1
|
Kaçaroğlu D, Yaylacı S, Ulaşlı AM. Dual facets of MSC-derived small EVs: regulatory insights into antitumor mechanisms in pancreatic ductal adenocarcinoma. Med Oncol 2025; 42:158. [PMID: 40208413 PMCID: PMC11985665 DOI: 10.1007/s12032-025-02713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense, fibrotic, immunosuppressive, and desmoplastic extracellular matrix. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have emerged as a novel therapeutic strategy. Nonetheless, the potential dual effects of MSC-EVs on tumor cells warrant careful consideration. This study aimed to evaluate the mechanistic effects of MSC-EVs on PDAC. Wharton's Jelly (WJ) MSC-derived small EVs were isolated using ultracentrifugation method and analyzed through nanoparticle tracking analysis (NTA) and flow cytometry. EVs were added to Panc-1 cells at concentrations of 4000-10,000 EVs per cell, and a preliminary MTT assay was performed. In subsequent experiments, EVs were added to Panc-1 cells at concentrations of only 4000, 8000 and 12,000 EVs per cell. After 24 h, apoptosis and cell cycle analyses were performed. The expression of epithelial-mesenchymal transition (EMT)-related and immune-related genes was analyzed. Cell cycle analysis showed higher G1 phase percentage in the control group (31%) compared to MSC EV-treated groups (35-36%). Apoptosis analysis revealed similar viable and necrotic cell percentages among the control (80% viable) and treated groups (approximately 78-79% viable). The CD44, VIM, MMP9, TIMP1, and ZEB1 genes were downregulated in treated groups compared to the control. Although CLDN1 and CDH1 genes were upregulated at the lowest EV concentration, they were downregulated at higher EV concentrations. Immune gene analysis showed downregulation of pro-inflammatory cytokines (IL-6, TNF-α, IFN-γ, IL-1α, IL-1β) and upregulation of the anti-inflammatory cytokine IL-10 in treated groups. This study revealed the dual role of WJ-MSC small EVs in PDAC. While they suppressed cell proliferation and modulated EMT markers, indicating their antitumor potential, they also exhibited an immunosuppressive profile. These findings highlight both the promise and challenges of using WJ-MSC small EVs as therapeutic agents, necessitating further studies to optimize their application and balance their effects.
Collapse
Affiliation(s)
- Demet Kaçaroğlu
- Faculty of Medicine, Department of Medical Biology, Lokman Hekim University, Söğütözü, 2179. Sk. No:6, 06530, Çankaya, Ankara, Turkey.
| | - Seher Yaylacı
- Faculty of Medicine, Department of Medical Biology, Lokman Hekim University, Söğütözü, 2179. Sk. No:6, 06530, Çankaya, Ankara, Turkey
| | - Alper Murat Ulaşlı
- Stem Cell Institute, Interdisciplinary Stem Cell and Regenerative Medicine Department, Ankara University, Cevizlidere, Ceyhun Atuf Kansu Cd. No:169, 06520, Çankaya, Ankara, Turkey
| |
Collapse
|
2
|
Garg S, Garg G, Patel P, Kumar M, Thakur S, Sharma N, Das Kurmi B. A complete sojourn on exosomes: Potential diagnostic and therapeutic agents. Pathol Res Pract 2024; 264:155674. [PMID: 39481226 DOI: 10.1016/j.prp.2024.155674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Exosomes are vesicles produced by the human body for carrying certain information from one cell to another. The carriers are nanosized vesicles carrying a wide variety of cargo like RNA, DNA, and proteins. Exosomes are also being used in the early diagnosis of various diseases and disorders. Current research focuses on exosomes tailoring for achieving therapeutic potential in various diseases and disorders. Besides this, their biocompatibility, stability, adjustable efficacy, and targeting properties make them attractive vehicles for formulation developers. Various preclinical studies suggested that the exosome culture cells are also modified with certain genes to achieve the desirable properties of resultant exosomes. The human body also produces some other vesicles like Ectosomes and Exomeres produced along with exosomes. Additionally, vesicles like Migrasomes are produced by migrating cells and apoptotic bodies, and Oncosomes are produced by cancer cells which can also be useful for the diagnosis of various diseases and disorders. For the separation of desired exosomes from other vesicles some latest techniques that can be useful viz differential centrifugation, density gradient centrifugation, and immunoaffinity purification have been discussed. Briefly, this review summarized various techniques of isolation of purified exosomes along with an overview of the application of exosomes in various neurodegenerative disorders and cancer along with various latest aspects of exosomes in disease progression and management which might be beneficial for the researchers.
Collapse
Affiliation(s)
- Sonakshi Garg
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India
| | - Gurisha Garg
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India.
| | - Manish Kumar
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India
| | - Nitin Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India.
| |
Collapse
|
3
|
Hassaan NA, Mansour HA. Exosomal therapy is a luxury area for regenerative medicine. Tissue Cell 2024; 91:102570. [PMID: 39383641 DOI: 10.1016/j.tice.2024.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Stem cell-based therapies have made significant advancements in tissue regeneration and medical engineering. However, there are limitations to cell transplantation therapy, such as immune rejection and limited cell viability. These limitations greatly impede the translation of stem cell-based tissue regeneration into clinical practice. In recent years, exosomes, which are packaged vesicles released from cells, have shown promising progress. Specifically, exosomes derived from stem cells have demonstrated remarkable therapeutic benefits. Exosomes are nanoscale extracellular vesicles that act as paracrine mediators. They transfer functional cargos, such as miRNA and mRNA molecules, peptides, proteins, cytokines, and lipids, from MSCs to recipient cells. By participating in intercellular communication events, exosomes contribute to the healing of injured or diseased tissues and organs. Studies have shown that the therapeutic effects of MSCs in various experimental paradigms can be solely attributed to their exosomes. Consequently, MSC-derived exosomes can be modified and utilized to develop a unique cell-free therapeutic approach for treating multiple diseases, including neurological, immunological, heart, and other diseases. This review is divided into several categories, including the current understanding of exosome biogenesis, isolation techniques, and their application as therapeutic tools.
Collapse
Affiliation(s)
- Nahla A Hassaan
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Hanaa A Mansour
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
4
|
Wang F. Mechanism of bone-marrow mesenchymal stem cell-derived exosomes mediating microRNA-139-5p to regulate β-catenin in the modulation of proliferation and apoptosis of acute myeloid leukemia cells. Hematology 2024; 29:2428482. [PMID: 39570105 DOI: 10.1080/16078454.2024.2428482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
OBJECTIVE Acute myeloid leukemia (AML) stands out as a malignancy of the stem cell precursors of the myeloid lineage. Bone-marrow mesenchymal stem cell-derived exosomes (BMSC-exos) affect AML progression. We explored the effects and mechanism of BMSC-exos on AML cell proliferation and apoptosis. METHODS Human AML cells (MOLM-16, MV-4-11) and normal human hematopoietic cells (GM12878) cultured in vitro were treated with exos extracted from BMSCs that transfected with microRNA (miR)-139-5p-mimics, ovβ-catenin, or miR-139-5p-inhibitor. BMSC morphology was observed by a microscopy, and its adipogenic and osteogenic differentiation abilities were assessed by oil red O staining and alizarin red S staining. BMSC-exos were extracted by ultracentrifugation, and their morphology was observed by a transmission electron microscopy. BMSC-exos were identified by nanoparticle tracking analysis and Western blot. The binding sites between miR-139-5p and β-catenin were predicted by TargetScan database, and then validated by dual-luciferase reporter assay. mRNA levels of miR-139-5p and β-catenin, cell proliferation, and apoptosis were evaluated by RT-qPCR, CCK-8, and flow cytometry. The expressions of CD63, CD81, TSG101, and GRP94 and the proteins of β-catenin, Bax, and Bcl-2 were determined by Western blot. RESULTS miR-139-5p was poorly expressed in AML cell lines. miR-139-5p overexpression reduced AML cell viability/proliferation/Bcl-2 level, and raised apoptosis/Bax level. BMSC-exos repressed AML cell proliferation and promoted apoptosis via miR-139-5p. miR-139-5p targeted to inhibit β-catenin expression. Subsequently, up-regulated β-catenin partially counteracted the effects of miR-139-5p in BMSC-exos on AML cell proliferation and apoptosis. CONCLUSION BMSC-exos targeted to repress β-catenin expression by miR-139-5p, limited AML cell proliferation and facilitated apoptosis.
Collapse
Affiliation(s)
- Fen Wang
- Division of Hematology & Oncology, Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
5
|
Susanti R, Dafip M, Mustikaningtyas D, Putra A. Predictive action of oncomiR in suppressing TP53 signaling pathway in hypoxia-conditioned colon cancer cell line HCT-116. Cell Biol Int 2024; 48:1891-1905. [PMID: 39285519 DOI: 10.1002/cbin.12243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Accepted: 08/31/2024] [Indexed: 11/15/2024]
Abstract
Hypoxia-induced heterogeneity in colorectal cancer (CRC) significantly impacts patient survival by promoting chemoresistance. These conditions alter the regulation of miRNAs, key regulators of crucial processes like proliferation, apoptosis, and invasion, leading to tumor progression. Despite their promising potential as diagnostic and therapeutic targets, the underlying mechanisms by which miRNAs influence hypoxia-mediated tumorigenesis remain largely unexplored. This study aims to elucidate the action of miRNAs in HCT-116 colorectal cancer stem cells (CSCs) under hypoxia, providing valuable insights into their role in tumor adaptation and progression. MiRNA expression was determined using Nanostring nCounter, and bioinformatic analysis was performed to explain the molecular pathway. A total of 50 miRNAs were obtained with an average count of ≥ 20 reads for comparative expression analysis. The results showed that hypoxia-affected 36 oncomiRs were increased in HCT-116, and 14 suppressor-miRs were increased in MSCs. The increase in miRNA expression occurred consistently from normoxia to hypoxia and significantly differed between mesenchymal stem cells (MSCs) and HCT-116. Furthermore, miR-16-5p and miR-29a-3p were dominant in regulating the p53 signaling pathway, which is thought to be related to the escape mechanism against hypoxia and maintaining cell proliferation. More research with a genome-transcriptome axis approach is needed to fully understand miRNAs' role in adapting CRC cells and MSCs to hypoxia. Further research could focus on developing specific biomarkers for diagnosis. In addition, anti-miR can be developed as a therapy to prevent cancer proliferation or inhibit the adaptation of cancer cells to hypoxia.
