1
|
Lin A, Jiang A, Huang L, Li Y, Zhang C, Zhu L, Mou W, Liu Z, Zhang J, Cheng Q, Wei T, Luo P. From chaos to order: optimizing fecal microbiota transplantation for enhanced immune checkpoint inhibitors efficacy. Gut Microbes 2025; 17:2452277. [PMID: 39826104 DOI: 10.1080/19490976.2025.2452277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
The integration of fecal microbiota transplantation (FMT) with immune checkpoint inhibitors (ICIs) presents a promising approach for enhancing cancer treatment efficacy and overcoming therapeutic resistance. This review critically examines the controversial effects of FMT on ICIs outcomes and elucidates the underlying mechanisms. We investigate how FMT modulates gut microbiota composition, microbial metabolite profiles, and the tumor microenvironment, thereby influencing ICIs effectiveness. Key factors influencing FMT efficacy, including donor selection criteria, recipient characteristics, and administration protocols, are comprehensively discussed. The review delineates strategies for optimizing FMT formulations and systematically monitoring post-transplant microbiome dynamics. Through a comprehensive synthesis of evidence from clinical trials and preclinical studies, we elucidate the potential benefits and challenges of combining FMT with ICIs across diverse cancer types. While some studies report improved outcomes, others indicate no benefit or potential adverse effects, emphasizing the complexity of host-microbiome interactions in cancer immunotherapy. We outline critical research directions, encompassing the need for large-scale, multi-center randomized controlled trials, in-depth microbial ecology studies, and the integration of multi-omics approaches with artificial intelligence. Regulatory and ethical challenges are critically addressed, underscoring the imperative for standardized protocols and rigorous long-term safety assessments. This comprehensive review seeks to guide future research endeavors and clinical applications of FMT-ICIs combination therapy, with the potential to improve cancer patient outcomes while ensuring both safety and efficacy. As this rapidly evolving field advances, maintaining a judicious balance between openness to innovation and cautious scrutiny is crucial for realizing the full potential of microbiome modulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Aimin Jiang
- Department of Urology, Changhai hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lihaoyun Huang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Yu Li
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Chunyanx Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Lingxuan Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Weiming Mou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
2
|
Li Z, Deng L, Cheng M, Ye X, Yang N, Fan Z, Sun L. Emerging role of bile acids in colorectal liver metastasis: From molecular mechanism to clinical significance (Review). Int J Oncol 2025; 66:24. [PMID: 39981904 PMCID: PMC11844338 DOI: 10.3892/ijo.2025.5730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Liver metastasis is the leading cause of colorectal cancer (CRC)‑related mortality. Microbiota dysbiosis serves a role in the pathogenesis of colorectal liver metastases. Bile acids (BAs), cholesterol metabolites synthesized by intestinal bacteria, contribute to the metastatic cascade of CRC, encompassing colorectal invasion, migration, angiogenesis, anoikis resistance and the establishment of a hepatic pre‑metastatic niche. BAs impact inflammation and modulate the immune landscape within the tumor microenvironment by activating signaling pathways, which are used by tumor cells to facilitate metastasis. Given the widespread distribution of BA‑activated receptors in both tumor and immune cells, strategies aimed at restoring BA homeostasis and blocking metastasis‑associated signaling are of importance in cancer therapy. The present study summarizes the specific role of BAs in each step of colorectal liver metastasis, elucidating the association between BA and CRC progression to highlight the potential of BAs as predictive biomarkers for colorectal liver metastasis and their therapeutic potential in developing novel treatment strategies.
Collapse
Affiliation(s)
- Zhaoyu Li
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, P.R. China
| | - Lingjun Deng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China, P.R. China
| | - Mengting Cheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China, P.R. China
| | - Xiandong Ye
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China, P.R. China
| | - Nanyan Yang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China, P.R. China
| | - Zaiwen Fan
- Department of Oncology, Air Force Medical Center of People's Liberation Army, Air Force Medical University, Beijing 100010, P.R. China
| | - Li Sun
- Department of Oncology, Air Force Medical Center of People's Liberation Army, Air Force Medical University, Beijing 100010, P.R. China
| |
Collapse
|
3
|
Tang J, Xu W, Yu Y, Yin S, Ye BC, Zhou Y. The role of the gut microbial metabolism of sterols and bile acids in human health. Biochimie 2025; 230:43-54. [PMID: 39542125 DOI: 10.1016/j.biochi.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Sterols and bile acids are vital signaling molecules that play key roles in systemic functions, influencing the composition of the human gut microbiota, which maintains a symbiotic relationship with the host. Additionally, gut microbiota-encoded enzymes catalyze the conversion of sterols and bile acids into various metabolites, significantly enhancing their diversity and biological activities. In this review, we focus on the microbial transformations of sterols and bile acids in the gut, summarize the relevant bacteria, genes, and enzymes, and review the relationship between the sterols and bile acids metabolism of gut microbiota and human health. This review contributes to a deeper understanding of the crucial roles of sterols and bile acids metabolism by gut microbiota in human health, offering insights for further investigation into the interactions between gut microbiota and the host.
Collapse
Affiliation(s)
- Jiahui Tang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wenwu Xu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yangfan Yu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Shengxiang Yin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Bang-Ce Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yunyan Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
4
|
Francini E, Badillo Pazmay GV, Fumarola S, Procopio AD, Olivieri F, Marchegiani F. Bi-Directional Relationship Between Bile Acids (BAs) and Gut Microbiota (GM): UDCA/TUDCA, Probiotics, and Dietary Interventions in Elderly People. Int J Mol Sci 2025; 26:1759. [PMID: 40004221 PMCID: PMC11855466 DOI: 10.3390/ijms26041759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The gut microbiota (GM), the set of microorganisms that colonizes our intestinal tract, can undergo many changes, some of which are age related. Several studies have shown the importance of maintaining a healthy GM for a good quality of life. In the elderly, maintaining a good GM may become a real defense against infection by pathogens, such as C. difficile. In addition to the GM, bile acids (BAs) have been shown to provide an additional defense mechanism against the proliferation of pathogenic bacteria and to regulate bacterial colonization of the gut. BAs are molecules produced in the host liver and secreted with the bile into the digestive tract, and they are necessary for the digestion of dietary lipids. In the gut, host-produced BAs are metabolized by commensal bacteria to secondary BAs. In general GM and host organisms interact in many ways. This review examines the relationship between GM, BAs, aging, and possible new approaches such as dietary interventions, administration of ursodesoxycholic acid/tauroursodesoxycholic acid (UDCA/TUDCA), and probiotics to enrich the microbial consortia of the GM in the elderly and achieve a eubiotic state necessary for maintaining good health. The presence of Firmicutes and Actinobacteria together with adequate levels of secondary BAs would provide protection and improve the frailty state in the elderly. In fact, an increase in secondary BAs has been observed in centenarians who have reached old age without serious health issues, which may justify their active role in achieving longevity.
Collapse
Affiliation(s)
- Emanuele Francini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (E.F.); (A.D.P.)
| | - Gretta V. Badillo Pazmay
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (G.V.B.P.); (S.F.); (F.O.)
| | - Stefania Fumarola
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (G.V.B.P.); (S.F.); (F.O.)
| | - Antonio Domenico Procopio
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (E.F.); (A.D.P.)
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Fabiola Olivieri
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (G.V.B.P.); (S.F.); (F.O.)
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Francesca Marchegiani
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (E.F.); (A.D.P.)
| |
Collapse
|
5
|
Farhadi Rad H, Tahmasebi H, Javani S, Hemati M, Zakerhamidi D, Hosseini M, Alibabaei F, Banihashemian SZ, Oksenych V, Eslami M. Microbiota and Cytokine Modulation: Innovations in Enhancing Anticancer Immunity and Personalized Cancer Therapies. Biomedicines 2024; 12:2776. [PMID: 39767682 PMCID: PMC11673251 DOI: 10.3390/biomedicines12122776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
The gut microbiota plays a crucial role in modulating anticancer immunity, significantly impacting the effectiveness of various cancer therapies, including immunotherapy, chemotherapy, and radiotherapy. Its impact on the development of cancer is complex; certain bacteria, like Fusobacterium nucleatum and Bacteroides fragilis, can stimulate the growth of tumors by causing immunological evasion and inflammation, while advantageous strains, like Faecalibaculum rodentium, have the ability to suppress tumors by modifying immune responses. Cytokine activity and immune system regulation are intimately related. Cytokines including TGF-β, IL-6, and IL-10 promote tumor development by inhibiting efficient immune surveillance. The gut microbiome exhibits a delicate balance between pro- and anti-tumorigenic factors, as evidenced by the enhancement of anti-tumor immunity by cytokines such as IL-12 and IFN-γ. Improved immunotherapy responses are linked to a diverse microbiota, which is correlated with higher tumor infiltration and cytotoxic T-cell activation. Because microbial metabolites, especially short-chain fatty acids, affect cytokine expression and immune cell activation inside the tumor microenvironment, this link highlights the need to maintain microbial balance for optimal treatment effects. Additionally, through stimulating T-cell activation, bacteria like Lactobacillus rhamnosus and Bifidobacterium bifidum increase cytokine production and improve the efficacy of immune checkpoint inhibitors (ICIs). An option for overcoming ICI resistance is fecal microbiota transplantation (FMT), since research suggests that it improves melanoma outcomes by increasing CD8+ T-cell activation. This complex interaction provides an opportunity for novel cancer therapies by highlighting the possibility of microbiome modification as a therapeutic approach in personalized oncology approaches.
Collapse
Affiliation(s)
| | - Hamed Tahmasebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Maral Hemati
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Darya Zakerhamidi
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoomeh Hosseini
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Farnaz Alibabaei
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Valentyn Oksenych
- University of Bergen, 5020 Bergen, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7028 Trondheim, Norway
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
6
|
Wang SM, Zhang MF, Pan QH, Yu TF, Lei RL, Li QJ. Causal Relationships Between Gut Microbiota, Immune Cell and Pancreatic Cancer: A Two-Step, Two-Sample Mendelian Randomization Study. World J Oncol 2024; 15:922-928. [PMID: 39697429 PMCID: PMC11650607 DOI: 10.14740/wjon1960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/17/2024] [Indexed: 12/20/2024] Open
Abstract
Background Gut microbiota (GM) is associated with both the occurrence and development of pancreatic cancer (PC), and immune cells potentially play a role in this process. This study sought to evaluate the causative effect of GM on PC and to ascertain possible immune cell mediators. Methods The study primarily employed a two-step, two-sample Mendelian randomization (MR) analysis to explore the causal relationship between GM and PC within the European population, placing particular emphasis on the application of the inverse variance weighted (IVW) approach. Additionally, mediation analysis was conducted to explore the potential influence of immune cells as mediators. Results The MR analysis revealed a significant association between Geminocystis and the risk of PC. Increased abundance of Geminocystis was positively associated with the risk of PC (odds ratio (OR): 2.580, 95% confidence interval (CI): 1.050 - 6.342). The validity of the outcomes was also verified by the sensitivity analysis. The mediation MR analysis showed that the B-cell absolute count served as a partial intermediary in the causal link between Geminocystis and the risk of PC, contributing to 15.321% of the mediating impact. Conclusion This MR study demonstrated that Geminocystis has a causal relationship with PC and potentially mediates B-cell absolute count in the TBNK panel.
Collapse
Affiliation(s)
- Si Ming Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- These authors contributed equally to this article
| | - Ming Feng Zhang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- These authors contributed equally to this article
| | - Qian Hui Pan
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- These authors contributed equally to this article
| | - Ting Feng Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rui Lin Lei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qing Jian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
7
|
Chen S, Wang C, Zou X, Li H, Yang G, Su X, Mo Z. Multi-omics insights implicate the remodeling of the intestinal structure and microbiome in aging. Front Genet 2024; 15:1450064. [PMID: 39600316 PMCID: PMC11588687 DOI: 10.3389/fgene.2024.1450064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Background Aging can impair the ability of elderly individuals to fight infections and trigger persistent systemic inflammation, a condition known as inflammaging. However, the mechanisms underlying the development of inflammaging remain unknown. Methods We conducted 16S rRNA sequencing of intestinal contents from young and old C57BL/6J mice to elucidate changes in gut microbiota diversity and microbial community composition after aging. Aging-related differential bacterial taxa were then identified, and their abundance trends were validated in human samples. The variances in intestinal barrier function and circulating endotoxin between groups were also assessed. Furthermore, widely targeted metabolomics was conducted to characterize metabolic profiles after aging and to investigate the key metabolic pathways enriched by the differential metabolites. Results Our findings demonstrated an increase in relative proportion of pathogenic bacteria with age, a trend also revealed in healthy populations of different age groups. Additionally, aging individuals exhibited reduced intestinal barrier function and increased circulating endotoxin levels. Widely targeted metabolomics revealed a significant increase in various secondary bile acid metabolites after aging, positively correlated with the relative abundance of several aging-related bacterial taxa. Furthermore, old group had lower levels of various anti-inflammatory or beneficial metabolites. Enrichment analysis identified the starch and sucrose metabolism pathway as potentially the most significantly impacted signaling pathway during aging. Conclusion This study aimed to provide insights into the complex interactions involved in organismal inflammaging through microbial multi-omics. These findings lay a solid foundation for future research aimed at identifying novel biomarkers for the clinical diagnosis of aging-related diseases or potential therapeutic targets.
