1
|
Fortin M, Rye M, Roussac A, Montpetit C, Burdick J, Naghdi N, Rosenstein B, Bertrand C, Macedo LG, Elliott JM, Dover G, DeMont R, Weber MH, Pepin V. The Effects of Combined Motor Control and Isolated Extensor Strengthening versus General Exercise on Paraspinal Muscle Morphology, Composition, and Function in Patients with Chronic Low Back Pain: A Randomized Controlled Trial. J Clin Med 2023; 12:5920. [PMID: 37762861 PMCID: PMC10532355 DOI: 10.3390/jcm12185920] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Low back pain (LBP), a globally widespread and persistent musculoskeletal disorder, benefits from exercise therapy. However, it remains unclear which type leads to greater changes in paraspinal muscle health. This study aimed to (1) compare the effects of a combined motor control and isolated lumbar extension exercise (MC+ILEX) versus a general exercise (GE) intervention on paraspinal muscle morphology, composition, and function, and (2) examine whether alterations in paraspinal muscle health were correlated with improvements in pain, function, and quality of life. Fifty participants with chronic LBP were randomly assigned to each group and underwent a 12-week supervised intervention program. Magnetic resonance imaging and ultrasound assessments were acquired at baseline, 6 and 12 weeks to examine the impact of each intervention on erector spinae (ES) and multifidus (MF) muscle size (cross-sectional area, CSA), composition, and function at L4-L5 and L5-S1. Self-reported questionnaires were also acquired to assess participant-oriented outcomes. Our findings indicated that the MC+ILEX group demonstrated greater improvements in MF and ES CSA, along with MF thickness at both levels (all p < 0.01). Both groups significantly improved in pain, function, and quality of life. This study provided preliminary results suggesting that an MC+ILEX intervention may improve paraspinal morphology while decreasing pain and disability.
Collapse
Affiliation(s)
- Maryse Fortin
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC H4B 1R6, Canada; (M.R.); (A.R.); (C.M.); (J.B.); (N.N.); (B.R.); (C.B.); (G.D.); (R.D.); (V.P.)
- School of Health, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Meaghan Rye
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC H4B 1R6, Canada; (M.R.); (A.R.); (C.M.); (J.B.); (N.N.); (B.R.); (C.B.); (G.D.); (R.D.); (V.P.)
| | - Alexa Roussac
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC H4B 1R6, Canada; (M.R.); (A.R.); (C.M.); (J.B.); (N.N.); (B.R.); (C.B.); (G.D.); (R.D.); (V.P.)
| | - Chanelle Montpetit
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC H4B 1R6, Canada; (M.R.); (A.R.); (C.M.); (J.B.); (N.N.); (B.R.); (C.B.); (G.D.); (R.D.); (V.P.)
| | - Jessica Burdick
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC H4B 1R6, Canada; (M.R.); (A.R.); (C.M.); (J.B.); (N.N.); (B.R.); (C.B.); (G.D.); (R.D.); (V.P.)
| | - Neda Naghdi
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC H4B 1R6, Canada; (M.R.); (A.R.); (C.M.); (J.B.); (N.N.); (B.R.); (C.B.); (G.D.); (R.D.); (V.P.)
| | - Brent Rosenstein
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC H4B 1R6, Canada; (M.R.); (A.R.); (C.M.); (J.B.); (N.N.); (B.R.); (C.B.); (G.D.); (R.D.); (V.P.)
| | - Cleo Bertrand
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC H4B 1R6, Canada; (M.R.); (A.R.); (C.M.); (J.B.); (N.N.); (B.R.); (C.B.); (G.D.); (R.D.); (V.P.)
| | - Luciana G. Macedo
- School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 1C7, Canada;
| | - James M. Elliott
- Faculty of Medicine and Health, School of Health Sciences, The Kolling Institute, University of Sydney, Sydney, NSW 2050, Australia;
- Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
| | - Geoffrey Dover
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC H4B 1R6, Canada; (M.R.); (A.R.); (C.M.); (J.B.); (N.N.); (B.R.); (C.B.); (G.D.); (R.D.); (V.P.)
| | - Richard DeMont
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC H4B 1R6, Canada; (M.R.); (A.R.); (C.M.); (J.B.); (N.N.); (B.R.); (C.B.); (G.D.); (R.D.); (V.P.)
| | - Michael H. Weber
- Department of Orthopedic Surgery, McGill University Health Centre, Montreal, QC H3J 1A4, Canada;
| | - Véronique Pepin
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC H4B 1R6, Canada; (M.R.); (A.R.); (C.M.); (J.B.); (N.N.); (B.R.); (C.B.); (G.D.); (R.D.); (V.P.)
- School of Health, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
2
|
Murray KA, Hoad CL, Garratt J, Kaviani M, Marciani L, Smith JK, Siegmund B, Gowland PA, Humes DJ, Spiller RC. A pilot study of visceral fat and its association with adipokines, stool calprotectin and symptoms in patients with diverticulosis. PLoS One 2019; 14:e0216528. [PMID: 31067253 PMCID: PMC6505945 DOI: 10.1371/journal.pone.0216528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/18/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Complications of diverticular disease are increasingly common, possibly linked to increasing obesity. Visceral fat could contribute to the development of symptomatic diverticular disease through its pro-inflammatory effects. OBJECTIVE The study had 2 aims. A) to develop a semi-automated algorithm to measure abdominal adipose tissue from 2-echo magnetic resonance imaging (MRI) data; B) to use this to determine if visceral fat was associated with bowel symptoms and inflammatory markers in patients with symptomatic and asymptomatic diverticular disease. DESIGN An observational study measuring visceral fat using MRI together with serum adiponectin, leptin, stool calprotectin and patient-reported somatisation and bowel habit. SETTING Medical and imaging research centres of a university hospital. PARTICIPANTS MRI scans were performed on 55 patients after an overnight fast measuring abdominal subcutaneous and visceral adipose tissue volumes together with small bowel water content (SBWC). Blood and stool samples were collected and patients kept a 2 week stool diary and completed a somatisation questionnaire. MAIN OUTCOME MEASURES Difference in the volume of visceral fat between symptomatic and asymptomatic patients. RESULTS There were no significant differences in visceral (p = 0.98) or subcutaneous adipose (p = 0.60) tissue between symptomatic and asymptomatic patients. However measured fat volumes were associated with serum adipokines. Adiponectin showed an inverse correlation with visceral adipose tissue (VAT) (Spearman ρ = -0.5, p = 0.0003), which correlated negatively with SBWC (ρ = -0.3, p = 0.05). Leptin correlated positively with subcutaneous adipose tissue (ρ = 0.8, p < 0.0001). Overweight patients (BMI > 25 kgm-2) showed a moderate correlation between calprotectin and VAT (ρ = 0.3, p = 0.05). Somatization scores were significantly higher in symptomatic patients (p < 0.0003). CONCLUSIONS Increasing visceral fat is associated with lower serum adiponectin and increased faecal calprotectin suggesting a pro-inflammatory effect which may predispose to the development of complications of diverticulosis.
