histological type, histological differentiation grade, presence of vascular or neural invasion, desmoplasia and Helicobacter pylori infection. Methods The study included 50 patients with gastric cancer and 50 healthy controls matched for sex and age. Nitrosative stress parameters and protein glycoxidation products were measured colorimetrically/fluorometrically in plasma or serum samples. Student's t-test or Mann-Whitney U-test were used for statistical analysis. Results NO, S-nitrosothiols, nitrotyrosine, kynurenine, N-formylkynurenine, dityrosine, AGE and Amadori products were significantly increased whereas tryptophan fluorescence was decreased in patients with gastric cancer compared to the healthy control. Nitrosative stress and glycoxidation products may be useful in diagnosis of gastric cancer because they differentiate patients with gastric cancer from healthy individuals with high sensitivity and specificity. Some of the determined parameters are characterised by high AUC value in differentiation of GC patients according to the histopathological parameters. Conclusions Gastric cancer is associated with enhanced circulating nitrosative stress and protein glycation. Although further research on a tissue model is needed, plasma/serum biomarkers may be dependent on tumour size, histological type, tumour invasion depth, presence of lymph node and distant metastasis, vascular and neural invasion and Helicobacter pylori infection. Thus, circulating biomarkers of nitrosative stress/protein glycoxidation may have potential diagnostic significance in gastric cancer patients.
Collapse
Affiliation(s)
- Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Anna Pryczynicz
- Department of General Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Konrad Zaręba
- 2 Clinical Department of General and Gastroenterological Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Żukowski
- Department of Restorative Dentistry, Croydon University Hospital, Croydon, United Kingdom
| | - Anna Zalewska
- Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
20
|
Dai X, Hou Y, Deng T, Lin G, Cao Y, Yu G, Wei W, Zheng Q, Huang L, Ma S. A specific RAGE-binding peptide inhibits triple negative breast cancer growth through blocking of Erk1/2/NF-κB pathway. Eur J Pharmacol 2023; 954:175861. [PMID: 37380046 DOI: 10.1016/j.ejphar.2023.175861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive cancer that poses a significant threat to women's health. Unfortunately, the lack of clinical targets leads the poor clinical outcomes in TNBC. Many cancers demonstrate overexpression of receptor for advanced glycation end products (RAGE), which can contribute to cancer progression. Despite the potential therapeutic value of blocking RAGE for TNBC treatment, effective peptide drugs have yet to be developed. In our study, we observed that RAGE was highly expressed in TNBC and was associated with poor disease progression. We subsequently investigated the antitumor effects and underlying mechanisms of the RAGE antagonist peptide RP7 in both in vitro and in vivo models of TNBC. Our study revealed that RP7 selectively binds to RAGE-overexpressing TNBC cell lines, including MDA-MB-231 and BT549, and significantly inhibits cell viability, migration, and invasion in both cell lines. Furthermore, RP7-treatment suppressed tumor growth in TNBC xenograft mouse models without inducing detectable toxicity in normal tissues. Mechanistically, RP7 was found to inhibit the phosphorylation of ERK1/2, IKKα/β, IKBα, and p65 to block the NF-κB pathway, prevent the entry of p65 into the nucleus, decrease the protein expression of Bcl-2 and HMGB1, and promote the release of cytochrome C from the mitochondria into the cytoplasm. These effects were observed to activate apoptosis and inhibit epithelial-mesenchymal transition (EMT) in TNBC cells. This study highlights RAGE as a candidate therapeutic target for TNBC treatment and suggests that the RAGE antagonist peptide RP7 is a promising anticancer drug for TNBC.
Collapse
Affiliation(s)
- Xiaoyong Dai
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Yibo Hou
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Ting Deng
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Gaoyang Lin
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Yuanxiong Cao
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Guiyuan Yu
- Shenzhen Maternal and Child Health Hospital Affiliated to Southern Medical University, Shenzhen, Guangdong, China
| | - Wei Wei
- The Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Qing Zheng
- College of Pharmacy, Jinan University, 510632 Guangzhou, Guangdong, People's Republic of China
| | - Laiqiang Huang
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
21
|
Mori S, Fujiwara-Tani R, Gyoten M, Nukaga S, Sasaki R, Ikemoto A, Ogata R, Kishi S, Fujii K, Kuniyasu H. Berberine Induces Combined Cell Death in Gastrointestinal Cell Lines. Int J Mol Sci 2023; 24:ijms24076588. [PMID: 37047563 PMCID: PMC10094831 DOI: 10.3390/ijms24076588] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Berberine (BBR) is a plant alkaloid that has various biological activities. The effects of BBR on gastrointestinal cancer (GIC) have also been investigated and anti-tumor effects such as induction of cell death have been reported. However, the mechanism of BBR-induced cell death has not been fully elucidated. To this end, we investigated the effects of BBR using three GIC cell lines. Our analyses revealed that BBR inhibited cell proliferation, invasion, sphere formation, and anticancer drug resistance in all of the cell lines. BBR also induced an increase in mitochondrial superoxide, lipid peroxide and Fe2+ levels, decreased mitochondrial membrane potential and respiration, decreased glutathione peroxidase 4 expression and glutathione and induced Parkin/PINK1-associated mitophagy. BBR, as well as rotenone, inhibited mitochondrial complex I and enhanced complex II, which were associated with autophagy, reactive oxidative species production, and cell death. Inhibition of complex II by malonate abrogated these changes. BBR-induced cell death was partially rescued by ferrostatin-1, deferoxamine, Z-VAD-FMK, and ATG5 knockdown. Furthermore, oral administration of BBR significantly reduced tumor weight and ascites in a syngeneic mouse peritoneal metastasis model using CT26 GIC cells. These findings suggest that BBR induced a combined type of cell death via complex I inhibition and autophagy. The marked anti-tumor and anti-stemness effects are expected to be useful as a new cell death-inducing agent for the treatment of GIC.
Collapse
Affiliation(s)
- Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Momoko Gyoten
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Shota Nukaga
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Rika Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Ayaka Ikemoto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| |
Collapse
|
22
|
Chen MC, Yang BZ, Kuo WW, Wu SH, Wang TF, Yeh YL, Chen MC, Huang CY. The involvement of Aurora-A and p53 in oxaliplatin-resistant colon cancer cells. J Cell Biochem 2023; 124:619-632. [PMID: 36976911 DOI: 10.1002/jcb.30394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/11/2022] [Accepted: 02/24/2023] [Indexed: 03/30/2023]
Abstract
Resistance to chemotherapy is the deadlock in cancer treatment. In this study, we used wild-type LOVO (LOVOWT ), a human colon cancer cell line, and the oxaliplatin-resistant sub-clone LOVOOR cells to investigate the molecular mechanisms of the development of drug resistance in colon cancer. Compared with LOVOWT cells, LOVOOR cells had a high proliferation capacity and a high percentage on the G2/M phase. The expression and activation of Aurora-A, a critical kinase in G2/M phase, were higher in LOVOOR cells than in LOVOWT cells. The results from immunofluorescence indicated an irregular distribution of Aurora-A in LOVOOR cells. To evaluate the importance of Aurora-A in oxaliplatin-resistant property of LOVOOR cells, overexpression of Aurora-A in LOVOWT cells and otherwise knockdown of Aurora-A in LOVOOR cells were performed and followed by administration of oxaliplatin. The results indicated that Aurora-A might contribute to the resistance of LOVOOR cells to oxaliplatin treatment by depressing p53 signaling. The specific findings in this study provide a possibility that targeting Aurora-A might be a solution for patients who have failed oxaliplatin treatment.