Collapse
Affiliation(s)
- Shaohua Chen
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Chengbang Wang
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiong Zou
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Hanwen Li
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Guanglin Yang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaotao Su
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
8
|
Dorobisz K, Dorobisz T, Pazdro-Zastawny K, Czyż K, Janczak M. The Influence of the Microbiome on the Complications of Radiotherapy and Its Effectiveness in Patients with Laryngeal Cancer. Cancers (Basel) 2024; 16:3707. [PMID: 39518144 PMCID: PMC11545705 DOI: 10.3390/cancers16213707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Radiotherapy is an effective method of treating cancer and affects 50% of patients. Intensity-modulated radiotherapy (IMRT) is a modernized method of classical radiation used in the treatment of laryngeal cancer. Treatment with intent to preserve the larynx is not always safe or complication-free. The microbiome may significantly influence the effectiveness of oncological treatment, especially radiotherapy, and may also be modified by the toxic response to radiation. OBJECTIVE The aim of the study was to prospectively assess the microbiome and its influence on radiotherapy toxicity in patients with laryngeal cancer. RESULTS Statistically significant risk factors for complications after radiotherapy were the percentage of Porphyromonas of at least 6.7%, the percentage of Fusobacterium of at least 2.6% and the percentage of Catonella of at least 2.6%. CONCLUSIONS The importance of the microbiome in oncology has been confirmed in many studies. Effective radiotherapy treatment and the prevention of radiation-induced oral mucositis is a challenge in oncology. The microbiome may be an important part of personalized cancer treatment. The assessment of the microbiome of patients diagnosed with cancer may provide the opportunity to predict the response to treatment and its effectiveness. The influence of the microbiome may be important in predicting the risk group for radiotherapy treatment failure. The possibility of modifying the microbiome may become a goal to improve the prognosis of patients with laryngeal cancer. Fusobacterium, Porphyromonas and Catonella are important risk factors for radiation-induced oral mucositis in patients with laryngeal cancer.
Collapse
Affiliation(s)
- Karolina Dorobisz
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, 50-367 Wroclaw, Poland
| | - Tadeusz Dorobisz
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Katarzyna Pazdro-Zastawny
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, 50-367 Wroclaw, Poland
| | - Katarzyna Czyż
- Institute of Animal Breeding, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Marzena Janczak
- Institute of Animal Breeding, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| |
Collapse
|
9
|
Daniel N, Genua F, Jenab M, Mayén AL, Chrysovalantou Chatziioannou A, Keski-Rahkonen P, Hughes DJ. The role of the gut microbiome in the development of hepatobiliary cancers. Hepatology 2024; 80:1252-1269. [PMID: 37055022 PMCID: PMC11487028 DOI: 10.1097/hep.0000000000000406] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Hepatobiliary cancers, including hepatocellular carcinoma and cancers of the biliary tract, share high mortality and rising incidence rates. They may also share several risk factors related to unhealthy western-type dietary and lifestyle patterns as well as increasing body weights and rates of obesity. Recent data also suggest a role for the gut microbiome in the development of hepatobiliary cancer and other liver pathologies. The gut microbiome and the liver interact bidirectionally through the "gut-liver axis," which describes the interactive relationship between the gut, its microbiota, and the liver. Here, we review the gut-liver interactions within the context of hepatobiliary carcinogenesis by outlining the experimental and observational evidence for the roles of gut microbiome dysbiosis, reduced gut barrier function, and exposure to inflammatory compounds as well as metabolic dysfunction as contributors to hepatobiliary cancer development. We also outline the latest findings regarding the impact of dietary and lifestyle factors on liver pathologies as mediated by the gut microbiome. Finally, we highlight some emerging gut microbiome editing techniques currently being investigated in the context of hepatobiliary diseases. Although much work remains to be done in determining the relationships between the gut microbiome and hepatobiliary cancers, emerging mechanistic insights are informing treatments, such as potential microbiota manipulation strategies and guiding public health advice on dietary/lifestyle patterns for the prevention of these lethal tumors.
Collapse
Affiliation(s)
- Neil Daniel
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - Flavia Genua
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | | | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David J. Hughes
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Peng YL, Wang SH, Zhang YL, Chen MY, He K, Li Q, Huang WH, Zhang W. Effects of bile acids on the growth, composition and metabolism of gut bacteria. NPJ Biofilms Microbiomes 2024; 10:112. [PMID: 39438471 PMCID: PMC11496524 DOI: 10.1038/s41522-024-00566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024] Open
Abstract
Bile acids (BAs) exert a profound influence on the body's pathophysiology by intricately shaping the composition of gut bacteria. However, the complex interplay between BAs and gut microbiota has impeded a systematic exploration of their impact on intestinal bacteria. Initially, we investigated the effects of 21 BAs on the growth of 65 gut bacterial strains in vitro. Subsequently, we examined the impact of BAs on the overall composition of intestinal bacteria, both in vivo and in vitro. The results unveiled distinct effects of various BAs on different intestinal strains and their diverse impacts on the composition of gut bacteria. Mechanistically, the inhibition of intestinal strains by BAs occurs through the accumulation of these acids within the strains. The intracellular accumulation of deoxycholic acid (DCA) significantly influenced the growth of intestinal bacteria by impacting ribosome transcription and amino-acid metabolism. The metabolomic analysis underscores the pronounced impact of DCA on amino-acid profiles in both in vivo and in vitro settings. This study not only elucidates the effects of BAs on a diverse range of bacterial strains and their role in shaping the gut microbiota but also reveals underlying mechanisms essential for understanding and maintaining a healthy gut microbiota.
Collapse
Affiliation(s)
- Yi-Lei Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Si-Han Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Yu-Long Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Man-Yun Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Kang He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.
| |
Collapse
|
11
|
Kim J, Park S, Kim SJ, Yoo I, Kim H, Hwang S, Sim KM, Kim I, Jun E. High-throughput drug screening using a library of antibiotics targeting cancer cell lines that are resistant and sensitive to gemcitabine. Biochem Biophys Res Commun 2024; 730:150369. [PMID: 39013264 DOI: 10.1016/j.bbrc.2024.150369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
Gemcitabine is a nucleoside analog widely used as an anticancer agent against several types of cancer. Although gemcitabine sometimes shows excellent effectiveness, cancer cells are often poorly responsive to or resistant to the drug. Recently, specific strains or dysbiosis of the human microbiome were correlated with drug reactivity and resistance acquisition. Therefore, we aimed to identify antibiotic compounds that can modulate the microbiome to enhance the responsiveness to gemcitabine. To achieve this, we confirmed the gemcitabine responsiveness based on public data and conducted drug screening on a set of 250 antibiotics compounds. Subsequently, we performed experiments to investigate whether the selected compounds could enhance the responsiveness to gemcitabine. First, we grouped a total of seven tumor cell lines into resistant and sensitive group based on the IC50 value (1 μM) of gemcitabine obtained from the public data. Second, we performed high-throughput screening with compound treatments, identifying seven compounds from the resistant group and five from the sensitive group based on dose dependency. Finally, the combination of the selected compound, puromycin dihydrochloride, with gemcitabine in gemcitabine-resistant cell lines resulted in extensive cell death and a significant increase in cytotoxic efficacy. Additionally, mRNA levels associated with cell viability and stemness were reduced. Through this study, we screened antibiotics to further improve the efficacy of existing anticancer drugs and overcome resistance. By combining existing anticancer agents and antibiotic substances, we hope to establish various drug combination therapies and ultimately improve cancer treatment efficacy.
Collapse
Affiliation(s)
- Jinju Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Sojung Park
- Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Seong-Jin Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Inha Yoo
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Heeseon Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Supyong Hwang
- Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Kyoung Mi Sim
- Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Inki Kim
- Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Pharmacology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| | - Eunsung Jun
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea.
| |
Collapse
|
12
|
Jiang TQ, Wang H, Cheng WX, Xie C. Modulation of host N6-methyladenosine modification by gut microbiota in colorectal cancer. World J Gastroenterol 2024; 30:4175-4193. [PMID: 39493326 PMCID: PMC11525875 DOI: 10.3748/wjg.v30.i38.4175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
As a research hotspot in the field of molecular biology, N6-methyladenosine (m6A) modification has made progress in the treatment of colorectal cancer (CRC), leukemia and other cancers. Numerous studies have demonstrated that the tumour microenvironment (TME) regulates the level of m6A modification in the host and activates a series of complex epigenetic signalling pathways through interactions with CRC cells, thus affecting the progression and prognosis of CRC. However, with the diversity in the composition of TME factors, this action is reciprocal and complex. Encouragingly, some studies have experimentally revealed that the intestinal flora can alter CRC cell proliferation by directly acting on m6A and thereby altering CRC cell proliferation. This review summarizes the data, supporting the idea that the intestinal flora can influence host m6A levels through pathways such as methyl donor metabolism and thus affect the progression of CRC. We also review the role of m6A modification in the diagnosis, treatment, and prognostic assessment of CRC and discuss the current status, limitations, and potential clinical value of m6A modification in this field. We propose that additional in-depth research on m6A alterations in CRC patients and their TME-related targeted therapeutic issues will lead to better therapeutic outcomes for CRC patients.
Collapse
Affiliation(s)
- Tian-Qi Jiang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hao Wang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Wang-XinJun Cheng
- Queen Mary College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Chuan Xie
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
13
|
Yang L, Qiao S, Zhang G, Lu A, Li F. Inflammatory Processes: Key Mediators of Oncogenesis and Progression in Pancreatic Ductal Adenocarcinoma (PDAC). Int J Mol Sci 2024; 25:10991. [PMID: 39456771 PMCID: PMC11506938 DOI: 10.3390/ijms252010991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Associations between inflammation and cancer were first discovered approximately 160 years ago by Rudolf Virchow, who observed that tumors were infiltrated with inflammatory cells, and defined inflammation as a pathological condition. Inflammation has now emerged as one of the key mediators in oncogenesis and tumor progression, including pancreatic ductal adenocarcinoma (PDAC). However, the role of inflammatory processes in cancers is complicated and controversial, and the detailed regulatory mechanisms are still unclear. This review elucidates the dynamic interplay between inflammation and immune regulation, microenvironment alteration, metabolic reprogramming, and microbiome risk factors in PDAC, committing to exploring a deeper understanding of the role of crucial inflammatory pathways and molecules for providing insights into therapeutic strategies.
Collapse
Affiliation(s)
- Liu Yang
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (L.Y.); (S.Q.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China;
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shuangying Qiao
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (L.Y.); (S.Q.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China;
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ge Zhang
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China;
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lu
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (L.Y.); (S.Q.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China;
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfei Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (L.Y.); (S.Q.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China;
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
14
|
De Filippo C, Chioccioli S, Meriggi N, Troise AD, Vitali F, Mejia Monroy M, Özsezen S, Tortora K, Balvay A, Maudet C, Naud N, Fouché E, Buisson C, Dupuy J, Bézirard V, Chevolleau S, Tondereau V, Theodorou V, Maslo C, Aubry P, Etienne C, Giovannelli L, Longo V, Scaloni A, Cavalieri D, Bouwman J, Pierre F, Gérard P, Guéraud F, Caderni G. Gut microbiota drives colon cancer risk associated with diet: a comparative analysis of meat-based and pesco-vegetarian diets. MICROBIOME 2024; 12:180. [PMID: 39334498 PMCID: PMC11438057 DOI: 10.1186/s40168-024-01900-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/05/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) risk is strongly affected by dietary habits with red and processed meat increasing risk, and foods rich in dietary fibres considered protective. Dietary habits also shape gut microbiota, but the role of the combination between diet, the gut microbiota, and the metabolite profile on CRC risk is still missing an unequivocal characterisation. METHODS To investigate how gut microbiota affects diet-associated CRC risk, we fed Apc-mutated PIRC rats and azoxymethane (AOM)-induced rats the following diets: a high-risk red/processed meat-based diet (MBD), a normalised risk diet (MBD with α-tocopherol, MBDT), a low-risk pesco-vegetarian diet (PVD), and control diet. We then conducted faecal microbiota transplantation (FMT) from PIRC rats to germ-free rats treated with AOM and fed a standard diet for 3 months. We analysed multiple tumour markers and assessed the variations in the faecal microbiota using 16S rRNA gene sequencing together with targeted- and untargeted-metabolomics analyses. RESULTS In both animal models, the PVD group exhibited significantly lower colon tumorigenesis than the MBD ones, consistent with various CRC biomarkers. Faecal microbiota and its metabolites also revealed significant diet-dependent profiles. Intriguingly, when faeces from PIRC rats fed these diets were transplanted into germ-free rats, those transplanted with MBD faeces developed a higher number of preneoplastic lesions together with distinctive diet-related bacterial and metabolic profiles. PVD determines a selection of nine taxonomic markers mainly belonging to Lachnospiraceae and Prevotellaceae families exclusively associated with at least two different animal models, and within these, four taxonomic markers were shared across all the three animal models. An inverse correlation between nonconjugated bile acids and bacterial genera mainly belonging to the Lachnospiraceae and Prevotellaceae families (representative of the PVD group) was present, suggesting a potential mechanism of action for the protective effect of these genera against CRC. CONCLUSIONS These results highlight the protective effects of PVD while reaffirming the carcinogenic properties of MBD diets. In germ-free rats, FMT induced changes reminiscent of dietary effects, including heightened preneoplastic lesions in MBD rats and the transmission of specific diet-related bacterial and metabolic profiles. Importantly, to the best of our knowledge, this is the first study showing that diet-associated cancer risk can be transferred with faeces, establishing gut microbiota as a determinant of diet-associated CRC risk. Therefore, this study marks the pioneering demonstration of faecal transfer as a means of conveying diet-related cancer risk, firmly establishing the gut microbiota as a pivotal factor in diet-associated CRC susceptibility. Video Abstract.
