1
|
Ali A, Gao M, Iskantar A, Wang H, Karlsson-Parra A, Yu D, Jin C. Proinflammatory allogeneic dendritic cells enhance the therapeutic efficacy of systemic anti-4-1BB treatment. Front Immunol 2023; 14:1146413. [PMID: 37654492 PMCID: PMC10466132 DOI: 10.3389/fimmu.2023.1146413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023] Open
Abstract
As an immune adjuvant, proinflammatory allogeneic dendritic cells (AlloDCs) have demonstrated promising immune-priming effects in several preclinical and clinical studies. The effector cells, including NK cells and T cells are widely acknowledged as pivotal factors in the effectiveness of cancer immunotherapy due to their ability to selectively identify and eradicate malignant cells. 4-1BB, as a costimulatory receptor, plays a significant role in the stimulation of effector cell activation. This study evaluated the anti-tumor effects when combining intratumoral administration of the immune-adjuvant AlloDCs with systemic α4-1BB treatment directly acting on effector cells. In both the CT-26 murine colon carcinoma model and B16 murine melanoma model, AlloDCs demonstrated a significant enhancement in the therapeutic efficacy of α4-1BB antibody. This enhancement was observed through the delayed growth of tumors and prolonged survival. Analysis of the tumor microenvironment (TME) in the combined-treatment group revealed an immune-inflamed TME characterized by increased infiltration of activated endogenous DCs and IFNγ+ CD8+ T cells, showing reduced signs of exhaustion. Furthermore, there was an augmented presence of tissue-resident memory (TRM) CD8+ T cells (CD103+CD49a+CD69+). The combination treatment also led to increased infiltration of CD39+CD103+ tumor-specific CD8+ T cells and neoantigen-specific T cells into the tumor. Additionally, the combined treatment resulted in a less immunosuppressive TME, indicated by decreased infiltration of myeloid-derived suppressor cells and Tregs. These findings suggest that the combination of intratumoral AlloDCs administration with systemic agonistic α4-1BB treatment can generate a synergistic anti-tumor response, thereby warranting further investigation through clinical studies.
Collapse
Affiliation(s)
- Arwa Ali
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Menghan Gao
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexandros Iskantar
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hai Wang
- Chinese Academy of Science (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Di Yu
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Chuan Jin
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Melero I, Sanmamed MF, Glez-Vaz J, Luri-Rey C, Wang J, Chen L. CD137 (4-1BB)-Based Cancer Immunotherapy on Its 25th Anniversary. Cancer Discov 2023; 13:552-569. [PMID: 36576322 DOI: 10.1158/2159-8290.cd-22-1029] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 11/21/2022] [Indexed: 12/29/2022]
Abstract
Twenty-five years ago, we reported that agonist anti-CD137 monoclonal antibodies eradicated transplanted mouse tumors because of enhanced CD8+ T-cell antitumor immunity. Mouse models indicated that anti-CD137 agonist antibodies synergized with various other therapies. In the clinic, the agonist antibody urelumab showed evidence for single-agent activity against melanoma and non-Hodgkin lymphoma but caused severe liver inflammation in a fraction of the patients. CD137's signaling domain is included in approved chimeric antigen receptors conferring persistence and efficacy. A new wave of CD137 agonists targeting tumors, mainly based on bispecific constructs, are in early-phase trials and are showing promising safety and clinical activity. SIGNIFICANCE CD137 (4-1BB) is a costimulatory receptor of T and natural killer lymphocytes whose activity can be exploited in cancer immunotherapy strategies as discovered 25 years ago. Following initial attempts that met unacceptable toxicity, new waves of constructs acting agonistically on CD137 are being developed in patients, offering signs of clinical and pharmacodynamic activity with tolerable safety profiles.
Collapse
Affiliation(s)
- Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Jun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Lieping Chen
- Department of Immunobiology, Yale University, New Haven, Connecticut
| |
Collapse
|
3
|
Quetglas JI, John LB, Kershaw MH, Alvarez-Vallina L, Melero I, Darcy PK, Smerdou C. Virotherapy, gene transfer and immunostimulatory monoclonal antibodies. Oncoimmunology 2021; 1:1344-1354. [PMID: 23243597 PMCID: PMC3518506 DOI: 10.4161/onci.21679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Malignant cells are susceptible to viral infection and consequent cell death. Virus-induced cell death is endowed with features that are known to stimulate innate and adaptive immune responses. Thus danger signals emitted by cells succumbing to viral infection as well as viral nucleic acids are detected by specific receptors, and tumor cell antigens can be routed to professional antigen-presenting cells. The anticancer immune response triggered by viral infection is frequently insufficient to eradicate malignancy but may be further amplified. For this purpose, transgenes encoding cytokines as co-stimulatory molecules can be genetically engineered into viral vectors. Alternatively, or in addition, it is possible to use monoclonal antibodies that either block inhibitory receptors of immune effector cells, or act as agonists for co-stimulatory receptors. Combined strategies are based on the ignition of a local immune response at the malignant site plus systemic immune boosting. We have recently reported examples of this approach involving the Vaccinia virus or Semliki Forest virus, interleukin-12 and anti-CD137 monoclonal antibodies.
Collapse
Affiliation(s)
- José I Quetglas
- Division of Hepatology and Gene Therapy; Center for Applied Medical Research; University of Navarra; Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
4
|
CD137 + T-Cells: Protagonists of the Immunotherapy Revolution. Cancers (Basel) 2021; 13:cancers13030456. [PMID: 33530328 PMCID: PMC7866028 DOI: 10.3390/cancers13030456] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The CD137 receptor is expressed by activated antigen-specific T-cells. CD137+ T-cells were identified inside TILs and PBMCs of different tumor types and have proven to be the naturally occurring antitumor effector cells, capable of expressing a wide variability in terms of TCR specificity against both shared and neoantigenic tumor-derived peptides. The aim of this review is thus summarizing and highlighting their role as drivers of patients’ immune responses in anticancer therapies as well as their potential role in future and current strategies of immunotherapy. Abstract The CD137 receptor (4-1BB, TNF RSF9) is an activation induced molecule expressed by antigen-specific T-cells. The engagement with its ligand, CD137L, is capable of increasing T-cell survival, proliferation, and cytokine production. This allowed to identify the CD137+ T-cells as the real tumor-specific activated T-cell population. In fact, these cells express various TCRs that are specific for a wide range of tumor-derived peptides, both shared and neoantigenic ones. Moreover, their prevalence in sites close to the tumor and their unicity in killing cancer cells both in vitro and in vivo, raised particular interest in studying their potential role in different strategies of immunotherapy. They indeed showed to be a reliable marker able to predict patient’s outcome to immune-based therapies as well as monitor their response. In addition, the possibility of isolating and expanding this population, turned promising in order to generate effector antitumor T-cells in the context of adoptive T-cell therapies. CD137-targeting monoclonal antibodies have already shown their antitumor efficacy in cancer patients and a number of clinical trials are thus ongoing to test their possible introduction in different combination approaches of immunotherapy. Finally, the intracellular domain of the CD137 receptor was introduced in the anti-CD19 CAR-T cells that were approved by FDA for the treatment of pediatric B-cell leukemia and refractory B-cell lymphoma.
Collapse
|
5
|
Pishavar E, Oroojalian F, Ramezani M, Hashemi M. Cholesterol-conjugated PEGylated PAMAM as an efficient nanocarrier for plasmid encoding interleukin-12 immunogene delivery toward colon cancer cells. Biotechnol Prog 2019; 36:e2952. [PMID: 31846226 DOI: 10.1002/btpr.2952] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/12/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022]
Abstract
IL-12 is a pleiotropic cytokine, which shows an ideal applicant for tumor immunotherapy, because of its features of creating an interconnection between innate (NK cells) and adaptive (cytotoxic T lymphocyte) immunity. IL-12 gene therapy is a useful technique to deliver an immune-modulatory gene directly into tumor site thereby limiting the adverse effects of systemic administration of IL-12 proteins. One of the most largely investigated non-viral gene carriers is polyamidoamine (PAMAM). In the current research, 5 and 3% of PAMAM primary amines were substituted to transmit the plasmid encoding IL-12 gene to cells by cholesteryl chloroformate and alkyl-PEG, respectively. The features of modified PAMAMs containing size and surface charge density, cytotoxicity, and transfection efficiency were investigated in colon cancer cells. in vitro experiment showed that this modified carrier with average size of about 160 nm and zeta potential of 30 mV was able to increase the level of IL-12 production up to two folds as compared to that of the unmodified PAMAM. Improvement of the polymer hydrophobic balance along with of the modulation of the surface positive charge could provide an efficient and safe non-viral IL-12 gene for colon cancer immunogene therapy.
Collapse
Affiliation(s)
- Elham Pishavar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Ramezani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Chu DT, Bac ND, Nguyen KH, Tien NLB, Thanh VV, Nga VT, Ngoc VTN, Anh Dao DT, Hoan LN, Hung NP, Trung Thu NT, Pham VH, Vu LN, Pham TAV, Thimiri Govinda Raj DB. An Update on Anti-CD137 Antibodies in Immunotherapies for Cancer. Int J Mol Sci 2019; 20:ijms20081822. [PMID: 31013788 PMCID: PMC6515339 DOI: 10.3390/ijms20081822] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 12/16/2022] Open
Abstract
The selective expression of CD137 on cells of the immune system (e.g., T and DC cells) and oncogenic cells in several types of cancer leads this molecule to be an attractive target to discover cancer immunotherapy. Therefore, specific antibodies against CD137 are being studied and developed aiming to activate and enhance anti-cancer immune responses as well as suppress oncogenic cells. Accumulating evidence suggests that anti-CD137 antibodies can be used separately to prevent tumor in some cases, while in other cases, these antibodies need to be co-administered with other antibodies or drugs/vaccines/regents for a better performance. Thus, in this work, we aim to update and discuss current knowledge about anti-cancer effects of anti-CD137 antibodies as mono- and combined-immunotherapies.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam.
- Institute of Cancer Research, Oslo University Hospital, 0372 Oslo, Norway.
| | - Nguyen Duy Bac
- Department of Education and Training, Vietnam Military Medical University, Hanoi 100000, Vietnam.
| | - Khanh-Hoang Nguyen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam.
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam.
| | - Vu Thi Nga
- Institute for Research and Development, Duy Tan University, 03 Quang Trung, Danang 550000, Vietnam.
| | - Vo Truong Nhu Ngoc
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam.
| | - Duong Thi Anh Dao
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
| | - Le Ngoc Hoan
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
| | - Nguyen Phuc Hung
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
| | - Nguyen Thi Trung Thu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
| | - Van-Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Le Nguyen Vu
- Organ Transplantation Center, Viet Duc Hospital, Hanoi 100000, Vietnam.
| | - Thuy Anh Vu Pham
- Faculty of Odonto-Stomatology, University of Medicine and Pharmacy, Ho Chi Minh City 700000, Vietnam.
| | | |
Collapse
|
7
|
Kobayashi M, Chung JS, Beg M, Arriaga Y, Verma U, Courtney K, Mansour J, Haley B, Khan S, Horiuchi Y, Ramani V, Harker D, Gopal P, Araghizadeh F, Cruz PD, Ariizumi K. Blocking Monocytic Myeloid-Derived Suppressor Cell Function via Anti-DC-HIL/GPNMB Antibody Restores the In Vitro Integrity of T Cells from Cancer Patients. Clin Cancer Res 2019; 25:828-838. [PMID: 30049749 PMCID: PMC7315386 DOI: 10.1158/1078-0432.ccr-18-0330] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/15/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Blocking the function of myeloid-derived suppressor cells (MDSC) is an attractive approach for cancer immunotherapy. Having shown DC-HIL/GPNMB to be the T-cell-inhibitory receptor mediating the suppressor function of MDSCs, we evaluated the potential of anti-DC-HIL mAb as an MDSC-targeting cancer treatment. EXPERIMENTAL DESIGN Patients with metastatic cancer (n = 198) were analyzed by flow cytometry for DC-HIL or PDL1 expression on blood CD14+HLA-DRno/lo MDSCs. Their suppressor function was assessed by in vitro coculture with autologous T cells, and the ability of anti-DC-HIL or anti-PDL1 mAb to reverse such function was determined. Tumor expression of these receptors was examined histologically, and the antitumor activity of the mAb was evaluated by attenuated growth of colon cancers in mice. RESULTS Patients with metastatic cancer had high blood levels of DC-HIL+ MDSCs compared with healthy controls. Anti-DC-HIL mAb reversed the in vitro function in ∼80% of cancer patients tested, particularly for colon cancer. Despite very low expression on blood MDSCs, anti-PDL1 mAb was as effective as anti-DC-HIL mAb in reversing MDSC function, a paradoxical phenomenon we found to be due to upregulated expression of PDL1 by T-cell-derived IFNγ in cocultures. DC-HIL is not expressed by colorectal cancer cells but by CD14+ cells infiltrating the tumor. Finally, anti-DC-HIL mAb attenuated growth of preestablished colon tumors by reducing MDSCs and increasing IFNγ-secreting T cells in the tumor microenvironment, with similar outcomes to anti-PDL1 mAb. CONCLUSIONS Blocking DC-HIL function is a potentially useful treatment for at least colorectal cancer with high blood levels of DC-HIL+ MDSCs.See related commentary by Colombo, p. 453.