Collapse
Affiliation(s)
- Mei-Chih Chen
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
- Department of nursing, Asia University, Taichung, Taiwan
| | - Bing-Ze Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shih-Hsin Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien, Taiwan
| | - Yu-Lan Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Science, Holistic Education Center, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
23
|
Rojas A, Lindner C, Schneider I, González I, Morales MA. Contributions of the receptor for advanced glycation end products axis activation in gastric cancer. World J Gastroenterol 2023; 29:997-1010. [PMID: 36844144 PMCID: PMC9950863 DOI: 10.3748/wjg.v29.i6.997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 01/11/2023] [Indexed: 02/10/2023] Open
Abstract
Compelling shreds of evidence derived from both clinical and experimental research have demonstrated the crucial contribution of receptor for advanced glycation end products (RAGE) axis activation in the development of neoplasms, including gastric cancer (GC). This new actor in tumor biology plays an important role in the onset of a crucial and long-lasting inflammatory milieu, not only by supporting phenotypic changes favoring growth and dissemination of tumor cells, but also by functioning as a pattern-recognition receptor in the inflammatory response to Helicobacter pylori infection. In the present review, we aim to highlight how the overexpression and activation of the RAGE axis contributes to the proliferation and survival of GC cells as and their acquisition of more invasive phenotypes that promote dissemination and metastasis. Finally, the contribution of some single nucleotide polymorphisms in the RAGE gene as susceptibility or poor prognosis factors is also discussed.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Cristian Lindner
- Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Iván Schneider
- Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Ileana González
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Miguel Angel Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| |
Collapse
|
24
|
Faruqui T, Singh G, Khan S, Khan MS, Akhter Y. Differential gene expression analysis of RAGE-S100A6 complex for target selection and the design of novel inhibitors for anticancer drug discovery. J Cell Biochem 2023; 124:205-220. [PMID: 36502516 DOI: 10.1002/jcb.30356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Receptor for advanced glycation end products (RAGE), a member of the immunoglobulin family, interactions with its ligands trigger downstream signaling and induce an inflammatory response linked to diabetes, inflammation, carcinogenesis, cardiovascular disease, and a variety of other human disorders. The interaction of RAGE and S100A6 has been associated with a variety of malignancies. For the control of RAGE-related illnesses, there is a great demand for more specialized drug options. To identify the most effective target for combating human malignancies associated with RAGE-S100A6 complex, we conducted single and differential gene expression analyses of S100A6 and RAGE, comparing normal and malignant tissues. Further, a structure-based virtual screening was conducted using the ZINC15 database. The chosen compounds were then subjected to a molecular docking investigation on the RAGE active site region, recognized by the various cancer-related RAGE ligands. An optimized RAGE structure was screened against a library of drug-like molecules. The screening results suggested that three promising compounds were presented as the top acceptable drug-like molecules with a high binding affinity at the RAGE V-domain catalytic region. We depicted that these compounds may be potential RAGE inhibitors and could be used to produce a successful medication against human cancer and other RAGE-related diseases based on their various assorted parameters, binding energy, hydrogen bonding, ADMET characteristics, etc. MD simulation on a time scale of 50 ns was used to test the stability of the RAGE-inhibitor complexes. Therefore, targeting RAGE and its ligands using these drug-like molecules may be an effective therapeutic approach.
Collapse
Affiliation(s)
- Tabrez Faruqui
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Garima Singh
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Salman Khan
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohd Sajid Khan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
25
|
Sugary drink consumption and the subsequent risk of gastric cancer: The Japan Public Health Center-based Prospective Study. Eur J Clin Nutr 2023; 77:218-225. [PMID: 36167978 DOI: 10.1038/s41430-022-01216-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES Evidence on the association between sugary drink consumption and gastric cancer (GC) risk is limited, especially in Asian populations. This study aimed to investigate the association between consumption of sugary drinks (sugar-sweetened beverages and 100% fruit juices) and GC risk in a Japanese population. SUBJECTS/METHODS This study included 74,455 Japanese individuals aged 45-74 years (35,102 males and 39,353 females) who participated in a population-based cohort study (Japan Public Health Center-based Prospective Study). Sugary drinks were assessed using a food frequency questionnaire. Cox proportional hazard regression was used to obtain hazard ratios (HRs) and 95% confidence intervals (CIs) of GC incidence according to the quintile of sugary drink consumption. RESULTS We identified 2141 patients with GC cases during 16.7 years of follow-up. Sugary drink consumption was not associated with GC risk. The multivariate HR of total, cardia, and non-cardia GC in the highest vs. lowest quintile of sugary drinks consumption in males was 0.98 (95% CI: 0.82-1.17; p-trend 0.48), 0.48 (95% CI: 0.23-0.99; p-trend 0.03), and 1.03 (95% CI: 0.86-1.24; p-trend 0.88), respectively. In females, the respective multivariate HRs were 1.03 (95% CI: 0.79-1.33; p-trend 0.47), 1.28 (95% CI: 0.32-5.12; p-trend 0.53), and 1.01 (95% CI: 0.78-1.32; p-trend 0.56). The results did not change significantly after adjusting for Helicobacter pylori infection and atrophic gastritis status in the subgroup analysis. CONCLUSIONS In this Japanese prospective cohort study, sugary drink consumption was not associated with GC risk.
Collapse
|
26
|
RAGE Inhibitors for Targeted Therapy of Cancer: A Comprehensive Review. Int J Mol Sci 2022; 24:ijms24010266. [PMID: 36613714 PMCID: PMC9820344 DOI: 10.3390/ijms24010266] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin family that is overexpressed in several cancers. RAGE is highly expressed in the lung, and its expression increases proportionally at the site of inflammation. This receptor can bind a variety of ligands, including advanced glycation end products, high mobility group box 1, S100 proteins, adhesion molecules, complement components, advanced lipoxidation end products, lipopolysaccharides, and other molecules that mediate cellular responses related to acute and chronic inflammation. RAGE serves as an important node for the initiation and stimulation of cell stress and growth signaling mechanisms that promote carcinogenesis, tumor propagation, and metastatic potential. In this review, we discuss different aspects of RAGE and its prominent ligands implicated in cancer pathogenesis and describe current findings that provide insights into the significant role played by RAGE in cancer. Cancer development can be hindered by inhibiting the interaction of RAGE with its ligands, and this could provide an effective strategy for cancer treatment.
Collapse
|
27
|
Shkrigunov T, Kisrieva Y, Samenkova N, Larina O, Zgoda V, Rusanov A, Romashin D, Luzgina N, Karuzina I, Lisitsa A, Petushkova N. Comparative proteoinformatics revealed the essentials of SDS impact on HaCaT keratinocytes. Sci Rep 2022; 12:21437. [PMID: 36509991 PMCID: PMC9744838 DOI: 10.1038/s41598-022-25934-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
There is no direct evidence supporting that SDS is a carcinogen, so to investigate this fact, we used HaCaT keratinocytes as a model of human epidermal cells. To reveal the candidate proteins and/or pathways characterizing the SDS impact on HaCaT, we proposed comparative proteoinformatics pipeline. For protein extraction, the performance of two sample preparation protocols was assessed: 0.2% SDS-based solubilization combined with the 1DE-gel concentration (Protocol 1) and osmotic shock (Protocol 2). As a result, in SDS-exposed HaCaT cells, Protocol 1 revealed 54 differentially expressed proteins (DEPs) involved in the disease of cellular proliferation (DOID:14566), whereas Protocol 2 found 45 DEPs of the same disease ID. The 'skin cancer' term was a single significant COSMIC term for Protocol 1 DEPs, including those involved in double-strand break repair pathway (BIR, GO:0000727). Considerable upregulation of BIR-associated proteins MCM3, MCM6, and MCM7 was detected. The eightfold increase in MCM6 level was verified by reverse transcription qPCR. Thus, Protocol 1 demonstrated high effectiveness in terms of the total number and sensitivity of MS identifications in HaCaT cell line proteomic analysis. The utility of Protocol 1 was confirmed by the revealed upregulation of cancer-associated MCM6 in HaCaT keratinocytes induced by non-toxic concentration of SDS. Data are available via ProteomeXchange with identifier PXD035202.