Collapse
Affiliation(s)
- Kathryn A. Murray
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
- Trinity Medical Sciences University, Ratho Mill, Kingstown, St. Vincent, West Indies
| | - Caroline L. Hoad
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Jill Garratt
- Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Mehri Kaviani
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Luca Marciani
- Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Jan K. Smith
- Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Britta Siegmund
- Gastroenterology, Rheumatology, Infectious Diseases, Charité –Universitätsmedizin, Berlin, Germany
| | - Penny A. Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - David J. Humes
- Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Robin C. Spiller
- Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
3
|
Delhaes F, Giza SA, Koreman T, Eastabrook G, McKenzie CA, Bedell S, Regnault TRH, de Vrijer B. Altered maternal and placental lipid metabolism and fetal fat development in obesity: Current knowledge and advances in non-invasive assessment. Placenta 2018; 69:118-124. [PMID: 29907450 DOI: 10.1016/j.placenta.2018.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/01/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023]
Abstract
Abnormal maternal lipid profiles, a hallmark of increased maternal adiposity, are associated with pregnancy complications such as preeclampsia and gestational diabetes, and offspring long-term metabolic health is impacted as the consequence of altered fetal growth, physiology and often iatrogenic prematurity. The metabolic changes associated with maternal obesity and/or the consumption of a high-fat diet effecting maternal lipid profiles and metabolism have also been documented to specifically affect placental function and may underlie changes in fetal development and life course disease risk. The placenta plays a critical role in mediating nutritional signals between the fetus and the mother. As obesity rates in women of reproductive age continue to increase, it is becoming evident that inclusion of new technologies that allow for a better understanding of early changes in placental lipid transport and metabolism, non-invasively in maternal circulation, maternal tissues, placenta, fetal circulation and fetal tissues are needed to aid timely clinical diagnosis and treatment for obesity-associated diseases. This review describes pregnancy lipid homeostasis, with specific reference to changes arising from altered maternal body composition on placental and fetal lipid transport and metabolism. Current technologies for lipid assessments, such as metabolomics and lipidomics may be impacted by labour or mode of delivery and are only reflective of a single time point. This review further addresses how established and novel technologies for assessing lipids and their metabolism non-invasively and during the course of pregnancy may guide future research into the effect of maternal metabolic health on pregnancy outcome, placenta and fetus.
Collapse
Affiliation(s)
- Flavien Delhaes
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.
| | - Stephanie A Giza
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.
| | - Tianna Koreman
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.
| | - Genevieve Eastabrook
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| | - Charles A McKenzie
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| | - Samantha Bedell
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.
| | - Timothy R H Regnault
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| | - Barbra de Vrijer
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
4
|
Joy TR, McKenzie CA, Tirona RG, Summers K, Seney S, Chakrabarti S, Malhotra N, Beaton MD. Sitagliptin in patients with non-alcoholic steatohepatitis: A randomized, placebo-controlled trial. World J Gastroenterol 2017; 23:141-150. [PMID: 28104990 PMCID: PMC5221278 DOI: 10.3748/wjg.v23.i1.141] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/09/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the effect of sitagliptin vs placebo on histologic and non-histologic parameters of non-alcoholic steatohepatitis (NASH).
METHODS Twelve patients with biopsy-proven NASH were randomized to sitagliptin (100 mg daily) (n = 6) or placebo (n = 6) for 24 wk. The primary outcome was improvement in liver fibrosis after 24 wk. Secondary outcomes included evaluation of changes in NAFLD activity score (NAS), individual components of NAS (hepatocyte ballooning, lobular inflammation, and steatosis), glycemic control and insulin resistance [including measurements of glycated hemoglobin (HbA1C) and adipocytokines], lipid profile including free fatty acids, adipose distribution measured using magnetic resonance imaging (MRI), and thrombosis markers (platelet aggregation and plasminogen activator inhibitor 1 levels). We also sought to determine the correlation between changes in hepatic fat fraction (%) [as measured using the Iterative Decomposition of water and fat with Echo Asymmetry and Least-squares estimation (IDEAL) MRI technique] and changes in hepatic steatosis on liver biopsy.
RESULTS Sitagliptin was not significantly better than placebo at reducing liver fibrosis score as measured on liver biopsy (mean difference between sitagliptin and placebo arms, 0.40, P = 0.82). There were no significant improvements evident with the use of sitagliptin vs placebo for the secondary histologic outcomes of NAS total score as well as for the individual components of NAS. Compared to baseline, those patients who received sitagliptin demonstrated improved HbA1C (6.7% ± 0.4% vs 7.9% ± 1.0%, P = 0.02), and trended towards improved adiponectin levels (4.7 ± 3.5 μg/mL vs 3.9 ± 2.7 μg/mL, P = 0.06) and triglyceride levels (1.26 ± 0.43 mmol/L vs 2.80 ± 1.64 mmol/L, P = 0.08). However, when compared with placebo, sitagliptin did not cause a statistically significant improvement in HbA1C (mean difference, -0.7%, P = 0.19) nor triglyceride levels (mean difference -1.10 mmol/L, P = 0.19) but did trend towards improved adiponectin levels only (mean difference, 0.60 μg/mL, P = 0.095). No significant changes in anthropometrics, liver enzymes, other adipocytokines, lipid profile, thrombosis parameters, or adipose distribution were demonstrated. The MRI IDEAL procedure correlated well with steatosis scores obtained on liver biopsy in both groups at baseline and post-treatment, and the Spearman correlation coefficients ranged from r = 0.819 (baseline) to r = 0.878 (post-treatment), P = 0.002.
CONCLUSION Sitagliptin does not improve fibrosis score or NAS after 24 wk of therapy. The MRI IDEAL technique may be useful for non-invasive measurement of hepatic steatosis.