Collapse
Affiliation(s)
- Masato Kobayashi
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jin-Sung Chung
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Muhammad Beg
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yull Arriaga
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Udit Verma
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kevin Courtney
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - John Mansour
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Barbara Haley
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Saad Khan
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yutaka Horiuchi
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Iruma District, Saitama Prefecture, Japan
| | - Vijay Ramani
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - David Harker
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Purva Gopal
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Farshid Araghizadeh
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ponciano D Cruz
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kiyoshi Ariizumi
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
8
|
Sánchez-Paulete AR, Teijeira A, Cueto FJ, Garasa S, Pérez-Gracia JL, Sánchez-Arráez A, Sancho D, Melero I. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Ann Oncol 2018; 28:xii44-xii55. [PMID: 28945841 DOI: 10.1093/annonc/mdx237] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) are the main professional antigen-presenting cells for induction of T-cell adaptive responses. Cancer cells express tumor antigens, including neoantigens generated by nonsynonymous mutations, but are poor for antigen presentation and for providing costimulatory signals for T-cell priming. Mounting evidence suggests that antigen transfer to DCs and their surrogate presentation on major histocompatibility complex class I and II molecules together with costimulatory signals is paramount for induction of viral and cancer immunity. Of the great diversity of DCs, BATF3/IRF8-dependent conventional DCs type 1 (cDC1) excel at cross-presentation of tumor cell-associated antigens. Location of cDC1s in the tumor correlates with improved infiltration by CD8+ T cells and tumor-specific T-cell immunity. Indeed, cDC1s are crucial for antitumor efficacy using checkpoint inhibitors and anti-CD137 agonist monoclonal antibodies in mouse models. Enhancement and exploitation of T-cell cross-priming by cDC1s offer opportunities for improved cancer immunotherapy, including in vivo targeting of tumor antigens to internalizing receptors on cDC1s and strategies to increase their numbers, activation and priming capacity within tumors and tumor-draining lymph nodes.
Collapse
Affiliation(s)
- A R Sánchez-Paulete
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona
| | - A Teijeira
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona
| | - F J Cueto
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid.,Department of Biochemistry, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid
| | - S Garasa
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona
| | - J L Pérez-Gracia
- University Clinic, University of Navarra, Pamplona, Spain.,CIBERONC, Madrid, Spain
| | - A Sánchez-Arráez
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona
| | - D Sancho
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid
| | - I Melero
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona.,University Clinic, University of Navarra, Pamplona, Spain.,CIBERONC, Madrid, Spain
| |
Collapse
|
9
|
Nimri L, Spivak O, Tal D, Schälling D, Peri I, Graeve L, Salame TM, Yarden O, Hadar Y, Schwartz B. A recombinant fungal compound induces anti-proliferative and pro-apoptotic effects on colon cancer cells. Oncotarget 2018; 8:28854-28864. [PMID: 28416764 PMCID: PMC5438697 DOI: 10.18632/oncotarget.15859] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022] Open
Abstract
Finding intracellular pathways and molecules that can prevent the proliferation of colon cancer cells can provide significant bases for developing treatments for this disease. Ostreolysin (Oly) is a protein found in the mushroom Pleurotus ostreatus, and we have produced a recombinant version of this protein (rOly). We measured the viability of several colon cancer cells treated with rOly. Xenografts and syngeneic colon cancer cells were injected into in vivo mouse models, which were then treated with this recombinant protein. rOly treatment induced a significant reduction in viability of human and mouse colon cancer cells. In contrast, there was no reduction in the viability of normal epithelial cells from the small intestine. In the search for cellular targets of rOly, we showed that it enhances the anti-proliferative activity of drugs targeting cellular tubulin. This was accompanied by a reduction in the weight and volume of tumours in mice injected with rOly as compared to their respective control mice in two in vivo models. Our results advance the functional understanding of rOly as a potential anti-cancer treatment associated with pro-apoptotic activities preferentially targeting colon cancer cells.
Collapse
Affiliation(s)
- Lili Nimri
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Orly Spivak
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Dana Tal
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Dominik Schälling
- Faculty of Natural Sciences, Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart 70599, Germany
| | - Irena Peri
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Lutz Graeve
- Faculty of Natural Sciences, Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart 70599, Germany
| | - Tomer M Salame
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Betty Schwartz
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
10
|
Nimri L, Saadi J, Peri I, Yehuda-Shnaidman E, Schwartz B. Mechanisms linking obesity to altered metabolism in mice colon carcinogenesis. Oncotarget 2016; 6:38195-209. [PMID: 26472027 PMCID: PMC4741993 DOI: 10.18632/oncotarget.5561] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022] Open
Abstract
There are an increasing number of reports on obesity being a key risk factor for the development of colon cancer. Our goal in this study was to explore the metabolic networks and molecular signaling pathways linking obesity, adipose tissue and colon cancer. Using in-vivo experiments, we found that mice fed a high-fat diet (HFD) and injected with MC38 colon cancer cells develop significantly larger tumors than their counterparts fed a control diet. In ex-vivo experiments, MC38 and CT26 colon cancer cells exposed to conditioned media (CM) from the adipose tissue of HFD-fed mice demonstrated significantly lower oxygen consumption rate as well as lower maximal oxygen consumption rate after carbonyl cyanide-4-trifluoromethoxy-phenylhydrazone treatment. In addition, in-vitro assays showed downregulated expression of mitochondrial genes in colon cancer cells exposed to CM prepared from the visceral fat of HFD-fed mice or to leptin. Interestingly, leptin levels detected in the media of adipose tissue explants co-cultured with MC38 cancer cells were higher than in adipose tissue explants cultures, indicating cross talk between the adipose tissue and the cancer cells. Salient findings of the present study demonstrate that this crosstalk is mediated at least partially by the JNK/STAT3-signaling pathway.
Collapse
Affiliation(s)
- Lili Nimri
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Janan Saadi
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Irena Peri
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einav Yehuda-Shnaidman
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Betty Schwartz
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
11
|
Vilgelm AE, Johnson DB, Richmond A. Combinatorial approach to cancer immunotherapy: strength in numbers. J Leukoc Biol 2016; 100:275-90. [PMID: 27256570 PMCID: PMC6608090 DOI: 10.1189/jlb.5ri0116-013rr] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/05/2016] [Accepted: 05/11/2016] [Indexed: 12/13/2022] Open
Abstract
Immune-checkpoint blockade therapy with antibodies targeting CTLA-4 and PD-1 has revolutionized melanoma treatment by eliciting responses that can be remarkably durable and is now advancing to other malignancies. However, not all patients respond to immune-checkpoint inhibitors. Extensive preclinical evidence suggests that combining immune-checkpoint inhibitors with other anti-cancer treatments can greatly improve the therapeutic benefit. The first clinical success of the combinatorial approach to cancer immunotherapy was demonstrated using a dual-checkpoint blockade with CTLA-4 and PD-1 inhibitors, which resulted in accelerated FDA approval of this therapeutic regimen. In this review, we discuss the combinations of current and emerging immunotherapeutic agents in clinical and preclinical development and summarize the insights into potential mechanisms of synergistic anti-tumor activity gained from animal studies. These promising combinatorial partners for the immune-checkpoint blockade include therapeutics targeting additional inhibitory receptors of T cells, such as TIM-3, LAG-3, TIGIT, and BTLA, and agonists of T cell costimulatory receptors 4-1BB, OX40, and GITR, as well as agents that promote cancer cell recognition by the immune system, such as tumor vaccines, IDO inhibitors, and agonists of the CD40 receptor of APCs. We also review the therapeutic potential of regimens combining the immune-checkpoint blockade with therapeutic interventions that have been shown to enhance immunogenicity of cancer cells, including oncolytic viruses, RT, epigenetic therapy, and senescence-inducing therapy.
Collapse
Affiliation(s)
- Anna E Vilgelm
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee, USA; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and
| | - Douglas B Johnson
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee, USA; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and
| |
Collapse
|
12
|
The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 2016; 13:273-90. [PMID: 26977780 DOI: 10.1038/nrclinonc.2016.25] [Citation(s) in RCA: 781] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past decade, advances in the use of monoclonal antibodies (mAbs) and adoptive cellular therapy to treat cancer by modulating the immune response have led to unprecedented responses in patients with advanced-stage tumours that would otherwise have been fatal. To date, three immune-checkpoint-blocking mAbs have been approved in the USA for the treatment of patients with several types of cancer, and more patients will benefit from immunomodulatory mAb therapy in the months and years ahead. Concurrently, the adoptive transfer of genetically modified lymphocytes to treat patients with haematological malignancies has yielded dramatic results, and we anticipate that this approach will rapidly become the standard of care for an increasing number of patients. In this Review, we highlight the latest advances in immunotherapy and discuss the role that it will have in the future of cancer treatment, including settings for which testing combination strategies and 'armoured' CAR T cells are recommended.
Collapse
|
13
|
Sanchez-Paulete AR, Labiano S, Rodriguez-Ruiz ME, Azpilikueta A, Etxeberria I, Bolaños E, Lang V, Rodriguez M, Aznar MA, Jure-Kunkel M, Melero I. Deciphering CD137 (4-1BB) signaling in T-cell costimulation for translation into successful cancer immunotherapy. Eur J Immunol 2016; 46:513-22. [PMID: 26773716 DOI: 10.1002/eji.201445388] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/29/2015] [Accepted: 01/11/2016] [Indexed: 01/22/2023]
Abstract
CD137 (4-1BB, TNF-receptor superfamily 9) is a surface glycoprotein of the TNFR family which can be induced on a variety of leukocyte subsets. On T and NK cells, CD137 is expressed following activation and, if ligated by its natural ligand (CD137L), conveys polyubiquitination-mediated signals via TNF receptor associated factor 2 that inhibit apoptosis, while enhancing proliferation and effector functions. CD137 thus behaves as a bona fide inducible costimulatory molecule. These functional properties of CD137 can be exploited in cancer immunotherapy by systemic administration of agonist monoclonal antibodies, which increase anticancer CTLs and enhance NK-cell-mediated antibody-dependent cell-mediated cytotoxicity. Reportedly, anti-CD137 mAb and adoptive T-cell therapy strongly synergize, since (i) CD137 expression can be used to select the T cells endowed with the best activities against the tumor, (ii) costimulation of the lymphocyte cultures to be used in adoptive T-cell therapy can be done with CD137 agonist antibodies or CD137L, and (iii) synergistic effects upon coadministration of T cells and antibodies are readily observed in mouse models. Furthermore, the signaling cytoplasmic tail of CD137 is a key component of anti-CD19 chimeric antigen receptors that are used to redirect T cells against leukemia and lymphoma in the clinic. Ongoing phase II clinical trials with agonist antibodies and the presence of CD137 sequence in these successful chimeric antigen receptors highlight the importance of CD137 in oncoimmunology.