Collapse
Grants
- JTC-2017-7 Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on "Interrelation of the Intestinal Microbiome, Diet and Health"
- JTC-2017-7 Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on "Interrelation of the Intestinal Microbiome, Diet and Health"
- JTC-2017-7 Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on "Interrelation of the Intestinal Microbiome, Diet and Health"
- JTC-2017-7 Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on "Interrelation of the Intestinal Microbiome, Diet and Health"
- JTC-2017-7 Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on "Interrelation of the Intestinal Microbiome, Diet and Health"
- JTC-2017-7 Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on "Interrelation of the Intestinal Microbiome, Diet and Health"
- JTC-2017-7 Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on "Interrelation of the Intestinal Microbiome, Diet and Health"
- JTC-2017-7 Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on "Interrelation of the Intestinal Microbiome, Diet and Health"
- JTC-2017-7 Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on "Interrelation of the Intestinal Microbiome, Diet and Health"
- JTC-2017-7 Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on "Interrelation of the Intestinal Microbiome, Diet and Health"
- JTC-2017-7 Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on "Interrelation of the Intestinal Microbiome, Diet and Health"
- Expression of interest # 895 HDHL INTIMIC-Knowledge Platform on food, diet, intestinal microbiomics and human health
- Expression of interest # 895 HDHL INTIMIC-Knowledge Platform on food, diet, intestinal microbiomics and human health
- PE00000003 National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.3 - Call for tender No. 341 of 15 March 2022 of Italian Ministry of University and Research funded by the European Union - NextGenerationEU; Project title "ON Foods - Research and innovation network on food and nutrition Sustainability, Safety and Security - Working ON Foods"
- PE00000003 National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.3 - Call for tender No. 341 of 15 March 2022 of Italian Ministry of University and Research funded by the European Union - NextGenerationEU; Project title "ON Foods - Research and innovation network on food and nutrition Sustainability, Safety and Security - Working ON Foods"
- PE00000003 National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.3 - Call for tender No. 341 of 15 March 2022 of Italian Ministry of University and Research funded by the European Union - NextGenerationEU; Project title "ON Foods - Research and innovation network on food and nutrition Sustainability, Safety and Security - Working ON Foods"
- ECS00000017 European Union - NextGenerationEU - National Recovery and Resilience Plan, Mission 4 Component 2 - Investment 1.5 - THE - Tuscany Health Ecosystem
- ECS00000017 European Union - NextGenerationEU - National Recovery and Resilience Plan, Mission 4 Component 2 - Investment 1.5 - THE - Tuscany Health Ecosystem
- G. Caderni University of Florence (Fondo ex-60%), Italy
- Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on “Interrelation of the Intestinal Microbiome, Diet and Health”
- National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.3 - Call for tender No. 341 of 15 March 2022 of Italian Ministry of University and Research funded by the European Union – NextGenerationEU; Project title “ON Foods - Research and innovation network on food and nutrition Sustainability, Safety and Security – Working ON Foods”
Collapse
Affiliation(s)
- Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy.
| | - Sofia Chioccioli
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy
| | - Antonio Dario Troise
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Italy
| | - Francesco Vitali
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy
| | - Mariela Mejia Monroy
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Serdar Özsezen
- Netherlands Organisation for Applied Scientific Research, Zeist, Netherlands
| | - Katia Tortora
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Aurélie Balvay
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Claire Maudet
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nathalie Naud
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
| | - Edwin Fouché
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
| | - Charline Buisson
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
| | - Jacques Dupuy
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
| | - Valérie Bézirard
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
| | - Sylvie Chevolleau
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, 31077, France
| | - Valérie Tondereau
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
| | - Vassilia Theodorou
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
| | - Claire Maslo
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
| | - Perrine Aubry
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
| | - Camille Etienne
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Lisa Giovannelli
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Vincenzo Longo
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Italy
| | | | - Jildau Bouwman
- Netherlands Organisation for Applied Scientific Research, Zeist, Netherlands
| | - Fabrice Pierre
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
| | - Philippe Gérard
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Françoise Guéraud
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
| | - Giovanna Caderni
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy.
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Florence, Italy.
| |
Collapse
|
15
|
Teng F, Tang Y, Lu Z, Chen K, Chen Z. Investigating causal links between gallstones, cholecystectomy, and 33 site-specific cancers: a Mendelian randomization post-meta-analysis study. BMC Cancer 2024; 24:1192. [PMID: 39333915 PMCID: PMC11437614 DOI: 10.1186/s12885-024-12906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND AND AIM The association between gallstones/cholecystectomy and cancer remains inconclusive in the current literature. This study aimed to explore the causal connections between gallstones/cholecystectomy and cancer risk by utilizing a bidirectional two-sample multivariable Mendelian randomization approach with Genome-Wide Association Studies data. METHODS Utilizing Genome-Wide Association Studies data from the UK Biobank and FinnGen, this research employed multivariable Mendelian randomization analyses to explore the impact of gallstones and cholecystectomy on the risk of 33 distinct cancer types. Instrumental variables for gallstones and cholecystectomy were carefully selected to ensure robust analyses, and sensitivity and heterogeneity tests were conducted to verify the findings' validity. RESULTS Multivariable Mendelian randomization analysis, incorporating data from more than 450,000 individuals for gallstones and cholecystectomy, revealed nuanced associations with cancer risk. Cholecystectomy was associated with a significantly increased risk of nonmelanoma skin cancer (OR = 1.59, 95% CI: 1.21 to 2.10, P = 0.001), while gallstones were linked to a decreased risk of the same cancer type (OR = 0.63, 95% CI: 0.47 to 0.84, P = 0.002). Interestingly, the analysis also suggested that cholecystectomy may lower the risk of small intestine tumors (OR = 0.18, 95% CI: 0.043 to 0.71, P = 0.015), with gallstones showing an inverse relationship, indicating an increased risk (OR = 6.41, 95% CI: 1.48 to 27.80, P = 0.013). CONCLUSIONS The multivariable Mendelian randomization analysis highlights the differential impact of gallstones and cholecystectomy on cancer risk, specifically for nonmelanoma skin cancer and small intestine tumors. These results underscore the importance of nuanced clinical management strategies and further research to understand the underlying mechanisms and potential clinical implications of gallstone disease and cholecystectomy on cancer risk.
Collapse
Affiliation(s)
- Fei Teng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China
| | - Youyin Tang
- Division of Vascular Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China
| | - Zhangyu Lu
- West China School of Medicine, Sichuan University, No. 17 South Renming Road, Chengdu, 610094, China
| | - Kefei Chen
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China.
| | - Zheyu Chen
- Division of Vascular Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China.
| |
Collapse
|
16
|
González A, Fullaondo A, Odriozola I, Odriozola A. Microbiota and other detrimental metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:309-365. [PMID: 39396839 DOI: 10.1016/bs.adgen.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Increasing scientific evidence demonstrates that gut microbiota plays an essential role in the onset and development of Colorectal cancer (CRC). However, the mechanisms by which these microorganisms contribute to cancer development are complex and far from completely clarified. Specifically, the impact of gut microbiota-derived metabolites on CRC is undeniable, exerting both protective and detrimental effects. This paper examines the effects and mechanisms by which important bacterial metabolites exert detrimental effects associated with increased risk of CRC. Metabolites considered include heterocyclic amines and polycyclic aromatic hydrocarbons, heme iron, secondary bile acids, ethanol, and aromatic amines. It is necessary to delve deeper into the mechanisms of action of these metabolites in CRC and identify the microbiota members involved in their production. Furthermore, since diet is the main factor capable of modifying the intestinal microbiota, conducting studies that include detailed descriptions of dietary interventions is crucial. All this knowledge is essential for developing precision nutrition strategies to optimise a protective intestinal microbiota against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
17
|
Shao X, Li J, Shao Q, Qu R, Ouyang X, Wang Y, Chen C. Water-soluble garlic polysaccharide (WSGP) improves ulcerative volitis by modulating the intestinal barrier and intestinal flora metabolites. Sci Rep 2024; 14:21504. [PMID: 39277703 PMCID: PMC11401863 DOI: 10.1038/s41598-024-72797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
WSGP has demonstrated significant potential for various bioactive effects. However, limited research has explored their anti-ulcerative colitis (UC) effects and mechanism on the colonic system and gut microbial metabolites. We evaluated the ameliorative effects of WSGP on the UC mice model. Using H&E to assess histological injury of colon morphology, AB-PAS staining to detect mucin secretion from goblet cells and the mucous layer, IF to evaluate the expression of intercellular tight junction proteins, ELISA to measure inflammatory factors, WB analysis to measure protein expression of inflammatory signaling pathways, RT-qPCR to quantify gene transcription of inflammatory factors, and LC-MS to analyze metabolites in mouse cecum contents. WSGP supplementation increased food intake, body weight, and colon length while reducing disease activity and histological scores in colitis-afflicted mice. WSGP mitigated colonic tissue damage and restored intestinal barrier integrity by suppressing NF-κB/STAT3 signaling, thereby decreasing gene transcription, protein expression of proinflammatory factors, and nitric oxide production. Additionally, WSGP improved UC by altering the variety of intestinal microbial metabolites. This study demonstrates that WSGP supplementation attenuates UC mice by suppressing the NF-κB/STAT3 signaling pathway, enhancing mucosal barrier function, reducing pro-inflammatory cytokines, and modulating gut microbial metabolites.
Collapse
Affiliation(s)
- Xin Shao
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming, 525000, Guangdong, China
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632, Guangdong, China
| | - JiaLong Li
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qi Shao
- Department of Cell Biology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Rong Qu
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Xin Ouyang
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - ChunBo Chen
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming, 525000, Guangdong, China.
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518001, Guangdong, China.
| |
Collapse
|
18
|
Wortmann E, Wylensek D, Basic M, Hermeling S, Bleich A, Haller D, Tolba R, Liebisch G, Janssen KP, Clavel T. Gut microbiota prevents small intestinal tumor formation due to bile acids in gnotobiotic mice. MICROBIOME RESEARCH REPORTS 2024; 3:44. [PMID: 39741948 PMCID: PMC11684917 DOI: 10.20517/mrr.2024.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/12/2024] [Accepted: 08/09/2024] [Indexed: 01/03/2025]
Abstract
Aim: The gut microbiota is implicated in the development of intestinal tumors. Furthermore, Western diet is a risk factor for colorectal cancer and induces alterations in both the microbiota and bile acid metabolism. Therefore, we aimed to investigate the causal role of Western diet-induced changes in the microbiota and secondary bile acid production, which were linked to disease exacerbation in APC 1311/+ pigs. Methods: We performed fecal microbiota transfer experiments by inoculating germfree Apc 1368N/+ mice with stool from genetically engineered APC 1311/+ pigs. A control group of Apc 1368N/+ mice stayed germfree. All mice were fed either a control diet, or the same diet supplemented with the primary bile acid cholic acid (CA) to stimulate secondary bile acid production. Results: Unexpectedly, the germfree mice fed CA had a high number of lesions in the upper small intestine, which was reduced by the colonization with microbes. The same mice (germfree, CA diet) were characterized by a remarkable lengthening of the small intestine (approximately +10 cm on average). Colonic lesions were rare and only observed in the mice that received stool from control pigs and fed the CA diet. Diversity and composition analyses showed that the microbiota transfer was incomplete. Nevertheless, mice receiving the Western diet-associated microbiota clustered separately from control animals. The effects of the CA diet on the microbiota were less pronounced and were observed primarily in mice that received stool from control pigs. Bile acid analysis in the recipient mice revealed associations between the phenotype and specific bile acid species in bile and cecum. Conclusion: This descriptive study highlights the importance of diet-microbiota-bile acid interactions in intestinal morphogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Esther Wortmann
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen 52074, Germany
| | - David Wylensek
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen 52074, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover 30625, Germany
| | - Sven Hermeling
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg 93053, Germany
| | - André Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover 30625, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising 85354, Germany
| | - René Tolba
- Institute of Laboratory Animal Science, University Hospital of RWTH Aachen, Aachen 85354, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg 93053, Germany
| | - Klaus-Peter Janssen
- Technical University of Munich, School of Medicine and Health, Klinikum rechts der Isar, Department of Surgery, Munich 81675, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen 52074, Germany
| |
Collapse
|
19
|
Li X, Ouyang J, Dai J. Current Gallstone Treatment Methods, State of the Art. Diseases 2024; 12:197. [PMID: 39329866 PMCID: PMC11431374 DOI: 10.3390/diseases12090197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
This study aims to provide valuable references for clinicians in selecting appropriate surgical methods for biliary tract stones based on patient conditions. In this paper, the advantages and disadvantages of various minimally invasive cholelithiasis surgical techniques are systematically summarized and innovative surgical approaches and intelligent stone removal technologies are introduced. The goal is to evaluate and predict future research priorities and development trends in the field of gallstone surgery. In recent years, the incidence of gallstone-related diseases, including cholecystolithiasis and choledocholithiasis, has significantly increased. This surge in cases has prompted the development of several innovative methods for gallstone extraction, with minimally invasive procedures gaining the most popularity. Among these techniques, PTCS, ERCP, and LCBDE have garnered considerable attention, leading to new surgical techniques; however, it must be acknowledged that each surgical method has its unique indications and potential complications. The primary challenge for clinicians is selecting a surgical approach that minimizes patient trauma while reducing the incidence of complications such as pancreatitis and gallbladder cancer and preventing the recurrence of gallstones. The integration of artificial intelligence with stone extraction surgeries offers new opportunities to address this issue. Regarding the need for preoperative preparation for PTCS surgery, we recommend a combined approach of PTBD and PTOBF. For ERCP-based stone extraction, we recommend a small incision of the Oddi sphincter followed by 30 s of balloon dilation as the optimal procedure. If conditions permit, a biliary stent can be placed post-extraction. For the surgical approach of LCBDE, we recommend the transduodenal (TD) approach. Artificial intelligence is involved throughout the entire process of gallstone detection, treatment, and prognosis, and more AI-integrated medical technologies are expected to be applied in the future.
