1
|
Lungaro L, Malfa P, Manza F, Negrelli M, Costanzini A, Squarzanti DF, Lo Re M, Cariani A, Ghisellini S, Caputo F, De Giorgi A, Mansueto P, Carroccio A, De Giorgio R, Caio G. Clinical Efficacy of Probiotics for Relieving Cold Symptoms in Healthy Individuals: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2025; 17:1490. [PMID: 40362799 PMCID: PMC12073269 DOI: 10.3390/nu17091490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Background: Colds are widespread infectious diseases that affect daily life, increasing healthcare costs and limiting productivity. Objectives: The aim of this study was to investigate the effects of a dietary supplement containing specific probiotic strains (L. plantarum PBS067, L. acidophilus PBS066, B. lactis BL050) on cold symptom relief, immune response enhancement, and quality of life. Methods This randomized, double-blind, placebo-controlled trial included 65 healthy volunteers (age range: 18-44 years), divided into two groups: 40 received the probiotic treatment (with vitamins and bulking agents), and 25 received placebo (vitamins and bulking agents only) for 12 weeks. Cold symptoms and systemic inflammation were assessed at three time points (baseline T0, post-treatment T1, and 6 weeks after treatment T2). Results: Probiotics were associated with a shorter average duration of cold symptoms (4.5 vs. 6.7% for Placebo, p < 0.05). At T1, fever and muscle pain occurred in 20% of participants in the Probiotic group vs. 28% and 44% in the Placebo group, respectively (p < 0.05 for muscle pain vs. Placebo). For muscle pain, a trend was maintained also at T2 (17.5% vs. 20%). The pro-inflammatory cytokine IFN-γ levels significantly decreased in the Probiotic group vs. T0 (p < 0.0001 at T1 and p < 0.01 at T2), while they increased in the Placebo group (22.279 ± 3.538 vs. 19.432 ± 3.143 pg/mL, p = NS). Although not statistically significant, at T1 the Probiotic group had higher levels of IL-10 vs. T0 (266.98 ± 78.432 vs. 240.967 ± 70.238, pg/mL p = NS). Conclusions: The probiotic mix effectively alleviated cold symptoms and reduced pro-inflammatory cytokine levels, suggesting anti-inflammatory effects.
Collapse
Affiliation(s)
- Lisa Lungaro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.N.); (A.C.); (F.C.); (A.D.G.); (R.D.G.)
- Geriatric Unit, P. Giaccone University Hospital, 90127 Palermo, Italy;
| | | | - Francesca Manza
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.N.); (A.C.); (F.C.); (A.D.G.); (R.D.G.)
- Academic Unit of Gastroenterology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S5 7AT, UK
| | - Matilde Negrelli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.N.); (A.C.); (F.C.); (A.D.G.); (R.D.G.)
| | - Anna Costanzini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.N.); (A.C.); (F.C.); (A.D.G.); (R.D.G.)
| | | | - Marta Lo Re
- SynBalance srl, 21040 Origgio, Italy; (P.M.); (D.F.S.)
| | - Alessio Cariani
- Clinical Pathology Unit, S. Anna University Hospital, 44124 Ferrara, Italy; (A.C.); (S.G.)
| | - Sara Ghisellini
- Clinical Pathology Unit, S. Anna University Hospital, 44124 Ferrara, Italy; (A.C.); (S.G.)
| | - Fabio Caputo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.N.); (A.C.); (F.C.); (A.D.G.); (R.D.G.)
| | - Alfredo De Giorgi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.N.); (A.C.); (F.C.); (A.D.G.); (R.D.G.)
| | - Pasquale Mansueto
- Geriatric Unit, P. Giaccone University Hospital, 90127 Palermo, Italy;
| | - Antonio Carroccio
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, 90146 Palermo, Italy;
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.N.); (A.C.); (F.C.); (A.D.G.); (R.D.G.)
- Internal Medicine Unit, S.S. Annunziata Hospital, Cento, 44042 Ferrara, Italy
| | - Giacomo Caio
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.N.); (A.C.); (F.C.); (A.D.G.); (R.D.G.)