Collapse
Affiliation(s)
- R Susanti
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Semarang, Semarang, Indonesia
| | - Muchamad Dafip
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Semarang, Semarang, Indonesia
- Doctoral Program of Biotechnology, Postgraduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dewi Mustikaningtyas
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Semarang, Semarang, Indonesia
| | - Agung Putra
- Department of Biomedical Science, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang, Indonesia
- Stem Cell and Cancer Research (SCCR), Faculty of Medicine, Universitas Islam Sultan Agung, Semarang, Indonesia
| |
Collapse
|
6
|
Cui F, Chen Y, Wu X, Zhao W. Mesenchymal stem cell-derived exosomes carrying miR-486-5p inhibit glycolysis and cell stemness in colorectal cancer by targeting NEK2. BMC Cancer 2024; 24:1356. [PMID: 39506654 PMCID: PMC11539302 DOI: 10.1186/s12885-024-13086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Colorectal cancer (CRC) is a major global concern. Mesenchymal stem cell-derived exosomes (MSC-EXOs) have demonstrated efficacy as a therapeutic approach for colorectal cancer. However, the precise mechanism by which MSC-EXOs treat colorectal cancer remains unclear. Human umbilical cord (hUC)-MSC-EXOs were isolated and identified. Cell Counting Kit-8 (CCK-8), Transwell, and colony formation assays were used to assess the activity of CRC cells. Glucose consumption, lactic acid production, and extracellular acidification rate (ECAR) were measured to assess glycolytic activity. Cell stemness was assessed using a sphere-formation assay. Furthermore, MSC-exosomal microRNAs (miRNAs) in CRC tissues were analyzed using the EVmiRNA database, and aberrantly expressed miRNAs in CRC cells were obtained from the Gene Expression Omnibus (GEO) database. The binding relationship between miR-486-5p and the never in mitosis gene A-related kinase 2 (NEK2) was predicted using the Starbase database and validated through RNA binding protein immunoprecipitation (RIP) and dual luciferase assays. These results showed that hUC-MSC-EXOs inhibited the proliferation and metastasis of CRC cells. Moreover, glycolysis and stemness abilities of CRC cells also decreased after treatment with hUC-MSC-EXOs. miR-486-5p was found to be enriched in hUC-MSC-EXOs and significantly downregulated in CRC cells. miR-486-5p directly bound to NEK2. Overexpression of NEK2 reversed the inhibitory effect of miR-486-5p on CRC cell glycolysis and stemness. Our study highlights that hUC-MSC-EXO miR-486-5p inhibits glycolysis and cell stemness in CRC by targeting NEK2. This finding offers compelling evidence supporting the potential application of hUC-MSC-EXOs in the treatment of CRC.
Collapse
Affiliation(s)
- Facai Cui
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou City, 450003, Henan, China.
| | - Yu Chen
- Department of Pathology, Affiliated Tumor Hospital of Zhengzhou University, No. 127 Dongming Road, Jinshui District, Zhengzhou City, 450003, Henan, China
| | - Xiaoyu Wu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou City, 450003, Henan, China
| | - Weifeng Zhao
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou City, 450003, Henan, China
| |
Collapse
|
7
|
Qin J, Hu S, Lou J, Xu M, Gao R, Xiao Q, Chen Y, Ding M, Pan Y, Wang S. Selumetinib overcomes ITGA2-induced 5-fluorouracil resistance in colorectal cancer. Int Immunopharmacol 2024; 137:112487. [PMID: 38889513 DOI: 10.1016/j.intimp.2024.112487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most malignant tumor in the world. 5-fluorouracil (5‑FU) -based chemotherapy is the first-line chemotherapy scheme for CRC, whereas acquired drug resistance poses a huge obstacle to curing CRC patients and the mechanism is still obscure. Therefore, identification of genes associated with 5‑FU chemotherapy and seeking second-line treatment are necessary means to improve survival and prognosis of patients with CRC. METHODS The Cancer Therapeutics Response Portal (CTRP) database and Genomics of Drug Sensitivity in Cancer (GDSC) database were used to identify CRC-related genes and potential second-line therapies for 5-FU-resistant CRC. The single-cell RNA sequencing data for CRC tissues were obtained from a GEO dataset. The relationship between ITGA2 and 5-FU-resistant was investigated in vitro and in vivo models. RESULTS ACOX1 and ITGA2 were identified as risk biomarkers associated with 5-FU-resistance. We developed a risk signature, consisting of ACOX1 and ITGA2, that was able to distinguish well between 5-FU-resistance and 5-FU-sensitive. The single-cell sequencing data showed that ITGA2 was mainly enriched in malignant cells. ITGA2 was negatively correlated with IC50 values of most small molecule inhibitors, of which selumetinib had the highest negative correlation. Finally, knocking down ITGA2 can make 5-FU-resistant CRC cells sensitive to 5-FU and combining with selumetinib can improve the therapeutic effect of 5-FU resistant cells. CONCLUSION In summary, our findings demonstrated the critical role of ITGA2 in enhancing chemotherapy resistance in CRC cells and suggested that selumetinib can restore the sensitivity of chemotherapy-resistant CRC cells to 5-FU by inhibiting ITGA2 expression.
Collapse
Affiliation(s)
- Jian Qin
- School of Medicine, Southeast University, Nanjing, Jiangsu, China; General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shangshang Hu
- School of Medicine, Southeast University, Nanjing, Jiangsu, China; General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinwei Lou
- School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Mu Xu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Gao
- School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qianni Xiao
- School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuhan Chen
- School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Muzi Ding
- School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Shukui Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu, China; General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Hu S, Zhang C, Ma Q, Li M, Yu X, Zhang H, Lv S, Shi Y, He X. Unveiling the multifaceted roles of microRNAs in extracellular vesicles derived from mesenchymal stem cells: implications in tumor progression and therapeutic interventions. Front Pharmacol 2024; 15:1438177. [PMID: 39161894 PMCID: PMC11330784 DOI: 10.3389/fphar.2024.1438177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have the capacity to migrate to tumor sites in vivo and transmit paracrine signals by secreting extracellular vesicles (EVs) to regulate tumor biological behaviors. MSC-derived EVs (MSC-EVs) have similar tumor tropism and pro- or anti-tumorigenesis as their parental cells and exhibit superior properties in drug delivery. MSC-EVs can transfer microRNAs (miRNAs) to tumor cells, thereby manipulating multiple key cancer-related pathways, and further playing a vital role in the tumor growth, metastasis, drug resistance and other aspects. In addition, tumor cells can also influence the behaviors of MSCs in the tumor microenvironment (TME), orchestrating this regulatory process via miRNAs in EVs (EV-miRNAs). Clarifying the specific mechanism by which MSC-derived EV-miRNAs regulate tumor progression, as well as investigating the roles of EV-miRNAs in the TME will contribute to their applications in tumor pharmacotherapy. This article mainly reviews the multifaceted roles and mechanism of miRNAs in MSC-EVs affecting tumor progression, the crosstalk between MSCs and tumor cells caused by EV-miRNAs in the TME. Eventually, the clinical applications of miRNAs in MSC-EVs in tumor therapeutics are illustrated.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Zhao W, Li K, Li L, Wang R, Lei Y, Yang H, Sun L. Mesenchymal Stem Cell-Derived Exosomes as Drug Delivery Vehicles in Disease Therapy. Int J Mol Sci 2024; 25:7715. [PMID: 39062956 PMCID: PMC11277139 DOI: 10.3390/ijms25147715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Exosomes are small vesicles containing proteins, nucleic acids, and biological lipids, which are responsible for intercellular communication. Studies have shown that exosomes can be utilized as effective drug delivery vehicles to accurately deliver therapeutic substances to target tissues, enhancing therapeutic effects and reducing side effects. Mesenchymal stem cells (MSCs) are a class of stem cells widely used for tissue engineering, regenerative medicine, and immunotherapy. Exosomes derived from MSCs have special immunomodulatory functions, low immunogenicity, the ability to penetrate tumor tissues, and high yield, which are expected to be engineered into efficient drug delivery systems. Despite the promising promise of MSC-derived exosomes, exploring their optimal preparation methods, drug-loading modalities, and therapeutic potential remains challenging. Therefore, this article reviews the related characteristics, preparation methods, application, and potential risks of MSC-derived exosomes as drug delivery systems in order to find potential therapeutic breakthroughs.
Collapse
Affiliation(s)
- Wenzhe Zhao
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Kaixuan Li
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Liangbo Li
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Ruichen Wang
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Yang Lei
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Hui Yang
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
| | - Leming Sun
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| |
Collapse
|
10
|
Ma X, Cui M, Guo Y. Bioinformatics analysis of the association between obesity and gastric cancer. Front Genet 2024; 15:1385559. [PMID: 39011399 PMCID: PMC11246963 DOI: 10.3389/fgene.2024.1385559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Background Obesity and gastric cancer (GC) are prevalent diseases worldwide. In particular, the number of patients with obesity is increasing annually, while the incidence and mortality rates of GC are ranked high. Consequently, these conditions seriously affect the quality of life of individuals. While evidence suggests a strong association between these two conditions, the underlying mechanisms of this comorbidity remain unclear. Methods We obtained the gene expression profiles of GSE94752 and GSE54129 from the Gene Expression Omnibus database. To investigate the associated biological processes, pathway enrichment analyses were conducted using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes for the shared differentially expressed genes in obesity and GC. A protein-protein interaction (PPI) network was subsequently established based on the Search Tool for the Retrieval of Interacting Genes (STRING) database, followed by the screening of the core modules and central genes in this network using Cytoscape plug-in MCODE. Furthermore, we scrutinized the co-expression network and the interplay network of transcription factors (TFs), miRNAs, and mRNAs linked to these central genes. Finally, we conducted further analyses using different datasets to validate the significance of the hub genes. Results A total of 246 shared differentially expressed genes (209 upregulated and 37 downregulated) were selected for ensuing analyses. Functional analysis emphasized the pivotal role of inflammation and immune-associated pathways in these two diseases. Using the Cytoscape plug-in CytoHubba, nine hub genes were identified, namely, CXCR4, CXCL8, CXCL10, IL6, TNF, CCL4, CXCL2, CD4, and CCL2. IL6 and CCL4 were confirmed as the final hub genes through validation using different datasets. The TF-miRNA-mRNA regulatory network showed that the TFs primarily associated with the hub genes included RELA and NFKB1, while the predominantly associated miRNAs included has-miR-195-5p and has-miR-106a-5p. Conclusion Using bioinformatics methods, we identified two hub genes from the Gene Expression Omnibus datasets for obesity and GC. In addition, we constructed a network of hub genes, TFs, and miRNAs, and identified the major related TFs and miRNAs. These factors may be involved in the common molecular mechanisms of obesity and GC.