Collapse
Affiliation(s)
- Xiangtian Li
- The Second Clinical Medical College, Southern Medical University, Guangzhou 510280, China;
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual, Reality Experimental Education Center for Medical Morphology (Southern Medical University), National Key Discipline of Human Anatomy School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China;
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual, Reality Experimental Education Center for Medical Morphology (Southern Medical University), National Key Discipline of Human Anatomy School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China;
| |
Collapse
|
20
|
Li X, Lu C, Mao X, Fan J, Yao J, Jiang J, Wu L, Ren J, Shen J. Bibliometric analysis of research on gut microbiota and bile acids: publication trends and research frontiers. Front Microbiol 2024; 15:1433910. [PMID: 39234549 PMCID: PMC11371755 DOI: 10.3389/fmicb.2024.1433910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
The gut microbiota is widely regarded as a "metabolic organ" that could generate myriad metabolites to regulate human metabolism. As the microbiota metabolites, bile acids (BAs) have recently been identified as the critical endocrine molecules that mediate the cross-talk between the host and intestinal microbiota. This study provided a comprehensive insight into the gut microbiota and BA research through bibliometric analysis from 2003 to 2022. The publications on this subject showed a dramatic upward trend. Although the USA and China have produced the most publications, the USA plays a dominant role in this expanding field. Specifically, the University of Copenhagen was the most productive institution. Key research hotspots are the gut-liver axis, short-chain fatty acids (SCFAs), cardiovascular disease (CVD), colorectal cancer (CRC), and the farnesoid x receptor (FXR). The molecular mechanisms and potential applications of the gut microbiota and BAs in cardiometabolic disorders and gastrointestinal cancers have significant potential for further research.
Collapse
Affiliation(s)
- Xin Li
- Department of General Medicine and Geriatrics, Linping Campus, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Department of General Practice, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Can Lu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xue Mao
- Department of General Medicine and Geriatrics, Linping Campus, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiahong Fan
- Department of General Medicine and Geriatrics, Linping Campus, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianting Yao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingjie Jiang
- Department of General Medicine and Geriatrics, Linping Campus, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lele Wu
- Department of General Medicine and Geriatrics, Linping Campus, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Ren
- Department of General Practice, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Shen
- Department of General Medicine and Geriatrics, Linping Campus, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Liu H, Yin J, Huang X, Zang C, Zhang Y, Cao J, Gong M. Mosquito Gut Microbiota: A Review. Pathogens 2024; 13:691. [PMID: 39204291 PMCID: PMC11357333 DOI: 10.3390/pathogens13080691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Mosquitoes are vectors of many important human diseases. The prolonged and widespread use of insecticides has led to the development of mosquito resistance to these insecticides. The gut microbiota is considered the master of host development and physiology; it influences mosquito biology, disease pathogen transmission, and resistance to insecticides. Understanding the role and mechanisms of mosquito gut microbiota in mosquito insecticide resistance is useful for developing new strategies for tackling mosquito insecticide resistance. We searched online databases, including PubMed, MEDLINE, SciELO, Web of Science, and the Chinese Science Citation Database. We searched all terms, including microbiota and mosquitoes, or any specific genera or species of mosquitoes. We reviewed the relationships between microbiota and mosquito growth, development, survival, reproduction, and disease pathogen transmission, as well as the interactions between microbiota and mosquito insecticide resistance. Overall, 429 studies were included in this review after filtering 8139 search results. Mosquito gut microbiota show a complex community structure with rich species diversity, dynamic changes in the species composition over time (season) and across space (environmental setting), and variation among mosquito species and mosquito developmental stages (larval vs. adult). The community composition of the microbiota plays profound roles in mosquito development, survival, and reproduction. There was a reciprocal interaction between the mosquito midgut microbiota and virus infection in mosquitoes. Wolbachia, Asaia, and Serratia are the three most studied bacteria that influence disease pathogen transmission. The insecticide resistance or exposure led to the enrichment or reduction in certain microorganisms in the resistant mosquitoes while enhancing the abundance of other microorganisms in insect-susceptible mosquitoes, and they involved many different species/genera/families of microorganisms. Conversely, microbiota can promote insecticide resistance in their hosts by isolating and degrading insecticidal compounds or altering the expression of host genes and metabolic detoxification enzymes. Currently, knowledge is scarce about the community structure of mosquito gut microbiota and its functionality in relation to mosquito pathogen transmission and insecticide resistance. The new multi-omics techniques should be adopted to find the links among environment, mosquito, and host and bring mosquito microbiota studies to the next level.
Collapse
Affiliation(s)
- Hongmei Liu
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Jianhai Yin
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Xiaodan Huang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Chuanhui Zang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Ye Zhang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Jianping Cao
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Maoqing Gong
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| |
Collapse
|
22
|
Bui TPN. The Human Microbiome as a Therapeutic Target for Metabolic Diseases. Nutrients 2024; 16:2322. [PMID: 39064765 PMCID: PMC11280041 DOI: 10.3390/nu16142322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The human microbiome functions as a separate organ in a symbiotic relationship with the host. Disruption of this host-microbe symbiosis can lead to serious health problems. Modifications to the composition and function of the microbiome have been linked to changes in host metabolic outcomes. Industrial lifestyles with high consumption of processed foods, alcoholic beverages and antibiotic use have significantly altered the gut microbiome in unfavorable ways. Therefore, understanding the causal relationship between the human microbiome and host metabolism will provide important insights into how we can better intervene in metabolic health. In this review, I will discuss the potential use of the human microbiome as a therapeutic target to improve host metabolism.
Collapse
Affiliation(s)
- Thi Phuong Nam Bui
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
23
|
Cheng Y, Wang S, Zhu W, Xu Z, Xiao L, Wu J, Meng Y, Zhang J, Cheng C. Deoxycholic acid inducing chronic atrophic gastritis with colonic mucosal lesion correlated to mucosal immune dysfunction in rats. Sci Rep 2024; 14:15798. [PMID: 38982226 PMCID: PMC11233621 DOI: 10.1038/s41598-024-66660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
The present study aimed to explore the underlying mechanism of bile reflux-inducing chronic atrophic gastritis (CAG) with colonic mucosal lesion. The rat model of CAG with colonic mucosal lesion was induced by free-drinking 20 mmol/L sodium deoxycholate to simulate bile reflux and 2% cold sodium salicylate for 12 weeks. In comparison to the control group, the model rats had increased abundances of Bacteroidetes and Firmicutes but had decreased abundances of Proteobacteria and Fusobacterium. Several gut bacteria with bile acids transformation ability were enriched in the model group, such as Blautia, Phascolarctobacter, and Enterococcus. The cytotoxic deoxycholic acid and lithocholic acid were significantly increased in the model group. Transcriptome analysis of colonic tissues presented that the down-regulated genes enriched in T cell receptor signaling pathway, antigen processing and presentation, Th17 cell differentiation, Th1 and Th2 cell differentiation, and intestinal immune network for IgA production in the model group. These results suggest that bile reflux-inducing CAG with colonic mucosal lesion accompanied by gut dysbacteriosis, mucosal immunocompromise, and increased gene expressions related to repair of intestinal mucosal injury.
Collapse
Affiliation(s)
- Yuqin Cheng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Shuaishuai Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Wenfei Zhu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Zijing Xu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Ling Xiao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jianping Wu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Yufen Meng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Junfeng Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Chun Cheng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
24
|
Saha B, A T R, Adhikary S, Banerjee A, Radhakrishnan AK, Duttaroy AK, Pathak S. Exploring the Relationship Between Diet, Lifestyle and Gut Microbiome in Colorectal Cancer Development: A Recent Update. Nutr Cancer 2024; 76:789-814. [PMID: 39207359 DOI: 10.1080/01635581.2024.2367266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) is one of the major causes of cancer-related mortality worldwide. Despite advances in treatment modalities, its prevalence continues to rise, notably among younger populations. Unhealthy dietary habits, sedentary routines, and obesity have been identified as one of the key contributors to the development of colorectal cancer, apart from genetic and epigenetic modifications. Recognizing the profound impact of diet and lifestyle on the intricate gut microbiota ecosystem offers a promising avenue for understanding CRC development and its treatment. Gut dysbiosis, characterized by imbalances favoring harmful microbes over beneficial ones, has emerged as a defining feature of CRC. Changes in diet and lifestyle can profoundly alter the composition of gut microbes and the metabolites they produce, potentially contributing to CRC onset. Focusing on recent evidence, this review discussed various dietary factors, such as high consumption of red and processed meats and low fiber intake, and lifestyle factors, including obesity, lack of physical activity, smoking, and excessive alcohol consumption, that influence the gut microbiome composition and elevate CRC risk.
Collapse
Affiliation(s)
- Biki Saha
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Rithi A T
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| |
Collapse
|
25
|
Yu J, Wang J, Cao C, Gong J, Cao J, Yin J, Wu S, Huang P, Tan B, Fan Z. Maternal intervention with a combination of galacto-oligosaccharides and hyocholic acids during late gestation and lactation increased the reproductive performance, colostrum composition, antioxidant and altered intestinal microflora in sows. Front Microbiol 2024; 15:1367877. [PMID: 38933026 PMCID: PMC11199897 DOI: 10.3389/fmicb.2024.1367877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction This study was conducted to evaluate the effects of dietary galacto-oligosaccharides (GOS) and hyocholic acids (HCA) during late gestation and lactation on reproductive performance, colostrum quality, antioxidant capacity and gut microbiota in multiparous sows. Methods A total of 60 healthy multiparous cross-bred sows (Landrace × Yorkshire) were randomly fed 4 groups diets as follows: the basal diets (CTRL group), or the basal diets containing only 600 mg/kg GOS (GOS group), 600 mg/kg GOS + 100 mg/kg HCA (GOS + Low HCA group), and 600 mg/kg + 200 mg/kg HCA (GOS + High HCA group) from d 85 of gestation to weaning. Multiple parameters of sows were determined. Results There was a trend of shortening the labor process of sows (p = 0.07) in the GOS group and GOS + Low/High HCA group. Compared with the CTRL group, the GOS + Low/High HCA group increased the average piglets weight at birth (p < 0.05), and increased the IgA concentration of colostrum (p < 0.05). In addition, serum triglyceride (TG) concentration was lower (p < 0.05), and serum total antioxidant capacity (T-AOC) was higher (p < 0.05) in the GOS and GOS + Low/High HCA groups than in the CTRL group at farrowing. Serum catalase (CAT) activities was higher in the GOS and GOS + High HCA groups than in the CTRL group at farrowing. The 16S rRNA analysis showed that GOS combination with high-dose HCA shaped the composition of gut microbiota in different reproductive stages (d 107 of gestation, G107; d 0 of lactation, L0; d 7 of lactation, L7). At the phylum level, the relative abundance of Bacteroidota and Desulfobacterota in G107, Bacteroidota, and Proteobacteria in L0, and Planctomycetota in L7 was increased in GOS + High HCA group (p < 0.05). Spearman correlation analysis showed that Streptococcus was positively correlated with the serum TG but negatively correlated with the average piglets weight at birth (p < 0.05). Conclusion This investigation demonstrated that the administration of galacto-oligosaccharides (GOS) in conjunction with hyocholic acids (HCA), to sows with nutrient restrictions during late gestation and lactation, further improved their antioxidant capacity and milk quality. The observed beneficial effects of GOS + HCA supplementation could potentially be linked to an improvement in gut microbiota disorders of the sows.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bi’e Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhiyong Fan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
26
|
Mafra D, Borges NA, Baptista BG, Martins LF, Borland G, Shiels PG, Stenvinkel P. What Can the Gut Microbiota of Animals Teach Us about the Relationship between Nutrition and Burden of Lifestyle Diseases? Nutrients 2024; 16:1789. [PMID: 38892721 PMCID: PMC11174762 DOI: 10.3390/nu16111789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
The gut microbiota performs several crucial roles in a holobiont with its host, including immune regulation, nutrient absorption, synthesis, and defense against external pathogens, significantly influencing host physiology. Disruption of the gut microbiota has been linked to various chronic conditions, including cardiovascular, kidney, liver, respiratory, and intestinal diseases. Studying how animals adapt their gut microbiota across their life course at different life stages and under the dynamics of extreme environmental conditions can provide valuable insights from the natural world into how the microbiota modulates host biology, with a view to translating these into treatments or preventative measures for human diseases. By modulating the gut microbiota, opportunities to address many complications associated with chronic diseases appear. Such a biomimetic approach holds promise for exploring new strategies in healthcare and disease management.