Collapse
|
5
|
Romu T, Dahlström N, Leinhard OD, Borga M. Robust water fat separated dual-echo MRI by phase-sensitive reconstruction. Magn Reson Med 2016; 78:1208-1216. [DOI: 10.1002/mrm.26488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/22/2016] [Accepted: 09/11/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Thobias Romu
- Department of Biomedical Engineering; Linköping University; Linköping Sweden
- Center for Medical Image Science and Visualization (CMIV); Linköping University; Linköping Sweden
| | - Nils Dahlström
- Center for Medical Image Science and Visualization (CMIV); Linköping University; Linköping Sweden
- Department of Radiology, Department of Medical and Health Sciences; Linköping University; Linköping Sweden
| | - Olof Dahlqvist Leinhard
- Center for Medical Image Science and Visualization (CMIV); Linköping University; Linköping Sweden
- Department of Medical and Health Sciences; Linköping University; Linköping Sweden
| | - Magnus Borga
- Department of Biomedical Engineering; Linköping University; Linköping Sweden
- Center for Medical Image Science and Visualization (CMIV); Linköping University; Linköping Sweden
| |
Collapse
|
6
|
Shearrer GE, Daniels MJ, Toledo-Corral CM, Weigensberg MJ, Spruijt-Metz D, Davis JN. Associations among sugar sweetened beverage intake, visceral fat, and cortisol awakening response in minority youth. Physiol Behav 2016; 167:188-193. [PMID: 27660033 DOI: 10.1016/j.physbeh.2016.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 01/12/2023]
Abstract
CONTEXT Abdominal adiposity has long been associated with excess caloric intake possibly resulting from increased psychosocial stress and associated cortisol dysfunction. However, the relationship of sugar-sweetened beverage (SSB) intake specifically with cortisol variability and visceral adipose tissue (VAT) is unknown. OBJECTIVE To examine the relationships between SSB intake, VAT, and cortisol response in minority youth. DESIGN A cross-sectional analysis. SETTING The University of Southern California. PARTICIPANTS 60 overweight/obese Non-Hispanic Black and Hispanic adolescents ages 14-18years. MAIN OUTCOME MEASURES VAT via Magnet Resonance Imaging (MRI), cortisol awakening response (CAR) via multiple salivary samples, and SSB intake via multiple 24-hour diet recalls. SSB intake was divided into the following: low SSB consumers (<1 servings per day), medium SSB consumers (≥1-<2 servings per day), high SSB consumers (≥2 servings per day). Analysis of covariance were run with VAT and CAR as dependent variables and SSB intake categories (independent variable) with the following a priori covariates: sex, Tanner stage, ethnicity, caloric intake, and body mass index. RESULTS The high SSB intake group exhibited a 7% higher VAT compared to the low SSB intake group (β=0.25, CI:(0.03, 0.33), p=0.02). CAR was associated with VAT (β=0.31, CI:(0.01,0.23), p=0.02). The high SSB intake group exhibited 22% higher CAR compared to the low SSB intake group (β=0.30, CI:(0.02,0.48), p=0.04). CONCLUSION This is the first study exploring the relationship between SSB, VAT, and CAR. SSB consumption appears to be independently associated greater abdominal adiposity and higher morning cortisol variability in overweight and obese minority youth. This study highlights potential targets for interventions specifically to reduce SSB intake in a minority youth population.
Collapse
Affiliation(s)
- G E Shearrer
- Department of Nutrition, University of Texas, Austin, TX, United States.
| | - M J Daniels
- Department of Statistics & Data Sciences, University of Texas, Austin, TX, United States; Department of Integrative Biology, University of Texas, Austin, TX, United States
| | - C M Toledo-Corral
- Department of Public Health, California State University, Los Angeles, CA, United States
| | - M J Weigensberg
- Department of Pediatrics, Institute for Integrative Health, University of Southern California Keck School of Medicine, CA, Unites States
| | - D Spruijt-Metz
- Center for Economic and Social Research, University of Southern California, CA, Unites States
| | - J N Davis
- Department of Nutrition, University of Texas, Austin, TX, United States
| |
Collapse
|
7
|
Comparison of T1-weighted 2D TSE, 3D SPGR, and two-point 3D Dixon MRI for automated segmentation of visceral adipose tissue at 3 Tesla. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 30:139-151. [PMID: 27638089 DOI: 10.1007/s10334-016-0588-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/28/2016] [Accepted: 08/29/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To evaluate and compare conventional T1-weighted 2D turbo spin echo (TSE), T1-weighted 3D volumetric interpolated breath-hold examination (VIBE), and two-point 3D Dixon-VIBE sequences for automatic segmentation of visceral adipose tissue (VAT) volume at 3 Tesla by measuring and compensating for errors arising from intensity nonuniformity (INU) and partial volume effects (PVE). MATERIALS AND METHODS The body trunks of 28 volunteers with body mass index values ranging from 18 to 41.2 kg/m2 (30.02 ± 6.63 kg/m2) were scanned at 3 Tesla using three imaging techniques. Automatic methods were applied to reduce INU and PVE and to segment VAT. The automatically segmented VAT volumes obtained from all acquisitions were then statistically and objectively evaluated against the manually segmented (reference) VAT volumes. RESULTS Comparing the reference volumes with the VAT volumes automatically segmented over the uncorrected images showed that INU led to an average relative volume difference of -59.22 ± 11.59, 2.21 ± 47.04, and -43.05 ± 5.01 % for the TSE, VIBE, and Dixon images, respectively, while PVE led to average differences of -34.85 ± 19.85, -15.13 ± 11.04, and -33.79 ± 20.38 %. After signal correction, differences of -2.72 ± 6.60, 34.02 ± 36.99, and -2.23 ± 7.58 % were obtained between the reference and the automatically segmented volumes. A paired-sample two-tailed t test revealed no significant difference between the reference and automatically segmented VAT volumes of the corrected TSE (p = 0.614) and Dixon (p = 0.969) images, but showed a significant VAT overestimation using the corrected VIBE images. CONCLUSION Under similar imaging conditions and spatial resolution, automatically segmented VAT volumes obtained from the corrected TSE and Dixon images agreed with each other and with the reference volumes. These results demonstrate the efficacy of the signal correction methods and the similar accuracy of TSE and Dixon imaging for automatic volumetry of VAT at 3 Tesla.
Collapse
|
8
|
Quantifying fat and lean muscle in the lower legs of women with knee osteoarthritis using two different MRI systems. Rheumatol Int 2016; 36:855-62. [DOI: 10.1007/s00296-016-3455-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/25/2016] [Indexed: 12/21/2022]
|
9
|
Heymsfield SB, Hu HH, Shen W, Carmichael O. Emerging Technologies and their Applications in Lipid Compartment Measurement. Trends Endocrinol Metab 2015; 26:688-698. [PMID: 26596676 PMCID: PMC4673021 DOI: 10.1016/j.tem.2015.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/19/2015] [Accepted: 10/19/2015] [Indexed: 12/22/2022]
Abstract
Non-Communicable diseases (NCDs), including obesity, are emerging as the major health concern of the 21st century. Excess adiposity and related NCD metabolic disturbances have stimulated development of new lipid compartment measurement technologies to help us to understand cellular energy exchange, to refine phenotypes, and to develop predictive markers of adverse clinical outcomes. Recent advances now allow quantification of multiple intracellular lipid and adipose tissue compartments that can be evaluated across the human lifespan. With magnetic resonance methods leading the way, newer approaches will give molecular structural and metabolic information beyond the laboratory in real-world settings. The union between these new technologies and the growing NCD population is creating an exciting interface in advancing our understanding of chronic disease mechanisms.