Collapse
Affiliation(s)
- Xiaole Ma
- Department of Gastrointestinal Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Miao Cui
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuntong Guo
- Department of Gastrointestinal Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Li W, Si Y, Wang Y, Chen J, Huo X, Xu P, Jiang B, Li Z, Shang K, Luo Q, Xiong Y. hUCMSC-derived exosomes protect against GVHD-induced endoplasmic reticulum stress in CD4 + T cells by targeting the miR-16-5p/ATF6/CHOP axis. Int Immunopharmacol 2024; 135:112315. [PMID: 38805908 DOI: 10.1016/j.intimp.2024.112315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/30/2024]
Abstract
Exosomes generated from mesenchymal stem cells (MSCs) are thought to be a unique therapeutic strategy for several autoimmune deficiency illnesses. The purpose of this study was to elucidate the protective effects of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exo) on CD4+ T cells dysfunction during graft-versus-host disease (GVHD) and to identify the underlying processes involved. Here, we showed that hUCMSC-Exo treatment can effectively attenuate GVHD injury by alleviating redox metabolism disorders and inflammatory cytokine bursts in CD4+ T cells. Furthermore, hUCMSC-Exo ameliorate ER stress and ATF6/CHOP signaling-mediated apoptosis in CD4+ T cells and promote the development of CD4+IL-10+ T cells during GVHD. Moreover, downregulating miR-16-5p in hUCMSC-Exo impaired their ability to prevent CD4+ T cells apoptosis and weakened their ability to promote the differentiation of CD4+IL-10+ T cells. Collectively, the obtained data suggested that hUCMSC-Exo suppress ATF6/CHOP signaling-mediated ER stress and apoptosis in CD4+ T cells, enhance the differentiation of CD4+IL-10+ T cells, and reverse the imbalance of immune homeostasis in the GVHD process by transferring miR-16-5p. Our study provided further evidence that GVHD patients can benefit from hUCMSC-Exo-mediated therapy.
Collapse
Affiliation(s)
- Weihan Li
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, PR China; Shanghai Mebo Life Science & Technology Co., Shanghai, PR China
| | - Yaru Si
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Yueming Wang
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, PR China
| | - Juntong Chen
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Xingyu Huo
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Pengzhan Xu
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Bingzhen Jiang
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Zile Li
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Kangdi Shang
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Qianqian Luo
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China.
| | - Yanlian Xiong
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, PR China; Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China.
| |
Collapse
|
12
|
Jin X, Zhang J, Zhang Y, He J, Wang M, Hei Y, Guo S, Xu X, Liu Y. Different origin-derived exosomes and their clinical advantages in cancer therapy. Front Immunol 2024; 15:1401852. [PMID: 38994350 PMCID: PMC11236555 DOI: 10.3389/fimmu.2024.1401852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Exosomes, as a class of small extracellular vesicles closely related to the biological behavior of various types of tumors, are currently attracting research attention in cancer diagnosis and treatment. Regarding cancer diagnosis, the stability of their membrane structure and their wide distribution in body fluids render exosomes promising biomarkers. It is expected that exosome-based liquid biopsy will become an important tool for tumor diagnosis in the future. For cancer treatment, exosomes, as the "golden communicators" between cells, can be designed to deliver different drugs, aiming to achieve low-toxicity and low-immunogenicity targeted delivery. Signaling pathways related to exosome contents can also be used for safer and more effective immunotherapy against tumors. Exosomes are derived from a wide range of sources, and exhibit different biological characteristics as well as clinical application advantages in different cancer therapies. In this review, we analyzed the main sources of exosomes that have great potential and broad prospects in cancer diagnosis and therapy. Moreover, we compared their therapeutic advantages, providing new ideas for the clinical application of exosomes.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
- The Second Affiliated Hospital of Xi‘an Medical University, Xi’an, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Jing He
- Laboratory of Obstetrics and Gynecology, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Mingming Wang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yu Hei
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Shutong Guo
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Xiangrong Xu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yusi Liu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
13
|
Zhang Y, Huo M, Li W, Zhang H, Liu Q, Jiang J, Fu Y, Huang C. Exosomes in tumor-stroma crosstalk: Shaping the immune microenvironment in colorectal cancer. FASEB J 2024; 38:e23548. [PMID: 38491832 DOI: 10.1096/fj.202302297r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
Colorectal cancer (CRC) is a multifaceted disease characterized by a complex interaction between tumor cells and the surrounding microenvironment. Within this intricate landscape, exosomes have emerged as pivotal players in the tumor-stroma crosstalk, influencing the immune microenvironment of CRC. These nano-sized vesicles, secreted by both tumoral and stromal cells, serve as molecular transporters, delivering a heterogeneous mix of biomolecules such as RNAs, proteins, and lipids. In the CRC context, exosomes exert dual roles: they promote tumor growth, metastasis, and immune escape by altering immune cell functions and activating oncogenic signaling pathways and offer potential as biomarkers for early CRC detection and treatment targets. This review delves into the multifunctional roles of exosomes in the CRC immune microenvironment, highlighting their potential implications for future therapeutic strategies and clinical outcomes.
Collapse
Affiliation(s)
- Yawei Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingyu Huo
- Department of Gastrointestinal Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wenchao Li
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongyu Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qi Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianwu Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Changjun Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Zhang SS, Li RQ, Chen Z, Wang XY, Dumont AS, Fan X. Immune cells: potential carriers or agents for drug delivery to the central nervous system. Mil Med Res 2024; 11:19. [PMID: 38549161 PMCID: PMC10979586 DOI: 10.1186/s40779-024-00521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
Drug delivery systems (DDS) have recently emerged as a promising approach for the unique advantages of drug protection and targeted delivery. However, the access of nanoparticles/drugs to the central nervous system (CNS) remains a challenge mainly due to the obstruction from brain barriers. Immune cells infiltrating the CNS in the pathological state have inspired the development of strategies for CNS foundation drug delivery. Herein, we outline the three major brain barriers in the CNS and the mechanisms by which immune cells migrate across the blood-brain barrier. We subsequently review biomimetic strategies utilizing immune cell-based nanoparticles for the delivery of nanoparticles/drugs to the CNS, as well as recent progress in rationally engineering immune cell-based DDS for CNS diseases. Finally, we discuss the challenges and opportunities of immune cell-based DDS in CNS diseases to promote their clinical development.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Ruo-Qi Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Zhong Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Xiao-Ying Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, 70122, USA
| | - Aaron S Dumont
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, 70122, USA.
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
15
|
Saadh MJ, Mohamed AH, Almoyad MAA, Allela OQB, Amin AH, Malquisto AA, Jin WT, Sârbu I, AlShamsi F, Elsaid FG, Akhavan-Sigari R. Dual role of mesenchymal stem/stromal cells and their cell-free extracellular vesicles in colorectal cancer. Cell Biochem Funct 2024; 42:e3962. [PMID: 38491792 DOI: 10.1002/cbf.3962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/18/2024]
Abstract
Colorectal cancer (CRC) is one of the main causes of cancer-related deaths. However, the surgical control of the CRC progression is difficult, and in most cases, the metastasis leads to cancer-related mortality. Mesenchymal stem/stromal cells (MSCs) with potential translational applications in regenerative medicine have been widely researched for several years. MSCs could affect tumor development through secreting exosomes. The beneficial properties of stem cells are attributed to their cell-cell interactions as well as the secretion of paracrine factors in the tissue microenvironment. For several years, exosomes have been used as a cell-free therapy to regulate the fate of tumor cells in a tumor microenvironment. This review discusses the recent advances and current understanding of assessing MSC-derived exosomes for possible cell-free therapy in CRC.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil, Hilla, Iraq
| | - Muhammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Mushait, Saudi Arabia
| | | | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - April Ann Malquisto
- Abuyog Community College, Abuyog Leyte, Philippines
- ESL Science Teacher, Tacloban City, Tacloban, Philippines
- Department of Art Sciences and Education, Tacloban City, Philippines
| | - Wong Tze Jin
- Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia Bintulu Campus, Sarawak, Malaysia
- Institute for Mathematical Research, Universiti Putra Malaysia, Selangor, Malaysia
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, Romania
| | - Faisal AlShamsi
- Dubai Health Authority, Primary Health Care Department, Dubai, United Arab Emirates
| | - Fahmy Gad Elsaid
- Biology Department, College of Science, King Khalid University, Asir, Abha, Al-Faraa, Saudi Arabia
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
16
|
Karami Fath M, Bagherzadeh Torbati SM, Saqagandomabadi V, Yousefi Afshar O, Khalilzad M, Abedi S, Moliani A, Daneshdoust D, Barati G. The therapeutic effect of MSCs and their extracellular vesicles on neuroblastoma. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 187:51-60. [PMID: 38373516 DOI: 10.1016/j.pbiomolbio.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/04/2023] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Neuroblastoma is a common inflammatory-related cancer during infancy. Standard treatment modalities including surgical interventions, high-dose chemotherapy, radiotherapy, and immunotherapy are not able to increase survival rate and reduce tumor relapse in high-risk patients. Mesenchymal stem cells (MSCs) are known for their tumor-targeting and immunomodulating properties. MSCs could be engineered to express anticancer agents (i.e., growth factors, cytokines, pro-apoptotic agents) or deliver oncolytic viruses in the tumor microenvironment. As many functions of MSCs are mediated through their secretome, researchers have tried to use extracellular vesicles (EVs) from MSCs for targeted therapy of neuroblastoma. Here, we reviewed the studies to figure out whether the use of MSCs could be worthwhile in neuroblastoma therapy or not. Native MSCs have shown a promoting or inhibiting role in cancers including neuroblastoma. Therefore, MSCs are proposed as a vehicle to deliver anticancer agents such as oncolytic viruses to the neuroblastoma tumor microenvironment. Although modified MSCs or their EVs have been shown to suppress the tumorigenesis of neuroblastoma, further pre-clinical and clinical studies are required to come to a conclusion.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Vahid Saqagandomabadi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | | | - Mohammad Khalilzad
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Abedi
- Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Afshin Moliani
- Isfahan Medical Students Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Danyal Daneshdoust
- Faculty of Medicine, Babol University of Medical Sciences, Mazandaran, Iran
| | | |
Collapse
|
17
|
Abbasi-Malati Z, Azizi SG, Milani SZ, Serej ZA, Mardi N, Amiri Z, Sanaat Z, Rahbarghazi R. Tumorigenic and tumoricidal properties of exosomes in cancers; a forward look. Cell Commun Signal 2024; 22:130. [PMID: 38360641 PMCID: PMC10870553 DOI: 10.1186/s12964-024-01510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
In recent decades, emerging data have highlighted the critical role of extracellular vesicles (EVs), especially (exosomes) Exos, in the progression and development of several cancer types. These nano-sized vesicles are released by different cell lineages within the cancer niche and maintain a suitable platform for the interchange of various signaling molecules in a paracrine manner. Based on several studies, Exos can transfer oncogenic factors to other cells, and alter the activity of immune cells, and tumor microenvironment, leading to the expansion of tumor cells and metastasis to the remote sites. It has been indicated that the cell-to-cell crosstalk is so complicated and a wide array of factors are involved in this process. How and by which mechanisms Exos can regulate the behavior of tumor cells and non-cancer cells is at the center of debate. Here, we scrutinize the molecular mechanisms involved in the oncogenic behavior of Exos released by different cell lineages of tumor parenchyma. Besides, tumoricidal properties of Exos from various stem cell (SC) types are discussed in detail.