Collapse
Affiliation(s)
- Denise Mafra
- Graduate Program in Medical Sciences and Graduate Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói 24020-141, Brazil;
- Graduate Program in Biological Sciences—Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| | - Natália A. Borges
- Graduate Program in Food, Nutrition, and Health, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro 21941-909, Brazil;
| | - Beatriz G. Baptista
- Graduate Program in Medical Sciences and Graduate Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói 24020-141, Brazil;
| | - Layla F. Martins
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo 05508-220, Brazil;
| | - Gillian Borland
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK; (G.B.); (P.G.S.)
| | - Paul G. Shiels
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK; (G.B.); (P.G.S.)
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 17165 Stockholm, Sweden;
| |
Collapse
|
27
|
Masheghati F, Asgharzadeh MR, Jafari A, Masoudi N, Maleki-Kakelar H. The role of gut microbiota and probiotics in preventing, treating, and boosting the immune system in colorectal cancer. Life Sci 2024; 344:122529. [PMID: 38490297 DOI: 10.1016/j.lfs.2024.122529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/03/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024]
Abstract
The gut microbiome plays a significant role in developing colorectal cancer (CRC). The gut microbiome usually acts as a protective barrier against harmful pathogens and infections in the intestine, while also regulating inflammation by affecting the human immune system. The gut microbiota and probiotics play a role not only in intestinal inflammation associated with tumor formation but also in regulating anti-cancer immune response. As a result, they associated with tumor progression and the effectiveness of anti-cancer therapies. Research indicates that gut microbiota and probiotics can be used as biomarkers to predict the impact of immunotherapy and enhance its efficacy in treating CRC by regulating it. This review examines the importance of gut microbiota and probiotics in the development and progression of CRC, as well as their synergistic impact on anti-cancer treatments.
Collapse
Affiliation(s)
- Forough Masheghati
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Naser Masoudi
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of General Surgery, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Maleki-Kakelar
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
28
|
Pan SY, Zhou CB, Deng JW, Zhou YL, Liu ZH, Fang JY. The effects of pks + Escherichia coli and bile acid in colorectal tumorigenesis among people with cholelithiasis or cholecystectomy. J Gastroenterol Hepatol 2024; 39:868-879. [PMID: 38220146 DOI: 10.1111/jgh.16462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND AND AIM Patients with cholelithiasis (CL) or cholecystectomy (CE) would have more chances of getting colorectal adenoma (CRA) or cancer (CRC). We aimed to figure out the effects of gut microbiota and bile acid on colorectal neoplasm in CL and CE patients. METHODS This was a retrospective observational study that recruited 514 volunteers, including 199 people with normal gallbladders (normal), 152 CL, and 163 CE patients. Discovery cohort was established to explore the difference in gut microbiota through 16S rRNA and metagenomics sequencing. Validation cohort aimed to verify the results through quantitative polymerase chain reaction (qPCR). RESULTS Significant enrichment of Escherichia coli was found in patients with cholelithiasis or cholecystectomy both in the discovery cohort (16S rRNA sequencing, PNormal-CL = 0.013, PNormal-CE = 0.042; metagenomics sequencing, PNormal-CE = 0.026) and validation cohort (PNormal-CL < 0.0001, PNormal-CE < 0.0001). Pks+ E. coli was found enriched in CL and CE patients through qPCR (in discovery cohort: PNormal-CE = 0.018; in validation cohort: PNormal-CL < 0.0001, PNormal-CE < 0.0001). The differences in bile acid metabolism were found both through Tax4Fun analysis of 16S rRNA sequencing (Ko00120, primary bile acid biosynthesis, PNormal-CE = 0.014; Ko00121, secondary bile acid biosynthesis, PNormal-CE = 0.010) and through metagenomics sequencing (map 00121, PNormal-CE = 0.026). The elevation of serum total bile acid of CE patients was also found in validation cohort (PNormal-CE < 0.0001). The level of serum total bile acid was associated with the relative abundance of pks+ E. coli (r = 0.1895, P = 0.0012). CONCLUSIONS E. coli, especially pks+ species, was enriched in CL and CE patients. Pks+ E. coli and bile acid metabolism were found associated with CRA and CRC in people after cholecystectomy.
Collapse
Affiliation(s)
- Si-Yuan Pan
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Shanghai, China
- State Key, Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Disease, Shanghai, China
| | - Cheng-Bei Zhou
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Shanghai, China
- State Key, Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Disease, Shanghai, China
| | - Jia-Wen Deng
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Shanghai, China
- State Key, Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Disease, Shanghai, China
| | - Yi-Lu Zhou
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Shanghai, China
- State Key, Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Disease, Shanghai, China
| | - Zhu-Hui Liu
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Shanghai, China
- State Key, Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Disease, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Shanghai, China
- State Key, Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Disease, Shanghai, China
| |
Collapse
|
29
|
Wu H, Ma W, Wang Y, Wang Y, Sun X, Zheng Q. Gut microbiome-metabolites axis: A friend or foe to colorectal cancer progression. Biomed Pharmacother 2024; 173:116410. [PMID: 38460373 DOI: 10.1016/j.biopha.2024.116410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
An expanding corpus of research robustly substantiates the complex interrelation between gut microbiota and the onset, progression, and metastasis of colorectal cancer. Investigations in both animal models and human subjects have consistently underscored the role of gut bacteria in a variety of metabolic activities, driven by dietary intake. These activities include amino acid metabolism, carbohydrate fermentation, and the generation and regulation of bile acids. These metabolic derivatives, in turn, have been identified as significant contributors to the progression of colorectal cancer. This thorough review meticulously explores the dynamic interaction between gut bacteria and metabolites derived from the breakdown of amino acids, fatty acid metabolism, and bile acid synthesis. Notably, bile acids have been recognized for their potential carcinogenic properties, which may expedite tumor development. Extensive research has revealed a reciprocal influence of gut microbiota on the intricate spectrum of colorectal cancer pathologies. Furthermore, strategies to modulate gut microbiota, such as dietary modifications or probiotic supplementation, may offer promising avenues for both the prevention and adjunctive treatment of colorectal cancer. Nevertheless, additional research is imperative to corroborate these findings and enhance our comprehension of the underlying mechanisms in colorectal cancer development.
Collapse
Affiliation(s)
- Hao Wu
- Department of Immunology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Wenmeng Ma
- Department of Immunology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Yiyao Wang
- Department of Immunology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Yuanyuan Wang
- Department of anesthesiology, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, PR China
| | - Xun Sun
- Department of Immunology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China.
| | - Qianqian Zheng
- Department of Pathophysiology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
30
|
Kaur H, Kaur G, Ali SA. Postbiotics Implication in the Microbiota-Host Intestinal Epithelial Cells Mutualism. Probiotics Antimicrob Proteins 2024; 16:443-458. [PMID: 36933160 DOI: 10.1007/s12602-023-10062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 03/19/2023]
Abstract
To sustain host health and provide the microbial community with a nutrient-rich environment, the host and gut microbiota must interact with one another. These interactions between commensal bacterial and intestinal epithelial cells (IECs) serve as the first line of defense against gut microbiota in preserving intestinal homeostasis. In this microenvironment, the post-biotics and similar molecules such as p40 exert several beneficial effects through regulation of IECs. Importantly, post-biotics were discovered to be transactivators of the EGF receptor (EGFR) in IECs, inducing protective cellular responses and alleviating colitis. The transient exposure to post-biotics such as p40 during the neonatal period reprograms IECs by upregulation of a methyltransferase, Setd1β, leading to a sustained increase in TGF- β release for the expansion of regulatory T cells (Tregs) in the intestinal lamina propria and durable protection against colitis in adulthood. This crosstalk between the IECs and post-biotic secreted factors was not reviewed previously. Therefore, this review describes the role of probiotic-derived factors in the sustainability of intestinal health and improving gut homeostasis via certain signaling pathways. In the era of precision medicine and targeted therapies, more basic, preclinical, and clinical evidence is needed to clarify the efficacy of probiotics released as functional factors in maintaining intestinal health and preventing and treating disease.
Collapse
Affiliation(s)
- Harpreet Kaur
- Animal Biochemistry Division, ICAR-NDRI, Karnal, 132001, India
| | - Gurjeet Kaur
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, 2052, Australia
- Mark Wainwright Analytical Centre, Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, Karnal, 132001, India.
- Division Proteomics of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, 69120, Germany.
| |
Collapse
|
31
|
Li X, Liang Z. Causal effect of gut microbiota on pancreatic cancer: A Mendelian randomization and colocalization study. J Cell Mol Med 2024; 28:e18255. [PMID: 38526030 PMCID: PMC10962122 DOI: 10.1111/jcmm.18255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
The causal relationship between gut microbiota (GM) and pancreatic cancer (PC) remains unclear. This study aimed to investigate the potential genes underlying this mechanism. GM Genome-wide association study (GWAS) summary data were from the MiBioGen consortium. PC GWAS data were from the National Human Genome Research Institute-European Bioinformatics Institute (NHGRI-EBI) GWAS Catalogue. To detect the causal relationship between GM and PC, we implemented three complementary Mendelian randomization (MR) methods: Inverse Variance Weighting (IVW), MR-Egger and Weighted Median, followed by sensitivity analyses. Furthermore, we integrated GM GWAS data with blood cis-expression quantitative trait loci (eQTLs) and blood cis-DNA methylation QTL (mQTLs) using Summary data-based Mendelian Randomization (SMR) methods. This integration aimed to prioritize potential GM-affecting genes through SMR analysis of two molecular traits. PC cis-eQTLs and cis-mQTLs were summarized from The Cancer Genome Atlas (TCGA) data. Through colocalization analysis of GM cis-QTLs and PC cis-QTLs data, we identified common genes that influence both GM and PC. Our study found a causal association between GM and PC, including four protective and five risk-associated GM [Inverse Variance Weighted (IVW), p < 0.05]. No significant heterogeneity of instrumental variables (IVs) or horizontal pleiotropy was found. The gene SVBP was identified as a GM-affecting gene using SMR analysis of two molecular traits (FDR<0.05, P_HEIDI>0.05). Additionally, two genes, MCM6 and RPS26, were implicated in the interaction between GM and PC based on colocalization analysis (PPH4>0.5). In summary, this study provides evidence for future research aimed at developing suitable therapeutic interventions and disease prevention.
Collapse
Affiliation(s)
- Xin Li
- Department of Gastroenterology, The First Affiliated HospitalGuangxi Medical UniversityNanningChina
| | - Zhihai Liang
- Department of Gastroenterology, The First Affiliated HospitalGuangxi Medical UniversityNanningChina
| |
Collapse
|
32
|
Song I, Yang J, Saito M, Hartanto T, Nakayama Y, Ichinohe T, Fukuda S. Prebiotic inulin ameliorates SARS-CoV-2 infection in hamsters by modulating the gut microbiome. NPJ Sci Food 2024; 8:18. [PMID: 38485724 PMCID: PMC10940623 DOI: 10.1038/s41538-024-00248-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/16/2024] [Indexed: 03/18/2024] Open
Abstract
Current treatment options for COVID-19 are limited, with many antivirals and immunomodulators restricted to the most severe cases and preventative care limited to vaccination. As the SARS-CoV-2 virus and its increasing variants threaten to become a permanent fixture of our lives, this new reality necessitates the development of cost-effective and accessible treatment options for COVID-19. Studies have shown that there are correlations between the gut microbiome and severity of COVID-19, especially with regards to production of physiologically beneficial short-chain fatty acids (SCFAs) by gut microbes. In this study, we used a Syrian hamster model to study how dietary consumption of the prebiotic inulin affected morbidity and mortality resulting from SARS-CoV-2 infection. After two weeks of observation, we discovered that inulin supplementation attenuated morbid weight loss and increased survival rate in hamster subjects. An analysis of microbiome community structure showed significant alterations in 15 genera. Notably, there were also small increases in fecal DCA and a significant increase in serum DCA, perhaps highlighting a role for this secondary bile acid in conferring protection against SARS-CoV-2. In light of these results, inulin and other prebiotics are promising targets for future investigation as preventative treatment options for COVID-19.
Collapse
Affiliation(s)
- Isaiah Song
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Jiayue Yang
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Misa Saito
- Metagen, Inc., Tsuruoka, Yamagata, Japan
| | | | | | - Takeshi Ichinohe
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.
- Metagen, Inc., Tsuruoka, Yamagata, Japan.
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan.