Collapse
Affiliation(s)
- Alfonso R Sanchez-Paulete
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Sara Labiano
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Maria E Rodriguez-Ruiz
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.,University Clinic, University of Navarra, Pamplona, Spain
| | - Arantza Azpilikueta
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Iñaki Etxeberria
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Elixabet Bolaños
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Valérie Lang
- Ubiquitylation and Cancer Molecular Biology Laboratory, Foundation for Stem Cell Research, Fundación Inbiomed, San Sebastián, Spain
| | - Manuel Rodriguez
- Advanced Technology Institute in Life Sciences (ITAV), CNRS-USR3505, Toulouse, France.,University of Toulouse III-Paul Sabatier, Toulouse, France.,Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS-UMR5089, Toulouse, France
| | - M Angela Aznar
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | - Ignacio Melero
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.,University Clinic, University of Navarra, Pamplona, Spain
| |
Collapse
|
14
|
Bartkowiak T, Curran MA. 4-1BB Agonists: Multi-Potent Potentiators of Tumor Immunity. Front Oncol 2015; 5:117. [PMID: 26106583 PMCID: PMC4459101 DOI: 10.3389/fonc.2015.00117] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/11/2015] [Indexed: 01/12/2023] Open
Abstract
Immunotherapy is a rapidly expanding field of oncology aimed at targeting, not the tumor itself, but the immune system combating the cancerous lesion. Of the many approaches currently under study to boost anti-tumor immune responses; modulation of immune co-receptors on lymphocytes in the tumor microenvironment has thus far proven to be the most effective. Antibody blockade of the T cell co-inhibitory receptor cytotoxic T lymphocyte antigen-4 (CTLA-4) has become the first FDA approved immune checkpoint blockade; however, tumor infiltrating lymphocytes express a diverse array of additional stimulatory and inhibitory co-receptors, which can be targeted to boost tumor immunity. Among these, the co-stimulatory receptor 4-1BB (CD137/TNFSF9) possesses an unequaled capacity for both activation and pro-inflammatory polarization of anti-tumor lymphocytes. While functional studies of 4-1BB have focused on its prominent role in augmenting cytotoxic CD8 T cells, 4-1BB can also modulate the activity of CD4 T cells, B cells, natural killer cells, monocytes, macrophages, and dendritic cells. 4-1BB’s expression on both T cells and antigen presenting cells, coupled with its capacity to promote survival, expansion, and enhanced effector function of activated T cells, has made it an alluring target for tumor immunotherapy. In contrast to immune checkpoint blocking antibodies, 4-1BB agonists can both potentiate anti-tumor and anti-viral immunity, while at the same time ameliorating autoimmune disease. Despite this, 4-1BB agonists can trigger high grade liver inflammation which has slowed their clinical development. In this review, we discuss how the underlying immunobiology of 4-1BB activation suggests the potential for therapeutically synergistic combination strategies in which immune adverse events can be minimized.
Collapse
Affiliation(s)
- Todd Bartkowiak
- Department of Immunology, University of Texas MD Anderson Cancer Center , Houston, TX , USA ; The University of Texas Graduate School of Biomedical Sciences at Houston , Houston, TX , USA
| | - Michael A Curran
- Department of Immunology, University of Texas MD Anderson Cancer Center , Houston, TX , USA ; The University of Texas Graduate School of Biomedical Sciences at Houston , Houston, TX , USA
| |
Collapse
|
15
|
Abstract
Using the immune system to control cancer has been investigated for over a century. Yet it is only over the last several years that therapeutic agents acting directly on the immune system have demonstrated improved overall survival for cancer patients in phase III clinical trials. Furthermore, it appears that some patients treated with such agents have been cured of metastatic cancer. This has led to increased interest and acceleration in the rate of progress in cancer immunotherapy. Most of the current immunotherapeutic success in cancer treatment is based on the use of immune-modulating antibodies targeting critical checkpoints (CTLA-4 and PD-1/PD-L1). Several other immune-modulating molecules targeting inhibitory or stimulatory pathways are being developed. The combined use of these medicines is the subject of intense investigation and holds important promise. Combination regimens include those that incorporate targeted therapies that act on growth signaling pathways, as well as standard chemotherapy and radiation therapy. In fact, these standard therapies have intrinsic immune-modulating properties that can support antitumor immunity. In the years ahead, adoptive T-cell therapy will also be an important part of treatment for some cancer patients. Other areas which are regaining interest are the use of oncolytic viruses that immunize patients against their own tumors and the use of vaccines against tumor antigens. Immunotherapy has demonstrated unprecedented durability in controlling multiple types of cancer and we expect its use to continue expanding rapidly.
Collapse
|
16
|
Vinay DS, Kwon BS. 4-1BB (CD137), an inducible costimulatory receptor, as a specific target for cancer therapy. BMB Rep 2014; 47:122-9. [PMID: 24499671 PMCID: PMC4163883 DOI: 10.5483/bmbrep.2014.47.3.283] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 12/30/2013] [Accepted: 01/28/2014] [Indexed: 01/09/2023] Open
Abstract
Although considerable progress has been made in understanding how tumors evade immune surveillance, measures to counter the same have not kept pace with the advances made in designing effective strategies. 4-1BB (CD137; TNFRS9), an activation-induced costimulatory molecule, is an important regulator of immune responses. Targeting 4-1BB or its natural ligand 4-1BB ligand (4-1BBL) has important implications in many clinical conditions, including cancer. In-depth analysis revealed that 4-1BB-mediated anti-cancer effects are based on its ability to induce activation of cytotoxic T lymphocytes (CTL), and among others, high amounts of IFN-γ. In this review, we will discuss the various aspects of 4-1BB-mediated anti-tumor responses, the basis of such responses, and future directions. [BMB Reports 2014; 47(3): 122-129]
Collapse
Affiliation(s)
- Dass S Vinay
- Section of Clinical Immunology, Allergy, and Rheumatology, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA
| | - Byoung S Kwon
- Section of Clinical Immunology, Allergy, and Rheumatology, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA; Cell and Immunobiology, and R & D Center for Cancer Therapeutics, National Cancer Center, Goyang 410-769, Korea
| |
Collapse
|
17
|
Tongu M, Harashima N, Tamada K, Chen L, Harada M. Intermittent chemotherapy can retain the therapeutic potential of anti-CD137 antibody during the late tumor-bearing state. Cancer Sci 2014; 106:9-17. [PMID: 25363339 PMCID: PMC4317772 DOI: 10.1111/cas.12568] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/20/2014] [Accepted: 10/28/2014] [Indexed: 01/08/2023] Open
Abstract
Immunomodulating monoclonal antibodies (mAb) can evoke antitumor T-cell responses, which are attenuated by regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC). Treatment with cyclophosphamide (CP) and gemcitabine (GEM) can mitigate the immunosuppression by Treg and MDSC, respectively. In the current study, we examined the antitumor effects of a combination of local injection with anti-CD137 mAb and intermittent low-dose chemotherapy using CP and GEM in subcutaneously established CT26 colon carcinoma. Although a significant antitumor effect was observed when local anti-CD137 mAb therapy (5 μg) was started early in the tumor-bearing stage (day 10), no therapeutic efficacy was observed when the mAb therapy was started at a later tumor-bearing stage (day 17). Analyses of the tumor-infiltrating immune cells revealed that the number of Gr-1(high/low) CD11b(+) MDSC started to increase 13 days after tumor inoculation, whereas injection with low-dose (50 mg/kg) CP and GEM mitigated this increase. In addition, although intermittent injections with low-dose CP and GEM on days 10 and 18 suppressed tumor growth significantly, additional local injections of anti-CD137 mAb on days 19, 21, and 23 further augmented the therapeutic efficacy. Cytotoxic T lymphocytes reactive to CT26 and a tumor antigen peptide were induced successfully from the spleen cells of tumor-cured or tumor-stable mice. In a bilateral tumor inoculation model, this combination therapy achieved systemic therapeutic effects and suppressed the growth of mAb-untreated tumors. These results suggest that intermittent immunochemotherapy using CP and GEM could retain the therapeutic potential of anti-CD137 mAb that is normally impaired during the late tumor-bearing stage.
Collapse
Affiliation(s)
- Miki Tongu
- Department of Experimental Animals, Center for Integrated Research in Science, Shimane University, Izumo, Japan
| | | | | | | | | |
Collapse
|
18
|
Mauge L, Terme M, Tartour E, Helley D. Control of the adaptive immune response by tumor vasculature. Front Oncol 2014; 4:61. [PMID: 24734218 PMCID: PMC3975114 DOI: 10.3389/fonc.2014.00061] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/13/2014] [Indexed: 11/23/2022] Open
Abstract
The endothelium is nowadays described as an entire organ that regulates various processes: vascular tone, coagulation, inflammation, and immune cell trafficking, depending on the vascular site and its specific microenvironment as well as on endothelial cell-intrinsic mechanisms like epigenetic changes. In this review, we will focus on the control of the adaptive immune response by the tumor vasculature. In physiological conditions, the endothelium acts as a barrier regulating cell trafficking by specific expression of adhesion molecules enabling adhesion of immune cells on the vessel, and subsequent extravasation. This process is also dependent on chemokine and integrin expression, and on the type of junctions defining the permeability of the endothelium. Endothelial cells can also regulate immune cell activation. In fact, the endothelial layer can constitute immunological synapses due to its close interactions with immune cells, and the delivery of co-stimulatory or co-inhibitory signals. In tumor conditions, the vasculature is characterized by an abnormal vessel structure and permeability, and by a specific phenotype of endothelial cells. All these abnormalities lead to a modulation of intra-tumoral immune responses and contribute to the development of intra-tumoral immunosuppression, which is a major mechanism for promoting the development, progression, and treatment resistance of tumors. The in-depth analysis of these various abnormalities will help defining novel targets for the development of anti-tumoral treatments. Furthermore, eventual changes of the endothelial cell phenotype identified by plasma biomarkers could secondarily be selected to monitor treatment efficacy.
Collapse
Affiliation(s)
- Laetitia Mauge
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Sorbonne Paris Cité , Paris , France ; Service d'Hématologie Biologique, Hôpital Européen Georges Pompidou , Paris , France
| | - Magali Terme
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Sorbonne Paris Cité , Paris , France
| | - Eric Tartour
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Sorbonne Paris Cité , Paris , France ; Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou , Paris , France
| | - Dominique Helley
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Sorbonne Paris Cité , Paris , France ; Service d'Hématologie Biologique, Hôpital Européen Georges Pompidou , Paris , France
| |
Collapse
|
19
|
Martinez-Forero I, Azpilikueta A, Bolaños-Mateo E, Nistal-Villan E, Palazon A, Teijeira A, Perez-Chacon G, Morales-Kastresana A, Murillo O, Jure-Kunkel M, Zapata JM, Melero I. T cell costimulation with anti-CD137 monoclonal antibodies is mediated by K63-polyubiquitin-dependent signals from endosomes. THE JOURNAL OF IMMUNOLOGY 2013; 190:6694-706. [PMID: 23690480 DOI: 10.4049/jimmunol.1203010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Agonist anti-CD137 (4-1BB) mAbs enhance CD8-mediated antitumor immunity. Agonist anti-human CD137 mAbs binding to four distinct epitopes on the CD137 glycoprotein costimulated T cell activation irrespective of the engaged epitope or its interference with CD137L binding. CD137 perturbation with all these agonist mAbs resulted in Ag and Ab internalization toward an endosomal vesicular compartment. Internalization was observed in activated T lymphocytes from humans and mice, not only in culture but also in Ab-injected living animals. These in vivo experiments were carried out upon systemic i.v. injections with anti-CD137 mAbs and showed CD137 internalization in tumor-infiltrating lymphocytes and in activated human T cells transferred to immunodeficient mice. Efficient CD137 internalization required K63 polyubiquitination and endocytosed CD137-containing vesicles recruited TNFR-associated factor (TRAF) 2 and were decorated with K63 polyubiquitins. CD137 stimulation activates NF-κB through a K63-linked polyubiquitination-dependent route, and CD137-associated TRAF2 becomes K63 polyubiquitinated. Consistent with a role for TRAF2 in CD137 signaling, transgenic mice functionally deficient in TRAF2 showed delayed immunotherapeutic activity of anti-CD137 mAbs. As a whole, these findings advance our knowledge of the mechanisms of action of anti-CD137 immunostimulatory mAbs such as those currently undergoing clinical trials in cancer patients.