Collapse
Affiliation(s)
- Timur Shkrigunov
- grid.418846.70000 0000 8607 342XCenter of Scientific and Practical Education, Institute of Biomedical Chemistry, Moscow, Russia 119121
| | - Yulia Kisrieva
- grid.418846.70000 0000 8607 342XLaboratory of Microsomal Oxidation, Institute of Biomedical Chemistry, Moscow, Russia 119121
| | - Natalia Samenkova
- grid.418846.70000 0000 8607 342XLaboratory of Microsomal Oxidation, Institute of Biomedical Chemistry, Moscow, Russia 119121
| | - Olesya Larina
- grid.418846.70000 0000 8607 342XLaboratory of Microsomal Oxidation, Institute of Biomedical Chemistry, Moscow, Russia 119121
| | - Victor Zgoda
- grid.418846.70000 0000 8607 342XLaboratory of Systems Biology, Institute of Biomedical Chemistry, Moscow, Russia 119121
| | - Alexander Rusanov
- grid.418846.70000 0000 8607 342XLaboratory of Precision BioSystems, Institute of Biomedical Chemistry, Moscow, Russia 119121
| | - Daniil Romashin
- grid.418846.70000 0000 8607 342XLaboratory of Precision BioSystems, Institute of Biomedical Chemistry, Moscow, Russia 119121
| | - Natalia Luzgina
- grid.418846.70000 0000 8607 342XLaboratory of Precision BioSystems, Institute of Biomedical Chemistry, Moscow, Russia 119121
| | - Irina Karuzina
- grid.418846.70000 0000 8607 342XLaboratory of Microsomal Oxidation, Institute of Biomedical Chemistry, Moscow, Russia 119121
| | - Andrey Lisitsa
- grid.418846.70000 0000 8607 342XCenter of Scientific and Practical Education, Institute of Biomedical Chemistry, Moscow, Russia 119121
| | - Natalia Petushkova
- grid.418846.70000 0000 8607 342XLaboratory of Microsomal Oxidation, Institute of Biomedical Chemistry, Moscow, Russia 119121
| |
Collapse
|
28
|
An Axis between the Long Non-Coding RNA HOXA11-AS and NQOs Enhances Metastatic Ability in Oral Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms231810704. [PMID: 36142607 PMCID: PMC9506332 DOI: 10.3390/ijms231810704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play critical roles in human cancers. HOXA11 anti-sense RNA (HOXA11-AS) is an lncRNA belonging to the homeobox (HOX) gene cluster that promotes liver metastasis in human colon cancer. However, its role and mechanism of action in human oral squamous cell carcinoma (OSCC) are unclear. In this study, we investigated HOXA11-AS expression and function in human OSCC tissues and cell lines, as well as a mouse model of OSCC. Our analyses showed that HOXA11-AS expression in human OSCC cases correlates with lymph node metastasis, nicotinamide adenine dinucleotide (NAD)(P)H: quinone oxidoreductase 1 (NQO1) upregulation, and dihydronicotinamide riboside (NRH): quinone oxidoreductase 2 (NQO2) downregulation. Using the human OSCC cell lines HSC3 and HSC4, we demonstrate that HOXA11-AS promotes NQO1 expression by sponging microRNA-494. In contrast, HOXA11-AS recruits zeste homolog 2 (EZH2) to the NQO2 promoter to suppress its expression via the trimethylation of H3K27. The upregulation of NQO1 enzymatic activity by HOXA11-AS results in the consumption of flavin adenine dinucleotide (FAD), which reduces FAD-requiring glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity and suppresses glycolysis. However, our analyses show that lactic acid fermentation levels are preserved by glutaminolysis due to increased malic enzyme-1 expression, promoting enhanced proliferation, invasion, survival, and drug resistance. In contrast, suppression of NQO2 expression reduces the consumption of NRH via NQO2 enzymatic activity and increases NAD levels, which promotes enhanced stemness and metastatic potential. In mouse tumor models, knockdown of HOXA11-AS markedly suppressed tumor growth and lung metastasis. From these findings, targeting HOXA11-AS may strongly suppress high-grade OSCC by regulating both NQO1 and NQO2.
Collapse
|
29
|
Fujiwara-Tani R, Sasaki T, Takagi T, Mori S, Kishi S, Nishiguchi Y, Ohmori H, Fujii K, Kuniyasu H. Gemcitabine Resistance in Pancreatic Ductal Carcinoma Cell Lines Stems from Reprogramming of Energy Metabolism. Int J Mol Sci 2022; 23:ijms23147824. [PMID: 35887170 PMCID: PMC9323155 DOI: 10.3390/ijms23147824] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with poor prognosis because it is often detected at an advanced stage, and drug resistance interferes with treatment. However, the mechanism underlying drug resistance in PDAC remains unclear. Here, we investigated metabolic changes between a parental PDAC cell line and a gemcitabine (GEM)-resistant PDAC cell line. We established a GEM-resistant cell line, MIA-G, from MIA-PaCa-2 parental (MIA-P) cells using continuous therapeutic-dose GEM treatment. MIA-G cells were also more resistant to 5-fluorouracil in comparison to MIA-P cells. Metabolic flux analysis showed a higher oxygen consumption rate (OCR) in MIA-G cells than in MIA-P cells. Notably, OCR was suppressed by GEM treatment only in MIA-G cells. GEM treatment increased mitochondrial membrane potential and mitochondrial reactive oxygen species (ROS) in MIA-P cells, but not in MIA-G cells. Glutamine uptake and peroxidase levels were elevated in MIA-G cells. The antioxidants N-acetyl-L-cysteine and vitamin C increased the sensitivity to GEM in both cell lines. In MIA-G cells, the expression of the mitochondrial transcription factor A also decreased. Furthermore, rotenone reduced the sensitivity of MIA-P cells to GEM. These findings suggest that the suppression of oxidative phosphorylation contributes to GEM resistance by reducing ROS production. Our study provides a new approach for reducing GEM resistance in PDAC.
Collapse
Affiliation(s)
- Rina Fujiwara-Tani
- Correspondence: (R.F.-T.); (H.K.); Tel.: +81-744-22-3051 (R.F.-T. & H.K.); Fax: +81-744-25-7308 (R.F.-T. & H.K.)
| | | | | | | | | | | | | | | | - Hiroki Kuniyasu
- Correspondence: (R.F.-T.); (H.K.); Tel.: +81-744-22-3051 (R.F.-T. & H.K.); Fax: +81-744-25-7308 (R.F.-T. & H.K.)
| |
Collapse
|
30
|
Li L, Beeraka NM, Xie L, Dong L, Liu J, Wang L. Co-expression of High-mobility group box 1 protein (HMGB1) and receptor for advanced glycation end products (RAGE) in the prognosis of esophageal squamous cell carcinoma. Discov Oncol 2022; 13:64. [PMID: 35829833 PMCID: PMC9279518 DOI: 10.1007/s12672-022-00527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer is a malignant type of cancer with a high mortality rate. The aim of this study is to determine co-expression patterns of High-mobility group box 1 protein (HMGB1) and receptor for advanced glycation end products (RAGE) in ESCC (esophageal squamous cell carcinoma) conditions and their prognostic role in cancer progression. The expression of HMGB1 and RAGE in ESCC tissues has been analyzed using qRT-PCR and Western blotting. Co-localized expression patterns of HMGB1 and RAGE in ESCC tissues were determined using immunohistochemistry and analyzed for clinical-pathological parameters. Overall survival was performed based on co-expression of HMGB1 and RAGE proteins. A higher expression pattern of HMGB1, and RAGE was observed at mRNA and protein level in the ESCC group compared to the adjacent tissue group. Expression of HMGB1 was significantly correlated with lymph node, metastasis, lymphatic invasion, and venous invasion (p < 0.05). RAGE expression exhibited a significant correlation with venous invasion. Overall survival was significantly shorter (P < 0.05) in the patients with co-expression of HMGB1 and RAGE compared to the patients without co-expression. A significant difference in the overall survival was evident between the patients with co-expression of HMGB1 and RAGE and the patients without coexpression. HMGB1 and RAGE expression patterns were associated with aggressive metastatic characteristics of ESCC. The co-expression of HMGB1 and RAGE was correlated with shorter survival times. Results concluded the co-expression patterns of HMGB1 and RAGE exhibited a prognostic relevance in ESCC conditions.