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
33
|
Andary CM, Al KF, Chmiel JA, Gibbons S, Daisley BA, Parvathy SN, Maleki Vareki S, Bowdish DME, Silverman MS, Burton JP. Dissecting mechanisms of fecal microbiota transplantation efficacy in disease. Trends Mol Med 2024; 30:209-222. [PMID: 38195358 DOI: 10.1016/j.molmed.2023.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Fecal microbiota transplantation (FMT) has emerged as an alternative or adjunct experimental therapy for microbiome-associated diseases following its success in the treatment of recurrent Clostridioides difficile infections (rCDIs). However, the mechanisms of action involved remain relatively unknown. The term 'dysbiosis' has been used to describe microbial imbalances in relation to disease, but this traditional definition fails to consider the complex cross-feeding networks that define the stability of the microbiome. Emerging research transitions toward the targeted restoration of microbial functional networks in treating different diseases. In this review, we explore potential mechanisms responsible for the efficacy of FMT and future therapeutic applications, while revisiting definitions of 'dysbiosis' in favor of functional network restoration in rCDI, inflammatory bowel diseases (IBDs), metabolic diseases, and cancer.
Collapse
Affiliation(s)
- Catherine M Andary
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kait F Al
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - John A Chmiel
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Shaeley Gibbons
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Brendan A Daisley
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Seema Nair Parvathy
- Division of Infectious Disease, St. Joseph's Health Care, London, Ontario, Canada
| | - Saman Maleki Vareki
- Lawson Health Research Institute, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Dawn M E Bowdish
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; McMaster Immunology Research Centre and the Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Michael S Silverman
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Division of Infectious Disease, St. Joseph's Health Care, London, Ontario, Canada
| | - Jeremy P Burton
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Department of Surgery, Western University, London, Ontario, Canada.
| |
Collapse
|
34
|
Li S, Chen T, Zhou Y, Li X. Palmitic acid and trans-4-hydroxy-3-methoxycinnamate, the active ingredients of Yaobishu formula, reduce inflammation and pain by regulating gut microbiota and metabolic changes after lumbar disc herniation to activate autophagy and the Wnt/β-catenin pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166972. [PMID: 38016505 DOI: 10.1016/j.bbadis.2023.166972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
The imbalance in gut microbiota triggers an inflammatory response that spreads from the gut to the discs and is associated with lumbar disc herniation (LDH). In this study, we investigated the mechanism of palmitic acid (PA) and trans-4-hydroxy-3-methoxycinnamic acid (THMC) on microbiota, metabolic homeostasis, and autophagy after LDH. The LDH rat model was established by puncturing the exposed intervertebral disc. 16S rDNA was used to assess the gut microbiome composition. The microbial metabolites were analyzed by UPLC-MS. The mechanism of PA and THMC in LDH was explored by fecal microbiota transplantation (FMT). We found that Yaobishu, PA, THMC, and the positive control drug Celebrex attenuated intervertebral disc damage in LDH rats and downregulated TRPV1, IL-1β, and IL-18 expression. In addition, Yaobishu reduced Oscillospirales and Ruminococcaceae abundances after LDH. PA increased Bacilli's abundance while decreasing Negativicutes and Ruminococcaceae abundances. Metabolomics showed that Yaobishu increased 2-hexanone, methyl isobutyl ketone, 2-methylpentan-3-one, and nonadecanoic acid levels but decreased pantetheine and urocanate levels. PA and THMC reduced uridine and urocanate levels. Yaobishu, PA, and THMC activated autophagy and the Wnt/β-catenin pathway in LDH rats. Moreover, antibiotics abrogated these effects. FMT-PA and FMT-THMC activated autophagy and decreased IL-1β, IL-18, Wnt1, β-catenin, and TRPV1 expression. FMT-PA and FMT-THMC partially reversed the effects of 3-MA. Taken together, our data suggest that Yaobishu, PA, and THMC relieve inflammation and pain by remodeling the gut microbiota and restoring metabolic homeostasis after LDH to activate autophagy and the Wnt/β-catenin pathway, which provide a new therapeutic target for LDH in the clinic.
Collapse
Affiliation(s)
- ShuoQi Li
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, Hunan, 410001, China
| | - TieZhu Chen
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, Hunan, 410001, China
| | - YiZhao Zhou
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, Hunan, 410001, China
| | - XiaoSheng Li
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, Hunan, 410001, China.
| |
Collapse
|
35
|
Guzior DV, Okros M, Shivel M, Armwald B, Bridges C, Fu Y, Martin C, Schilmiller AL, Miller WM, Ziegler KM, Sims MD, Maddens ME, Graham SF, Hausinger RP, Quinn RA. Bile salt hydrolase acyltransferase activity expands bile acid diversity. Nature 2024; 626:852-858. [PMID: 38326608 DOI: 10.1038/s41586-024-07017-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Bile acids (BAs) are steroid detergents in bile that contribute to the absorption of fats and fat-soluble vitamins while shaping the gut microbiome because of their antimicrobial properties1-4. Here we identify the enzyme responsible for a mechanism of BA metabolism by the gut microbiota involving amino acid conjugation to the acyl-site of BAs, thus producing a diverse suite of microbially conjugated bile acids (MCBAs). We show that this transformation is mediated by acyltransferase activity of bile salt hydrolase (bile salt hydrolase/transferase, BSH/T). Clostridium perfringens BSH/T rapidly performed acyl transfer when provided various amino acids and taurocholate, glycocholate or cholate, with an optimum at pH 5.3. Amino acid conjugation by C. perfringens BSH/T was diverse, including all proteinaceous amino acids except proline and aspartate. MCBA production was widespread among gut bacteria, with strain-specific amino acid use. Species with similar BSH/T amino acid sequences had similar conjugation profiles and several bsh/t alleles correlated with increased conjugation diversity. Tertiary structure mapping of BSH/T followed by mutagenesis experiments showed that active site structure affects amino acid selectivity. These MCBA products had antimicrobial properties, where greater amino acid hydrophobicity showed greater antimicrobial activity. Inhibitory concentrations of MCBAs reached those measured natively in the mammalian gut. MCBAs fed to mice entered enterohepatic circulation, in which liver and gallbladder concentrations varied depending on the conjugated amino acid. Quantifying MCBAs in human faecal samples showed that they reach concentrations equal to or greater than secondary and primary BAs and were reduced after bariatric surgery, thus supporting MCBAs as a significant component of the BA pool that can be altered by changes in gastrointestinal physiology. In conclusion, the inherent acyltransferase activity of BSH/T greatly diversifies BA chemistry, creating a set of previously underappreciated metabolites with the potential to affect the microbiome and human health.
Collapse
Affiliation(s)
- Douglas V Guzior
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, USA
| | - Maxwell Okros
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Madison Shivel
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Bruin Armwald
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Christopher Bridges
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, USA
| | - Yousi Fu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Christian Martin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Anthony L Schilmiller
- Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI, USA
| | - Wendy M Miller
- Corewell Health, William Beaumont University Hospital, Royal Oak, MI, USA
- Oakland University, William Beaumont School of Medicine, Rochester, MI, USA
| | - Kathryn M Ziegler
- Corewell Health, William Beaumont University Hospital, Royal Oak, MI, USA
- Oakland University, William Beaumont School of Medicine, Rochester, MI, USA
| | - Matthew D Sims
- Corewell Health, William Beaumont University Hospital, Royal Oak, MI, USA
- Oakland University, William Beaumont School of Medicine, Rochester, MI, USA
| | - Michael E Maddens
- Corewell Health, William Beaumont University Hospital, Royal Oak, MI, USA
- Oakland University, William Beaumont School of Medicine, Rochester, MI, USA
| | - Stewart F Graham
- Corewell Health, William Beaumont University Hospital, Royal Oak, MI, USA
- Oakland University, William Beaumont School of Medicine, Rochester, MI, USA
- Beaumont Research Institute, Royal Oak, MI, USA
| | - Robert P Hausinger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
36
|
Kwao-Zigah G, Bediako-Bowan A, Boateng PA, Aryee GK, Abbang SM, Atampugbire G, Quaye O, Tagoe EA. Microbiome Dysbiosis, Dietary Intake and Lifestyle-Associated Factors Involve in Epigenetic Modulations in Colorectal Cancer: A Narrative Review. Cancer Control 2024; 31:10732748241263650. [PMID: 38889965 PMCID: PMC11186396 DOI: 10.1177/10732748241263650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Background: Colorectal cancer is the second cause of cancer mortality and the third most commonly diagnosed cancer worldwide. Current data available implicate epigenetic modulations in colorectal cancer development. The health of the large bowel is impacted by gut microbiome dysbiosis, which may lead to colon and rectum cancers. The release of microbial metabolites and toxins by these microbiotas has been shown to activate epigenetic processes leading to colorectal cancer development. Increased consumption of a 'Westernized diet' and certain lifestyle factors such as excessive consumption of alcohol have been associated with colorectal cancer.Purpose: In this review, we seek to examine current knowledge on the involvement of gut microbiota, dietary factors, and alcohol consumption in colorectal cancer development through epigenetic modulations.Methods: A review of several published articles focusing on the mechanism of how changes in the gut microbiome, diet, and excessive alcohol consumption contribute to colorectal cancer development and the potential of using these factors as biomarkers for colorectal cancer diagnosis.Conclusions: This review presents scientific findings that provide a hopeful future for manipulating gut microbiome, diet, and alcohol consumption in colorectal cancer patients' management and care.
Collapse
Affiliation(s)
- Genevieve Kwao-Zigah
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Antionette Bediako-Bowan
- Department of Surgery, University of Ghana Medical School, Accra, Ghana
- Department of Surgery, Korle Bu Teaching Hospital, Accra, Ghana
| | - Pius Agyenim Boateng
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Gloria Kezia Aryee
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| | - Stacy Magdalene Abbang
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Gabriel Atampugbire
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Emmanuel A. Tagoe
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
37
|
Zhou D, Li Y. Gut microbiota and tumor-associated macrophages: potential in tumor diagnosis and treatment. Gut Microbes 2023; 15:2276314. [PMID: 37943609 PMCID: PMC10653702 DOI: 10.1080/19490976.2023.2276314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Avoiding immune destruction and polymorphic microbiomes are two key hallmarks of cancer. The tumor microenvironment (TME) is essential for the development of solid tumors, and the function of tumor-associated macrophages (TAMs) in the TME is closely linked to tumor prognosis. Therefore, research on TAMs could improve the progression and control of certain tumor patients. Additionally, the intestinal flora plays a crucial role in metabolizing substances and maintaining a symbiotic relationship with the host through a complex network of interactions. Recent experimental and clinical studies have suggested a potential link between gut microbiome and TME, particularly in regulating TAMs. Understanding this association could improve the efficacy of tumor immunotherapy. This review highlights the regulatory role of intestinal flora on TAMs, with a focus on gut microbiota and their metabolites. The implications of this association for tumor diagnosis and treatment are also discussed, providing a promising avenue for future clinical treatment strategies.
Collapse
Affiliation(s)
- Dongqin Zhou
- The Second Affliated Hospital & Yuying Children's Hospital / The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yongsheng Li
- The Second Affliated Hospital & Yuying Children's Hospital / The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
38
|
Shuwen H, Yinhang W, Jing Z, Qiang Y, Yizhen J, Quan Q, Yin J, Jiang L, Xi Y. Cholesterol induction in CD8 + T cell exhaustion in colorectal cancer via the regulation of endoplasmic reticulum-mitochondria contact sites. Cancer Immunol Immunother 2023; 72:4441-4456. [PMID: 37919522 PMCID: PMC10991466 DOI: 10.1007/s00262-023-03555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Hypercholesterolemia is one of the risk factors for colorectal cancer (CRC). Cholesterol can participate in the regulation of human T cell function and affect the occurrence and development of CRC. OBJECTIVE To elucidate the pathogenesis of CRC immune escape mediated by CD8+ T cell exhaustion induced by cholesterol. METHODS CRC samples (n = 217) and healthy individuals (n = 98) were recruited to analyze the relationship between peripheral blood cholesterol levels and the clinical features of CRC. An animal model of CRC with hypercholesterolemia was established. Intraperitoneal intervention with endoplasmic reticulum stress (ERS) inhibitors in hypercholesterolemic CRC mice was performed. CD69, PD1, TIM-3, and CTLA-4 on CD8+ T cells of spleens from C57BL/6 J mice were detected by flow cytometry. CD8+ T cells were cocultured with MC38 cells (mouse colon cancer cell line). The proliferation, apoptosis, migration and invasive ability of MC38 cells were detected by CCK-8 assay, Annexin-V APC/7-AAD double staining, scratch assay and transwell assay, respectively. Transmission electron microscopy was used to observe the ER structure of CD8+ T cells. Western blotting was used to detect the expression of ERS and mitophagy-related proteins. Mitochondrial function and energy metabolism were measured. Immunoprecipitation was used to detect the interaction of endoplasmic reticulum-mitochondria contact site (ERMC) proteins. Immunofluorescence colocalization was used to detect the expression and intracellular localization of ERMC-related molecules. RESULTS Peripheral blood cholesterol-related indices, including Tc, low density lipoproteins (LDL) and Apo(a), were all increased, and high density lipoprotein (HDL) was decreased in CRCs. The proliferation, migration and invasion abilities of MC38 cells were enhanced, and the proportion of tumor cell apoptosis was decreased in the high cholesterol group. The expression of IL-2 and TNF-α was decreased, while IFN-γ was increased in the high cholesterol group. It indicated high cholesterol could induce exhaustion of CD8+ T cells, leading to CRC immune escape. Hypercholesterolemia damaged the ER structure of CD8+ T cells and increased the expression of ER stress molecules (CHOP and GRP78), lead to CD8+ T cell exhaustion. The expression of mitophagy-related proteins (BNIP3, PINK and Parkin) in exhausted CD8+ T cells increased at high cholesterol levels, causing mitochondrial energy disturbance. High cholesterol enhanced the colocalization of Fis1/Bap31, MFN2/cox4/HSP90B1, VAPB/PTPIP51, VDAC1/IPR3/GRP75 in ERMCs, indicated that high cholesterol promoted the intermolecular interaction between ER and mitochondrial membranes in CD8+ T cells. CONCLUSION High cholesterol regulated the ERS-ERMC-mitophagy axis to induce the exhaustion of CD8+ T cells in CRC.