Collapse
Affiliation(s)
- Ivan Martinez-Forero
- Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona 31008, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liver gene transfer of interkeukin-15 constructs that become part of circulating high density lipoproteins for immunotherapy. PLoS One 2012; 7:e52370. [PMID: 23285013 PMCID: PMC3528770 DOI: 10.1371/journal.pone.0052370] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 11/13/2012] [Indexed: 12/11/2022] Open
Abstract
Apolipoprotein A-I (Apo A-I) is a major component of high density lipoproteins (HDL) that transport cholesterol in circulation. We have constructed an expression plasmid encoding a chimeric molecule encompassing interleukin-15 (IL-15) and Apo A-I (pApo-hIL15) that was tested by hydrodynamic injections into mice and was co-administered with a plasmid encoding the sushi domain of IL-15Rα (pSushi) in order to enhance IL-15 trans-presentation and thereby bioactivity. The pharmacokinetics of the Apo A-I chimeric protein were much longer than non-stabilized IL-15 and its bioactivity was enhanced in combination with IL-15Rα Sushi. Importantly, the APO-IL-15 fusion protein was incorporated in part into circulating HDL. Liver gene transfer of these constructs increased NK and memory-phenotype CD8 lymphocyte numbers in peripheral blood, spleen and liver as a result of proliferation documented by CFSE dilution and BrdU incorporation. Moreover, the gene transfer procedure partly rescued the NK and memory T-cell deficiency observed in IL-15Rα−/− mice. pApo-hIL15+ pSushi gene transfer to the liver showed a modest therapeutic activity against subcutaneously transplanted MC38 colon carcinoma tumors, that was more evident when tumors were set up as liver metastases. The improved pharmacokinetic profile and the strong biological activity of APO-IL-15 fusion protein holds promise for further development in combination with other immunotherapies.
Collapse
|
21
|
Palazón A, Martínez-Forero I, Teijeira A, Morales-Kastresana A, Alfaro C, Sanmamed MF, Perez-Gracia JL, Peñuelas I, Hervás-Stubbs S, Rouzaut A, de Landázuri MO, Jure-Kunkel M, Aragonés J, Melero I. The HIF-1α hypoxia response in tumor-infiltrating T lymphocytes induces functional CD137 (4-1BB) for immunotherapy. Cancer Discov 2012; 2:608-23. [PMID: 22719018 DOI: 10.1158/2159-8290.cd-11-0314] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
UNLABELLED The tumor microenvironment of transplanted and spontaneous mouse tumors is profoundly deprived of oxygenation as confirmed by positron emission tomographic (PET) imaging. CD8 and CD4 tumor-infiltrating T lymphocytes (TIL) of transplanted colon carcinomas, melanomas, and spontaneous breast adenocarcinomas are CD137 (4-1BB)-positive, as opposed to their counterparts in tumor-draining lymph nodes and spleen. Expression of CD137 on activated T lymphocytes is markedly enhanced by hypoxia and the prolyl-hydroxylase inhibitor dimethyloxalylglycine (DMOG). Importantly, hypoxia does not upregulate CD137 in hypoxia-inducible factor (HIF)-1α-knockout T cells, and such HIF-1α-deficient T cells remain CD137-negative even when becoming TILs, in clear contrast to co-infiltrating and co-transferred HIF-1α-sufficient T lymphocytes. The fact that CD137 is selectively expressed on TILs was exploited to confine the effects of immunotherapy with agonist anti-CD137 monoclonal antibodies to the tumor tissue. As a result, low-dose intratumoral injections avoid liver inflammation, achieve antitumor systemic effects, and permit synergistic therapeutic effects with PD-L1/B7-H1 blockade. SIGNIFICANCE CD137 (4-1BB) is an important molecular target to augment antitumor immunity. Hypoxia in the tumor microenvironment as sensed by the HIF-1α system increases expression of CD137 on tumor-infiltrating lymphocytes that thereby become selectively responsive to the immunotherapeutic effects of anti-CD137 agonist monoclonal antibodies as those used in ongoing clinical trials.
Collapse
Affiliation(s)
- Asís Palazón
- CIMA and CUN University of Navarra, Pamplona, Navarra, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
A mathematical model of immune-system-melanoma competition. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:850754. [PMID: 22701144 PMCID: PMC3371685 DOI: 10.1155/2012/850754] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/02/2012] [Indexed: 01/08/2023]
Abstract
We present a mathematical model developed to reproduce the immune response entitled with the combined administration of activated OT1 cytotoxic T lymphocytes (CTLs) and Anti-CD137 monoclonal antibodies. The treatment is directed against melanoma in B16 OVA mouse models exposed to a specific immunotherapy strategy. We model two compartments: the injection point compartment where the treatment is administered and the skin compartment where melanoma tumor cells proliferate. To model the migration of OT1 CTLs and antibodies from the injection to the skin compartment, we use delay differential equations (DDEs). The outcomes of the mathematical model are in good agreement with the in vivo results. Moreover, sensitivity analysis of the mathematical model underlines the key role of OT1 CTLs and suggests that a possible reduction of the number of injected antibodies should not affect substantially the treatment efficacy.
Collapse
|
23
|
Assessment of activity of an adhesion molecule CD134 and CD137 in colorectal cancer patients. POLISH JOURNAL OF SURGERY 2012; 83:641-5. [PMID: 22343199 DOI: 10.2478/v10035-011-0102-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UNLABELLED Epidemiological studies prove that incidence of colorectal cancer is increasing. The first line therapy of colorectal cancer is surgical resection of the primary tumor and elimination of regional and remote metastases. THE AIM OF THE STUDY was to determine expression of adhesion molecules CD134 and CD137 in the peripheral blood in colorectal cancer patients, depending on clinical cancer stage, size and invasion of the tumor. MATERIAL AND METHODS The study enrolled 72 patients with primary colorectal adenocarcinoma. An average patient age was 64.55 years. Clinical tumor stage was assessed using two scales: Dukes: A and Astler-Coller scale. Expression of adhesion molecules was determined in the peripheral blood collected on the day of the procedure and 10 days after the procedure. RESULTS An average activity of CD134 molecules (12.66%) was significantly higher than that of CD137 (6.26%) (p<0.001). Clinical tumor stage was assessed on Dukes scale and was unrelated to CD134 activity, while activity of CD137 was related to clinical cancer stage. CONCLUSIONS CD137 activity is directly proportional to colorectal cancer stage. Surgical resection of the tumor results in increased CD134 and CD137 expression. Long term studies, enrolling larger groups of patients, including their subdivision to colon and rectal cancer, are required to utilize CD134 and CD137 in immune therapy of colorectal cancer.
Collapse
|
24
|
Teijeira Á, Palazón A, Garasa S, Marré D, Aubá C, Rogel A, Murillo O, Martínez‐Forero I, Lang F, Melero I, Rouzaut A. CD137 on inflamed lymphatic endothelial cells enhances CCL21‐guided migration of dendritic cells. FASEB J 2012; 26:3380-92. [DOI: 10.1096/fj.11-201061] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Álvaro Teijeira
- Department of Oncology, Centre for Applied Medical ResearchUniversity of Navarra Pío XII Pamplona Spain
| | - Asís Palazón
- Hepathology and Gene Therapy Unit, Centre for Applied Medical ResearchUniversity of Navarra Pío XII Pamplona Spain
| | - Saray Garasa
- Department of Oncology, Centre for Applied Medical ResearchUniversity of Navarra Pío XII Pamplona Spain
| | - Diego Marré
- Department of Plastic Surgery, Clínica Universidad de NavarraUniversity of Navarra Pío XII Pamplona Spain
| | - Cristina Aubá
- Department of Plastic Surgery, Clínica Universidad de NavarraUniversity of Navarra Pío XII Pamplona Spain
| | - Anne Rogel
- Institut de Recherche Thérapeutique de l'Université de Nantes Nantes France
| | - Ohiana Murillo
- Hepathology and Gene Therapy Unit, Centre for Applied Medical ResearchUniversity of Navarra Pío XII Pamplona Spain
| | - Iván Martínez‐Forero
- Hepathology and Gene Therapy Unit, Centre for Applied Medical ResearchUniversity of Navarra Pío XII Pamplona Spain
| | - François Lang
- Institut de Recherche Thérapeutique de l'Université de Nantes Nantes France
| | - Ignacio Melero
- Hepathology and Gene Therapy Unit, Centre for Applied Medical ResearchUniversity of Navarra Pío XII Pamplona Spain
| | - Ana Rouzaut
- Department of Oncology, Centre for Applied Medical ResearchUniversity of Navarra Pío XII Pamplona Spain
| |
Collapse
|
25
|
Determination of the activity of CD134 (OX-40) and CD137 (4-1BB) adhesive molecules by means of flow cytometry in patients with colorectal cancer metastases to the liver. POLISH JOURNAL OF SURGERY 2012; 83:424-9. [PMID: 22166715 DOI: 10.2478/v10035-011-0066-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UNLABELLED Colorectal carcinoma (CRC) is one of the most common reasons of mortality in patients diagnosed with neoplasms. In nearly 20% of patients with colorectal carcinoma metastatic lesions are diagnosed. In general, survival of patients with metastatic lesions to the liver and other organs is poor. Conventional therapy of colorectal carcinoma is based on the surgical excision of the tumor, chemotherapy, and radiotherapy. THE AIM OF THE STUDY was to determine the expression of CD134 and CD137 molecules inside the tumor, at the border of the tumor, in the healthy tissue, and peripheral blood, considering patients with colorectal carcinoma metastases to the liver. MATERIAL AND METHODS The study group comprised 39 patients subject to surgical treatment at the Department of General and Gastroenterological Surgery, due to colorectal carcinoma with liver metastases. CD134 and CD137 adhesive molecule levels were determined inside the tumor, at the border of the tumor, and in the healthy margins of the surgical incision. Additionally, the authors evaluated the peripheral blood level of the above-mentioned molecules on the day of the surgical procedure, and 10 days, thereafter. RESULTS The mean CD134 levels were the highest inside the tumor, significantly decreasing towards the direction of healthy tissues. The average peripheral blood molecule levels were four-fold higher on the day of the surgical procedure, as compared to values obtained on the tenth postoperative day. This dependency also concerned the remaining statistical measures.The mean CD137 levels showed no significant difference, regardless their location. The authors observed significant, peripheral blood, CD137 level differences, considering the day of the surgical procedure and tenth postoperative period. The mean CD137 peripheral blood level was several times higher on the day of the surgical procedure, as compared to the postoperative period. CONCLUSIONS The determination of the activity of CD134 and CD137 molecules might create opportunities to plan treatment and predict prognosis in case of colorectal carcinoma. Proper immuno-therapeutic management which is based on the expression of the above-mentioned molecules might help determine the risk of metastases, preventing from their development. In advanced cases treatment of liver metastases might be possible.