Collapse
Affiliation(s)
- Steven B Heymsfield
- Pennington Biomedical Research Center, Louisiana State University (LSU) System, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | - Houchun Harry Hu
- Phoenix Children's Hospital, Department of Radiology, 1919 East Thomas Road, Phoenix, AZ 85016, USA
| | - Wei Shen
- New York Obesity Research Center, Department of Pediatrics and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Owen Carmichael
- Pennington Biomedical Research Center, Louisiana State University (LSU) System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| |
Collapse
|
10
|
Ulbrich EJ, Fischer MA, Manoliu A, Marcon M, Luechinger R, Nanz D, Reiner CS. Age- and Gender Dependent Liver Fat Content in a Healthy Normal BMI Population as Quantified by Fat-Water Separating DIXON MR Imaging. PLoS One 2015; 10:e0141691. [PMID: 26554709 PMCID: PMC4640707 DOI: 10.1371/journal.pone.0141691] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/09/2015] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES To establish age- and sex-dependent values of magnetic resonance (MR) liver fat-signal fraction (FSF) in healthy volunteers with normal body-mass index (BMI). METHODS 2-point mDIXON sequences (repetition time/echo time, 4.2msec/1.2msec, 3.1msec) at 3.0 Tesla MR were acquired in 80 healthy volunteers with normal BMI (18.2 to 25.7 kg/m2) between 20 and 62 years (10 men/10 women per decade). FSF was measured in 5 liver segments (segment II, III, VI, VII, VIII) based on mean signal intensities in regions of interest placed on mDIXON-based water and fat images. Multivariate general linear models were used to test for significant differences between BMI-corrected FSF among age subgroups. Pearson and Spearman correlations between FSF and several body measures were calculated. RESULTS Mean FSF (%) ± standard deviations significantly differed between women (3.91 ± 1.10) and men (4.69 ± 1.38) and varied with age for women/men (p-value: 0.002/0.027): 3.05 ± 0.49/3.74 ± 0.60 (age group 20-29), 3.75 ± 0.66/4.99 ± 1.30 (30-39), 4.76 ± 1.16/5.25 ± 1.97 (40-49) and 4.09 ± 1.26/4.79 ± 0.93 (50-62). FSF differences among age subgroups were significant for women only (p = 0.003). CONCLUSIONS MR-based liver fat content is higher in men and peaks in the fifth decade for both genders.
Collapse
Affiliation(s)
- Erika J. Ulbrich
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Michael A. Fischer
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Andrei Manoliu
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Magda Marcon
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Roger Luechinger
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Daniel Nanz
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Caecilia S. Reiner
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Gyllenhammer LE, Alderete TL, Toledo-Corral CM, Weigensberg M, Goran MI. Saturation of subcutaneous adipose tissue expansion and accumulation of ectopic fat associated with metabolic dysfunction during late and post-pubertal growth. Int J Obes (Lond) 2015; 40:601-6. [PMID: 26443340 PMCID: PMC4821774 DOI: 10.1038/ijo.2015.207] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/04/2015] [Accepted: 09/21/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND/OBJECTIVE Puberty is a period defined by large changes in adipose tissue accumulation and distribution; however, longitudinal patterns of ectopic fat development have not been shown. We have previously shown significant declines in beta-cell function (BCF) across puberty and hypothesize that accumulation of ectopic fat deposition, particularly hepatic fat, will predict this fall. SUBJECT/METHODS We conducted a longitudinal study and examined 2-year change in abdominal fat distribution and type 2 diabetes risk markers in 76 Hispanic children and young adults (16.1±0.5 years, 66% obese, 52% male, 51% post-pubertal). Subcutaneous abdominal adipose tissue (SAAT), visceral adipose tissue (VAT), hepatic fat fraction (HFF) and pancreatic fat fraction (PFF) were measured by 3-Tesla magnetic resonance imaging, and markers of type 2 diabetes risk were collected at fasting and during an oral glucose tolerance test (OGTT). RESULTS Baseline pubertal status significantly moderated the 2-year change in ectopic fat deposition, such that VAT, HFF and PFF increased in individuals during late and post-pubertal growth, whereas children earlier in their pubertal development decreased ectopic accumulation and had less VAT accumulation (VAT: pTanner*time=0.044, 0.31±0.08 l vs 0.03±0.10 l; HFF: pTanner*time=0.007, 1.34±0.87% vs -2.61±1.11%; PFF: pTanner*time<0.001, 1.61±0.39% vs -0.96±0.50%). Independent of pubertal status, the 2-year increase in HFF and VAT significantly associated with a decline in BCF (ß=-1.04, P=0.038; ß=-1.81, P=0.020) and metabolic function, while accumulation of SAAT significantly associated with BCF (ß=1.36, P=0.012) and metabolic improvement. HFF accumulation was the only depot to significantly predict clinical markers of type 2 diabetes risk, fasting glucose and HbA1c, and circulating free fatty acid levels (ß=1.00, P=0.034; ß=1.00, P=0.015; ß=01.01, P=0.024). CONCLUSIONS The accumulation of SAAT defends against type 2 diabetes risk and potentially ectopic fat accumulation. Intra-abdominal VAT and HFF accumulation both associate with metabolic decline and BCF, while HFF predicts an even greater number of metabolic risk features.
Collapse
Affiliation(s)
- L E Gyllenhammer
- Department of Preventive Medicine, Diabetes and Obesity Research Institute, University of Southern California, Los Angeles, CA, USA
| | - T L Alderete
- Department of Preventive Medicine, Diabetes and Obesity Research Institute, University of Southern California, Los Angeles, CA, USA
| | - C M Toledo-Corral
- Department of Public Health, California State University Los Angeles, Los Angeles, CA, USA
| | - M Weigensberg
- Department of Preventive Medicine, Diabetes and Obesity Research Institute, University of Southern California, Los Angeles, CA, USA
| | - M I Goran
- Department of Preventive Medicine, Diabetes and Obesity Research Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Hu HH, Chen J, Shen W. Segmentation and quantification of adipose tissue by magnetic resonance imaging. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2015; 29:259-76. [PMID: 26336839 DOI: 10.1007/s10334-015-0498-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/13/2022]
Abstract
In this brief review, introductory concepts in animal and human adipose tissue segmentation using proton magnetic resonance imaging (MRI) and computed tomography are summarized in the context of obesity research. Adipose tissue segmentation and quantification using spin relaxation-based (e.g., T1-weighted, T2-weighted), relaxometry-based (e.g., T1-, T2-, T2*-mapping), chemical-shift selective, and chemical-shift encoded water-fat MRI pulse sequences are briefly discussed. The continuing interest to classify subcutaneous and visceral adipose tissue depots into smaller sub-depot compartments is mentioned. The use of a single slice, a stack of slices across a limited anatomical region, or a whole body protocol is considered. Common image post-processing steps and emerging atlas-based automated segmentation techniques are noted. Finally, the article identifies some directions of future research, including a discussion on the growing topic of brown adipose tissue and related segmentation considerations.