Collapse
Affiliation(s)
- Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang Province, People's Republic of China
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Wu Yinhang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang Province, People's Republic of China
| | - Zhuang Jing
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang Province, People's Republic of China
| | - Yan Qiang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang Province, People's Republic of China
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jiang Yizhen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang Province, People's Republic of China
| | - Qi Quan
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang Province, People's Republic of China
| | - Jin Yin
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang Province, People's Republic of China
| | - Liu Jiang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang Province, People's Republic of China
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Yang Xi
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, People's Republic of China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang Province, People's Republic of China.
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.
| |
Collapse
|
39
|
He J, Li H, Jia J, Liu Y, Zhang N, Wang R, Qu W, Liu Y, Jia L. Mechanisms by which the intestinal microbiota affects gastrointestinal tumours and therapeutic effects. MOLECULAR BIOMEDICINE 2023; 4:45. [PMID: 38032415 PMCID: PMC10689341 DOI: 10.1186/s43556-023-00157-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
The intestinal microbiota is considered to be a forgotten organ in human health and disease. It maintains intestinal homeostasis through various complex mechanisms. A significant body of research has demonstrated notable differences in the gut microbiota of patients with gastrointestinal tumours compared to healthy individuals. Furthermore, the dysregulation of gut microbiota, metabolites produced by gut bacteria, and related signal pathways can partially explain the mechanisms underlying the occurrence and development of gastrointestinal tumours. Therefore, this article summarizes the latest research progress on the gut microbiota and gastrointestinal tumours. Firstly, we provide an overview of the composition and function of the intestinal microbiota and discuss the mechanisms by which the intestinal flora directly or indirectly affects the occurrence and development of gastrointestinal tumours by regulating the immune system, producing bacterial toxins, secreting metabolites. Secondly, we present a detailed analysis of the differences of intestinal microbiota and its pathogenic mechanisms in colorectal cancer, gastric cancer, hepatocellular carcinoma, etc. Lastly, in terms of treatment strategies, we discuss the effects of the intestinal microbiota on the efficacy and toxic side effects of chemotherapy and immunotherapy and address the role of probiotics, prebiotics, FMT and antibiotic in the treatment of gastrointestinal tumours. In summary, this article provides a comprehensive review of the pathogenic mechanisms of and treatment strategies pertaining to the intestinal microbiota in patients with gastrointestinal tumours. And provide a more comprehensive and precise scientific basis for the development of microbiota-based treatments for gastrointestinal tumours and the prevention of such tumours.
Collapse
Affiliation(s)
- Jikai He
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Haijun Li
- Department of Gastrointestinal Surgery, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010017, Inner Mongolia, China
| | - Jiaqi Jia
- Graduate School of Youjiang Medical University for Nationalities, No. 98 Chengcheng Road, Youjiang District, Baise City, 533000, China
| | - Yang Liu
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Ning Zhang
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Rumeng Wang
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Wenhao Qu
- Graduate School of Youjiang Medical University for Nationalities, No. 98 Chengcheng Road, Youjiang District, Baise City, 533000, China
| | - Yanqi Liu
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010050, Inner Mongolia, China.
| | - Lizhou Jia
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China.
| |
Collapse
|
40
|
Di Ciaula A, Bonfrate L, Khalil M, Portincasa P. The interaction of bile acids and gut inflammation influences the pathogenesis of inflammatory bowel disease. Intern Emerg Med 2023; 18:2181-2197. [PMID: 37515676 PMCID: PMC10635993 DOI: 10.1007/s11739-023-03343-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/08/2023] [Indexed: 07/31/2023]
Abstract
Bile acids (BA) are amphipathic molecules originating from cholesterol in the liver and from microbiota-driven biotransformation in the colon. In the gut, BA play a key role in fat digestion and absorption and act as potent signaling molecules on the nuclear farnesoid X receptor (FXR) and membrane-associated G protein-coupled BA receptor-1 (GPBAR-1). BA are, therefore, involved in the maintenance of gut barrier integrity, gene expression, metabolic homeostasis, and microbiota profile and function. Disturbed BA homeostasis can activate pro-inflammatory pathways in the gut, while inflammatory bowel diseases (IBD) can induce gut dysbiosis and qualitative and/or quantitative changes of the BA pool. These factors contribute to impaired repair capacity of the mucosal barrier, due to chronic inflammation. A better understanding of BA-dependent mechanisms paves the way to innovative therapeutic tools by administering hydrophilic BA and FXR agonists and manipulating gut microbiota with probiotics and prebiotics. We discuss the translational value of pathophysiological and therapeutic evidence linking BA homeostasis to gut inflammation in IBD.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Mohamad Khalil
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| |
Collapse
|
41
|
Shao T, Hsu R, Hacein-Bey C, Zhang W, Gao L, Kurth MJ, Zhao H, Shuai Z, Leung PSC. The Evolving Landscape of Fecal Microbial Transplantation. Clin Rev Allergy Immunol 2023; 65:101-120. [PMID: 36757537 PMCID: PMC9909675 DOI: 10.1007/s12016-023-08958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/10/2023]
Abstract
The human gastrointestinal tract houses an enormous microbial ecosystem. Recent studies have shown that the gut microbiota plays significant physiological roles and maintains immune homeostasis in the human body. Dysbiosis, an imbalanced gut microbiome, can be associated with various disease states, as observed in infectious diseases, inflammatory diseases, autoimmune diseases, and cancer. Modulation of the gut microbiome has become a therapeutic target in treating these disorders. Fecal microbiota transplantation (FMT) from a healthy donor restores the normal gut microbiota homeostasis in the diseased host. Ample evidence has demonstrated the efficacy of FMT in recurrent Clostridioides difficile infection (rCDI). The application of FMT in other human diseases is gaining attention. This review aims to increase our understanding of the mechanisms of FMT and its efficacies in human diseases. We discuss the application, route of administration, limitations, safety, efficacies, and suggested mechanisms of FMT in rCDI, autoimmune diseases, and cancer. Finally, we address the future perspectives of FMT in human medicine.
Collapse
Affiliation(s)
- Tihong Shao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, CA, 95616, USA
| | - Ronald Hsu
- Division of Gastroenterology, University of California Davis School of Medicine, Davis, CA, 95616, USA
| | - Camelia Hacein-Bey
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, CA, 95616, USA
| | - Weici Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Lixia Gao
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Mark J Kurth
- Department of Chemistry, University of California Davis, Davis, CA, 95616, USA
| | - Huanhuan Zhao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, CA, 95616, USA.
| |
Collapse
|
42
|
Simpson RC, Shanahan ER, Scolyer RA, Long GV. Towards modulating the gut microbiota to enhance the efficacy of immune-checkpoint inhibitors. Nat Rev Clin Oncol 2023; 20:697-715. [PMID: 37488231 DOI: 10.1038/s41571-023-00803-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/26/2023]
Abstract
The gut microbiota modulates immune processes both locally and systemically. This includes whether and how the immune system reacts to emerging tumours, whether antitumour immune responses are reactivated during treatment with immune-checkpoint inhibitors (ICIs), and whether unintended destructive immune pathologies accompany such treatment. Advances over the past decade have established that the gut microbiota is a promising target and that modulation of the microbiota might overcome resistance to ICIs and/or improve the safety of treatment. However, the specific mechanisms through which the microbiota modulates antitumour immunity remain unclear. Understanding the biology underpinning microbial associations with clinical outcomes in patients receiving ICIs, as well as the landscape of a 'healthy' microbiota would provide a critical foundation to facilitate opportunities to effectively manipulate the microbiota and thus improve patient outcomes. In this Review, we explore the role of diet and the gut microbiota in shaping immune responses during treatment with ICIs and highlight the key challenges in attempting to leverage the gut microbiome as a practical tool for the clinical management of patients with cancer.
Collapse
Affiliation(s)
- Rebecca C Simpson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Erin R Shanahan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.
- Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia.
| |
Collapse
|
43
|
John Kenneth M, Tsai HC, Fang CY, Hussain B, Chiu YC, Hsu BM. Diet-mediated gut microbial community modulation and signature metabolites as potential biomarkers for early diagnosis, prognosis, prevention and stage-specific treatment of colorectal cancer. J Adv Res 2023; 52:45-57. [PMID: 36596411 PMCID: PMC10555786 DOI: 10.1016/j.jare.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Over the last decade, studies have shown an increased incidence of colorectal cancer (CRC), particularly early onset colorectal cancer (EOCRC). Researchers have demonstrated that dietary behavior, especially among young adults, influences alterations in the gut microbial community, leading to an increased accumulation of pathogenic gut microbiota and a decrease in beneficial ones. Unfortunately, CRC is likely to be diagnosed at a late stage, increasing CRC-related mortality. However, this alteration in the gut microbiota (gut dysbiosis) can be harnessed as a biomarker for non-invasive diagnosis, prognosis, prevention, and treatment of CRC in an effort to prevent late diagnosis and poor prognosis associated with CRC. AIM OF REVIEW This review discusses identification of potential biomarkers by targeting diet-mediated gut dysbiosis for the stage-specific diagnosis, prognosis, treatment, and prevention of CRC. Our findings provide a comprehensive insight into the potential of protumorigenic bacteria (e.g.pathogenic Escherichia coli,enterotoxigenic Bacteroides fragilis and Fusobacterium nucleatum) and their metabolites (e.g., colibactin and B. fragilis toxin) from gut dysbiosis as biomarkers for the diagnosis of CRC. KEY SCIENTIFIC CONCEPTS OF REVIEW Collectively, a detailed understanding of the available data from current studies suggests that, further research on quantification of metabolites and stage-specific pathogenic microbial abundance is required for the diagnosis and treatment of CRC based on microbial dysbiosis. Specifically, future studies on faecal samples, from patient with CRC, should be conducted for F. nucleatum among different opportunistic bacteria, given its repeated occurrence in faecal samples and CRC biopsies in numerous studies. Finally, we discuss the potential of faecal microbial transplantation (FMT) as an intervention to restore damaged gut microbiota during CRC treatment and management.
Collapse
Affiliation(s)
- Mutebi John Kenneth
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan; Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Hsin-Chi Tsai
- Department of Psychiatry, School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Psychiatry, Tzu-Chi General Hospital, Hualien, Taiwan
| | - Chuan-Yin Fang
- Division of Colon and Rectal Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Yi-Chou Chiu
- General Surgery, Surgical Department, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan.
| |
Collapse
|
44
|
Park H, Park NY, Koh A. Scarring the early-life microbiome: its potential life-long effects on human health and diseases. BMB Rep 2023; 56:469-481. [PMID: 37605613 PMCID: PMC10547969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
The gut microbiome is widely recognized as a dynamic organ with a profound influence on human physiology and pathology. Extensive epidemiological and longitudinal cohort studies have provided compelling evidence that disruptions in the early-life microbiome can have long-lasting health implications. Various factors before, during, and after birth contribute to shaping the composition and function of the neonatal and infant microbiome. While these alterations can be partially restored over time, metabolic phenotypes may persist, necessitating research to identify the critical period for early intervention to achieve phenotypic recovery beyond microbiome composition. In this review, we provide current understanding of changes in the gut microbiota throughout life and the various factors affecting these changes. Specifically, we highlight the profound impact of early-life gut microbiota disruption on the development of diseases later in life and discuss perspectives on efforts to recover from such disruptions. [BMB Reports 2023; 56(9): 469-481].