Collapse
|
26
|
Abstract
4-1BB (CD137), a member of the TNF receptor superfamily, is an activation-induced T-cell costimulatory molecule. Signaling via 4-1BB upregulates survival genes, enhances cell division, induces cytokine production, and prevents activation-induced cell death in T cells. The importance of the 4-1BB pathway has been underscored in a number of diseases, including cancer. Growing evidence indicates that anti-4-1BB monoclonal antibodies possess strong antitumor properties, which in turn are the result of their powerful CD8+ T-cell activating, IFN-γ producing, and cytolytic marker-inducing capabilities. In addition, combination therapy of anti-4-1BB with other anticancer agents, such as radiation, has robust tumor-regressing abilities against nonimmunogenic or poorly immunogenic tumors. Furthermore, the adoptive transfer of ex vivo anti-4-1BB-activated CD8+ T cells from previously tumor-treated animals efficiently inhibits progression of tumors in recipient mice that have been inoculated with fresh tumors. In addition, targeting of tumors with variants of 4-1BBL directed against 4-1BB also have potent antitumor effects. Currently, a humanized anti-4-1BB is in clinical trials in patients with solid tumors, including melanoma, renal carcinoma, and ovarian cancer, and so far seems to have a favorable toxicity profile. In this review, we discuss the basis of the therapeutic potential of targeting the 4-1BB-4-1BBL pathway in cancer treatment.
Collapse
Affiliation(s)
- Dass S Vinay
- Section of Clinical Immunology, Allergy, and Rheumatology, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | |
Collapse
|
27
|
Alfaro C, Suarez N, Oñate C, Perez-Gracia JL, Martinez-Forero I, Hervas-Stubbs S, Rodriguez I, Perez G, Bolaños E, Palazon A, de Sanmamed MF, Morales-Kastresana A, Gonzalez A, Melero I. Dendritic cells take up and present antigens from viable and apoptotic polymorphonuclear leukocytes. PLoS One 2011; 6:e29300. [PMID: 22206007 PMCID: PMC3243708 DOI: 10.1371/journal.pone.0029300] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 11/23/2011] [Indexed: 01/13/2023] Open
Abstract
Dendritic cells (DC) are endowed with the ability to cross-present antigens from other cell types to cognate T cells. DC are poised to meet polymorphonuclear leukocytes (PMNs) as a result of being co-attracted by interleukin-8 (IL-8), for instance as produced by tumor cells or infected tissue. Human monocyte-derived and mouse bone marrow-derived DC can readily internalize viable or UV-irradiated PMNs. Such internalization was abrogated at 4°C and partly inhibited by anti-CD18 mAb. In mice, DC which had internalized PMNs containing electroporated ovalbumin (OVA) protein, were able to cross-present the antigen to CD8 (OT-1) and CD4 (OT-2) TCR-transgenic T cells. Moreover, in humans, tumor cell debris is internalized by PMNs and the tumor-cell material can be subsequently taken up from the immunomagnetically re-isolated PMNs by DC. Importantly, if human neutrophils had endocytosed bacteria, they were able to trigger the maturation program of the DC. Moreover, when mouse PMNs with E. coli in their interior are co-injected in the foot pad with DC, many DC loaded with fluorescent material from the PMNs reach draining lymph nodes. Using CT26 (H-2(d)) mouse tumor cells, it was observed that if tumor cells are intracellularly loaded with OVA protein and UV-irradiated, they become phagocytic prey of H-2(d) PMNs. If such PMNs, that cannot present antigens to OT-1 T cells, are immunomagnetically re-isolated and phagocytosed by H-2(b) DC, such DC productively cross-present OVA antigen determinants to OT-1 T cells. Cross-presentation to adoptively transferred OT-1 lymphocytes at draining lymph nodes also take place when OVA-loaded PMNs (H-2(d)) are coinjected in the footpad of mice with autologous DC (H-2(b)). In summary, our results indicate that antigens phagocytosed by short-lived PMNs can be in turn internalized and productively cross-presented by DC.
Collapse
Affiliation(s)
- Carlos Alfaro
- Gene Therapy Unit, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Natalia Suarez
- Gene Therapy Unit, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Carmen Oñate
- Gene Therapy Unit, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Jose L. Perez-Gracia
- Medical Oncology Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | | | | | | | - Guiomar Perez
- Gene Therapy Unit, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Elixabet Bolaños
- Gene Therapy Unit, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Asis Palazon
- Gene Therapy Unit, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Miguel Fernandez de Sanmamed
- Gene Therapy Unit, CIMA, Universidad de Navarra, Pamplona, Spain
- Medical Oncology Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | | | - Alvaro Gonzalez
- Biochemistry Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Gene Therapy Unit, CIMA, Universidad de Navarra, Pamplona, Spain
- Medical Oncology Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
- * E-mail:
| |
Collapse
|
28
|
Pappalardo F, Forero IM, Pennisi M, Palazon A, Melero I, Motta S. SimB16: modeling induced immune system response against B16-melanoma. PLoS One 2011; 6:e26523. [PMID: 22028894 PMCID: PMC3197530 DOI: 10.1371/journal.pone.0026523] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/28/2011] [Indexed: 01/29/2023] Open
Abstract
Immunological therapy of progressive tumors requires not only activation and expansion of tumor specific cytotoxic T lymphocytes (CTLs), but also an efficient effector phase including migration of CTLs in the tumor tissue followed by conjugation and killing of target cells. We report the application of an agent-based model to recapitulate both the effect of a specific immunotherapy strategy against B16-melanoma in mice and the tumor progression in a generic tissue section. A comparison of the in silico results with the in vivo experiments shows excellent agreement. We therefore use the model to predict a critical role for CD137 expression on tumor vessel endothelium for successful therapy and other mechanistic aspects. Experimental results are fully compatible with the model predictions. The biologically oriented in silico model derived in this work will be used to predict treatment failure or success in other pre-clinical conditions eventually leading new promising in vivo experiments.
Collapse
Affiliation(s)
| | | | | | - Asis Palazon
- CIMA and CUN University of Navarra Pamplona, Pamplona, Spain
| | - Ignacio Melero
- CIMA and CUN University of Navarra Pamplona, Pamplona, Spain
- * E-mail:
| | | |
Collapse
|
29
|
Lee H, Park HJ, Sohn HJ, Kim JM, Kim SJ. Combinatorial therapy for liver metastatic colon cancer: dendritic cell vaccine and low-dose agonistic anti-4-1BB antibody co-stimulatory signal. J Surg Res 2011; 169:e43-50. [PMID: 21571303 DOI: 10.1016/j.jss.2011.03.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/23/2011] [Accepted: 03/25/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND The combination of dendritic cell (DC) vaccine and 4-1BB ligation may be a suitable choice of immunotherapy for incurable cancer. However, at anti-tumor effector doses over 100 μg, 4-1BB Ab ligation is toxic to CD4(+) T cells, thus limiting its therapeutic use. MATERIALS AND METHODS A liver metastatic colon cancer model was established by hepatic injection of CT26 cells into Balb/c mice. Intraperitoneal administration of 1 × 10(6)/200 μL/mouse therapeutic-DCs (tumor lysate pulsed-DCs, P-DCs) began on d 7 after tumor cell inoculation. A P-DC injection was performed twice within a 1-wk interval. Agonistic anti 4-1BB Ab was intraperitoneally injected on d 7, 9, and 11 after tumor cell inoculation. Animals were sacrificed on d 21, and tumor growth was determined by weighing the liver with the tumor. RESULTS In the 20 μg 4-1BB ligation group, significant induction of CD3(+)CD8(+) T cells was observed without toxicity to CD3(+)CD4(+) T cells. DC vaccine treatment induced tumor antigen-specific Th1 cytokine (IL-2 and IFN-γ) secretion from the splenic lymphocytes. Ligation of 4-1BB reduced the DC vaccine-related IL-10 secretion and regulatory T cell population. Compared with anti-tumor effect of DC vaccine or 20 μg 4-1BB Ab alone, the combination therapy significantly increased the tumor rejection power to the level observed with higher doses of 4-1BB Ab alone. The combination therapy did not induce high-dose 4-1BB-related toxicity with CD4(+) T cell reduction, but did significantly induce tumor antigen-specific IFN-γ secreting effector CD8(+) cytotoxic T cells. CONCLUSIONS The data from our study reveal the value of using a DC vaccine combined with as little as 20 μg 4-1BB Ab as an improved immunotherapeutic for cancer.
Collapse
Affiliation(s)
- Hyunah Lee
- Office of Biomedical Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-dong, Gangnam-gu, Seoul, Korea
| | | | | | | | | |
Collapse
|
30
|
Carcinoma-derived interleukin-8 disorients dendritic cell migration without impairing T-cell stimulation. PLoS One 2011; 6:e17922. [PMID: 21423807 PMCID: PMC3056721 DOI: 10.1371/journal.pone.0017922] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 02/17/2011] [Indexed: 01/14/2023] Open
Abstract
Background Interleukin-8 (IL-8, CXCL8) is readily produced by human malignant cells.
Dendritic cells (DC) both produce IL-8 and express the IL-8 functional
receptors CXCR1 and CXCR2. Most human colon carcinomas produce IL-8. IL-8
importance in malignancies has been ascribed to angiogeneis promotion. Principal Findings IL-8 effects on human monocyte-derived DC biology were explored upon DC
exposure to recombinant IL-8 and with the help of an IL-8 neutralizing mAb.
In vivo experiments were performed in immunodeficient
mice xenografted with IL-8-producing human colon carcinomas and
comparatively with cell lines that do not produce IL-8. Allogenic T
lymphocyte stimulation by DC was explored under the influence of IL-8. DC
and neutrophil chemotaxis were measured by transwell-migration assays. Sera
from tumor-xenografted mice contained increasing concentrations of IL-8 as
the tumors progress. IL-8 production by carcinoma cells can be modulated by
low doses of cyclophosphamide at the transcription level. If human DC are
injected into HT29 or CaCo2 xenografted tumors, DC are retained
intratumorally in an IL-8-dependent fashion. However, IL-8 did not modify
the ability of DC to stimulate T cells. Interestingly, pre-exposure of DC to
IL-8 desensitizes such cells for IL-8-mediated in vitro or
in vivo chemoattraction. Thereby DC become disoriented
to subsequently follow IL-8 chemotactic gradients towards malignant or
inflamed tissue. Conclusions IL-8 as produced by carcinoma cells changes DC migration cues, without
directly interfering with DC-mediated T-cell stimulation.
Collapse
|
31
|
Vanrell L, Di Scala M, Blanco L, Otano I, Gil-Farina I, Baldim V, Paneda A, Berraondo P, Beattie SG, Chtarto A, Tenenbaum L, Prieto J, Gonzalez-Aseguinolaza G. Development of a liver-specific Tet-on inducible system for AAV vectors and its application in the treatment of liver cancer. Mol Ther 2011; 19:1245-53. [PMID: 21364542 DOI: 10.1038/mt.2011.37] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) are effective gene delivery vehicles that can mediate long-lasting transgene expression. However, tight regulation and tissue-specific transgene expression is required for certain therapeutic applications. For regulatable expression from the liver we designed a hepatospecific bidirectional and autoregulatory tetracycline (Tet)-On system (Tet(bidir)Alb) flanked by AAV inverted terminal repeats (ITRs). We characterized the inducible hepatospecific system in comparison with an inducible ubiquitous expression system (Tet(bidir)CMV) using luciferase (luc). Although the ubiquitous system led to luc expression throughout the mouse, luc expression derived from the hepatospecific system was restricted to the liver. Interestingly, the induction rate of the Tet(bidir)Alb was significantly higher than that of Tet(bidir)CMV, whereas leakage of Tet(bidir)Alb was significantly lower. To evaluate the therapeutic potential of this vector, an AAV-Tet(bidir)-Alb-expressing interleukin-12 (IL-12) was tested in a murine model for hepatic colorectal metastasis. The vector induced dose-dependent levels of IL-12 and interferon-γ (IFN-γ), showing no significant toxicity. AAV-Tet(bidir)-Alb-IL-12 was highly efficient in preventing establishment of metastasis in the liver and induced an efficient T-cell memory response to tumor cells. Thus, we have demonstrated persistent, and inducible in vivo expression of a gene from a liver-specific Tet-On inducible construct delivered via an AAV vector and proved to be an efficient tool for treating liver cancer.