Collapse
Affiliation(s)
- Zahra Abbasi-Malati
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ghader Azizi
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Soheil Zamen Milani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Aliyari Serej
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Amiri
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Zhang X, Che X, Zhang S, Wang R, Li M, Jin Y, Wang T, Song Y. Mesenchymal stem cell-derived extracellular vesicles for human diseases. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:64-82. [PMID: 39698413 PMCID: PMC11648454 DOI: 10.20517/evcna.2023.47] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 12/20/2024]
Abstract
Stem cell therapy is a novel approach for treating various severe and intractable diseases, including autoimmune disorders, organ transplants, tumors, and neurodegenerative diseases. Nevertheless, the extensive utilization of stem cells is constrained by potential tumorigenicity, challenges in precise differentiation, rejection concerns, and ethical considerations. Extracellular vesicles possess the ability to carry diverse bioactive factors from stem cells and deliver them to specific target cells or tissues. Moreover, they offer the advantage of low immunogenicity. Consequently, they have the potential to facilitate the therapeutic potential of stem cells, mitigating the risks associated with direct stem cell application. Therefore, the use of stem cell extracellular vesicles in clinical diseases has received increasing attention. This review summarizes advances in the use of extracellular vesicles from mesenchymal stem cells (MSC). MSC extracellular vesicles are used in the treatment of inflammatory diseases such as rheumatoid arthritis, liver injury, COVID-19, and allergies; in the repair of tissue damage in heart disease, kidney injury, and osteoarthritic diseases; as a carrier in the treatment of tumors; and as a regenerative agent in neurodegenerative disorders such as Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
- Authors contributed equally
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
- Authors contributed equally
| | - Sibo Zhang
- The Fourth Hospital of China Medical University, Shenyang 110032, Liaoning, China
- Authors contributed equally
| | - Runze Wang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
| | - Mo Li
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
| | - Yi Jin
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
| | - Tianlu Wang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
| | - Yingqiu Song
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
| |
Collapse
|
19
|
Song Y, Song Q, Hu D, Sun B, Gao M, Liang X, Qu B, Suo L, Yin Z, Wang L. The potential applications of artificially modified exosomes derived from mesenchymal stem cells in tumor therapy. Front Oncol 2024; 13:1299384. [PMID: 38250549 PMCID: PMC10798044 DOI: 10.3389/fonc.2023.1299384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have tumor-homing ability and play critical roles in tumor treatment, but their dual influences on tumor progression limit their therapeutic applications. Exosomes derived from MSCs (MSC-exosomes) exhibit great potential in targeted tumor treatment due to their advantages of high stability, low immunogenicity, good biocompatibility, long circulation time and homing characteristics. Furthermore, the artificial modification of MSC-exosomes could amplify their advantages and their inhibitory effect on tumors and could overcome the limit of tumor-promoting effect. In this review, we summarize the latest therapeutic strategies involving artificially modified MSC-exosomes in tumor treatment, including employing these exosomes as nanomaterials to carry noncoding RNAs or their inhibitors and anticancer drugs, and genetic engineering modification of MSC-exosomes. We also discuss the feasibility of utilizing artificially modified MSC-exosomes as an emerging cell-free method for tumor treatment and related challenges.
Collapse
Affiliation(s)
- Yilin Song
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Quanlin Song
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Daosheng Hu
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Binwen Sun
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mingwei Gao
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangnan Liang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Boxin Qu
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lida Suo
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zeli Yin
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liming Wang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
20
|
Hussen BM, Abdullah ST, Abdullah SR, Younis YM, Hidayat HJ, Rasul MF, Mohamadtahr S. Exosomal non-coding RNAs: Blueprint in colorectal cancer metastasis and therapeutic targets. Noncoding RNA Res 2023; 8:615-632. [PMID: 37767111 PMCID: PMC10520679 DOI: 10.1016/j.ncrna.2023.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is ranked as the world's third-most prevalent cancer, and metastatic CRC considerably increases cancer-related fatalities globally. A number of complex mechanisms that are strictly controlled at the molecular level are involved in metastasis, which is the primary reason for death in people with CRC. Recently, it has become clear that exosomes, which are small extracellular vesicles released by non-tumorous and tumorigenic cells, play a critical role as communication mediators among tumor microenvironment (TME). To facilitate communication between the TME and cancer cells, non-coding RNAs (ncRNAs) play a crucial role and are recognized as potent regulators of gene expression and cellular processes, such as metastasis and drug resistance. NcRNAs are now recognized as potent regulators of gene expression and many hallmarks of cancer, including metastasis. Exosomal ncRNAs, like miRNAs, circRNAs, and lncRNAs, have been demonstrated to influence a number of cellular mechanisms that contribute to CRC metastasis. However, the molecular mechanisms that link exosomal ncRNAs with CRC metastasis are not well understood. This review highlights the essential roles that exosomal ncRNAs play in the progression of CRC metastatic disease and explores the therapeutic choices that are open to patients who have CRC metastases. However, exosomal ncRNA treatment strategy development is still in its early phases; consequently, additional investigation is required to improve delivery methods and find novel therapeutic targets as well as confirm the effectiveness and safety of these therapies in preclinical and clinical contexts.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Yousif Mohammed Younis
- Department of Nursing, College of Nursing, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Sayran Mohamadtahr
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| |
Collapse
|
21
|
Jahangiri B, Khalaj-Kondori M, Asadollahi E, Kian Saei A, Sadeghizadeh M. Dual impacts of mesenchymal stem cell-derived exosomes on cancer cells: unravelling complex interactions. J Cell Commun Signal 2023:10.1007/s12079-023-00794-3. [PMID: 37973719 DOI: 10.1007/s12079-023-00794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent, self-renewing stromal cells found in a variety of adult tissues. MSCs possess a remarkable ability to migrate towards tumor sites, known as homing. This homing process is mediated by various factors, including chemokines, growth factors, and extracellular matrix components present in the tumor microenvironment. MSCs release extracellular vesicles known as exosomes (MSC-Exos), which have been suggested to serve a key role in mediating a wide variety of MSC activities. Through cell-cell communication, MSC-Exos have been shown to alter recipient cell phenotype or function and play as a novel cell-free alternative for MSC-based cell therapy. However, MSC recruitment to tumors allows for their interaction with cancer cells and subsequent regulation of tumor behavior. MSC-Exos act as tumor niche modulators via transferring exosomal contents, such as specific proteins or genetic materials, to the nearby cancer cells, leading to either promotion or suppression of tumorigenesis, angiogenesis, and metastasis, depending on the specific microenvironmental cues and recipient cell characteristics. Consequently, there is still a debate about the precise relationship between tumor cells and MSC-Exos, and it is unclear how MSC-Exos impacts tumor cells. Although the dysregulation of miRNAs is caused by the progression of cancer, they also play a direct role in either promoting or inhibiting tumor growth as they act as either oncogenes or tumor suppressors. The utilization of MSC-Exos may prove to be an effective method for restoring miRNA as a means of treating cancer. This review aimed to present the existing understanding of the impact that MSC-Exos could have on cancer. To begin with, we presented a brief explanation of exosomes, MSCs, and MSC-Exos. Following this, we delved into the impact of MSC-Exos on cancer growth, EMT, metastasis, angiogenesis, resistance to chemotherapy and radiotherapy, and modulation of the immune system. Opposing effects of mesenchymal stem cells-derived exosomes on cancer cells.
Collapse
Affiliation(s)
- Babak Jahangiri
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Elahe Asadollahi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Kian Saei
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
22
|
Zhang S, Yahaya BH, Pan Y, Liu Y, Lin J. Menstrual blood-derived endometrial stem cell, a unique and promising alternative in the stem cell-based therapy for chemotherapy-induced premature ovarian insufficiency. Stem Cell Res Ther 2023; 14:327. [PMID: 37957675 PMCID: PMC10644549 DOI: 10.1186/s13287-023-03551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chemotherapy can cause ovarian dysfunction and infertility since the ovary is extremely sensitive to chemotherapeutic drugs. Apart from the indispensable role of the ovary in the overall hormonal milieu, ovarian dysfunction also affects many other organ systems and functions including sexuality, bones, the cardiovascular system, and neurocognitive function. Although conventional hormone replacement therapy can partly relieve the adverse symptoms of premature ovarian insufficiency (POI), the treatment cannot fundamentally prevent deterioration of POI. Therefore, effective treatments to improve chemotherapy-induced POI are urgently needed, especially for patients desiring fertility preservation. Recently, mesenchymal stem cell (MSC)-based therapies have resulted in promising improvements in chemotherapy-induced ovary dysfunction by enhancing the anti-apoptotic capacity of ovarian cells, preventing ovarian follicular atresia, promoting angiogenesis and improving injured ovarian structure and the pregnancy rate. These improvements are mainly attributed to MSC-derived biological factors, functional RNAs, and even mitochondria, which are directly secreted or indirectly translocated with extracellular vesicles (microvesicles and exosomes) to repair ovarian dysfunction. Additionally, as a novel source of MSCs, menstrual blood-derived endometrial stem cells (MenSCs) have exhibited promising therapeutic effects in various diseases due to their comprehensive advantages, such as periodic and non-invasive sample collection, abundant sources, regular donation and autologous transplantation. Therefore, this review summarizes the efficacy of MSCs transplantation in improving chemotherapy-induced POI and analyzes the underlying mechanism, and further discusses the benefit and existing challenges in promoting the clinical application of MenSCs in chemotherapy-induced POI.
Collapse
Affiliation(s)
- Shenghui Zhang
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
| | - Ying Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, , China
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China.
| |
Collapse
|
23
|
Jarak I, Isabel Santos A, Helena Pinto A, Domingues C, Silva I, Melo R, Veiga F, Figueiras A. Colorectal cancer cell exosome and cytoplasmic membrane for homotypic delivery of therapeutic molecules. Int J Pharm 2023; 646:123456. [PMID: 37778515 DOI: 10.1016/j.ijpharm.2023.123456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
Colorectal cancer (CRC) is one of the most common causes of death in the world. The multi-drug resistance, especially in metastatic colorectal cancer, drives the development of new strategies that secure a positive outcome and reduce undesirable side effects. Nanotechnology has made an impact in addressing some pharmacokinetic and safety issues related to administration of free therapeutic agents. However, demands of managing complex biointerfacing require equally complex methods for introducing stimuli-responsive or targeting elements. In order to procure a more efficient solution to the overcoming of biological barriers, the physiological functions of cancer cell plasma and exosomal membranes provided the source of highly functionalized coatings. Biomimetic nanovehicles based on colorectal cancer (CRC) membranes imparted enhanced biological compatibility, immune escape and protection to diverse classes of therapeutic molecules. When loaded with therapeutic load or used as a coating for other therapeutic nanovehicles, they provide highly efficient and selective cell targeting and uptake. This review presents a detailed overview of the recent application of homotypic biomimetic nanovehicles in the management of CRC. We also address some of the current possibilities and challenges associated with the CRC membrane biomimetics.