Collapse
Affiliation(s)
- Lingzhao Li
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007 Henan People’s Republic of China
| | - Narasimha M. Beeraka
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991 Russian Federation
| | - Linsen Xie
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007 Henan People’s Republic of China
| | - Li Dong
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007 Henan People’s Republic of China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
| | - Lei Wang
- Department of Radiation Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195# Tongbai Road, Zhengzhou, 450052 Henan People’s Republic of China
| |
Collapse
|
31
|
Maesaka F, Kuwada M, Horii S, Kishi S, Fujiwara-Tani R, Mori S, Fujii K, Mori T, Ohmori H, Owari T, Miyake M, Nakai Y, Tanaka N, Bhawal UK, Luo Y, Kondoh M, Fujimoto K, Kuniyasu H. Hypomethylation of CLDN4 Gene Promoter Is Associated with Malignant Phenotype in Urinary Bladder Cancer. Int J Mol Sci 2022; 23:ijms23126516. [PMID: 35742959 PMCID: PMC9224287 DOI: 10.3390/ijms23126516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022] Open
Abstract
The tight junction (TJ) protein claudin-4 (CLDN4) is overexpressed in bladder urothelial carcinoma (BUC) and correlates with cancer progression. However, the mechanism of CLDN4 upregulation and promotion of malignant phenotype is not clear. Here, we analyzed 157 cases of BUC and investigated the hypomethylation of CpG island in the CLDN4 promoter DNA and its correlation with cancer progression. In hypomethylated cases, CLDN4 expression, cell proliferation, stemness, and epithelial-mesenchymal transition were increased. Treatment of three human BUC cell lines with the demethylating agent aza-2′-deoxycytidine (AZA) led to excessive CLDN4 expression, and, specifically, to an increase in CLDN4 monomer that is not integrated into the TJ. The TJ-unintegrated CLDN4 was found to bind integrin β1 and increase stemness, drug resistance, and metastatic ability of the cells as well as show an anti-apoptosis effect likely via FAK phosphorylation, which reduces upon knockdown of CLDN4. Thus, CLDN4 is overexpressed in BUC by an epigenetic mechanism and the high expression enhances the malignant phenotype of BUC via increased levels of TJ-unintegrated CLDN4. CLDN4 promoter DNA methylation is expected to be a novel indicator of BUC malignant phenotype and a new therapeutic target.
Collapse
Affiliation(s)
- Fumisato Maesaka
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (F.M.); (M.K.); (S.H.); (S.K.); (R.F.-T.); (S.M.); (K.F.); (T.M.); (H.O.); (U.K.B.)
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan; (T.O.); (M.M.); (Y.N.); (N.T.); (K.F.)
| | - Masaomi Kuwada
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (F.M.); (M.K.); (S.H.); (S.K.); (R.F.-T.); (S.M.); (K.F.); (T.M.); (H.O.); (U.K.B.)
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan; (T.O.); (M.M.); (Y.N.); (N.T.); (K.F.)
| | - Shohei Horii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (F.M.); (M.K.); (S.H.); (S.K.); (R.F.-T.); (S.M.); (K.F.); (T.M.); (H.O.); (U.K.B.)
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (F.M.); (M.K.); (S.H.); (S.K.); (R.F.-T.); (S.M.); (K.F.); (T.M.); (H.O.); (U.K.B.)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (F.M.); (M.K.); (S.H.); (S.K.); (R.F.-T.); (S.M.); (K.F.); (T.M.); (H.O.); (U.K.B.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (F.M.); (M.K.); (S.H.); (S.K.); (R.F.-T.); (S.M.); (K.F.); (T.M.); (H.O.); (U.K.B.)
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (F.M.); (M.K.); (S.H.); (S.K.); (R.F.-T.); (S.M.); (K.F.); (T.M.); (H.O.); (U.K.B.)
| | - Takuya Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (F.M.); (M.K.); (S.H.); (S.K.); (R.F.-T.); (S.M.); (K.F.); (T.M.); (H.O.); (U.K.B.)
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (F.M.); (M.K.); (S.H.); (S.K.); (R.F.-T.); (S.M.); (K.F.); (T.M.); (H.O.); (U.K.B.)
| | - Takuya Owari
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan; (T.O.); (M.M.); (Y.N.); (N.T.); (K.F.)
| | - Makito Miyake
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan; (T.O.); (M.M.); (Y.N.); (N.T.); (K.F.)
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan; (T.O.); (M.M.); (Y.N.); (N.T.); (K.F.)
| | - Nobumichi Tanaka
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan; (T.O.); (M.M.); (Y.N.); (N.T.); (K.F.)
| | - Ujjal Kumar Bhawal
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (F.M.); (M.K.); (S.H.); (S.K.); (R.F.-T.); (S.M.); (K.F.); (T.M.); (H.O.); (U.K.B.)
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - Yi Luo
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China;
| | - Masuo Kondoh
- Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, 6-1 Yamadaoka, Suita 565-0871, Osaka, Japan;
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan; (T.O.); (M.M.); (Y.N.); (N.T.); (K.F.)
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (F.M.); (M.K.); (S.H.); (S.K.); (R.F.-T.); (S.M.); (K.F.); (T.M.); (H.O.); (U.K.B.)
- Correspondence: ; Tel.: +81-744-22-3051; Fax: +81-744-25-7308
| |
Collapse
|
32
|
Kishi S, Fujiwara-Tani R, Honoki K, Sasaki R, Mori S, Ohmori H, Sasaki T, Miyagawa Y, Kawahara I, Kido A, Tanaka Y, Kuniyasu H. Oxidized high mobility group B-1 enhances metastability of colorectal cancer via modification of mesenchymal stem/stromal cells. Cancer Sci 2022; 113:2904-2915. [PMID: 35570394 PMCID: PMC9357642 DOI: 10.1111/cas.15400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022] Open
Abstract
High mobility group box-1 (HMGB1) is known to be a chemotactic factor for mesenchymal stem/stromal cells (MSCs), but the effect of post-translational modification on its function is not clear. In this study, we hypothesized that differences in the oxidation state of HMGB1 would lead to differences in the function of MSCs in cancer. In human colorectal cancer, MSCs infiltrating into the stroma were correlated with liver metastasis and serum HMGB1. In animal models, oxidized HMGB1 mobilized 3-fold fewer MSCs to subcutaneous tumors compared to reduced HMGB1. Reduced HMGB1 inhibited proliferation of mouse bone marrow MSCs (BM-MSCs) and induced differentiation into osteoblasts and vascular pericytes, whereas oxidized HMGB1 promoted proliferation and increased stemness, and no differentiation was observed. When BM-MSCs pretreated with oxidized HMGB1 were co-cultured with syngeneic cancer cells, cell proliferation and stemness of cancer cells were increased, and tumorigenesis and drug resistance were promoted. In contrast, co-culture with reduced HMGB1-pretreated BM-MSCs did not enhance stemness. In an animal orthotopic transplantation colorectal cancer model, oxidized HMGB1, but not reduced HMGB1, promoted liver metastasis with intratumoral MSC chemotaxis. Thus, oxidized HMGB1 reprograms MSCs and promotes cancer malignancy. The oxidized HMGB1-MSC axis may be an important target for cancer therapy.
Collapse
Affiliation(s)
- Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | | | - Kanya Honoki
- Department of Orthopedics, Nara Medical University, Nara, Japan
| | - Rika Sasaki
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | | | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Akira Kido
- Department of Orthopedics, Nara Medical University, Nara, Japan
| | - Yasuhito Tanaka
- Department of Orthopedics, Nara Medical University, Nara, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| |
Collapse
|
33
|
Sunitinib and Pterostilbene Combination Treatment Exerts Antitumor Effects in Gastric Cancer via Suppression of PDZD8. Int J Mol Sci 2022; 23:ijms23074002. [PMID: 35409367 PMCID: PMC8999764 DOI: 10.3390/ijms23074002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023] Open
Abstract
The use of molecular-targeted drugs in the treatment of gastric cancer is increasing. However, the variety of molecular-targeted drugs in gastric cancer is still limited, and the development of new molecular-targeted therapies is required. The effect of combining sunitinib (SUN) with pterostilbene (PTE) on the human gastric cancer cell lines TMK1 and MKN74 was examined in in vitro and in vivo. Compared with SUN or PTE treatment alone, cotreatment induced pronounced suppression of cell proliferation, with a marked increase in oxidative stress. SUN was associated with a significant retention of mitochondrial Fe2+. SUN-treated cells decreased expression of PDZ domain-containing protein 8 (PDZD8). Knockdown of PDZD8 in both cells induced Fe2+ retention, and siPDZD8+PTE markedly suppressed cell proliferation with suppressed oxidative phosphorylation, as did the combination of SUN+PTE. In a nude mouse tumor model, a pronounced antitumor effect was observed with SUN+PTE treatment compared to SUN alone. PDZD8 may be a newly discovered off-target for SUN, and that the combined use of PTE with SUN significantly promotes antitumor activity in gastric cancer cell lines. The combined use of SUN and PTE might be a new molecular-targeted therapy for gastric cancer.