Collapse
Affiliation(s)
- Lucia Vanrell
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Palazón A, Teijeira A, Martínez-Forero I, Hervás-Stubbs S, Roncal C, Peñuelas I, Dubrot J, Morales-Kastresana A, Pérez-Gracia JL, Ochoa MC, Ochoa-Callejero L, Martínez A, Luque A, Dinchuk J, Rouzaut A, Jure-Kunkel M, Melero I. Agonist anti-CD137 mAb act on tumor endothelial cells to enhance recruitment of activated T lymphocytes. Cancer Res 2011; 71:801-11. [PMID: 21266358 DOI: 10.1158/0008-5472.can-10-1733] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Agonist monoclonal antibodies (mAb) to the immune costimulatory molecule CD137, also known as 4-1BB, are presently in clinical trials for cancer treatment on the basis of their costimulatory effects on primed T cells and perhaps other cells of the immune system. Here we provide evidence that CD137 is selectively expressed on the surface of tumor endothelial cells. Hypoxia upregulated CD137 on murine endothelial cells. Treatment of tumor-bearing immunocompromised Rag(-/-) mice with agonist CD137 mAb did not elicit any measurable antiangiogenic effects. In contrast, agonist mAb stimulated tumor endothelial cells, increasing cell surface expression of the adhesion molecules intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin. When adoptively transferred into mice, activated T lymphocytes derived from CD137-deficient animals entered more avidly into tumor tissue after treatment with agonist mAb. This effect could be neutralized with anti-ICAM-1 and anti-VCAM-1 blocking antibodies. Thus, stimulation of CD137 not only enhanced T-cell activation but also augmented their trafficking into malignant tissue, through direct actions on the blood vessels that irrigate the tumor. Our findings identify an additional mechanism of action that can explain the immunotherapeutic effects of agonist CD137 antibodies.
Collapse
Affiliation(s)
- Asís Palazón
- CIMA and CUN University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dubrot J, Palazón A, Alfaro C, Azpilikueta A, Ochoa MC, Rouzaut A, Martinez-Forero I, Teijeira A, Berraondo P, Le Bon A, Hervás-Stubbs S, Melero I. Intratumoral injection of interferon-α and systemic delivery of agonist anti-CD137 monoclonal antibodies synergize for immunotherapy. Int J Cancer 2010; 128:105-18. [PMID: 20309938 DOI: 10.1002/ijc.25333] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
CD137 artificial costimulation results in complete tumor rejection in several mouse models. Type I interferons (IFN) exert antitumor effects through an array of molecular functions on malignant cells, tumor stroma and immune system cells. The fact that agonist anti-CD137 mAb induce tumor regressions in mice deficient in the unique receptor for Type I IFNs (IFNAR(-/-) ) indicated potential for treatment combinations. Indeed, combination of intratumor injections of mouse IFN-α and intraperitoneal injections of anti-CD137 mAb synergized as seen on subcutaneous lesions derived from the MC38 colon carcinoma, which is resistant to each treatment if given separately. Therapeutic activity was achieved both against lesions directly injected with IFN-α and against distant concomitant tumors. Experiments in bone marrow chimeras prepared with IFNAR(-/-) and WT mice concluded that expression of the receptor for Type I interferons is mainly required on cells of the hematopoietic compartment. Synergistic effects correlated with a remarkable cellular hyperplasia of the tumor draining lymph nodes (TDLNs). Enlarged TDLNs contained more plasmacytoid and conventional dendritic cells (DC) that more readily cross-presented. Importantly, numbers of both DC subtypes inversely correlated with the tumor size. Numbers of CD8 T cells specific for a dominant tumor antigen were increased at TDLNs by each separate treatment but only with slight augments due to the combination. Combined antitumor effects of the therapeutic strategy were also seen on subcutaneous TC-1 tumors established for 24 days before treatment onset. The described strategy is realistic because (i) agents of each kind are clinically available and (ii) equivalent procedures in humans are feasible.
Collapse
Affiliation(s)
- Juan Dubrot
- CIMA and Clinica Universitaria, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pardee AD, Wesa AK, Storkus WJ. Integrating costimulatory agonists to optimize immune-based cancer therapies. Immunotherapy 2010; 1:249-64. [PMID: 20046961 DOI: 10.2217/1750743x.1.2.249] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
While immunotherapy for cancer has become increasingly popular, clinical benefits for such approaches remain limited. This is likely due to tumor-associated immune suppression, particularly in the advanced-disease setting. Thus, a major goal of novel immunotherapeutic design has become the coordinate reversal of existing immune dysfunction and promotion of specific tumoricidal T-cell function. Costimulatory members of the TNF-receptor family are important regulators of T-cell-mediated immunity. Notably, agonist ligation of these receptors restores potent antitumor immunity in the tumor-bearing host. Current Phase I/II evaluation of TNF-receptor agonists as single-modality therapies will illuminate their safety, mechanism(s) of action, and best use in prospective combinational immunotherapy approaches capable of yielding superior benefits to cancer patients.
Collapse
Affiliation(s)
- Angela D Pardee
- University of Pittsburgh School of Medicine, PA, Pittsburgh, USA
| | | | | |
Collapse
|
35
|
Rouzaut A, Garasa S, Teijeira A, González I, Martinez-Forero I, Suarez N, Larrea E, Alfaro C, Palazón A, Dubrot J, Hervás-Stubbs S, Melero I. Dendritic cells adhere to and transmigrate across lymphatic endothelium in response to IFN-α. Eur J Immunol 2010; 40:3054-63. [PMID: 21061437 DOI: 10.1002/eji.201040523] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 08/06/2010] [Accepted: 08/26/2010] [Indexed: 02/01/2023]
Abstract
Migration of DC into lymphatic vessels ferries antigenic cargo and pro-inflammatory stimuli into the draining LN. Given that tissues under the influence of viral infections produce type I IFN, it is conceivable that these cytokines enhance DC migration in order to facilitate an antiviral immune response. Cultured lymphatic endothelium monolayers pretreated with TNF-α were used to model this phenomenon under inflammatory conditions. DC differentiated in the presence of either IFN-α2b or IFN-α5 showed enhanced adhesion to cultured lymphatic endothelial cells. These pro-adhesive effects were mediated by DC, not the lymphatic endothelium, and correlated with increased DC transmigration across lymphatic endothelial cell monolayers. Transmigration was guided by chemokines acting on DC, and blocking experiments with mAb indicated a role for LFA-1. Furthermore, incubation of DC with IFN-α led to the appearance of active conformation epitopes on the CD11a integrin chains expressed by DC. Differentiation of mouse DC in the presence of IFN-α also increased DC migration from inflammed footpads toward popliteal LN. Collectively, these results indicate a role for type I IFN in directing DC toward LN under inflammatory conditions.
Collapse
Affiliation(s)
- Ana Rouzaut
- Center for Applied Medical Research, School of Medicine, University of Navarra, Pamplona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dubrot J, Milheiro F, Alfaro C, Palazón A, Martinez-Forero I, Perez-Gracia JL, Morales-Kastresana A, Romero-Trevejo JL, Ochoa MC, Hervás-Stubbs S, Prieto J, Jure-Kunkel M, Chen L, Melero I. Treatment with anti-CD137 mAbs causes intense accumulations of liver T cells without selective antitumor immunotherapeutic effects in this organ. Cancer Immunol Immunother 2010; 59:1223-33. [PMID: 20336294 PMCID: PMC11030554 DOI: 10.1007/s00262-010-0846-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 03/04/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND/AIMS Cancer therapy with agonist anti-CD137 mAbs has been shown to induce immune-mediated tumor rejections in mice, and equivalent agents of this kind are currently being tested in cancer patients. Previous reports indicated that CD137 stimulation induced polyclonal infiltrates of T lymphocytes in the liver. This study characterizes the liver infiltrates and the target dependency of the phenomena and addresses the question of whether tumors nested in the liver are a more favorable target for CD137-based immunotherapy. METHODS Liver infiltrates were studied with conventional histology and multiple color flow cytometry of total liver leukocytes. CD137(-/-) mice, mice with a single rearrangement of the TCR (OT-1 mice) and Rag(-/-) mice were used to clarify molecular requirements. Mice implanted with MC38 colon carcinomas either subcutaneously or inside the liver were used for comparative studies under treatment with agonist anti-CD137 mAbs. RESULTS CD137 treatment caused mononuclear inflammation in the portal spaces of the liver, which gave rise to moderate increases in transaminases without signs of cholestasis. Marked increases in the numbers of CD8+ T cells were observed, including CD8+ T lymphocytes co-expressing CD11c. Infiltrates were absent in CD137(-/-) mice and mitigated in mice harboring a single transgenic TCR on their CD8 T cells. Despite the tumor-independent accumulation of T cells in the liver, immunotherapeutic effects were not more prominent against tumors located in this organ. CONCLUSIONS Target-dependent effects of CD137 stimulation lead to liver infiltration with T cells, but lymphocyte enrichment in this organ does not privilege this site for immunotherapeutic effects against transplanted tumors.
Collapse
MESH Headings
- Amidinotransferases/immunology
- Amidinotransferases/metabolism
- Animals
- Antibodies, Monoclonal/administration & dosage
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cell Count
- Cell Line, Tumor
- Cell Movement/drug effects
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Colonic Neoplasms/therapy
- Immunotherapy
- Liver/drug effects
- Liver/immunology
- Liver/metabolism
- Liver/pathology
- Lymphocytes, Tumor-Infiltrating/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neoplasm Transplantation
- Organ Specificity
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
Collapse
Affiliation(s)
- Juan Dubrot
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Av. Pio XII, 55, 31008 Pamplona, Spain
| | - Francisca Milheiro
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Av. Pio XII, 55, 31008 Pamplona, Spain
| | - Carlos Alfaro
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Av. Pio XII, 55, 31008 Pamplona, Spain
| | - Asis Palazón
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Av. Pio XII, 55, 31008 Pamplona, Spain
| | - Ivan Martinez-Forero
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Av. Pio XII, 55, 31008 Pamplona, Spain
| | | | - Aizea Morales-Kastresana
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Av. Pio XII, 55, 31008 Pamplona, Spain
| | - José L. Romero-Trevejo
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Av. Pio XII, 55, 31008 Pamplona, Spain
| | - María C. Ochoa
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Av. Pio XII, 55, 31008 Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Av. Pio XII, 55, 31008 Pamplona, Spain
| | - Jesús Prieto
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Av. Pio XII, 55, 31008 Pamplona, Spain
- Clínica Universitaria, Universidad de Navarra, Pamplona, Spain
| | - Maria Jure-Kunkel
- Bristol Myers-Squibb Pharmaceutical Research Institute, Princeton, NJ USA
| | - Lieping Chen
- Sidney Kimmel Cancer Center, Johns Hopkins Medical School, Baltimore, MD USA
| | - Ignacio Melero
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Av. Pio XII, 55, 31008 Pamplona, Spain
- Clínica Universitaria, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
37
|
Antitumoral efficacy of DNA nanoparticles in murine models of lung cancer and pulmonary metastasis. Cancer Gene Ther 2010; 17:20-7. [PMID: 19575045 DOI: 10.1038/cgt.2009.45] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polyethylenimine (PEI)-DNA complexes are nanoparticles that are able to efficiently transfer plasmids to the lungs. Interleukin-12 (IL12) gene transfer using PEI may represent an important strategy for lung cancer treatment. In this study, we evaluated the antitumoral efficacy of the administration of PEI-DNA nanoparticles carrying IL12 gene (PEI-IL12) for the treatment of lung cancer and pulmonary metastases in animal models. After inoculation of tumor cells, mice were treated intravenously with a single dose of PEI-IL12, PEI nanoparticles carrying the reporter gene beta-galactosidase (PEI-LacZ) or vehicle. Transgene expression, survival rates and immune response were analyzed in both models. Administration of PEI-LacZ and PEI-IL12 nanoparticles controlled tumor growth and prolonged survival times in both animal models. Although PEI-IL12 and PEI-LacZ administration showed similar antitumoral effects in the lung cancer model, the efficacy of PEI-IL12 was significantly superior in the inhibition of the development of pulmonary metastases. Furthermore, the administration of PEI-DNA nanoparticles results in the production of high levels of proinflammatory cytokines. Our results showed that PEI-DNA nanoparticles are an efficient vector for mediating gene transfer to the lungs, are a potent inducer of the innate immune response and represents an interesting strategy for the treatment of bronchogenic carcinoma and metastatic lung carcinoma.