Collapse
Affiliation(s)
- Houchun Harry Hu
- Department of Radiology, Phoenix Children's Hospital, 1919 East Thomas Road, Phoenix, AZ, 85016, USA.
| | - Jun Chen
- Obesity Research Center, Department of Medicine, Columbia University Medical Center, 1150 Saint Nicholas Avenue, New York, NY, 10032, USA
| | - Wei Shen
- Obesity Research Center, Department of Medicine and Institute of Human Nutrition, Columbia University Medical Center, 1150 Saint Nicholas Avenue, New York, NY, 10032, USA
| |
Collapse
|
13
|
Lareau-Trudel E, Le Troter A, Ghattas B, Pouget J, Attarian S, Bendahan D, Salort-Campana E. Muscle Quantitative MR Imaging and Clustering Analysis in Patients with Facioscapulohumeral Muscular Dystrophy Type 1. PLoS One 2015; 10:e0132717. [PMID: 26181385 PMCID: PMC4504465 DOI: 10.1371/journal.pone.0132717] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/17/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy type 1 (FSHD1) is the third most common inherited muscular dystrophy. Considering the highly variable clinical expression and the slow disease progression, sensitive outcome measures would be of interest. METHODS AND FINDINGS Using muscle MRI, we assessed muscular fatty infiltration in the lower limbs of 35 FSHD1 patients and 22 healthy volunteers by two methods: a quantitative imaging (qMRI) combined with a dedicated automated segmentation method performed on both thighs and a standard T1-weighted four-point visual scale (visual score) on thighs and legs. Each patient had a clinical evaluation including manual muscular testing, Clinical Severity Score (CSS) scale and MFM scale. The intramuscular fat fraction measured using qMRI in the thighs was significantly higher in patients (21.9 ± 20.4%) than in volunteers (3.6 ± 2.8%) (p<0.001). In patients, the intramuscular fat fraction was significantly correlated with the muscular fatty infiltration in the thighs evaluated by the mean visual score (p<0.001). However, we observed a ceiling effect of the visual score for patients with a severe fatty infiltration clearly indicating the larger accuracy of the qMRI approach. Mean intramuscular fat fraction was significantly correlated with CSS scale (p ≤ 0.01) and was inversely correlated with MMT score, MFM subscore D1 (p ≤ 0.01) further illustrating the sensitivity of the qMRI approach. Overall, a clustering analysis disclosed three different imaging patterns of muscle involvement for the thighs and the legs which could be related to different stages of the disease and put forth muscles which could be of interest for a subtle investigation of the disease progression and/or the efficiency of any therapeutic strategy. CONCLUSION The qMRI provides a sensitive measurement of fat fraction which should also be of high interest to assess disease progression and any therapeutic strategy in FSHD1 patients.
Collapse
Affiliation(s)
- Emilie Lareau-Trudel
- Centre de référence des maladies neuromusculaires et de la SLA, Centre hospitalier universitaire la Timone, Université Aix-Marseille, Marseille, France
| | - Arnaud Le Troter
- Aix-Marseille Université, Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS 7339, Marseille, France
| | - Badih Ghattas
- Institut de Mathématiques de Marseille, Université Aix-Marseille, Marseille, France
| | - Jean Pouget
- Centre de référence des maladies neuromusculaires et de la SLA, Centre hospitalier universitaire la Timone, Université Aix-Marseille, Marseille, France
| | - Shahram Attarian
- Centre de référence des maladies neuromusculaires et de la SLA, Centre hospitalier universitaire la Timone, Université Aix-Marseille, Marseille, France
| | - David Bendahan
- Aix-Marseille Université, Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS 7339, Marseille, France
| | - Emmanuelle Salort-Campana
- Centre de référence des maladies neuromusculaires et de la SLA, Centre hospitalier universitaire la Timone, Université Aix-Marseille, Marseille, France
| |
Collapse
|
14
|
Niemann M, Alkadhi H, Gotschy A, Kozerke S, Manka R. [Epicardial fat: Imaging and implications for diseases of the cardiovascular system]. Herz 2014; 40 Suppl 3:282-90. [PMID: 25178875 DOI: 10.1007/s00059-014-4146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 07/24/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
Since the discovery of the obese (ob) gene product leptin, fat has been considered an endocrine organ. Especially epicardial fat has gained increasing attention in recent years. The epicardial fat plays a major role in fat metabolism; however, harmful properties have also been reported. Echocardiography, computed tomography and cardiac magnetic resonance imaging are the non-invasive tools used to measure epicardial fat volume. This review briefly introduces the basic physiological and pathophysiological considerations concerning epicardial fat. The main issue of this review is the presentation of non-invasive measurement techniques of epicardial fat using various imaging modalities and a literature overview of associations between epicardial fat and common cardiovascular diseases.
Collapse
Affiliation(s)
- M Niemann
- Institut für Biomedizinische Technik, Universität und ETH Zürich, Gloriastr. 35, CH-8092, Zürich, Schweiz,
| | | | | | | | | |
Collapse
|
15
|
Csapo R, Malis V, Sinha U, Du J, Sinha S. Age-associated differences in triceps surae muscle composition and strength - an MRI-based cross-sectional comparison of contractile, adipose and connective tissue. BMC Musculoskelet Disord 2014; 15:209. [PMID: 24939372 PMCID: PMC4072482 DOI: 10.1186/1471-2474-15-209] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 06/12/2014] [Indexed: 11/25/2022] Open
Abstract
Background In human skeletal muscles, the aging process causes a decrease of contractile and a concomitant increase of intramuscular adipose (IMAT) and connective (IMCT) tissues. The accumulation of non-contractile tissues may contribute to the significant loss of intrinsic muscle strength typically observed at older age but their in vivo quantification is challenging. The purpose of this study was to establish MR imaging-based methods to quantify the relative amounts of IMCT, IMAT and contractile tissues in young and older human cohorts, and investigate their roles in determining age-associated changes in skeletal muscle strength. Methods Five young (31.6 ± 7.0 yrs) and five older (83.4 ± 3.2 yrs) Japanese women were subject to a detailed MR imaging protocol, including Fast Gradient Echo, Quantitative Fat/Water (IDEAL) and Ultra-short Echo Time (UTE) sequences, to determine contractile muscle tissue and IMAT within the entire Triceps Surae complex, and IMCT within both heads of the Gastrocnemius muscle. Specific force was calculated as the ratio of isometric plantarflexor force and the physiological cross-sectional area of the Triceps Surae complex. Results In the older cohort, total Triceps Surae volume was smaller by 17.5%, while the relative amounts of Triceps Surae IMAT and Gastrocnemius IMCT were larger by 55.1% and 48.9%, respectively. Differences of 38.6% and 42.1% in plantarflexor force and specific force were observed. After subtraction of IMAT and IMCT from total muscle volume, differences in intrinsic strength decreased to 29.6%. Conclusions Our data establishes that aging causes significant changes in skeletal muscle composition, with marked increases in non-contractile tissues. Such quantification of the remodeling process is likely to be of functional and clinical importance in elucidating the causes of the disproportionate age-associated decrease of force compared to that of muscle volume.