Collapse
Affiliation(s)
- Ivana Jarak
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Porto, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Ana Isabel Santos
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Ana Helena Pinto
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Cátia Domingues
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Coimbra, Portugal; Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal
| | - Inês Silva
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Raquel Melo
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Coimbra, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Coimbra, Portugal.
| |
Collapse
|
24
|
Ning S, Chen Y, Li S, Liu M, Liu H, Ye M, Wang C, Pan J, Wei W, Li J, Zhang L. Exosomal miR-99b-5p Secreted from Mesenchymal Stem Cells Can Retard the Progression of Colorectal Cancer by Targeting FGFR3. Stem Cell Rev Rep 2023; 19:2901-2917. [PMID: 37653181 DOI: 10.1007/s12015-023-10606-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Human bone marrow mesenchymal stem cells (BMSCs) are efficient mass producers of exosomes that can potentially be utilized for delivery of miRNAs in cancer therapy. The current study aimed to assess the role of MSC-exosomal miR-99b-5p during the development of colorectal cancer (CRC). The potential value of using plasma levels of exosomal miR-99b-5p for predicting the liver metastasis of colorectal cancer was also assessed. In this study, we found that overexpression of fibroblast growth factor receptor 3 (FGFR3) was associated with tumor progression in CRC and FGFR3 was the target gene of miR-99b-5p, which was down-regulated in CRC tissues. Furthermore, we observed that elevated miR-99b-5p inhibited CRC cell proliferation, invasion and migration, while reduced levels had the opposite effect on CRC cells. Moreover, exosomal miR-99b-5p delivered by BMSCs was able to limit the proliferation, invasion and migration of CRC cells in vitro, as well as suppressing tumor growth in vivo. Collectively, these findings revealed that MSC-derived exosomal miR-99b-5p can be transferred into CRC cells and which can suppress tumor progression by targeting FGFR3. This highlights the potential of using exosomal miR-99b-5p as a novel diagnostic marker for CRC, while providing a therapeutic target to combat CRC.
Collapse
Affiliation(s)
- Shufang Ning
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Yusha Chen
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Shirong Li
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Mengshu Liu
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Haizhou Liu
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Mengling Ye
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Chen Wang
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Jinmiao Pan
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Wene Wei
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Jilin Li
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Litu Zhang
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
25
|
Chang PK, Yen IC, Tsai WC, Lee SY. Polygonum barbatum extract reduces colorectal cancer cell proliferation, migration, invasion, and epithelial-mesenchymal transition via YAP and β-catenin pathway regulation. Sci Rep 2023; 13:18368. [PMID: 37884620 PMCID: PMC10603200 DOI: 10.1038/s41598-023-45630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide with novel therapeutic developmental challenges. Polygonum barbatum has anticancer potential, but its mechanism(s) are unclear. This study investigates the inhibitory effect of P. barbatum on human CRC cells. Polygonum barbatum extract (PBE) and quercetin standard HPLC fingerprints were determined using analytical RP-HPLC and evaluations were completed using the human colon cancer cell line HCT-116 (KRASG13D mutation) and HT-29 (BRAF mutation) cells. Post-PBE treatment, cell viability, colony formation, migration, invasion, and apoptosis, as well as changes in the whole-transcriptome of cells were analyzed. PBE significantly reduced CRC cell growth, migration, and invasion, and the genes responsible for extracellular matrix (ECM) organization, cell motility, and cell growth were suppressed by PBE. The differentially expressed genes revealed that PBE treatment exerted a significant effect on the ECM interaction and focal adhesion pathways. Epithelial-to-mesenchymal transition markers, N-cadherin, vimentin, SLUG, and SNAIL, were shown to be regulated by PBE. These effects were associated with blockade of the Yes-associated protein and the GSK3β/β-catenin axis. PBE exerts a significant inhibitory effect on CRC cells and may be applicable in clinical trials.
Collapse
Affiliation(s)
- Pi-Kai Chang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - I-Chuan Yen
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Cheng Tsai
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Yu Lee
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
26
|
Ran Q, Tian H, Lin J, Wang H, Wang B, Chen Z, Song D, Gong C. Mesenchymal Stem Cell-Derived Exosomes: A Novel Approach to Diabetes-Associated Cognitive Impairment. J Inflamm Res 2023; 16:4213-4228. [PMID: 37753267 PMCID: PMC10519429 DOI: 10.2147/jir.s429532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
The progression of diabetes frequently results in a myriad of neurological disorders, including ischemic stroke, depression, blood-brain barrier impairment, and cognitive dysfunction. Notably, diabetes-associated cognitive impairment, a prevalent comorbidity during the course of diabetes, progressively affects patients' cognitive abilities and may reciprocally influence diabetes management, thereby severely impacting patients' quality of life. Extracellular vesicles, particularly nanoscale exosomes, have garnered considerable attention in recent years. These exosomes carry and transfer various functional molecules, such as proteins, lipids, and diverse non-coding RNAs, serving as novel regulators and communicators in intercellular interactions. Of particular interest, mesenchymal stem cell-derived exosomes (MSC-Exos) have been reported to traverse the blood-brain barrier and ameliorate intracerebral pathologies. This review elucidates the role of MSC-Exos in diabetes-related cognitive impairment, with a focus on their applications as biomarkers, modulation of neuronal regeneration and synaptic plasticity, anti-inflammatory properties, antioxidative effects, and their involvement in regulating the functionality of β-amyloid proteins during the course of cognitive impairment. The immense therapeutic potential of MSC-Exos in the treatment of diabetes-induced cognitive dysfunction is emphasized.
Collapse
Affiliation(s)
- Qingsen Ran
- Department of Science and Education, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangzhou Province, 518118, People’s Republic of China
| | - He Tian
- Department of Science and Education, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangzhou Province, 518118, People’s Republic of China
| | - Jian Lin
- Department of Science and Education, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangzhou Province, 518118, People’s Republic of China
| | - Han Wang
- Department of Gastroenterology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, People’s Republic of China
| | - Bo Wang
- Department of Science and Education, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangzhou Province, 518118, People’s Republic of China
| | - Zhixin Chen
- Department of Science and Education, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangzhou Province, 518118, People’s Republic of China
| | - Da Song
- Department of Science and Education, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangzhou Province, 518118, People’s Republic of China
| | - Chunzhu Gong
- Department of Science and Education, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangzhou Province, 518118, People’s Republic of China
| |
Collapse
|
27
|
Xia B, Liu Y, Wang J, Lu Q, Lv X, Deng K, Yang J. Emerging role of exosome-shuttled noncoding RNAs in gastrointestinal cancers: From intercellular crosstalk to clinical utility. Pharmacol Res 2023; 195:106880. [PMID: 37543095 DOI: 10.1016/j.phrs.2023.106880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Gastrointestinal cancer remains a significant global health burden. The pursuit of advancing the comprehension of tumorigenesis, along with the identification of reliable biomarkers and the development of precise therapeutic strategies, represents imperative objectives in this field. Exosomes, small membranous vesicles released by most cells, commonly carry functional biomolecules, including noncoding RNAs (ncRNAs), which are specifically sorted and encapsulated by exosomes. Exosome-mediated communication involves the release of exosomes from tumor or stromal cells and the uptake by nearby or remote recipient cells. The bioactive cargoes contained within these exosomes exert profound effects on the recipient cells, resulting in significant modifications in the tumor microenvironment (TME) and distinct alterations in gastrointestinal tumor behaviors. Due to the feasibility of isolating exosomes from various bodily fluids, exosomal ncRNAs have shown great potential as liquid biopsy-based indicators for different gastrointestinal cancers, using blood, ascites, saliva, or bile samples. Moreover, exosomes are increasingly recognized as natural delivery vehicles for ncRNA-based therapeutic interventions. In this review, we elucidate the processes of ncRNA-enriched exosome biogenesis and uptake, examine the regulatory and functional roles of exosomal ncRNA-mediated intercellular crosstalk in gastrointestinal TME and tumor behaviors, and explore their potential clinical utility in diagnostics, prognostics, and therapeutics.
Collapse
Affiliation(s)
- Bihan Xia
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Yuzhi Liu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jin Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Qing Lu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Xiuhe Lv
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Kai Deng
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China.
| | - Jinlin Yang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China.
| |
Collapse
|
28
|
Zhang XL, Zhang XF, Fang Y, Li ML, Shu R, Gong Y, Luo HY, Tian Y. A possible genetic association between obesity and colon cancer in females. Front Endocrinol (Lausanne) 2023; 14:1189570. [PMID: 37711894 PMCID: PMC10497871 DOI: 10.3389/fendo.2023.1189570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
Object There is mounting clinical evidence that an increase in obesity is linked to an increase in cancer incidence and mortality. Although studies have shown a link between obesity and colon cancer, the particular mechanism of the interaction between obesity and colon cancer in females remains unknown. The goal of this work is to use bioinformatics to elucidate the genetic link between obesity and colon cancer in females and to investigate probable molecular mechanisms. Methods GSE44076 and GSE199063 microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. In the two microarray datasets and healthy controls, the online tool GEO2R was utilized to investigate the differential genes between obesity and colon cancer. The differential genes (DEGs) identified in the two investigations were combined. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment studies were performed on the DEGs. The STRING database and Cytoscape software were then used to build protein-protein interaction (PPI) networks to discover hub genes. NetworkAnalyst was also used to build networks of target microRNAs (miRNAs) and hub genes, as well as networks of transcriptions. Results Between the two datasets, 146 DEGs were shared. The DEGs are primarily enriched in inflammatory and immune-related pathways, according to GO analysis and KEGG. 14 hub genes were identified via PPI building using the Cytoscape software's MCODE and CytoNCA plug-ins: TYROBP, CD44, BGN, FCGR3A, CD53, CXCR4, FN1, SPP1, IGF1, CCND1, MMP9, IL2RG, IL6 and CTGF. Key transcription factors for these hub genes include WRNIP1, ATF1, CBFB, and NR2F6. Key miRNAs for these hub genes include hsa-mir-1-3p, hsa-mir-26b-5p, hsa-mir-164a-5p and hsa-mir-9-5p. Conclusion Our research provides evidence that changed genes are shared by female patients with colon cancer and obesity. Through pathways connected to inflammation and the immune system, these genes play significant roles in the emergence of both diseases. We created a network between hub genes and miRNAs that target transcription factors, which may offer suggestions for future research in this area.