Collapse
|
38
|
Murillo O, Dubrot J, Palazón A, Arina A, Azpilikueta A, Alfaro C, Solano S, Ochoa MC, Berasain C, Gabari I, Pérez-Gracia JL, Berraondo P, Hervás-Stubbs S, Melero I. In vivo depletion of DC impairs the anti-tumor effect of agonistic anti-CD137 mAb. Eur J Immunol 2009; 39:2424-36. [PMID: 19662633 DOI: 10.1002/eji.200838958] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Anti-CD137 mAb are capable of inducing tumor rejection in several syngeneic murine tumor models and are undergoing clinical trials for cancer. The anti-tumor effect involves co-stimulation of tumor-specific CD8(+) T cells. Whether antigen cross-presenting DC are required for the efficacy of anti-CD137 mAb treatment has never been examined. Here we show that the administration of anti-CD137 mAb eradicates EG7-OVA tumors by a strictly CD8beta(+) T-cell-dependent mechanism that correlates with increased CTL activity. Ex vivo analyses to determine the identity of the draining lymph node cell type responsible for tumor antigen cross-presentation revealed that CD11c(+) cells, most likely DC, are the main players in this tumor model. A minute number of tumor cells, revealed by the presence of OVA cDNA, reach tumor-draining lymph nodes. Direct antigen presentation by tumor cells themselves also participates in anti-OVA CTL induction. Using CD11c diphtheria toxin receptor-green fluorescent protein-->C57BL/6 BM chimeric mice, which allow for sustained ablation of DC with diphtheria toxin, we confirmed the involvement of DC in tumor antigen cross-presentation in CTL induction against OVA(257-264) epitope and in the antitumor efficacy induced by anti-CD137 mAb.
Collapse
Affiliation(s)
- Oihana Murillo
- Gene Therapy Unit, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Costimulatory ligand CD70 allows induction of CD8+ T-cell immunity by immature dendritic cells in a vaccination setting. Blood 2009; 113:5167-75. [PMID: 19279334 DOI: 10.1182/blood-2008-03-148007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The use of dendritic cells (DCs) as anticancer vaccines holds promise for therapy but requires optimization. We have explored the potential of costimulatory ligand CD70 to boost the capacity of DCs to evoke effective CD8(+) T-cell immunity. We show that immature conventional DCs, when endowed with CD70 expression by transgenesis, are converted from a tolerogenic state into an immunogenic state. Adoptively transferred CD70-expressing immature DCs could prime CD8(+) T cells, by CD27, to become tumor-eradicating cytolytic effectors and memory cells with a capacity for robust secondary expansion. The CD8(+) T-cell response, including memory programming, was independent of CD4(+) T-cell help, because the transferred immature DCs were loaded with major histocompatibility complex class I-restricted peptide only. Without CD70 expression, the DCs generated abortive clonal expansion, dysfunctional antitumor responses, and no CD8(+) T-cell memory. CD70-expressing CD8(+) DCs were the primary subset responsible for CD8(+) T-cell priming and performed comparably to fully matured DCs. These data highlight the importance of CD27/CD70 interactions at the T-cell/DC interface and indicate that CD70 should be considered in the design of DC vaccination strategies.
Collapse
|
40
|
Kim YJ, Han MK, Broxmeyer HE. 4-1BB regulates NKG2D costimulation in human cord blood CD8+ T cells. Blood 2008; 111:1378-86. [PMID: 18024793 PMCID: PMC2214739 DOI: 10.1182/blood-2007-01-069450] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 10/20/2007] [Indexed: 12/12/2022] Open
Abstract
Ligation of NKG2D, a potent costimulatory receptor, can be either beneficial or detrimental to CD8(+) cytotoxic T cell (CTL) responses. Factors for these diverse NKG2D effects remain elusive. In this study, we demonstrate that 4-1BB, another costimulatory receptor, is an essential regulator of NKG2D in CD8(+) T cells. Costimulation of NKG2D caused down-modulation of NKG2D, but induced 4-1BB expression on the cell surface, even in the presence of TGF-beta1, which inhibits 4-1BB expression. Resulting NKG2D(-)4-1BB(+) cells were activated but still in an immature state with low cytotoxic activity. However, subsequent 4-1BB costimulation induced cytotoxic activity and restored down-modulated NKG2D. The cytotoxic activity and NKG2D expression induced by 4-1BB on NKG2D(+)4-1BB(+) cells were refractory to TGF-beta1 down-modulation. Such 4-1BB effects were enhanced by IL-12. In contrast, in the presence of IL-4, 4-1BB effects were abolished because IL-4 down-modulated NKG2D and 4-1BB expression in cooperation with TGF-beta1, generating another CD8(+) T-cell type lacking both NKG2D and 4-1BB. These NKG2D(-)4-1BB(-) cells were inert and unable to gain cytotoxic activity. Our results suggest that 4-1BB plays a critical role in protecting NKG2D from TGF-beta1-mediated down-modulation. Co-expression of NKG2D and 4-1BB may represent an important biomarker for defining competency of tumor infiltrating CD8(+) T cells.
Collapse
Affiliation(s)
- Young-June Kim
- Department of Microbiology and Immunology, Indiana University School of Medicine; 2 Walther Oncology Center, Indianapolis, IN 46202-5181, USA.
| | | | | |
Collapse
|
41
|
Merrick A, Diaz RM, O'Donnell D, Selby P, Vile R, Melcher A. Autologous versus allogeneic peptide-pulsed dendritic cells for anti-tumour vaccination: expression of allogeneic MHC supports activation of antigen specific T cells, but impairs early naïve cytotoxic priming and anti-tumour therapy. Cancer Immunol Immunother 2007; 57:897-906. [PMID: 18057935 DOI: 10.1007/s00262-007-0426-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 11/10/2007] [Indexed: 01/01/2023]
Abstract
BACKGROUND Dendritic cells (DC) pulsed with MHC class I-restricted tumour associated antigen (TAA) peptides have been widely tested in pre-clinical models and early clinical studies for their ability to prime cytotoxic T cell (CTL) responses. The effect of co-expression of allogeneic MHC antigens on DC immunogenicity has not been addressed, and has implications for the feasibility of clinical applications. OBJECTIVE This study compared DC from autologous H-2(b) or semi-allogeneic F1 H-2(bxk) mice pulsed with the H-2(b)-restricted model ovalbumin (OVA) peptide SIINFEKL, and compared in vitro and in vivo their ability to (i) activate specific OT1 cells, (ii) prime naïve CTL, and (iii) protect against B16.OVA challenge. Peptide-pulsed autologous and allogeneic DC were also tested in naïve human CTL priming assays. RESULTS Semi-allogeneic DC expressed higher levels of co-stimulatory molecules. On pulsing with SIINFEKL they triggered greater proliferation of OT1 cells in vitro and in vivo, but were less effective at naïve CTL priming and tumour protection. Autologous human DC were similarly more potent at naïve CTL priming against the melanoma-associated TAA MART-1 in vitro. CONCLUSION The expression of allogeneic MHC antigens on peptide-pulsed DC impairs naïve CTL priming and anti-tumour effects, despite effective TAA presentation both in vitro and in vivo.
Collapse
Affiliation(s)
- Alison Merrick
- Cancer Research UK Clinical Centre, St James's University Hospital, Beckett St, Leeds LS9 7TF, UK.
| | | | | | | | | | | |
Collapse
|
42
|
Mazzolini G, Murillo O, Atorrasagasti C, Dubrot J, Tirapu I, Rizzo M, Arina A, Alfaro C, Azpilicueta A, Berasain C, Perez-Gracia JL, Gonzalez A, Melero I. Immunotherapy and immunoescape in colorectal cancer. World J Gastroenterol 2007; 13:5822-31. [PMID: 17990348 PMCID: PMC4205429 DOI: 10.3748/wjg.v13.i44.5822] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy encompasses a variety of interventions and techniques with the common goal of eliciting tumor cell destructive immune responses. Colorectal carcinoma often presents as metastatic disease that impedes curative surgery. Novel strategies such as active immunization with dendritic cells (DCs), gene transfer of cytokines into tumor cells or administration of immunostimulatory monoclonal antibodies (such as anti-CD137 or anti-CTLA-4) have been assessed in preclinical studies and are at an early clinical development stage. Importantly, there is accumulating evidence that chemotherapy and immunotherapy can be combined in the treatment of some cases with colorectal cancer, with synergistic potentiation as a result of antigens cross-presented by dendritic cells and/or elimination of competitor or suppressive T lymphocyte populations (regulatory T-cells). However, genetic and epigenetic unstable carcinoma cells frequently evolve mechanisms of immunoevasion that are the result of either loss of antigen presentation, or an active expression of immunosuppressive substances. Some of these actively immunosuppressive mechanisms are inducible by cytokines that signify the arrival of an effector immune response. For example, induction of 2, 3 indoleamine dioxygenase (IDO) by IFNγ in colorectal carcinoma cells. Combinational and balanced strategies fostering antigen presentation, T-cell costimulation and interference with immune regulatory mechanisms will probably take the stage in translational research in the treatment of colorectal carcinoma.
Collapse
|
43
|
Choi BK, Kim YH, Kang WJ, Lee SK, Kim KH, Shin SM, Yokoyama WM, Kim TY, Kwon BS. Mechanisms involved in synergistic anticancer immunity of anti-4-1BB and anti-CD4 therapy. Cancer Res 2007; 67:8891-9. [PMID: 17875731 DOI: 10.1158/0008-5472.can-07-1056] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anti-4-1BB-mediated anticancer effects were potentiated by depletion of CD4+ cells in B16F10 melanoma-bearing C57BL/6 mice. Anti-4-1BB induced the expansion and differentiation of polyclonal tumor-specific CD8+ T cells into IFN-gamma-producing CD11c+CD8+ T cells. The CD4+ cell depletion was responsible for facilitating immune cell infiltration into tumor tissues and removing some regulatory barriers such as T regulatory and indoleamine-2,3-dioxygenase (IDO)+ dendritic cells. Both monoclonal antibodies (mAb) contributed to the efficient induction of MHC class I molecules on the tumor cells in vivo. The effectors that mediated the anti-4-1BB effect were NKG2D+KLRG1+CD11c+CD8+ T cells that accumulated preferentially in the tumor tissues. Blocking NKG2D reduced the therapeutic effect by 20% to 26%, which may indicate that NKG2D contributes partially to tumor killing by the differentiated CD8+ T cells. Our results indicate that the combination of the two mAbs, agonistic anti-4-1BB and depleting anti-CD4, results in enhanced production of efficient tumor-killing CTLs, facilitation of their infiltration, and production of a susceptible tumor microenvironment.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- CD11c Antigen/immunology
- CD4 Antigens/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Immunization, Passive/methods
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- NK Cell Lectin-Like Receptor Subfamily K
- Receptors, Immunologic/immunology
- Receptors, Natural Killer Cell
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
Collapse
Affiliation(s)
- Beom K Choi
- The Immunomodulation Research Center, University of Ulsan, Ulsan, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rodriguez-Madoz JR, Prieto J, Smerdou C. Biodistribution and tumor infectivity of semliki forest virus vectors in mice: effects of re-administration. Mol Ther 2007; 15:2164-71. [PMID: 17667947 DOI: 10.1038/sj.mt.6300274] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Semliki Forest virus (SFV)-based vectors have broad tropism, with the ability to infect cells from various origins, including those from tumors. These vectors express cytokines after intra-tumoral (IT) injection, and have therefore been used for inducing efficient anti-tumoral responses in several tumor models. We were interested in studying whether SFV vectors could escape from tumors after IT injection and whether they could target tumors if administered systemically. We analyzed the biodistribution of an SFV vector expressing luciferase (SFV-Luc) after intravenous (IV), intraperitoneal (IP), and IT administration in immunocompetent mice. SFV-Luc systemic inoculation led to high infectivity in heart and lung, and moderate levels of infectivity in spleen, kidney, and gonads, without gender being a factor in the outcome. Tumor-specific infection, without the vector spreading to other tissues, was achieved only by IT inoculation. We also investigated the effect of SFV pre-inoculation on subsequent vector administrations. Systemic inoculation with one dose of 10(7) vp (viral particles), or two doses of 10(6) vp of SFV-LacZ given with a 20-day interval between the doses, was able to strongly inhibit luciferase expression in animals re-inoculated systemically with SFV-Luc, correlating with high sera neutralizing antibodies titers. However, IT pre-inoculation with 10(8) vp of SFV-LacZ impaired tumor re-infection only moderately, thereby indicating that tumors can be treated with several doses of SFV vectors.