Collapse
Affiliation(s)
| | | | | | | | - Shantanu Sinha
- Department of Radiology, University of California, San Diego, CA, USA.
| |
Collapse
|
16
|
Addeman BT, Kutty S, Perkins TG, Soliman AS, Wiens CN, McCurdy CM, Beaton MD, Hegele RA, McKenzie CA. Validation of volumetric and single-slice MRI adipose analysis using a novel fully automated segmentation method. J Magn Reson Imaging 2014; 41:233-41. [DOI: 10.1002/jmri.24526] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/07/2013] [Indexed: 01/11/2023] Open
Affiliation(s)
- Bryan T. Addeman
- Department of Medical Biophysics; University of Western Ontario; London Ontario Canada
| | - Shelby Kutty
- University of Nebraska Medical Center; Omaha Nebraska USA
- Children's Hospital & Medical Center; Omaha Nebraska USA
| | - Thomas G. Perkins
- University of Nebraska Medical Center; Omaha Nebraska USA
- Philips Healthcare; Cleveland Ohio USA
| | - Abraam S. Soliman
- Biomedical Engineering, University of Western Ontario; London Ontario Canada
| | - Curtis N. Wiens
- Department of Physics and Astronomy; University of Western Ontario; London Ontario Canada
| | - Colin M. McCurdy
- Department of Medical Biophysics; University of Western Ontario; London Ontario Canada
| | - Melanie D. Beaton
- Department of Medicine, Division of Gastroenterology; University of Western Ontario; London Ontario Canada
| | - Robert A. Hegele
- Robarts Research Institute; University of Western Ontario; London Ontario Canada
| | - Charles A. McKenzie
- Department of Medical Biophysics; University of Western Ontario; London Ontario Canada
- Biomedical Engineering, University of Western Ontario; London Ontario Canada
- Department of Physics and Astronomy; University of Western Ontario; London Ontario Canada
- Robarts Research Institute; University of Western Ontario; London Ontario Canada
| |
Collapse
|
17
|
Lim S, Meigs JB. Ectopic fat and cardiometabolic and vascular risk. Int J Cardiol 2013; 169:166-76. [PMID: 24063931 DOI: 10.1016/j.ijcard.2013.08.077] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 06/16/2013] [Accepted: 08/28/2013] [Indexed: 12/16/2022]
Abstract
Given that the variation in how regional adipose tissue handles and stores excess dietary energy has substantial cardiometabolic implications, ectopic fat distribution might be an important predictor of cardiometabolic and vascular risk, in addition to overall obesity itself. Conceptually, ectopic fat depots may be divided into systemically acting fat depots and locally acting fat depots. Systemically acting fat depots include visceral fat, fat in the liver, muscle, or neck, and subcutaneous fat. Accumulation in the abdominal visceral area, compared with overall obesity, has an equally or more important role in the development of cardiometabolic risk. Fat depots in liver/muscle tissue cause adverse cardiometabolic effects by affecting energy metabolism. Fat depots in lower-body subcutaneous areas may be protective regarding cardiometabolic risk, by trapping remnant energy. Fat accumulation in the neck is a unique type of fat depot that may increase cardiovascular risk by increasing insulin resistance. Locally acting fat depots include pericardial fat, perivascular fat, and renal sinus fat. These fat depots have effects primarily on adjacent anatomic organs, directly via lipotoxicity and indirectly via cytokine secretion. Pericardial fat is associated with coronary atherosclerosis. Perivascular fat may play an independent role in adverse vascular biology, including arterial stiffness. Renal sinus fat is a unique fat depot that may confer additional cardiometabolic risk. Thus, ectopic fat depots may contribute to the understanding of the link between body composition and cardiometabolic risk. In this review, we focus on the role and clinical implications of ectopic fat depots in cardiometabolic and vascular risk.
Collapse
Affiliation(s)
- Soo Lim
- General Medicine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, South Korea.
| | | |
Collapse
|
18
|
Hernando D, Cook RJ, Diamond C, Reeder SB. Magnetic susceptibility as a B0 field strength independent MRI biomarker of liver iron overload. Magn Reson Med 2013; 70:648-56. [PMID: 23801540 PMCID: PMC3883906 DOI: 10.1002/mrm.24848] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 05/20/2013] [Accepted: 05/28/2013] [Indexed: 01/19/2023]
Abstract
PURPOSE MR-based quantification of liver magnetic susceptibility may enable field strength-independent measurement of liver iron concentration (LIC). However, susceptibility quantification is challenging, due to nonlocal effects of susceptibility on the B0 field. The purpose of this work is to demonstrate feasibility of susceptibility-based LIC quantification using a fat-referenced approach. METHODS Phantoms consisting of vials with increasing iron concentrations immersed between oil/water layers, and 27 subjects (9 controls/18 subjects with liver iron overload) were scanned. Ferriscan (1.5 T) provided R2-based reference LIC. Multiecho three-dimensional-SPGR (1.5 T/3 T) enabled fat-water, B0- and R2*-mapping. Phantom iron concentration (mg Fe L(-1)) was estimated from B0 differences (ΔB0) between vials and neighboring oil. Liver susceptibility and LIC (mg Fe g(-1) dry tissue) was estimated from ΔB0 between the lateral right lobe of the liver and adjacent subcutaneous adipose tissue. RESULTS Estimated phantom iron concentrations had good correlation with true iron concentrations (1.5 T:slope = 0.86, intercept = 0.72, r(2) = 0.98; 3 T:slope = 0.85, intercept = 1.73, r(2) = 0.98). In liver, ΔB0 correlated strongly with R2* (1.5 T:r(2) = 0.86; 3 T:r(2) = 0.93) and B0-LIC had good agreement with Ferriscan-LIC (slopes/intercepts nearly 1.0/0.0, 1.5 T:r(2) = 0.67, slope = 0.93 ± 0.13, P ≈ 0.50, intercept = 1.93 ± 0.78, P ≈ 0.02; 3 T:r(2) = 0.84, slope = 1.01 ± 0.09, P ≈ 0.90, intercept = 0.23 ± 0.52, P ≈ 0.68). DISCUSSION Fat-referenced, susceptibility-based LIC estimation is feasible at both field strengths. This approach may enable improved susceptibility mapping in the abdomen.