Collapse
Affiliation(s)
- Xiao-li Zhang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xin-feng Zhang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuan Fang
- Department of Hepatobiliary Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Meng-li Li
- Department of Respiratory Medicine, Affiliated Hospital of Yunnan University, Kunming, China
| | - Ruo Shu
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi Gong
- Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Hua-you Luo
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Tian
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
29
|
Zhou Y, Dong Y, Zhang A, Wu J, Sun Q. The role of mesenchymal stem cells derived exosomes as a novel nanobiotechnology target in the diagnosis and treatment of cancer. Front Bioeng Biotechnol 2023; 11:1214190. [PMID: 37662434 PMCID: PMC10470003 DOI: 10.3389/fbioe.2023.1214190] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs), one of the most common types of stem cells, are involved in the modulation of the tumor microenvironment (TME). With the advancement of nanotechnology, exosomes, especially exosomes secreted by MSCs, have been found to play an important role in the initiation and development of tumors. In recent years, nanobiotechnology and bioengineering technology have been gradually developed to detect and identify exosomes for diagnosis and modify exosomes for tumor treatment. Several novel therapeutic strategies bioengineer exosomes to carry drugs, proteins, and RNAs, and further deliver their encapsulated cargoes to cancer cells through the properties of exosomes. The unique properties of exosomes in cancer treatment include targeting, low immunogenicity, flexibility in modification, and high biological barrier permeability. Nevertheless, the current comprehensive understanding of the roles of MSCs and their secreted exosomes in cancer development remain inadequate. It is necessary to better understand/update the mechanism of action of MSCs-secreted exosomes in cancer development, providing insights for better modification of exosomes through bioengineering technology and nanobiotechnology. Therefore, this review focuses on the role of MSCs-secreted exosomes and bioengineered exosomes in the development, progression, diagnosis, and treatment of cancer.
Collapse
Affiliation(s)
- You Zhou
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yuqing Dong
- China Medical University and Department of Pathology, Shenyang, China
| | - Aixue Zhang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jibin Wu
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Qiang Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Ren J. Intermittent hypoxia BMSCs-derived exosomal miR-31-5p promotes lung adenocarcinoma development via WDR5-induced epithelial mesenchymal transition. Sleep Breath 2023; 27:1399-1409. [PMID: 36409397 DOI: 10.1007/s11325-022-02737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Intermittent hypoxia (IH) is a factor involved in the incidence and progression of lung adenocarcinoma (LUAD). Bone marrow-derived bone mesenchymal stem cells (BMSCs)-derived exosomes are related to the promotion of tumor development. The objective of this experiment was to clarify the mechanism of exosomes from BMSCs in promoting the progression of LUAD induced by IH. METHODS This study examined if IH BMSCS-derived exosomes affect the malignancy of LUAD cells in vitro. Dual-luciferase assays were conducted to confirm the target of miR-31-5p with WD repeat domain 5 (WDR5). We further investigated whether or not exosomal miR-31-5p or WDR5 could regulate epithelial-mesenchymal transition (EMT). We determined the effect of IH exosomes using a tumorigenesis model in vivo. RESULTS miR-31-5p entered into LUAD cells via exosomes. MiR-31-5p was greatly upregulated in IH BMSCs-derived exosomes compared with RA exosomes. Increased expression of exosomal miR-31-5p induced by IH was discovered to target WDR5 directly, increased activation of WDR5, and significantly facilitated EMT, thereby promoting LUAD progression. CONCLUSIONS The promoting effect of IH on LUAD is achieved partly through BMSCs-derived exosomal miR-31-5p triggering WDR5 and promoting EMT.
Collapse
Affiliation(s)
- Jie Ren
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou City, Henan Province, China.
| |
Collapse
|
31
|
Fang Y, Wu F, Shang G, Yin C. SCARA5 in bone marrow stromal cell-derived exosomes inhibits colorectal cancer progression by inactivating the PI3K/Akt pathway. Genomics 2023; 115:110636. [PMID: 37150230 DOI: 10.1016/j.ygeno.2023.110636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
Colorectal cancer (CRC) is the fourth most frequently diagnosed cancer worldwide. Bone marrow stromal cells (BMSCs) play an essential role in tumor development by secreting exosomes. Scavenger receptor class A member 5 (SCARA5) is a newly identified tumor suppressor. This study aimed to investigate the effects of BMSCs-derived exosomes (BMSCs-Exos) on CRC development and to explore their regulatory mechanisms. BMSCs-Exos showed an oval-shaped, bilayer membrane structure. BMSCs-Exos inhibited growth and motility of CRC cells, while BMSCs-Exos with SCARA5 knockdown significantly promoted cell proliferation and movement. Exosomal SCARA5 also effectively suppressed colorectal tumor growth in mouse xenografts. Further analysis revealed that exosomal SCARA5 inhibited the phosphorylation of protein kinase B and phosphoinositide 3-kinase in both CRC cells and tumors. In conclusion, SCARA5 in BMSCs-Exos inhibited CRC progression by inactivating PI3K/Akt, thus suggesting the potential clinical application of SCARA5-containing BMSCs-Exos for CRC treatment.
Collapse
Affiliation(s)
- Yu Fang
- Department of Phase I Oncology Clinical Trials Center, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150000, Heilongjiang Province, PR China
| | - Feng Wu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, PR China
| | - Guoyin Shang
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, PR China
| | - Changqing Yin
- Department of Gastroenterology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning Province,PR China.
| |
Collapse
|
32
|
Nicodemou A, Bernátová S, Čeháková M, Danišovič Ľ. Emerging Roles of Mesenchymal Stem/Stromal-Cell-Derived Extracellular Vesicles in Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15051453. [PMID: 37242693 DOI: 10.3390/pharmaceutics15051453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Despite the tremendous efforts of many researchers and clinicians, cancer remains the second leading cause of mortality worldwide. Mesenchymal stem/stromal cells (MSCs) are multipotent cells residing in numerous human tissues and presenting unique biological properties, such as low immunogenicity, powerful immunomodulatory and immunosuppressive capabilities, and, in particular, homing abilities. Therapeutic functions of MSCs are mediated mostly by the paracrine effect of released functional molecules and other variable components, and among them the MSC-derived extracellular vesicles (MSC-EVs) seem to be one of the central mediators of the therapeutic functions of MSCs. MSC-EVs are membrane structures secreted by the MSCs, rich in specific proteins, lipids, and nucleic acids. Amongst these, microRNAs have achieved the most attention currently. Unmodified MSC-EVs can promote or inhibit tumor growth, while modified MSC-EVs are involved in the suppression of cancer progression via the delivery of therapeutic molecules, including miRNAs, specific siRNAs, or suicide RNAs, as well as chemotherapeutic drugs. Here, we present an overview of the characteristics of the MSCs-EVs and describe the current methods for their isolation and analysis, the content of their cargo, and modalities for the modification of MSC-EVs in order for them to be used as drug delivery vehicles. Finally, we describe different roles of MSC-EVs in the tumor microenvironment and summarize current advances of MCS-EVs in cancer research and therapy. MSC-EVs are expected to be a novel and promising cell-free therapeutic drug delivery vehicle for the treatment of cancer.
Collapse
Affiliation(s)
- Andreas Nicodemou
- Lambda Life a. s., Levocska 3617/3, 851 01 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Soňa Bernátová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Michaela Čeháková
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ľuboš Danišovič
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Centre for Tissue Engineering and Regenerative Medicine-Translational Research Unit in the Branch of Regenerative Medicine, Faculty of Medicine, Comenius University, Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
33
|
Josyula A, Mozzer A, Szeto J, Ha Y, Richmond N, Chung SW, Rompicharla SVK, Narayan J, Ramesh S, Hanes J, Ensign L, Parikh K, Pitha I. Nanofiber-based glaucoma drainage implant improves surgical outcomes by modulating fibroblast behavior. Bioeng Transl Med 2023; 8:e10487. [PMID: 37206200 PMCID: PMC10189467 DOI: 10.1002/btm2.10487] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 11/02/2023] Open
Abstract
Biomaterials are implanted in millions of individuals worldwide each year. Both naturally derived and synthetic biomaterials induce a foreign body reaction that often culminates in fibrotic encapsulation and reduced functional lifespan. In ophthalmology, glaucoma drainage implants (GDIs) are implanted in the eye to reduce intraocular pressure (IOP) in order to prevent glaucoma progression and vision loss. Despite recent efforts towards miniaturization and surface chemistry modification, clinically available GDIs are susceptible to high rates of fibrosis and surgical failure. Here, we describe the development of synthetic, nanofiber-based GDIs with partially degradable inner cores. We evaluated GDIs with nanofiber or smooth surfaces to investigate the effect of surface topography on implant performance. We observed in vitro that nanofiber surfaces supported fibroblast integration and quiescence, even in the presence of pro-fibrotic signals, compared to smooth surfaces. In rabbit eyes, GDIs with a nanofiber architecture were biocompatible, prevented hypotony, and provided a volumetric aqueous outflow comparable to commercially available GDIs, though with significantly reduced fibrotic encapsulation and expression of key fibrotic markers in the surrounding tissue. We propose that the physical cues provided by the surface of the nanofiber-based GDIs mimic healthy extracellular matrix structure, mitigating fibroblast activation and potentially extending functional GDI lifespan.
Collapse
Affiliation(s)
- Aditya Josyula
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ann Mozzer
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Julia Szeto
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Youlim Ha
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Nicole Richmond
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Seung Woo Chung
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Sri Vishnu Kiran Rompicharla
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Janani Narayan
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Samiksha Ramesh
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Justin Hanes
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of Pharmacology and Molecular Sciences, Environmental Health Sciences, Oncology, and NeurosurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Laura Ensign
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of Pharmacology and Molecular Sciences, Infectious Diseases, Oncology, and Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kunal Parikh
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Center for Bioengineering Innovation & DesignJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ian Pitha
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Glaucoma Center of Excellence, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
34
|
Ulpiano C, da Silva CL, Monteiro GA. Bioengineered Mesenchymal-Stromal-Cell-Derived Extracellular Vesicles as an Improved Drug Delivery System: Methods and Applications. Biomedicines 2023; 11:biomedicines11041231. [PMID: 37189850 DOI: 10.3390/biomedicines11041231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived nano-sized lipid membranous structures that modulate cell-cell communication by transporting a variety of biologically active cellular components. The potential of EVs in delivering functional cargos to targeted cells, their capacity to cross biological barriers, as well as their high modification flexibility, make them promising drug delivery vehicles for cell-free therapies. Mesenchymal stromal cells (MSCs) are known for their great paracrine trophic activity, which is largely sustained by the secretion of EVs. MSC-derived EVs (MSC-EVs) retain important features of the parental cells and can be bioengineered to improve their therapeutic payload and target specificity, demonstrating increased therapeutic potential in numerous pre-clinical animal models, including in the treatment of cancer and several degenerative diseases. Here, we review the fundamentals of EV biology and the bioengineering strategies currently available to maximize the therapeutic value of EVs, focusing on their cargo and surface manipulation. Then, a comprehensive overview of the methods and applications of bioengineered MSC-EVs is presented, while discussing the technical hurdles yet to be addressed before their clinical translation as therapeutic agents.