Collapse
Affiliation(s)
- Juan R Rodriguez-Madoz
- Division of Gene Therapy, School of Medicine, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | | |
Collapse
|
45
|
Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L. Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 2007; 7:95-106. [PMID: 17251916 DOI: 10.1038/nrc2051] [Citation(s) in RCA: 463] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing immune responses with immunostimulatory monoclonal antibodies (mAbs) directed to immune-receptor molecules is a new and exciting strategy in cancer therapy. This expanding class of agents functions on crucial receptors, either antagonizing those that suppress immune responses or activating others that amplify immune responses. Complications such as autoimmunity and systemic inflammation are problematic side effects associated with these agents. However, promising synergy has been observed in preclinical models using combinations of immunostimulatory antibodies and other immunotherapy strategies or conventional cancer therapies. Importantly, mAbs of this type have now entered clinical trials with encouraging initial results.
Collapse
Affiliation(s)
- Ignacio Melero
- Centro de Investigación Médica Aplicada (CIMA) and Clínica Universitaria, Universidad de Navarra, Pamplona, Spain.
| | | | | | | | | |
Collapse
|
46
|
Abstract
Hepatocellular carcinoma (HCC), one of the most common cancers worldwide, is often diagnosed at an advanced stage when most potentially curative therapies such as resection, transplantation or percutaneous and transarterial interventions are of limited efficacy. The fact that HCC is resistant to conventional chemotherapy, and is rarely amenable to radiotherapy, leaves this disease with no effective therapeutic options and a very poor prognosis. Therefore, the development of more effective therapeutic tools and strategies is much needed. HCCs are phenotypically and genetically heterogeneous tumors that commonly emerge on a background of chronic liver disease. However, in spite of this heterogeneity recent insights into the biology of HCC suggest that certain signaling pathways and molecular alterations are likely to play essential roles in HCC development by promoting cell growth and survival. The identification of such mechanisms may open new avenues for the prevention and treatment of HCC through the development of targeted therapies. In this review we will describe the new potential therapeutic targets and clinical developments that have emerged from progress in the knowledge of HCC biology, In addition, recent advances in gene therapy and combined cell and gene therapy, together with new radiotherapy techniques and immunotherapy in patients with HCC will be discussed.
Collapse
Affiliation(s)
- M A Avila
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | | | | |
Collapse
|
47
|
Vinay DS, Cha K, Kwon BS. Dual immunoregulatory pathways of 4-1BB signaling. J Mol Med (Berl) 2006; 84:726-36. [PMID: 16924475 DOI: 10.1007/s00109-006-0072-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Accepted: 04/04/2006] [Indexed: 01/16/2023]
Abstract
It is perhaps rare to encounter among the various immunologically competent receptor-ligand pairs that a single cell surface determinant unleashes both a hidden suppressive function and costimulation. 4-1BB, an activation-induced tumor necrosis factor receptor family member chiefly viewed as a powerful T-cell costimulatory molecule, is one such example. Accumulated evidence in recent years uncovered an unknown facet of in vivo 4-1BB signaling (i.e., "active suppression"). Although in vitro signaling via 4-1BB is shown to support both CD4(+) and CD8(+) T-cell responses, the same induces a predominant CD8(+) T-cell response suppressing CD4(+) T-cell function when applied in vivo. How, when, and why such dual immunoregulatory effect of anti-4-1BB monoclonal antibody (MAB) comes into play is currently the focus of intense research. Existing data, although not complete, uncover several important aspects of in vivo 4-1BB signaling in the amelioration or exacerbation of various immune disorders. Despite minor disagreements, a majority agree that upregulation of interferon (IFN)-gamma is critical to anti-4-1BB MAB therapy in addition to immune modulators such as interleukin 2, transforming growth factor beta, and indolamine 2,3-dioxygenase(5), all of which contribute greatly to the success of anti-4-1BB MAB-based immunotherapy. Anti-4-1BB MAB-mediated expansion of novel CD11c(+)CD8(+) T cells is additional weaponry that appears critical for its in vivo suppressive function. These CD11c(+)CD8(+) T cells express high levels of IFN-gamma, become effective killers, and mediate selective suppression of CD4(+) T cells. In this review, we discuss the dual nature (costimulatory and suppressive) of 4-1BB-mediated immune regulation, its current status, future direction, and its impact on the immune system, with special reference to its immunotherapy.
Collapse
Affiliation(s)
- Dass S Vinay
- LSU Eye Center, Louisiana State University Health Sciences Center School of Medicine, Suite B, 2020 Gravier Street, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
48
|
Akbulut H, Tang Y, Akbulut KG, Maynard J, Zhang L, Deisseroth A. Antitumor immune response induced by i.t. injection of vector-activated dendritic cells and chemotherapy suppresses metastatic breast cancer. Mol Cancer Ther 2006; 5:1975-85. [PMID: 16928818 DOI: 10.1158/1535-7163.mct-06-0049] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
S.c. injection of the Ad-sig-tumor-associated antigen (TAA)/ecdCD40L vector vaccine has been shown to induce a CD8 immune response against TAA for up to 1 year. The first goal of this article is to test if the injection of autologous dendritic cells infected ex vivo with the Ad-sig-TAA/ecdCD40L can increase the immune response induced against TAA. The second goal is to test the effect of adding local chemotherapy in the form of i.t. injection of the AdCDIRESE1A vector-directed chemotherapy on the immune response induced by i.t. injection of adenoviral vector-activated dendritic cells. The results show that the i.t. injection of the AdCDIRESE1A chemotherapy sensitization vector, which encodes the cytosine deaminase chemotherapy sensitization transcription unit, to the i.t. injection of Ad-sig-ecdCD40L vector-infected dendritic cells increased the level of suppression of the growth of the CCL-51 breast cancer cells. The combination of i.t. injection of the AdCDIRESE1A chemotherapy sensitization vector and Ad-sig-ecdCD40L vector-infected dendritic cells into s.c. CCL-51 breast cancer nodules suppressed the growth of uninjected metastatic tumor nodules in the lung. Finally, adding the i.t. injection of the AdCDIRESE1A chemotherapy sensitization vector to the i.t. administration of dendritic cells infected with a rat HER-2/neu (rH2N)-expressing vector (Ad-sig-rH2N/ecdCD40L) led to the induction of rH2N-specific antitumoral immunity in rH2N transgenic mice (which are anergic to the rH2N antigen). This anti-rH2N immune response suppressed the growth of established H2N-positive NT2 breast cancer more efficiently than did the vector-targeted chemotherapy or Ad-sig-rH2N/ecdCD40L-infected dendritic cell vaccine alone.
Collapse
Affiliation(s)
- Hakan Akbulut
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|
49
|
Rodriguez-Madoz JR, Prieto J, Smerdou C. Semliki forest virus vectors engineered to express higher IL-12 levels induce efficient elimination of murine colon adenocarcinomas. Mol Ther 2006; 12:153-63. [PMID: 15963931 DOI: 10.1016/j.ymthe.2005.02.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2004] [Revised: 02/21/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022] Open
Abstract
To evaluate the use of alphavirus vectors for tumor treatment we have constructed and compared two Semliki Forest virus (SFV) vectors expressing different levels of IL-12. SFV-IL-12 expresses both IL-12 subunits from a single subgenomic promoter, while in SFV-enhIL-12 each IL-12 subunit is expressed from an independent subgenomic promoter fused to the SFV capsid translation enhancer. This latter strategy provided an eightfold increase of IL-12 expression. We chose the poorly immunogenic MC38 colon adenocarcinoma model to evaluate the therapeutic potential of SFV vectors. A single intratumoral injection of 10(8) viral particles of SFV-IL-12 or SFV-enh-IL-12 induced>or=80% complete tumor regressions with long-term tumor-free survival. However, lower doses of SFV-enhIL-12 were more efficient than SFV-IL-12 in inducing antitumoral responses, indicating a positive correlation between the IL-12 expression level and the therapeutic effect. Moreover, repeated intratumoral injections of suboptimal doses of SFV-enhIL-12 increased the antitumoral response. In all cases SFV vectors were more efficient at eliminating tumors than a first-generation adenovirus vector expressing IL-12. In addition, the antitumoral effect of SFV vectors was only moderately affected by preimmunization of animals with high doses of SFV vectors. This antitumoral effect was produced, at least partially, by a potent CTL-mediated immune response.
Collapse
Affiliation(s)
- Juan R Rodriguez-Madoz
- Division of Gene Therapy, School of Medicine, Center for Applied Medical Research, University of Navarra, Avenida Pio XII 55, 31008 Pamplona, Spain
| | | | | |
Collapse
|
50
|
Kipshidze N, Tsapenko M, Iversen P, Burger D. Antisense therapy for restenosis following percutaneous coronary intervention. Expert Opin Biol Ther 2006; 5:79-89. [PMID: 15709911 DOI: 10.1517/14712598.5.1.79] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent advances in vascular gene transfer have shown potential new treatment modalities for cardiovascular disease, particularly in the treatment of vascular restenosis. The antisense approach to inhibiting gene expression involves introducing oligonucleotides complementary to mRNA into cells in order to block any one of the following processes: uncoiling of DNA, transcription of DNA, export of RNA, DNA splicing, RNA stability, or RNA translation involved in the synthesis of proteins in cellular proliferation. The approach includes the use of antisense oligonucleotides, antisense mRNA, autocatalytic ribozymes, and the insertion of a section of DNA to form a triple helix. Proof of principle has been established that inhibition of several cellular proto-oncogenes, including DNA binding protein c-myb, non-muscle myosin heavy chain, PCNA proliferating-cell nuclear antigen, platelet-derived growth factor, basic fibroblast growth factor and c-myc, inhibits smooth muscle cell proliferation in vitro and in several animal models. The first clinical study demonstrated the safety and feasibility of local delivery of antisense in the treatment and prevention of restenosis; another randomised clinical trial (AVAIL) with local delivery of c-myc morpholino compound in patients with coronary artery disease demonstrated its long-term effect on reducing neointimal formation, as well as its safety. These preliminary findings from the small cohort of patients require confirmation in a larger trial utilising more sophisticated drug-eluting technologies.
Collapse
Affiliation(s)
- Nicholas Kipshidze
- Lenox Hill Hospital, Department of Interventional Cardiac & Vascular Services, 130 East 77th Street, New York, NY 10021, USA.
| | | | | | | |
Collapse
|