Collapse
Affiliation(s)
- Diego Hernando
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
19
|
Toledo-Corral CM, Alderete TL, Hu HH, Nayak K, Esplana S, Liu T, Goran MI, Weigensberg MJ. Ectopic fat deposition in prediabetic overweight and obese minority adolescents. J Clin Endocrinol Metab 2013; 98:1115-21. [PMID: 23386647 PMCID: PMC3590481 DOI: 10.1210/jc.2012-3806] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CONTEXT Optimizing effective prevention and treatment of type 2 diabetes in youth is limited by incomplete understanding of its pathophysiology and how this varies across ethnicities with high risk. OBJECTIVE The aim of this study was to examine the contribution of visceral adipose tissue (VAT), hepatic fat fraction (HFF), and pancreatic fat fraction (PFF) to prediabetes in overweight/obese African American (AA) and Latino youth. DESIGN AND SETTING We conducted a cross-sectional study in an academic pediatric care facility. SUBJECTS A total of 148 healthy, overweight/obese adolescents (56 AA, 92 Latino; 72 males, 76 females; age, 15.5 ± 1.2 y; BMI z-score, 2.1 ± 0.5) participated in the study. They were normal glucose tolerant (n = 106) and prediabetic (n = 42), based on fasting glucose of 100-125 mg/dL and/or 2-hour glucose of 140-199 mg/dL, and/or hemoglobin A1C 6.0-6.4%. MAIN OUTCOME MEASURES We measured sc abdominal adipose tissue, VAT, HFF, and PFF by 3-Tesla magnetic resonance imaging and measured total body fat by dual-energy x-ray absorptiometry. RESULTS Adolescents with prediabetes had 30% higher HFF (P = .001) and 31% higher PFF (P = .042), compared to those with normal glucose tolerance after controlling for age, sex, pubertal stage, ethnicity, total percentage body fat, and VAT. Logistic regression showed that PFF predicted prediabetes in AAs and HFF predicted prediabetes in Latinos, with the odds of having prediabetes increased by 66% for every 1% increase in PFF in African Americans, and increased by 22% for every 1% increase in HFF in Latinos. CONCLUSION These data demonstrate that ectopic fat phenotypes associated with prediabetes are established by adolescence. Ethnic differences in the deposition of ectopic fat in adolescents with prediabetes may differ, with pancreatic fat in AAs, vs hepatic fat in Latino adolescents, being associated with diabetes risk.
Collapse
Affiliation(s)
- Claudia M Toledo-Corral
- Department of Preventive Medicine, University of Southern California, 2250 Alcazar Street, CSC 200, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Characterization of human brown adipose tissue by chemical-shift water-fat MRI. AJR Am J Roentgenol 2013; 200:177-83. [PMID: 23255760 DOI: 10.2214/ajr.12.8996] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The purpose of this study was to characterize human brown adipose tissue (BAT) with chemical-shift water-fat MRI and to determine whether trends and differences in fat-signal fractions and T2(*) relaxation times between BAT and white adipose tissue (WAT) are consistently observed postmortem and in vivo in infants, adolescents, and adults. MATERIALS AND METHODS A postmortem body and eight patients were studied. A six-echo spoiled gradient-echo chemical-shift water-fat MRI sequence was performed at 3 T to jointly quantify fat-signal fraction and T2(*) in interscapular-supraclavicular BAT and subcutaneous WAT. To confirm BAT identity, biopsy and histology served as the reference in the postmortem study and PET/CT was used in five of the eight patients who required examination for medical care. RESULTS Fat-signal fractions and T2(*) times were lower in BAT than in WAT in the postmortem example and in seven of eight patients. With the exception of one case, nominal comparisons between brown and white adipose tissues were statistically significant (p < 0.05). Between subjects, a large range of fat-signal fraction values was observed in BAT but not in WAT. CONCLUSION We have shown that fat-signal fractions and T2(*) values jointly derived from chemical-shift water-fat MRI are lower in BAT than in WAT likely because of differences in cellular structures, triglyceride content, and vascularization. The two metrics can serve as complementary biomarkers in the detection of BAT.
Collapse
|
21
|
Sharma SD, Hu HH, Nayak KS. Chemical shift encoded water-fat separation using parallel imaging and compressed sensing. Magn Reson Med 2013; 69:456-66. [PMID: 22505285 PMCID: PMC3606060 DOI: 10.1002/mrm.24270] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 12/21/2022]
Abstract
Chemical shift encoded techniques have received considerable attention recently because they can reliably separate water and fat in the presence of off-resonance. The insensitivity to off-resonance requires that data be acquired at multiple echo times, which increases the scan time as compared to a single echo acquisition. The increased scan time often requires that a compromise be made between the spatial resolution, the volume coverage, and the tolerance to artifacts from subject motion. This work describes a combined parallel imaging and compressed sensing approach for accelerated water-fat separation. In addition, the use of multiscale cubic B-splines for B(0) field map estimation is introduced. The water and fat images and the B(0) field map are estimated via an alternating minimization. Coil sensitivity information is derived from a calculated k-space convolution kernel and l(1)-regularization is imposed on the coil-combined water and fat image estimates. Uniform water-fat separation is demonstrated from retrospectively undersampled data in the liver, brachial plexus, ankle, and knee as well as from a prospectively undersampled acquisition of the knee at 8.6x acceleration.
Collapse
Affiliation(s)
- Samir D Sharma
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA.
| | | | | |
Collapse
|
22
|
Collewet G, Bugeon J, Idier J, Quellec S, Quittet B, Cambert M, Haffray P. Rapid quantification of muscle fat content and subcutaneous adipose tissue in fish using MRI. Food Chem 2012; 138:2008-15. [PMID: 23411337 DOI: 10.1016/j.foodchem.2012.09.131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 09/17/2012] [Accepted: 09/23/2012] [Indexed: 11/18/2022]
Abstract
The potentiality of MRI to quantify fat content in flesh and subcutaneous fat in fish cutlets was investigated. Low measurement time was aimed at in a view to handling large number of samples needed in selective breeding programs for example. Results on fresh and frozen-thawed cutlets were compared to assess this way of conservation. As MRI generates unwanted spatial variations of the signal, a correction method was developed enabling the measurement on several cutlets simultaneously in less than 3 min per sample. For subcutaneous fat, the results were compared with vision measurements. High correlations between both techniques were found (R(2)=0.77 and 0.87 for the ventral and dorsal part). Fat in flesh was validated vs NMR measurements. No statistical difference was found between fresh and frozen-thawed cutlets. RMSE was respectively 0.8% and 0.89%. These results confirmed the potentiality of MRI for fat measurement in fish particularly for a large number of samples.