Collapse
|
34
|
Mechanism of Herb Pairs Astragalus mongholicus and Curcuma phaeocaulis Valeton in Treating Gastric Carcinoma: A Network Pharmacology Combines with Differential Analysis and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8361431. [PMID: 35321506 PMCID: PMC8938068 DOI: 10.1155/2022/8361431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 02/08/2023]
Abstract
Background Gastric carcinoma (GC) is a kind of digestive tract tumor that is highly malignant and has a very poor prognosis. Although both Astragalus mongholicus (AM, huáng qí) and Curcuma phaeocaulis Valeton (CPV, é zhú) can slow the onset and progression of GC, the mechanism by which AM-CPV works in the treatment of GC is uncertain. Materials and Methods The traditional Chinese medicine network databases TCMSP, TCMID, and ETCM were used to identify the key functional components and associated targets of AM and CPV. To establish a theoretical foundation, the development of gastric cancer (GC) was predicted utilizing a GEO gene chip and TCGA difference analysis mixed with network pharmacology. A herbal-ingredient-target network and a core target-signal pathway network were created using GO and KEGG enrichment analyses. The molecular docking method was used to evaluate seventeen main targets and their compounds. Results Cell activity, reactive oxygen species modification, metabolic regulation, and systemic immune activation may all be involved in the action mechanism of the AM-CPV drug-pair in the treatment of GC. It inhibits the calcium signaling route, the AGE-RAGE signaling system, the cAMP signaling pathway, the PI3K-Akt signaling network, and the MAPK signaling pathway, slowing the progression of GC. The number of inflammatory substances in the tumor microenvironment is reduced, GC cell proliferation is deprived, apoptosis is promoted, and GC progression is retarded through controlling the IL-17 signaling route, TNF signaling pathway, and other inflammation-related pathways. Conclusions The AM-CPV pharmaceutical combination regulates GC treatment via a multitarget, component, and signal pathway with a cooperative and bidirectional regulatory mechanism. Its active constituents may treat GC by regulating the expression of STAT1, MMP9, IL6, HSP90AA1, JUN, CCL2, IFNG, CXCL8, and other targets, as well as activating or inhibiting immune-inflammatory and cancer signaling pathways.
Collapse
|
35
|
Zhu B, Qu S. The Relationship Between Diabetes Mellitus and Cancers and Its Underlying Mechanisms. Front Endocrinol (Lausanne) 2022; 13:800995. [PMID: 35222270 PMCID: PMC8873103 DOI: 10.3389/fendo.2022.800995] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/12/2022] [Indexed: 12/27/2022] Open
Abstract
Epidemiological studies suggest associations between diabetes mellitus and some cancers. The risk of a number of cancers appears to be increased in diabetes mellitus. On the other hand, some cancer and cancer therapies could lead to diabetes mellitus. Genetic factors, obesity, inflammation, oxidative stress, hyperglycemia, hyperinsulinemia, cancer therapies, insulin and some oral hypoglycemic drugs appear to play a role in the crosstalk between diabetes mellitus and cancers. This review summarized the associations between various types of diabetes and cancers and updated available evidence of underlying mechanisms between diabetes and cancers.
Collapse
Affiliation(s)
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
36
|
Shipunov I, Kupaev V. Glycome assessment in patients with respiratory diseases. TRANSLATIONAL METABOLIC SYNDROME RESEARCH 2022. [DOI: 10.1016/j.tmsr.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
|
37
|
Impact of Advanced Glycation End products (AGEs) and its receptor (RAGE) on cancer metabolic signaling pathways and its progression. Glycoconj J 2022; 38:717-734. [PMID: 35064413 DOI: 10.1007/s10719-021-10031-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
|
38
|
Peritumoral B cells drive proangiogenic responses in HMGB1-enriched esophageal squamous cell carcinoma. Angiogenesis 2021; 25:181-203. [PMID: 34617194 PMCID: PMC8494172 DOI: 10.1007/s10456-021-09819-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/04/2021] [Indexed: 01/15/2023]
Abstract
Several B-cell subsets with distinct functions and polarized cytokine profiles that extend beyond antibody production have been reported in different cancers. Here we have demonstrated that proliferating B cells were predominantly found in the peritumoral region of esophageal squamous cell carcinoma (ESCC). These B cells were enriched in tumor nests with high expression of high-mobility group box 1 (HMGB1). High densities of peritumoral proliferating B cells and concomitantly high intratumoral HMGB1 expression showed improved prognostic significance, surpassing prognostic stratification of ESCC patients based on HMGB1 positivity alone. This striking association led us to set up models to test whether cancer-derived HMGB1 could shape tumor microenvironment via modulation on B cells. Overexpression of HMGB1 in ESCC cell lines (KYSE510 and EC18) enhanced proliferation and migration of B cells. Transcriptomic analysis showed that migratory B cells exhibited high enrichment of proangiogenic genes. VEGF expression in proliferating B cells was induced upon co-culture of HMGB1-overexpressing tumor cells and B cells. Secretome array profiling of conditioned media (CM) from the co-culture revealed rich expression of proangiogenic proteins. Consequently, incubation of human umbilical vein endothelial cells with CM promoted angiogenesis in tube formation and migration assays. HMGB1 inhibitor, glycyrrhizin, abolishes all the observed proangiogenic phenotypes. Finally, co-injection of B cells and CM with HMGB1-overexpressing tumor cells, but not with glycyrrhizin, significantly enhanced tumor growth associated with increased microvascular density in ESCC xenograft mice model. Our results indicate that cancer-derived HMGB1 elevates angiogenesis in ESCC by shifting the balance toward proangiogenic signals in proliferating B cells.
Collapse
|
39
|
Mori S, Fujiwara-Tani R, Kishi S, Sasaki T, Ohmori H, Goto K, Nakashima C, Nishiguchi Y, Kawahara I, Luo Y, Kuniyasu H. Enhancement of Anti-Tumoral Immunity by β-Casomorphin-7 Inhibits Cancer Development and Metastasis of Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22158232. [PMID: 34360996 PMCID: PMC8348766 DOI: 10.3390/ijms22158232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 01/24/2023] Open
Abstract
β-Casomorphin-7 (BCM) is a degradation product of β-casein, a milk component, and has been suggested to affect the immune system. However, its effect on mucosal immunity, especially anti-tumor immunity, in cancer-bearing individuals is not clear. We investigated the effects of BCM on lymphocytes using an in vitro system comprising mouse splenocytes, a mouse colorectal carcinogenesis model, and a mouse orthotopic colorectal cancer model. Treatment of mouse splenocytes with BCM in vitro reduced numbers of cluster of differentiation (CD) 20+ B cells, CD4+ T cells, and regulatory T cells (Tregs), and increased CD8+ T cells. Administration of BCM and the CD10 inhibitor thiorphan (TOP) to mice resulted in similar alterations in the lymphocyte subsets in the spleen and intestinal mucosa. BCM was degraded in a concentration- and time-dependent manner by the neutral endopeptidase CD10, and the formed BCM degradation product did not affect the lymphocyte counts. Furthermore, degradation was completely suppressed by TOP. In the azoxymethane mouse colorectal carcinogenesis model, the incidence of aberrant crypt foci, adenoma, and adenocarcinoma was reduced by co-treatment with BCM and TOP. Furthermore, when CT26 mouse colon cancer cells were inoculated into the cecum of syngeneic BALB/c mice and concurrently treated with BCM and TOP, infiltration of CD8+ T cells was promoted, and tumor growth and liver metastasis were suppressed. These results suggest that by suppressing the BCM degradation system, the anti-tumor effect of BCM is enhanced and it can suppress the development and progression of colorectal cancer.
Collapse
Affiliation(s)
- Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (S.K.); (T.S.); (H.O.); (K.G.); (C.N.); (Y.N.); (I.K.)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (S.K.); (T.S.); (H.O.); (K.G.); (C.N.); (Y.N.); (I.K.)