Collapse
Affiliation(s)
- Cristiana Ulpiano
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Gabriel A Monteiro
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
35
|
Wang M, Li J, Wang D, Xin Y, Liu Z. The effects of mesenchymal stem cells on the chemotherapy of colorectal cancer. Biomed Pharmacother 2023; 160:114373. [PMID: 36753960 DOI: 10.1016/j.biopha.2023.114373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Colorectal cancer (CRC) has been the third commonest cancer in the world. The prognosis of patients with CRC is related to the molecular subtypes and gene mutations, which is prone to recurrence, metastasis, and drug resistance. Mesenchymal stem cells (MSCs) are a group of progenitor ones with the capabilities of self-renewal, multi-directional differentiation, and tissue re-population, which could be isolated from various kinds of tissues and be differentiated into diverse cell types. In recent years, MSCs are applied for mechanisms study of tissue repairing, graft-versus-host disease (GVHD) and autoimmune-related disease, and tumor development, with the advantages of anti-inflammation, multi-lineage differentiation, and homing capability. Integrating the chemotherapy and MSCs therapy might provide a novel treatment approach for CRC patients. In this review, we summarize the current progress in the integrated treatment of integrating the MSCs and chemotherapy for CRC.
Collapse
Affiliation(s)
- Meiqi Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dongxin Wang
- Department of Anesthesiology, Jilin Cancer Hospital, Jilin, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
36
|
Verhoeff TJ, Holloway AF, Dickinson JL. Non-coding RNA regulation of integrins and their potential as therapeutic targets in cancer. Cell Oncol (Dordr) 2023; 46:239-250. [PMID: 36512308 PMCID: PMC10060301 DOI: 10.1007/s13402-022-00752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Integrins are integral to cell signalling and management of the extracellular matrix, and exquisite regulation of their expression is essential for a variety of cell signalling pathways, whilst disordered regulation is a key driver of tumour progression and metastasis. Most recently non-coding RNAs in the form of micro-RNA (miRNA) and long non-coding RNA (lncRNA) have emerged as a key mechanism by which tissue dependent gene expression is controlled. Whilst historically these molecules have been poorly understood, advances in 'omic' technologies and a greater understanding of non-coding regions of the genome have revealed that non-coding RNAs make up a large proportion of the transcriptome. CONCLUSIONS AND PERSPECTIVES This review examines the regulation of integrin genes by ncRNAs, provides and overview of their mechanism of action and highlights how exploitation of these discoveries is informing the development of novel chemotherapeutic agents in the treatment of cancer. MiRNA molecules have been the most extensively characterised and negatively regulate most integrin genes, classically regulating genes through binding to recognition sequences in the mRNA 3'-untranslated regions of gene transcripts. LncRNA mechanisms of action are now being elucidated and appear to be more varied and complex, and may counter miRNA molecules, directly engage integrin mRNA transcripts, and guide or block both transcription factors and epigenetic machinery at integrin promoters or at other points in integrin regulation. Integrins as therapeutic targets are of enormous interest given their roles as oncogenes in a variety of tumours, and emerging therapeutics mimicking ncRNA mechanisms of action are already being trialled.
Collapse
Affiliation(s)
- Tristan Joseph Verhoeff
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart (Tasmania), Australia
| | - Adele F Holloway
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart (Tasmania), Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart (Tasmania), Australia.
| |
Collapse
|
37
|
Karami Fath M, Moayedi Banan Z, Barati R, Mohammadrezakhani O, Ghaderi A, Hatami A, Ghiabi S, Zeidi N, Asgari K, Payandeh Z, Barati G. Recent advancements to engineer mesenchymal stem cells and their extracellular vesicles for targeting and destroying tumors. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:1-16. [PMID: 36781149 DOI: 10.1016/j.pbiomolbio.2023.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Mesenchymal stem cells (MSCs) have the ability to migrate into tumor sites and release growth factors to modulate the tumor microenvironment. MSC therapy have shown a dual role in cancers, promoting or inhibiting. However, MSCs could be used as a carrier of anticancer agents for targeted tumor therapy. Recent technical improvements also allow engineering MSCs to improve tumor-targeting properties, protect anticancer agents, and decrease the cytotoxicity of drugs. While some of MSC functions are mediated through their secretome, MSCs-derived extracellular vesicles (EVs) are also proposed as a possible viechle for cancer therapy. EVs allow efficient loading of anticancer agents and have an intrinsic ability to target tumor cells, making them suitable for targeted therapy of tumors. In addition, the specificity and selectivity of EVs to the tumor sites could be enhanced by surface modification. In this review, we addressed the current approaches used for engineering MSCs and EVs to effectively target tumor sites and deliver anticancer agents.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Zahra Moayedi Banan
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Barati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Omid Mohammadrezakhani
- Faculty of Pharmacy, Ramsar Campus, Mazandaran University of Medical Sciences, Sari, Iran
| | - Aliasghar Ghaderi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hatami
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shamim Ghiabi
- Department of Medical Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Zeidi
- Division of Pharmaceutical Science, Long Island University, Brooklyn, NY, USA
| | - Katayoon Asgari
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
38
|
Kotelevets L, Chastre E. Extracellular Vesicles in Colorectal Cancer: From Tumor Growth and Metastasis to Biomarkers and Nanomedications. Cancers (Basel) 2023; 15:1107. [PMID: 36831450 PMCID: PMC9953945 DOI: 10.3390/cancers15041107] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Colorectal cancer (CRC) is a leading public health concern due to its incidence and high mortality rates, highlighting the requirement of an early diagnosis. Evaluation of circulating extracellular vesicles (EVs) might constitute a noninvasive and reliable approach for CRC detection and for patient follow-up because EVs display the molecular features of the cells they originate. EVs are released by almost all cell types and are mainly categorized as exosomes originating from exocytosis of intraluminal vesicles from multivesicular bodies, ectosomes resulting from outward budding of the plasma membrane and apoptotic bodies' ensuing cell shrinkage. These vesicles play a critical role in intercellular communications during physiological and pathological processes. They facilitate CRC progression and premetastatic niche formation, and they enable transfer of chemotherapy resistance to sensitive cells through the local or remote delivery of their lipid, nucleic acid and protein content. On another note, their stability in the bloodstream, their permeation in tissues and their sheltering of packaged material make engineered EVs suitable vectors for efficient delivery of tracers and therapeutic agents for tumor imaging or treatment. Here, we focus on the physiopathological role of EVs in CRCs, their value in the diagnosis and prognosis and ongoing investigations into therapeutic approaches.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Eric Chastre
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| |
Collapse
|
39
|
Lipid Handling Protein Gene Expression in Colorectal Cancer: CD36 and Targeting miRNAs. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122127. [PMID: 36556492 PMCID: PMC9786157 DOI: 10.3390/life12122127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The reprogramming of lipid metabolism has been highlighted in colorectal cancer (CRC) studies, suggesting a critical role for the scavenger receptor CD36 and fatty acid synthase (FASN) in this malignancy. In this study, we analyzed the gene expression levels of CD36, FASN, the cell surface glypican 4 (GPC4), and the two transporters SLC27A3 and SLC27A4 in 39 paired tumoral and peritumoral tissues from patients with CRC compared with 18 normal colonic mucosae. Moreover, the levels of seven miRNAs targeting CD36 and most of the analyzed genes were evaluated. We found a significant impairment of the expression of all the analyzed genes except GPC4 as well as the differential expression of miR-16-5p, miR-26b-5p, miR-107, miR-195-5p, and miR-27a-3p in the colonic mucosa of CRC patients. Interestingly, CD36 and miR-27a-3p were downregulated and upregulated, respectively, in tumoral tissues compared to peritumoral and control tissues, with a significant negative correlation in the group of patients developing lymph node metastasis. Our results sustain the relationship between CRC and fatty acid metabolism and emphasize the importance of related miRNAs in developing new therapeutic strategies.
Collapse
|
40
|
CRISPR/Cas9-engineered mesenchymal stromal/stem cells and their extracellular vesicles: A new approach to overcoming cell therapy limitations. Biomed Pharmacother 2022; 156:113943. [DOI: 10.1016/j.biopha.2022.113943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
|
41
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Abdullah ST, Taheri M, Samadian M. A review on the role of mir-16-5p in the carcinogenesis. Cancer Cell Int 2022; 22:342. [DOI: 10.1186/s12935-022-02754-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractmiR-16-5p is microRNA with important roles in the development of diverse malignancies including neuroblastoma, osteosarcoma, hepatocellular carcinoma, cervical cancer, breast cancer, brain tumors, gastrointestinal cancers, lung cancer and bladder cancer. This miRNA has 22 nucleotides. hsa-miR-16-5p is produced by MIR16-1 gene. First evidence for its participation in the carcinogenesis has been obtained by studies reporting deletion and/or down-regulation of these miRNAs in chronic lymphocytic leukemia. Subsequent studies have shown down-regulation of miR-16-5p in a variety of cancer cell lines and clinical samples. Besides, tumor suppressor role of miR-16-5p has been verified in animal models of different types of cancers. Studies in these models have shown that over-expression of this miRNA or modulation of expression of lncRNAs that sponge this miRNA can block carcinogenic processes. In the current review, we summarize function of miR-16-5p in the development and progression of different cancers.
Collapse
|
42
|
Yin H, Li M, Tian G, Ma Y, Ning C, Yan Z, Wu J, Ge Q, Sui X, Liu S, Zheng J, Guo W, Guo Q. The role of extracellular vesicles in osteoarthritis treatment via microenvironment regulation. Biomater Res 2022; 26:52. [PMID: 36199125 PMCID: PMC9532820 DOI: 10.1186/s40824-022-00300-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/18/2022] [Indexed: 11/10/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that is common among the middle-aged and older populations, causes patients to experience recurrent pain in their joints and negatively affects their quality of life. Currently, therapeutic options for patients with OA consist of medications to alleviate pain and treat the symptoms; however, due to typically poor outcomes, patients with advanced OA are unlikely to avoid joint replacement. In recent years, several studies have linked disrupted homeostasis of the joint cavity microenvironment to the development of OA. Recently, extracellular vesicles (EVs) have received increasing attention in the field of OA. EVs are natural nano-microcarrier materials with unique biological activity that are produced by cells through paracrine action. They are composed of lipid bilayers that contain physiologically active molecules, such as nucleic acids and proteins. Moreover, EVs may participate in local and distal intercellular and intracellular communication. EVs have also recently been shown to influence OA development by regulating biochemical factors in the OA microenvironmental. In this article, we first describe the microenvironment of OA. Then, we provide an overview of EVs, summarize the main types used for the treatment of OA, and describe their mechanisms. Next, we review clinical studies using EVs for OA treatment. Finally, the specific mechanism underlying the application of miRNA-enriched EVs in OA therapy is described.