Collapse
Affiliation(s)
- Guylaine Collewet
- Irstea, UR TERE, 17 avenue de cucillé, CS 64427, 35044 Rennes, France.
| | | | | | | | | | | | | |
Collapse
|
23
|
Valentinitsch A, Karampinos DC, Alizai H, Subburaj K, Kumar D, Link TM, Majumdar S. Automated unsupervised multi-parametric classification of adipose tissue depots in skeletal muscle. J Magn Reson Imaging 2012; 37:917-27. [PMID: 23097409 DOI: 10.1002/jmri.23884] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/14/2012] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To introduce and validate an automated unsupervised multi-parametric method for segmentation of the subcutaneous fat and muscle regions to determine subcutaneous adipose tissue (SAT) and intermuscular adipose tissue (IMAT) areas based on data from a quantitative chemical shift-based water-fat separation approach. MATERIALS AND METHODS Unsupervised standard k-means clustering was used to define sets of similar features (k = 2) within the whole multi-modal image after the water-fat separation. The automated image processing chain was composed of three primary stages: tissue, muscle, and bone region segmentation. The algorithm was applied on calf and thigh datasets to compute SAT and IMAT areas and was compared with a manual segmentation. RESULTS The IMAT area using the automatic segmentation had excellent agreement with the IMAT area using the manual segmentation for all the cases in the thigh (R(2): 0.96) and for cases with up to moderate IMAT area in the calf (R(2): 0.92). The group with the highest grade of muscle fat infiltration in the calf had the highest error in the inner SAT contour calculation. CONCLUSION The proposed multi-parametric segmentation approach combined with quantitative water-fat imaging provides an accurate and reliable method for an automated calculation of the SAT and IMAT areas reducing considerably the total postprocessing time.
Collapse
Affiliation(s)
- Alexander Valentinitsch
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Poonawalla AH, Sjoberg BP, Rehm JL, Hernando D, Hines CD, Irarrazaval P, Reeder SB. Adipose tissue MRI for quantitative measurement of central obesity. J Magn Reson Imaging 2012; 37:707-16. [PMID: 23055365 DOI: 10.1002/jmri.23846] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 08/29/2012] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To validate adipose tissue magnetic resonance imaging (atMRI) for rapid, quantitative volumetry of visceral adipose tissue (VAT) and total adipose tissue (TAT). MATERIALS AND METHODS Data were acquired on normal adults and clinically overweight girls with Institutional Review Board (IRB) approval/parental consent using sagittal 6-echo 3D-spoiled gradient-echo (SPGR) (26-sec single-breath-hold) at 3T. Fat-fraction images were reconstructed with quantitative corrections, permitting measurement of a physiologically based fat-fraction threshold in normals to identify adipose tissue, for automated measurement of TAT, and semiautomated measurement of VAT. TAT accuracy was validated using oil phantoms and in vivo TAT/VAT measurements validated with manual segmentation. Group comparisons were performed between normals and overweight girls using TAT, VAT, VAT-TAT-ratio (VTR), body-mass-index (BMI), waist circumference, and waist-hip-ratio (WHR). RESULTS Oil phantom measurements were highly accurate (<3% error). The measured adipose fat-fraction threshold was 96% ± 2%. VAT and TAT correlated strongly with manual segmentation (normals r(2) ≥ 0.96, overweight girls r(2) ≥ 0.99). VAT segmentation required 30 ± 11 minutes/subject (14 ± 5 sec/slice) using atMRI, versus 216 ± 73 minutes/subject (99 ± 31 sec/slice) manually. Group discrimination was significant using WHR (P < 0.001) and VTR (P = 0.004). CONCLUSION The atMRI technique permits rapid, accurate measurements of TAT, VAT, and VTR.
Collapse
Affiliation(s)
- Aziz H Poonawalla
- Department of Radiology, University of Wisconsin, Madison, Wisconsin 53792-3252, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Joshi AA, Hu HH, Leahy RM, Goran MI, Nayak KS. Automatic intra-subject registration-based segmentation of abdominal fat from water-fat MRI. J Magn Reson Imaging 2012; 37:423-30. [PMID: 23011805 DOI: 10.1002/jmri.23813] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/07/2012] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To develop an automatic registration-based segmentation algorithm for measuring abdominal adipose tissue depot volumes and organ fat fraction content from three-dimensional (3D) water-fat MRI data, and to evaluate its performance against manual segmentation. MATERIALS AND METHODS Data were obtained from 11 subjects at two time points with intermediate repositioning, and from four subjects before and after a meal with repositioning. Imaging was performed on a 3 Tesla MRI, using the IDEAL chemical-shift water-fat pulse sequence. Adipose tissue (subcutaneous--SAT, visceral--VAT) and organs (liver, pancreas) were manually segmented twice for each scan by a single trained observer. Automated segmentations of each subject's second scan were generated using a nonrigid volume registration algorithm for water-fat MRI images that used a b-spline basis for deformation and minimized image dissimilarity after the deformation. Manual and automated segmentations were compared using Dice coefficients and linear regression of SAT and VAT volumes, organ volumes, and hepatic and pancreatic fat fractions (HFF, PFF). RESULTS Manual segmentations from the 11 repositioned subjects exhibited strong repeatability and set performance benchmarks. The average Dice coefficients were 0.9747 (SAT), 0.9424 (VAT), 0.9404 (liver), and 0.8205 (pancreas); the linear correlation coefficients were 0.9994 (SAT volume), 0.9974 (VAT volume), 0.9885 (liver volume), 0.9782 (pancreas volume), 0.9996 (HFF), and 0.9660 (PFF). When comparing manual and automated segmentations, the average Dice coefficients were 0.9043 (SAT volume), 0.8235 (VAT), 0.8942 (liver), and 0.7168 (pancreas); the linear correlation coefficients were 0.9493 (SAT volume), 0.9982 (VAT volume), 0.9326 (liver volume), 0.8876 (pancreas volume), 0.9972 (HFF), and 0.8617 (PFF). In the four pre- and post-prandial subjects, the Dice coefficients were 0.9024 (SAT), 0.7781 (VAT), 0.8799 (liver), and 0.5179 (pancreas); the linear correlation coefficients were 0.9889, 0.9902 (SAT, and VAT volume), 0.9523 (liver volume), 0.8760 (pancreas volume), 0.9991 (HFF), and 0.6338 (PFF). CONCLUSION Automated intra-subject registration-based segmentation is potentially suitable for the quantification of abdominal and organ fat and achieves comparable quantitative endpoints with respect to manual segmentation.
Collapse
Affiliation(s)
- Anand A Joshi
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089-2564, USA.
| | | | | | | | | |
Collapse
|