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (S.K.); (T.S.); (H.O.); (K.G.); (C.N.); (Y.N.); (I.K.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (S.K.); (T.S.); (H.O.); (K.G.); (C.N.); (Y.N.); (I.K.)
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (S.K.); (T.S.); (H.O.); (K.G.); (C.N.); (Y.N.); (I.K.)
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (S.K.); (T.S.); (H.O.); (K.G.); (C.N.); (Y.N.); (I.K.)
| | - Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (S.K.); (T.S.); (H.O.); (K.G.); (C.N.); (Y.N.); (I.K.)
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (S.K.); (T.S.); (H.O.); (K.G.); (C.N.); (Y.N.); (I.K.)
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (S.K.); (T.S.); (H.O.); (K.G.); (C.N.); (Y.N.); (I.K.)
| | - Yi Luo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Correspondence: (Y.L.); (H.K.)
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (S.K.); (T.S.); (H.O.); (K.G.); (C.N.); (Y.N.); (I.K.)
- Correspondence: (Y.L.); (H.K.)
| |
Collapse
|
40
|
Hypoxia and the Receptor for Advanced Glycation End Products (RAGE) Signaling in Cancer. Int J Mol Sci 2021; 22:ijms22158153. [PMID: 34360919 PMCID: PMC8348933 DOI: 10.3390/ijms22158153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is characterized by an inadequate supply of oxygen to tissues, and hypoxic regions are commonly found in solid tumors. The cellular response to hypoxic conditions is mediated through the activation of hypoxia-inducible factors (HIFs) that control the expression of a large number of target genes. Recent studies have shown that the receptor for advanced glycation end products (RAGE) participates in hypoxia-dependent cellular adaptation. We review recent evidence on the role of RAGE signaling in tumor biology under hypoxic conditions.
Collapse
|
41
|
Marulanda K, Mercel A, Gillis DC, Sun K, Gambarian M, Roark J, Weiss J, Tsihlis ND, Karver MR, Centeno SR, Peters EB, Clemons TD, Stupp SI, McLean SE, Kibbe MR. Intravenous Delivery of Lung-Targeted Nanofibers for Pulmonary Hypertension in Mice. Adv Healthc Mater 2021; 10:e2100302. [PMID: 34061473 PMCID: PMC8273153 DOI: 10.1002/adhm.202100302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Indexed: 01/11/2023]
Abstract
Pulmonary hypertension is a highly morbid disease with no cure. Available treatments are limited by systemic adverse effects due to non-specific biodistribution. Self-assembled peptide amphiphile (PA) nanofibers are biocompatible nanomaterials that can be modified to recognize specific biological markers to provide targeted drug delivery and reduce off-target toxicity. Here, PA nanofibers that target the angiotensin I-converting enzyme and the receptor for advanced glycation end-products (RAGE) are developed, as both proteins are overexpressed in the lung with pulmonary hypertension. It is demonstrated that intravenous delivery of RAGE-targeted nanofibers containing the targeting epitope LVFFAED (LVFF) significantly accumulated within the lung in a chronic hypoxia-induced pulmonary hypertension mouse model. Using 3D light sheet fluorescence microscopy, it is shown that LVFF nanofiber localization is specific to the diseased pulmonary tissue with immunofluorescence analysis demonstrating colocalization of the targeted nanofiber to RAGE in the hypoxic lung. Furthermore, biodistribution studies show that significantly more LVFF nanofibers localized to the lung compared to major off-target organs. Targeted nanofibers are retained within the pulmonary tissue for 24 h after injection. Collectively, these data demonstrate the potential of a RAGE-targeted nanomaterial as a drug delivery platform to treat pulmonary hypertension.
Collapse
Affiliation(s)
- Kathleen Marulanda
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Alexandra Mercel
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - David C Gillis
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Kui Sun
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Maria Gambarian
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Joshua Roark
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Jenna Weiss
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Nick D Tsihlis
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Mark R Karver
- Simpson Querrey Institute, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - S Ruben Centeno
- Department of Pediatrics, University of North Carolina, 260 MacNider Building CB# 7220, Chapel Hill, NC, 27599, USA
| | - Erica B Peters
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Tristan D Clemons
- Simpson Querrey Institute, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Samuel I Stupp
- Simpson Querrey Institute, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Sean E McLean
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Melina R Kibbe
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| |
Collapse
|
42
|
Kishi S, Nishiguchi Y, Honoki K, Mori S, Fujiwara-Tani R, Sasaki T, Fujii K, Kawahara I, Goto K, Nakashima C, Kido A, Tanaka Y, Luo Y, Kuniyasu H. Role of Glycated High Mobility Group Box-1 in Gastric Cancer. Int J Mol Sci 2021; 22:5185. [PMID: 34068442 PMCID: PMC8153607 DOI: 10.3390/ijms22105185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/30/2022] Open
Abstract
Advanced glycation end products (AGEs) are produced in response to a high-glucose environment and oxidative stress and exacerbate various diseases. Nε-(Carboxymethyl)lysine (CML) is an AGE that is produced by the glycation of lysine residues of proteins. There are a few reports on alterations in protein function due to CML modification; however, its association with cancer is not clear. We investigated the significance of CML modification in high mobility group box protein-1 (HMGB1), a cytokine that is significantly associated with cancer progression. Treatment of the gastric cancer cell lines TMK1 and MKN74 with glyoxal or glucose resulted in increased CML modification compared to untreated cells. CML-HMGB1 was modified via oxidation and more pronouncedly activated the receptor for AGE and downstream AKT and NF-κB compared to naïve HMGB1 and oxidized HMGB1. CML-HMGB1 bound with reduced affinity to DNA and histone H3, resulting in enhanced extranuclear translocation and extracellular secretion. Treatment of gastric cancer cells with CML-HMGB1 enhanced cell proliferation and invasion, sphere formation, and protection from thapsigargin-induced apoptosis, and decreased 5-FU sensitivity in comparison to HMGB1. Further, CML-HMGB1 was detected at various levels in all the 10 gastric cancer tumor specimens. HMGB1 levels correlated with primary tumor progression and distant metastasis, whereas CML-HMGB1 levels were associated with primary tumor progression, lymph node metastasis, distant metastasis, and stage. In addition, CML-HMGB1 levels correlated with oxidative stress in cancer tissues and resistance to neoadjuvant therapy. Therefore, CML modification of HMGB1 enhanced the cancer-promoting effect of HMGB1. In this study, CML-HMGB1 has been highlighted as a new therapeutic target, and analysis of the molecular structure of CML-HMGB1 is desired in the future.
Collapse
Affiliation(s)
- Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Kanya Honoki
- Department of Orthopedics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (K.H.); (A.K.); (Y.T.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Akira Kido
- Department of Orthopedics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (K.H.); (A.K.); (Y.T.)
| | - Yasuhito Tanaka
- Department of Orthopedics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (K.H.); (A.K.); (Y.T.)
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| |
Collapse
|
43
|
Chilelli NC, Faggian A, Favaretto F, Milan G, Compagnin C, Dassie F, Bettini S, Roverso M, Seraglia R, Lapolla A, Vettor R. In vitro chronic glycation induces AGEs accumulation reducing insulin-stimulated glucose uptake and increasing GLP1R in adipocytes. Am J Physiol Endocrinol Metab 2021; 320:E976-E988. [PMID: 33779307 DOI: 10.1152/ajpendo.00156.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular AGEs accumulation increases RAGE and GLP1R and reduces glucose uptake in adipocytes.