Collapse
Affiliation(s)
- Han Yin
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Muzhe Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, 421000, China
| | - Guangzhao Tian
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yang Ma
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Chao Ning
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Zineng Yan
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Jiang Wu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Qian Ge
- Huaiyin People's Hospital of Huai'an, Huai'an, 223001, China
| | - Xiang Sui
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China.
| | - Jinxuan Zheng
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, No.56 Linyuan Xi Road, Yuexiu District, Guangzhou, Guangdong, 510055, People's Republic of China.
| | - Weimin Guo
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China.
| |
Collapse
|
43
|
Amelimojarad M, AmeliMojarad M, Nazemalhosseini-Mojarad E. Exosomal noncoding RNAs in colorectal cancer: An overview of functions, challenges, opportunities, and clinical applications. Pathol Res Pract 2022; 238:154133. [PMID: 36152568 DOI: 10.1016/j.prp.2022.154133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022]
Abstract
Colorectal cancer (CRC) is the third most threatening malignancy worldwide. Colorectal tumors transfer information with their tumor microenvironment (TME) and communicate together which can be detected through exosome transmission. Exosomes are important regulators made by different types of cells in all body fluids containing RNA, DNA, metabolites, and proteins. Recently, Exosome-derived noncoding RNAs (ncRNAs) applications have gained great consideration based on their potential role in the different pathological processes. Therefore, in this review, we summarized the recent discoveries on exosomal ncRNAs function in CRC initiation and development, and drug resistance to provide a novel insight into exosomal ncRNAs' clinical application and their potential to be biomarkers for CRC patients.
Collapse
Affiliation(s)
- Melika Amelimojarad
- Gastrointestinal (GI) cancer Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mandana AmeliMojarad
- Gastrointestinal (GI) cancer Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ehsan Nazemalhosseini-Mojarad
- Gastrointestinal (GI) cancer Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Chang J, Li H, Zhu Z, Mei P, Hu W, Xiong X, Tao J. microRNA-21-5p from M2 macrophage-derived extracellular vesicles promotes the differentiation and activity of pancreatic cancer stem cells by mediating KLF3. Cell Biol Toxicol 2022; 38:577-590. [PMID: 33728488 PMCID: PMC9343318 DOI: 10.1007/s10565-021-09597-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
AIM Given the fact that tumor-associated macrophage-derived extracellular vesicles (EVs) are attributable to tumor aggressiveness, this research intends to decode the mechanism of M2 macrophage-derived EVs in the differentiation and activities of pancreatic cancer (PaCa) stem cells via delivering microRNA (miR)-21-5p. METHODS Polarized M2 macrophages were induced, from which EVs were collected and identified. miR-21-5p expression in M2 macrophage-derived EVs was tested. After cell sorting, CD24+CD44+EpCAM+ stem cells were co-cultured with M2 macrophages, in which miR-21-5p was upregulated or downregulated. The effects of M2 macrophage-derived EVs and miR-21-5p on Nanog/octamer-binding transcription factor 4 (Oct4) expression, sphere formation, colony formation, invasion and migration capacities, apoptosis, and in vivo tumorigenic ability were examined. Krüppel-like factor 3 (KLF3) expression and its interaction with miR-21-5p were determined. RESULTS M2 macrophage-derived EVs promoted PaCa stem cell differentiation and activities. miR-21a-5p was upregulated in M2 macrophage-derived EVs. miR-21a-5p downregulation in M2 macrophage-derived EVs inhibited Nanog/Oct4 expression and impaired sphere-forming, colony-forming, invasion, migration, and anti-apoptosis abilities of PaCa stem cells in vitro and tumorigenic ability in vivo. miR-21-5p targeted KLF3 to mediate the differentiation and activities of PaCa stem cells, and KLF3 was downregulated in PaCa stem cells. CONCLUSION This work explains that M2 macrophage-derived exosomal miR-21a-5p stimulates differentiation and activity of PaCa stem cells via targeting KLF3, paving a novel way for attenuating PaCa stemness.
Collapse
Affiliation(s)
- Jian Chang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Hanjun Li
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Zhongchao Zhu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Pei Mei
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Weimin Hu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Xingcheng Xiong
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
| | - Jing Tao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
| |
Collapse
|
45
|
Karami Fath M, Anjomrooz M, Taha SR, Shariat Zadeh M, Sahraei M, Atbaei R, Fazlollahpour Naghibi A, Payandeh Z, Rahmani Z, Barati G. The therapeutic effect of exosomes from mesenchymal stem cells on colorectal cancer: Toward cell-free therapy. Pathol Res Pract 2022; 237:154024. [PMID: 35905664 DOI: 10.1016/j.prp.2022.154024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 12/01/2022]
Abstract
Colorectal cancer (CRC) is known for its high mortality rate and affects more men than women. The treatment requires invasive surgical interventions, however, the progression of CRC metastasis is difficult to control in most cases. Mesenchymal stem cells (MSCs) with their outstanding characteristics have been widely used in the treatment of degenerative diseases as well as cancers. They affect the tumor microenvironment through either cell-cell interactions or communications with their secretome. While stem cells may represent a dual role in tumor proliferation and progression, exosomes have attracted much attention as a cell-free therapy in CRC treatment. Exosomes derived from native or genetically modified MSCs, as well as exosomal microRNAs (miRNAs), have been evaluated on CRC progression. Moreover, MSC-derived exosomes have been used as a carrier to deliver anticancer agents in colorectal cancer. In this review, we overview and discuss the current knowledge in both stem cell-based and cell-free exosome therapy of CRC.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mehran Anjomrooz
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Taha
- Faculty of Medicine, Islamic Azad University, Tehran Branch, Tehran, Iran
| | | | - Mahya Sahraei
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Raihaneh Atbaei
- Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | | | - Zahra Payandeh
- Department of Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Sweden
| | - Zobeir Rahmani
- Faculty of Paramedical, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
46
|
Bashyal S, Thapa C, Lee S. Recent progresses in exosome-based systems for targeted drug delivery to the brain. J Control Release 2022; 348:723-744. [PMID: 35718214 DOI: 10.1016/j.jconrel.2022.06.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/08/2022] [Indexed: 12/18/2022]
Abstract
Despite the multiple ongoing and novel initiatives for developing brain-targeted drug delivery systems, insurmountable obstacles remain. A perfect drug delivery device that can bypass the brain-blood barrier and boost therapeutic efficacy is urgently needed for clinical applications. Exosomes hold unrivaled benefits as a drug delivery vehicle for treating brain diseases due to their endogenous and innate attributes. Unique properties, such as the ability to penetrate physical barriers, biocompatibility, innate targeting features, ability to leverage natural intracellular trafficking pathways, favored tumor homing, and stability, make exosomes suitable for brain-targeted drug delivery. Herein, we provide an overview of recent exosome-based drug delivery nanoplatforms and discuss how these inherent vesicles can be used to deliver therapeutic agents to the brain to cure neurodegenerative diseases, brain tumors, and other brain disorders. Moreover, we review the current roadblocks associated with exosomes and other brain-targeted drug delivery systems and discuss future directions for achieving successful therapy outcomes.
Collapse
Affiliation(s)
- Santosh Bashyal
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chhitij Thapa
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea.
| |
Collapse
|
47
|
Chen X, Jia M, Ji J, Zhao Z, Zhao Y. Exosome-Derived Non-Coding RNAs in the Tumor Microenvironment of Colorectal Cancer: Possible Functions, Mechanisms and Clinical Applications. Front Oncol 2022; 12:887532. [PMID: 35646623 PMCID: PMC9133322 DOI: 10.3389/fonc.2022.887532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death and the third most prevalent malignancy. Colorectal tumors exchange information with the surrounding environment and influence each other, which collectively constitutes the tumor microenvironment (TME) of CRC. Many studies have shown that exosome-derived non-coding RNAs (ncRNAs) play important roles in various pathophysiological processes by regulating the TME of CRC. This review summarizes recent findings on the fundamental roles of exosomal ncRNAs in angiogenesis, vascular permeability, tumor immunity, tumor metabolism and drug resistance. Certainly, the in-depth understanding of exosomal ncRNAs will provide comprehensive insights into the clinical application of these molecules against CRC.
Collapse
Affiliation(s)
- Xian Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Mengmeng Jia
- School of Public Health, Qingdao University, Qingdao, China
| | - Jing Ji
- School of Public Health, Qingdao University, Qingdao, China
| | - Zhiying Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanjie Zhao
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
48
|
Yang J, Zhang L. The roles and therapeutic approaches of MSC-derived exosomes in colorectal cancer. Clin Transl Oncol 2022; 24:959-967. [PMID: 35037237 DOI: 10.1007/s12094-021-02750-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer in both men and women, accounting for 8% of all new cancer cases in both. CRC is typically diagnosed at advanced stages, which leads to a higher mortality rate. The 5-year survival rate for CRC is 64% in all cases and just 12% in metastatic cases. Mesenchymal stem cells (MSCs) are one of the most recent approaches for therapeutic interventions in cancer. MSCs have multiple properties, including paracrine signaling, immunologic functions, and the ability to migrate to the targeted tissue. MSCs can produce and secrete exosomes in tumor microenvironments. These exosomes can transfer compounds across tumor cells, stromal cells, fibroblasts, endothelial cells, and immune cells. Studies showed that modified MCS-derived exosomes have enhanced specificity, reduced immunogenicity, and better targeting capabilities in comparison to other frequently used delivery systems such as liposomes. Therefore, this study aimed to provide a comprehensive view of the role of natural MSC-derived exosomes in CRC, as well as the most current and prospective advancements in MSC-derived exosome therapeutic modifications.
Collapse
Affiliation(s)
- Jie Yang
- Anorectal, Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang, 050051, China.
| | - Liman Zhang
- Anorectal, Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang, 050051, China
| |
Collapse
|
49
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
50
|
崔 舒, 汤 帅, 丁 晓, 丁 刚. [Research Progress of Mesenchymal Stem Cells and Their Exosomes on Tumors]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:351-357. [PMID: 35599010 PMCID: PMC9127752 DOI: 10.3779/j.issn.1009-3419.2022.101.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
In China, malignant tumor is the main cause of death in both urban and rural areas. Mesenchymal stem cells (MSCs) have multidirectional differentiation potential, self-renewal ability and good immunomodulatory properties. Exosomes, as important paracrine substances of MSCs, mediate information exchange and transmission between cells in tumor microenvironment and influence the occurrence and development of tumors. Recently, conflicting findings have been reported on the effects of MSCs and their exosomes on tumors. On the one hand, MSCs and their exosomes are tumorigenic and can target specific sites to inhibit tumor growth; On the other hand, there is also evidence that MSCs could affect tumor growth and migration as part of the tumor microenvironment. In this paper, we will review the relationship between MSCs and exosomes and tumorgenesis and development, as well as how MSCs and exosomes play different roles in tumorgenesis and development, in order to provide beneficial help for tumor diagnosis, prognosis and precise treatment.
.
Collapse
Affiliation(s)
- 舒悦 崔
- />261053 潍坊,潍坊医学院口腔医学院School of Stomatology, Weifang Medical University, Weifang 261053, China
| | - 帅 汤
- />261053 潍坊,潍坊医学院口腔医学院School of Stomatology, Weifang Medical University, Weifang 261053, China
| | - 晓玲 丁
- />261053 潍坊,潍坊医学院口腔医学院School of Stomatology, Weifang Medical University, Weifang 261053, China
| | - 刚 丁
- />261053 潍坊,潍坊医学院口腔医学院School of Stomatology, Weifang Medical University, Weifang 261053, China
| |
Collapse
|