Collapse
Affiliation(s)
- Hyunji Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Na-Young Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Ara Koh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
- Institute of Convergence Science, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
45
|
Hisatomi A, Kastawa NWEPG, Song I, Ohkuma M, Fukiya S, Sakamoto M. Claveliimonas bilis gen. nov., sp. nov., deoxycholic acid-producing bacteria isolated from human faeces, and reclassification of Sellimonas monacensis Zenner et al. 2021 as Claveliimonas monacensis comb. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 37737068 DOI: 10.1099/ijsem.0.006030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
Obligately anaerobic, Gram-stain-positive, bacilli, strains 12BBH14T, 9CFEGH4 and 10CPCBH12, were isolated from faecal samples of healthy Japanese people. Strain 12BBH14T showed the highest 16S rRNA gene sequence similarity to Sellimonas monacensis Cla-CZ-80T (97.5 %) and 'Lachnoclostridium phocaeense' Marseille-P3177T (97.2 %). Strain 12BBH14T was also closely related to Eubacterium sp. c-25 with 99.7 % 16S rRNA gene sequence similarity. The 16S rRNA gene sequence analysis showed that strains 12BBH14T, 9CFEGH4 and 10CPCBH12 formed a monophyletic cluster with Eubacterium sp. c-25. Near this monophyletic cluster, S. monacensis Cla-CZ-80T and 'L. phocaeense' Marseille-P3177T formed a cluster and did not form a cluster with other Sellimonas species. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strains 12BBH14T, 9CFEGH4, 10CPCBH12 and Eubacterium sp. c-25 were higher than the cut-off values of species demarcation (>88 % dDDH and >98 % ANI), indicating that these four strains are the same species. On the other hand, the dDDH and ANI values of these strains were lower than the cut-off values of species demarcation against other strains (<29 % dDDH and <76 % ANI). Moreover, the average amino acid identity values among these strains were higher than the genus boundary. These results indicate that the isolates should be considered to belong to a new genus of the family Lachnospiraceae. Based on the collected data, strains 12BBH14T, 9CFEGH4 and 10CPCBH12 represent a novel species of a novel genus, for which the name Claveliimonas bilis gen. nov., sp. nov. is proposed. The type strain of C. bilis is 12BBH14T (=JCM 35899T=DSM 115701T). Eubacterium sp. c-25 belongs to C. bilis. In addition, S. monacensis is transferred to the genus Claveliimonas as Claveliimonas monacensis comb. nov.
Collapse
Affiliation(s)
- Atsushi Hisatomi
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | | | - Isaiah Song
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Satoru Fukiya
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Mitsuo Sakamoto
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
46
|
Tian B, Chen G, Shi X, Jiang L, Jiang T, Li Q, Yuan L, Qin J. Preliminary exploration of the effects of environmental factors on the microsatellite status of BRAF-mutated colorectal cancer. World J Surg Oncol 2023; 21:264. [PMID: 37620872 PMCID: PMC10463889 DOI: 10.1186/s12957-023-03106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/12/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND To investigate the expression of EBV products and frequency of gallstone disease (GD) among different microsatellite status in colorectal cancer (CRC) with BRAFV600E mutation. METHODS We collected 30 CRC patients with BRAFV600E mutation and 10 BRAF ( -) CRC patients as well as 54 healthy subjects. Tumor tissue samples were collected to detect the mutation of BRAF, KRAS, and TP53. Microsatellite status was determined by immunohistochemistry and PCR. EBER in situ hybridization was performed to detect EBV. In addition, we also collected clinical information about the patients. RESULTS We found that although EBV products were detected in CRC, there were no significant differences in the EBV distribution between the different BRAF groups. Our study demonstrated that BRAFV600E mutation and BRAFV600E with MSI were significantly more frequent in the right CRC. Furthermore, the KRAS mutation rate in the BRAF-wild-type group was proved to be significantly higher than that in the BRAF mutation group. In addition, we revealed that BRAF mutation and MSI were independent risk factors of TNM stage. The frequency of GD was higher in CRC patients than in general population, and although there was no significant difference between CRC with or without BRAFV600E mutation, the highest frequency of GD was found in MSS CRC with BRAFV600E mutation. CONCLUSIONS EBV plays a role in CRC, but is not a determinant of different microsatellite status in CRC with BRAFV600E mutation. The frequency of GD in MSS CRC with BRAFV600E mutation is significantly higher than that in the general population.
Collapse
Affiliation(s)
- Binle Tian
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Guiming Chen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Xiaoqin Shi
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Liren Jiang
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Tao Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Qi Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Lin Yuan
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| | - Jian Qin
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| |
Collapse
|
47
|
Kharazmi E, Scherer D, Boekstegers F, Liang Q, Sundquist K, Sundquist J, Fallah M, Lorenzo Bermejo J. Gallstones, Cholecystectomy, and Kidney Cancer: Observational and Mendelian Randomization Results Based on Large Cohorts. Gastroenterology 2023; 165:218-227.e8. [PMID: 37054756 DOI: 10.1053/j.gastro.2023.03.227] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 02/17/2023] [Accepted: 03/25/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND & AIMS Gallstones (cholelithiasis) constitute a major health burden with high costs related to surgical removal of the gallbladder (cholecystectomy), generally indicated for symptomatic gallstones. The association between gallstones and cholecystectomy and kidney cancer is controversial. We comprehensively investigated this association, considering age at cholecystectomy and time from cholecystectomy to kidney cancer diagnosis, and assessed the causal effect of gallstones on kidney cancer risk by Mendelian randomization (MR). METHODS We compared the risk of kidney cancer in cholecystectomized and noncholecystectomized patients (16.6 million in total) from the Swedish nationwide cancer, census, patient, and death registries using hazard ratios (HRs). For 2-sample and multivariable MR, we used summary statistics based on 408,567 UK Biobank participants. RESULTS During a median follow-up of 13 years, 2627 of 627,870 cholecystectomized Swedish patients developed kidney cancer (HR, 1.17; 95% CI, 1.12-1.22). Kidney cancer risk was particularly increased in the first 6 months after cholecystectomy (HR, 3.79; 95% CI, 3.18-4.52) and in patients cholecystectomized before age 40 years (HR, 1.55; 95% CI, 1.39-1.72). MR results based on 18,417 patients with gallstones and 1788 patients with kidney cancer from the United Kingdom revealed a causal effect of gallstones on kidney cancer risk (9.6% risk increase per doubling in gallstone prevalence; 95% CI, 1.2%-18.8%). CONCLUSIONS Both observational and causal MR estimates based on large prospective cohorts support an increased risk of kidney cancer in patients with gallstones. Our findings provide solid evidence for the compelling need to diagnostically rule out kidney cancer before and during gallbladder removal, to prioritize kidney cancer screening in patients undergoing cholecystectomy in their 30s, and to investigate the underlying mechanisms linking gallstones and kidney cancer in future studies.
Collapse
Affiliation(s)
- Elham Kharazmi
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, Heidelberg, Germany; Risk Adapted Prevention Group, Division of Preventive Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany; Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Dominique Scherer
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, Heidelberg, Germany
| | - Felix Boekstegers
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, Heidelberg, Germany
| | - Qunfeng Liang
- Risk Adapted Prevention Group, Division of Preventive Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University, Malmö, Sweden; Departments of Family Medicine and Community Health and Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York; Center for Community-Based Healthcare Research and Education, Department of Functional Pathology, School of Medicine, Shimane University, Izumo, Japan
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University, Malmö, Sweden; Departments of Family Medicine and Community Health and Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York; Center for Community-Based Healthcare Research and Education, Department of Functional Pathology, School of Medicine, Shimane University, Izumo, Japan
| | - Mahdi Fallah
- Risk Adapted Prevention Group, Division of Preventive Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany; Center for Primary Health Care Research, Lund University, Malmö, Sweden; Institute of Primary Health Care, University of Bern, Bern, Switzerland
| | - Justo Lorenzo Bermejo
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, Heidelberg, Germany; Department of Biostatistics for Precision Oncology, Institut de Cancérologie Strasbourg Europe, Strasbourg, France.
| |
Collapse
|
48
|
Liu F, Li R, Zhong Y, Liu X, Deng W, Huang X, Price M, Li J. Age-related alterations in metabolome and microbiome provide insights in dietary transition in giant pandas. mSystems 2023; 8:e0025223. [PMID: 37273228 PMCID: PMC10308887 DOI: 10.1128/msystems.00252-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 06/06/2023] Open
Abstract
We conducted UPLC-MS-based metabolomics, 16S rRNA, and metagenome sequencing on the fecal samples of 44 captive giant pandas (Ailuropoda melanoleuca) from four age groups (i.e., Cub, Young, Adult, and Old) to comprehensively understand age-related changes in the metabolism and gut microbiota of giant pandas. We characterized the metabolite profiles of giant pandas based on 1,376 identified metabolites, with 152 significantly differential metabolites (SDMs) found across the age groups. We found that the metabolites and the composition/function of the gut microbiota changed in response to the transition from a milk-dominant diet in panda cubs to a bamboo-specific diet in young and adult pandas. Lipid metabolites such as choline and hippuric acid were enriched in the Cub group, and many plant secondary metabolites were significantly higher in the Young and Adult groups, while oxidative stress and inflammatory related metabolites were only found in the Old group. However, there was a decrease in the α-diversity of gut microbiota in adult and old pandas, who exclusively consume bamboo. The abundance of bacteria related to the digestion of cellulose-rich food, such as Firmicutes, Streptococcus, and Clostridium, significantly increased from the Cub to the Adult group, while the abundance of beneficial bacteria such as Faecalibacterium, Sarcina, and Blautia significantly decreased. Notably, several potential pathogenic bacteria had relatively high abundances, especially in the Young group. Metagenomic analysis identified 277 CAZyme genes including cellulose degrading genes, and seven of the CAZymes had abundances that significantly differed between age groups. We also identified 237 antibiotic resistance genes (ARGs) whose number and diversity increased with age. We also found a significant positive correlation between the abundance of bile acids and gut bacteria, especially Lactobacillus and Bifidobacterium. Our results from metabolome, 16S rRNA, and metagenome data highlight the important role of the gut microbiota-bile acid axis in the regulation of age-related metabolism and provide new insights into the lipid metabolism of giant pandas. IMPORTANCE The giant panda is a member of the order Carnivora but is entirely herbivorous. The giant panda's specialized diet and related metabolic mechanisms have not been fully understood. It is therefore crucial to investigate the dynamic changes in metabolites as giant pandas grow and physiologically adapt to their herbivorous diet. This study conducted UPLC-MS-based metabolomics 16S rRNA, and metagenome sequencing on the fecal samples of captive giant pandas from four age groups. We found that metabolites and the composition/function of gut microbiota changed in response to the transition from a milk-dominant diet in cubs to a bamboo-specific diet in young and adult pandas. The metabolome, 16S rRNA, and metagenome results highlight that the gut microbiota-bile acid axis has an important role in the regulation of age-related metabolism, and our study provides new insights into the lipid metabolism of giant pandas.
Collapse
Affiliation(s)
- Fangyuan Liu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Rengui Li
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology for Rare Animals of the Giant Panda State Park, Dujiangyan, Sichuan, China
| | - Yi Zhong
- China Wildlife Conservation Association, Beijing, China
| | - Xu Liu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Wenwen Deng
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology for Rare Animals of the Giant Panda State Park, Dujiangyan, Sichuan, China
| | - Xiaoyu Huang
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology for Rare Animals of the Giant Panda State Park, Dujiangyan, Sichuan, China
| | - Megan Price
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jing Li
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
49
|
Dong Z, Shi R, Li P, Song X, Dong F, Zhu J, Wu R, Liang Z, Du M, Wang J, Yang Z. Does postcholecystectomy increase the risk of colorectal cancer? Front Microbiol 2023; 14:1194419. [PMID: 37426004 PMCID: PMC10324655 DOI: 10.3389/fmicb.2023.1194419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
With the increasing number of cholecystectomy and the high proportion of colorectal cancer in malignant tumors, the question of whether cholecystectomy is a risk factor for colorectal disease has been widely concerned. After reviewing the literature at home and abroad, the authors will summarize the research progress of the correlation between the occurrence of colorectal tumors after cholecystectomy, in order to provide help for the prevention and treatment of colorectal tumors.
Collapse
Affiliation(s)
- Zhenyu Dong
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Ruixian Shi
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia, China
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Pengda Li
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Xiaobiao Song
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Fan Dong
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Jianmin Zhu
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Riga Wu
- Department of General Surgery, The Second Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Zhi Liang
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Mingyue Du
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Jijun Wang
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Zhigang Yang
- Department of Urology, Baotou Central Hospital, Baotou, Inner Mongolia, China
| |
Collapse
|
50
|
Ahmad F, Saha P, Singh V, Wahid M, Mandal RK, Nath Mishra B, Fagoonee S, Haque S. Diet as a modifiable factor in tumorigenesis: Focus on microbiome-derived bile acid metabolites and short-chain fatty acids. Food Chem 2023; 410:135320. [PMID: 36610090 DOI: 10.1016/j.foodchem.2022.135320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Several lines of evidences have implicated the resident microbiome as a key factor in the modulation of host physiology and pathophysiology; including the resistance to cancers. Gut microbiome heavily influences host lipid homeostasis by their modulatory effects on the metabolism of bile acids (BAs). Microbiota-derived BA metabolites such as deoxycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) are implicated in the pathogeneses of various cancer types. The pathogenic mechanisms are multimodal in nature, with widespread influences on the host immunes system, cell survival and growth signalling and DNA damage. On the other hand, short-chain fatty acids (SCFAs) produced by the resident microbial activity on indigestible dietary fibres as well as during intermittent fasting regimens (such as the Ramazan fasting) elicit upregulation of the beneficial anti-inflammatory and anticancer pathways in the host. The present review first provides a brief overview of the molecular mechanisms of microbiota-derived lipid metabolites in promotion of tumour development. The authors then discuss the potential of diet as a therapeutic route for beneficial alteration of microbiota and the consequent changes in the production of SCFAs, particularly butyrate, in relation to the cancer prevention and treatment.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India.
| | - Priyanka Saha
- Department of Biotechnology, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021 (Uttar Pradesh), India
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Raju K Mandal
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021 (Uttar Pradesh), India
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council (CNR), Molecular Biotechnology Center, Turin, Italy
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|