Collapse
Affiliation(s)
| | - Alessia Faggian
- Department of Medicine, University of Padua, Internal Medicine 3, Padua, Italy
| | - Francesca Favaretto
- Department of Medicine, University of Padua, Internal Medicine 3, Padua, Italy
| | - Gabriella Milan
- Department of Medicine, University of Padua, Internal Medicine 3, Padua, Italy
| | - Chiara Compagnin
- Department of Medicine, University of Padua, Internal Medicine 3, Padua, Italy
| | - Francesca Dassie
- Department of Medicine, University of Padua, Internal Medicine 3, Padua, Italy
| | - Silvia Bettini
- Department of Medicine, University of Padua, Internal Medicine 3, Padua, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padua, Padua, Italy
| | - Roberta Seraglia
- Consiglio Nazionale delle Ricerche-Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia (CNR-ICMATE), Padua, Italy
| | - Annunziata Lapolla
- Department of Medicine, University of Padua, Diabetology and Dietetics, Padua, Italy
| | - Roberto Vettor
- Department of Medicine, University of Padua, Internal Medicine 3, Padua, Italy
| |
Collapse
|
44
|
Banerjee S. Long-term incubation of myoglobin with glyoxal induces amyloid like aggregation of the heme protein: Implications of advanced glycation end products in protein conformational disorders. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Mukherjee TK, Malik P, Hoidal JR. Receptor for Advanced Glycation End Products (RAGE) and Its Polymorphic Variants as Predictive Diagnostic and Prognostic Markers of NSCLCs: a Perspective. Curr Oncol Rep 2021; 23:12. [PMID: 33399986 DOI: 10.1007/s11912-020-00992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Non-small cell lung cancers (NSCLCs) account for ~ 85% of all lung cancers, and 5-year survival in Europe and the USA is ~ 13-17%. In this review, we focus on the significance of Receptor for Advanced Glycation End products (RAGE) as a diagnostic or post-therapeutic prognostic marker for various forms of NSCLCs. RECENT FINDINGS The lungs have the highest levels of basal RAGE expression in mammals. The physiologic RAGE in lungs may be involved in adhesion and spreading of AT-1 cells and maintenance of pulmonary homeostasis. However, high level expression of RAGE complicates various diseases including acute lung injury. In NSCLCs, while a number of studies report decreased RAGE expression, inferring a protective role, others suggest that RAGE expression may contribute to NSCLC pathogenesis. Genetic polymorphisms of RAGE are reportedly associated with NSCLC development and complications. RAGE and its polymorphic variants may be useful diagnostic or post-therapeutic prognostic markers of NSCLCs.
Collapse
Affiliation(s)
- Tapan K Mukherjee
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA. .,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA. .,George E. Wahlen Department of Veterans Affairs Medical Center, 500, Foothil Drive, Building#45, Salt Lake City, UT, 84148, USA.
| | - Parth Malik
- School of Chemical Sciences, Central University of Gujarat (Gandhinagar), Gandhinagar, India.,School of Nano Sciences, Central University of Gujarat (Gandhinagar), Gandhinagar, India
| | - John R Hoidal
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,George E. Wahlen Department of Veterans Affairs Medical Center, 500, Foothil Drive, Building#45, Salt Lake City, UT, 84148, USA
| |
Collapse
|
46
|
Anti-Stem Cell Property of Pterostilbene in Gastrointestinal Cancer Cells. Int J Mol Sci 2020; 21:ijms21249347. [PMID: 33302440 PMCID: PMC7762551 DOI: 10.3390/ijms21249347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022] Open
Abstract
Pterostilbene (PTE) is a natural sterbenoid contained in blueberries that has an antioxidant effect. In contrast, PTE also generates oxidative stress in cancer cells and provides an antitumor effect. Here, we examined the potential mechanism of this contrasting effect of PTE using three gastrointestinal cancer cell lines, namely CT26, HT29, and MKN74. PTE showed a dose-dependent inhibition of cell proliferation, sphere-forming ability, and stem cell marker expression in all three cell lines. Furthermore, the cells treated with PTE showed an increase in mitochondrial membrane potential and an increase in mitochondrial oxidative stress and lipid peroxide. Upon concurrent treatment with vitamin E, N-acetyl-L-cysteine, and PTE, the PTE-induced mitochondrial oxidative stress and growth inhibition were suppressed. These findings indicate that PTE induces oxidative stress in cancer cells, suppresses stemness, and inhibits proliferation. These antitumor effects of PTE are considered to be useful in cancer treatment.
Collapse
|
47
|
Owari T, Sasaki T, Fujii K, Fujiwara-Tani R, Kishi S, Mori S, Mori T, Goto K, Kawahara I, Nakai Y, Miyake M, Luo Y, Tanaka N, Kondoh M, Fujimoto K, Kuniyasu H. Role of Nuclear Claudin-4 in Renal Cell Carcinoma. Int J Mol Sci 2020; 21:ijms21218340. [PMID: 33172177 PMCID: PMC7664319 DOI: 10.3390/ijms21218340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022] Open
Abstract
Claudin-4 (CLDN4) is a tight junction protein to maintain the cancer microenvironment. We recently reported the role of the CLDN4 not forming tight junction in the induction of epithelial-mesenchymal transition (EMT). Herein, we investigated the role of CLDN4 in renal cell carcinoma (RCC), focusing on CLDN4. CLDN4 expression in 202 RCCs was examined by immunostaining. CLDN4 phosphorylation and subcellular localization were examined using high metastatic human RCC SN12L1 and low metastatic SN12C cell lines. In 202 RCC cases, the CLDN4 expression decreased in the cell membrane and had no correlation with clinicopathological factors. However, CLDN4 was localized in the nucleus in 5 cases (2%), all of which were pT3. Contrastingly, only 6 of 198 nuclear CLDN4-negative cases were pT3. CLDN4 was found in the nuclear fraction of a highly metastatic human RCC cell line, SN12L1, but not in the low metastatic SN12C cells. In SN12L1 cells, phosphorylation of tyrosine and serine residues was observed in cytoplasmic CLDN4, but not in membranous CLDN4. In contrast, phosphorylation of serine residues was observed in nuclear CLDN4. In SN12L1 cells, CLDN4 tyrosine phosphorylation by EphA2/Ephrin A1 resulted in the release of CLDN4 from tight junction and cytoplasmic translocation. Furthermore, protein kinase C (PKC)-ε phosphorylated the CLDN4 serine residue, resulting in nuclear import. Contrarily, in SN12C cells that showed decreased expression of EphA2/Ephrin A1 and PKCε, the activation of EphA2/EphrinA1 and PKCε induced cytoplasmic and nuclear translocation of CLDN4, respectively. Furthermore, the nuclear translocation of CLDN4 promoted the nuclear translocation of Yes-associated protein (YAP) bound to CLDN4, which induced the EMT phenotype. These findings suggest that the release of CLDN4 by impaired tight junction might be a mechanism underlying the malignant properties of RCC. These findings suggest that the release of CLDN4 by impaired tight junction might be one of the mechanisms of malignant properties of RCC.
Collapse
Affiliation(s)
- Takuya Owari
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (Y.N.); (M.M.); (N.T.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Takuya Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (Y.N.); (M.M.); (N.T.)
| | - Makito Miyake
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (Y.N.); (M.M.); (N.T.)
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu, China
| | - Nobumichi Tanaka
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (Y.N.); (M.M.); (N.T.)
| | - Masuo Kondoh
- Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, 6-1 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (Y.N.); (M.M.); (N.T.)
- Correspondence: (K.F.); (H.K.)
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
- Correspondence: (K.F.); (H.K.)
| |
Collapse
|
48
|
Swami P, Thiyagarajan S, Vidger A, Indurthi VSK, Vetter SW, Leclerc E. RAGE Up-Regulation Differently Affects Cell Proliferation and Migration in Pancreatic Cancer Cells. Int J Mol Sci 2020; 21:E7723. [PMID: 33086527 PMCID: PMC7589276 DOI: 10.3390/ijms21207723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) contributes to many cellular aspects of pancreatic cancer including cell proliferation, migration, and survival. Studies have shown that RAGE activation by its ligands promotes pancreatic tumor growth by stimulating both cell proliferation and migration. In this study, we investigated the effect of RAGE up-regulation on the proliferation and migration of the human pancreatic cancer Panc-1 cell-line. We show that moderate overexpression of RAGE in Panc-1 cells results in increased cell proliferation, but decreased cell migration. The observed cellular changes were confirmed to be RAGE-specific and reversible by using RAGE-specific siRNAs and the small molecule RAGE inhibitor FPS-ZM1. At the molecular level, we show that RAGE up-regulation was associated with decreased activity of FAK, Akt, Erk1/2, and NF-κB signaling pathways and greatly reduced levels of α2 and β1 integrin expression, which is in agreement with the observed decreases in cell migration. We also demonstrate that RAGE up-regulation changes the expression of key molecular markers of epithelial-to-mesenchymal transition (EMT). Our results suggest that in the absence of stimulation by external ligands, RAGE up-regulation can differently modulate cell proliferation and migration in pancreatic cancer cells and regulates partly EMT.
Collapse
Affiliation(s)
| | | | | | | | | | - Estelle Leclerc
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA; (P.S.); (S.T.); (A.V.); (V.S.K.I.); (S.W.V.)
| |
Collapse
|
49
|
Miyagawa Y, Nukaga S, Mori T, Fujiwara-Tani R, Fujii K, Mori S, Goto K, Kishi S, Sasaki T, Nakashima C, Ohmori H, Kawahara I, Luo Y, Kuniyasu H. Evaluation of cancer-derived myocardial impairments using a mouse model. Oncotarget 2020; 11:3712-3722. [PMID: 33110478 PMCID: PMC7566807 DOI: 10.18632/oncotarget.27759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/10/2020] [Indexed: 01/21/2023] Open
Abstract
Myocardial damage in cancer patients is emphasized as a cause of death; however, there are not many murine cachexia models to evaluate cancer-derived heart disorder. Using the mouse cachexia model that we established previously, we investigated myocardial damage in tumor-bearing mice. In cachexic mice, decreased heart weight and myocardial volume, and dilated left ventricular lumen, and atrophied cardiomyocytes were noted. The cardiomyocytes also showed accumulated 8-hydroxydeoxyguanosine, decreased leucine zipper and EF-hand-containing transmembrane protein-1, and increased microtubule-associated protein light chain3-II. Levels of tumor necrosis factor-α and high-mobility group box-1 proteins in the myocardium were increased, and nuclear factor κB, a signaling molecule associated with these proteins, was activated. When rat cardiomyoblasts (H9c2 cells) were treated with mouse cachexia model ascites and subjected to flux analysis, both oxidative phosphorylation and glycolysis were suppressed, and the cells were in a quiescent state. These results are in good agreement with those previously reported on cancerous myocardial damage. The established mouse cachexia model can therefore be considered useful for analyzing cancer-derived myocardial damage.
Collapse
Affiliation(s)
- Yoshihiro Miyagawa
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shota Nukaga
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan.,Division of Rehabilitation, Hanna Central Hospital, Ikoma, Nara 630-0243, Japan
| | - Takuya Mori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan.,Division of Rehabilitation, Hoshida Minami Hospital, Katano, Osaka 576-0022, Japan
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan.,Division of Rehabilitation, Hanna Central Hospital, Ikoma, Nara 630-0243, Japan
| | - Yi Luo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
50
|
Nakashima C, Kirita T, Yamamoto K, Mori S, Luo Y, Sasaki T, Fujii K, Ohmori H, Kawahara I, Mori T, Goto K, Kishi S, Fujiwara-Tani R, Kuniyasu H. Malic Enzyme 1 Is Associated with Tumor Budding in Oral Squamous Cell Carcinomas. Int J Mol Sci 2020; 21:ijms21197149. [PMID: 32998265 PMCID: PMC7582746 DOI: 10.3390/ijms21197149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Budding at the tumor invasive front has been correlated with the malignant properties of many cancers. Malic enzyme 1 (ME1) promotes the Warburg effect in cancer cells and induces epithelial–mesenchymal transition (EMT) in oral squamous cell carcinoma (OSCC). Therefore, we investigated the role of ME1 in tumor budding in OSCC. Tumor budding was measured in 96 human OSCCs by immunostaining for an epithelial marker (AE1/AE3), and its expression was compared with that of ME1. A significant correlation was observed between tumor budding and ME1 expression. The correlation increased with the progression of cancer. In human OSCC cells, lactate secretion decreased when lactate fermentation was suppressed by knockdown of ME1 and lactate dehydrogenase A or inhibition of pyruvate dehydrogenase (PDH) kinase. Furthermore, the extracellular pH increased, and the EMT phenotype was suppressed. In contrast, when oxidative phosphorylation was suppressed by PDH knockdown, lactate secretion increased, extracellular pH decreased, and the EMT phenotype was promoted. Induction of chemical hypoxia in OSCC cells by CoCl2 treatment resulted in increased ME1 expression along with HIF1α expression and promotion of the EMT phenotype. Hypoxic conditions also increased matrix metalloproteinases expression and decreased mitochondrial membrane potential, mitochondrial oxidative stress, and extracellular pH. Furthermore, the hypoxic treatment resulted in the activation of Yes-associated protein (YAP), which was abolished by ME1 knockdown. These findings suggest that cancer cells at the tumor front in hypoxic environments increase their lactate secretion by switching their energy metabolism from oxidative phosphorylation to glycolysis owing to ME1 overexpression, decrease in extracellular pH, and YAP activation. These alterations enhance EMT and the subsequent tumor budding. Tumor budding and ME1 expression are thus considered useful markers of OSCC malignancy, and ME1 is expected to be a relevant target for molecular therapy.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Aged
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Hypoxia
- Cell Line, Tumor
- Cell Proliferation
- Disease Progression
- Epithelial-Mesenchymal Transition/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Glycolysis/genetics
- Humans
- Hydrogen-Ion Concentration
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- L-Lactate Dehydrogenase/antagonists & inhibitors
- L-Lactate Dehydrogenase/genetics
- L-Lactate Dehydrogenase/metabolism
- Lymphatic Metastasis
- Malate Dehydrogenase/antagonists & inhibitors
- Malate Dehydrogenase/genetics
- Malate Dehydrogenase/metabolism
- Male
- Middle Aged
- Monocarboxylic Acid Transporters/antagonists & inhibitors
- Monocarboxylic Acid Transporters/genetics
- Monocarboxylic Acid Transporters/metabolism
- Mouth Neoplasms/genetics
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- Oxidative Phosphorylation
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/antagonists & inhibitors
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- Symporters/antagonists & inhibitors
- Symporters/genetics
- Symporters/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (C.N.); (S.M.); (T.S.); (K.F.); (H.O.); (I.K.); (T.M.); (K.G.); (S.K.); (R.F.-T.)
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan;
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan;
- Correspondence: (T.K.); (H.K.); Tel.: +81-744-22-3051 (T.K. & H.K.); Fax: +81-744-25-7308 (H.K.)
| | - Kazuhiko Yamamoto
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan;
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (C.N.); (S.M.); (T.S.); (K.F.); (H.O.); (I.K.); (T.M.); (K.G.); (S.K.); (R.F.-T.)
| | - Yi Luo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China;
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (C.N.); (S.M.); (T.S.); (K.F.); (H.O.); (I.K.); (T.M.); (K.G.); (S.K.); (R.F.-T.)
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (C.N.); (S.M.); (T.S.); (K.F.); (H.O.); (I.K.); (T.M.); (K.G.); (S.K.); (R.F.-T.)
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (C.N.); (S.M.); (T.S.); (K.F.); (H.O.); (I.K.); (T.M.); (K.G.); (S.K.); (R.F.-T.)
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (C.N.); (S.M.); (T.S.); (K.F.); (H.O.); (I.K.); (T.M.); (K.G.); (S.K.); (R.F.-T.)
| | - Takuya Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (C.N.); (S.M.); (T.S.); (K.F.); (H.O.); (I.K.); (T.M.); (K.G.); (S.K.); (R.F.-T.)
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (C.N.); (S.M.); (T.S.); (K.F.); (H.O.); (I.K.); (T.M.); (K.G.); (S.K.); (R.F.-T.)
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (C.N.); (S.M.); (T.S.); (K.F.); (H.O.); (I.K.); (T.M.); (K.G.); (S.K.); (R.F.-T.)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (C.N.); (S.M.); (T.S.); (K.F.); (H.O.); (I.K.); (T.M.); (K.G.); (S.K.); (R.F.-T.)
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (C.N.); (S.M.); (T.S.); (K.F.); (H.O.); (I.K.); (T.M.); (K.G.); (S.K.); (R.F.-T.)
- Correspondence: (T.K.); (H.K.); Tel.: +81-744-22-3051 (T.K. & H.K.); Fax: +81-744-25-7308 (H.K.)
| |
Collapse
|