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital-Harvard Medical School, Boston, MA 02114, USA
- Celiac Disease and Allergology Center, St. Anna University Hospital, 44124 Ferrara, Italy
| |
Collapse
|
2
|
Leser T, Baker A. Molecular Mechanisms of Lacticaseibacillus rhamnosus, LGG ® Probiotic Function. Microorganisms 2024; 12:794. [PMID: 38674738 PMCID: PMC11051730 DOI: 10.3390/microorganisms12040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
To advance probiotic research, a comprehensive understanding of bacterial interactions with human physiology at the molecular and cellular levels is fundamental. Lacticaseibacillus rhamnosus LGG® is a bacterial strain that has long been recognized for its beneficial effects on human health. Probiotic effector molecules derived from LGG®, including secreted proteins, surface-anchored proteins, polysaccharides, and lipoteichoic acids, which interact with host physiological processes have been identified. In vitro and animal studies have revealed that specific LGG® effector molecules stimulate epithelial cell survival, preserve intestinal barrier integrity, reduce oxidative stress, mitigate excessive mucosal inflammation, enhance IgA secretion, and provide long-term protection through epigenetic imprinting. Pili on the cell surface of LGG® promote adhesion to the intestinal mucosa and ensure close contact to host cells. Extracellular vesicles produced by LGG® recapitulate many of these effects through their cargo of effector molecules. Collectively, the effector molecules of LGG® exert a significant influence on both the gut mucosa and immune system, which promotes intestinal homeostasis and immune tolerance.
Collapse
Affiliation(s)
- Thomas Leser
- Future Labs, Human Health Biosolutions, Novonesis, Kogle Alle 6, 2970 Hoersholm, Denmark;
| | | |
Collapse
|
3
|
Summer M, Ali S, Fiaz U, Tahir HM, Ijaz M, Mumtaz S, Mushtaq R, Khan R, Shahzad H, Fiaz H. Therapeutic and immunomodulatory role of probiotics in breast cancer: A mechanistic review. Arch Microbiol 2023; 205:296. [PMID: 37486419 DOI: 10.1007/s00203-023-03632-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Breast cancer has become the most prevalent and noxious type of malignancy around the globe (Giaquinto et al., 2022). Multiple clinical strategies including chemotherapy, radiotherapy, and immunotherapy have been in practice to manage breast cancer. Besides the protective roles of conventional remedial approaches, and non-reversible and deteriorative impacts like healthy cell damage, organ failure, etc., the world scientific community is in a continuous struggle to find some alternative biocompatible and comparatively safe solutions. Among novel breast cancer management/treatment options, the role of probiotics has become immensely important. The current review encompasses the prevalence statistics of breast cancer across the globe concerning developed and undeveloped counties, intestinal microbiota linkage with breast cancer, and association of breast microbiome with breast carcinoma. Furthermore, this review also narrates the role of probiotics against breast cancer and their mode of action. In Vivo and In Vitro studies under breast cancer research regarding probiotics are mechanistically explained. The current review systematically explains the immunomodulatory role of probiotics to prevent breast cancer. Last, but not the least, current review concludes the use of probiotics in the treatment of breast cancer through various mechanisms and future recommendations for molecular basis studies.
Collapse
Affiliation(s)
- Muhammad Summer
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan.
| | - Umaima Fiaz
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Hafiz Muhammad Tahir
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences Lahore, Lahore, Pakistan
| | - Shumaila Mumtaz
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Rabia Mushtaq
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Rida Khan
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Hafsa Shahzad
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Hashim Fiaz
- Department of Medicine and Surgery, Ammer-ul-din Medical College Lahore, Lahore, Pakistan
| |
Collapse
|
4
|
Wong-Chew RM, de Castro JAA, Morelli L, Perez M, Ozen M. Gut immune homeostasis: the immunomodulatory role of Bacillus clausii, from basic to clinical evidence. Expert Rev Clin Immunol 2022; 18:717-729. [PMID: 35674642 DOI: 10.1080/1744666x.2022.2085559] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The gut microbiota affects the development of the gut immune system in early life. Perturbations to microbiota structure and composition during this period can have long-term consequences on the health of the individual, through its effects on the immune system. Research in the last few decades has shown that probiotic administration can reverse these effects in strain- and environment-specific ways. Bacillus clausii (B. clausii) has been in use for many decades as a safe and efficacious probiotic, but its mode of action has not yet been completely elucidated. AREAS COVERED In this review, we discuss how the gut immune system works, the factors that affect its functioning, and the plethora of research highlighting its role in various diseases. We also discuss the known modes of action of Bacillus probiotics, and highlight the preclinical and clinical evidence that reveal how B. clausii acts to bolster gut defense. EXPERT OPINION We anticipate that the treatment and/or prevention of dysbiosis will be central to managing human health and disease in the future. Discovering the pathophysiology of autoimmune diseases, infections, allergies, and some cancers will aid our understanding of the key role played by microbial communities in these diseases.
Collapse
Affiliation(s)
- Rosa María Wong-Chew
- Facultad de Medicina, División de Investigación, Universidad Nacional Autónoma de México, Coyoacán, Cdmx
| | - Jo-Anne A de Castro
- Department of Pediatrics de la Salle Medical and Health Sciences Institute (DLSMHSI), Dasmariñas Cavite, Philippines; Department of Microbiology and Parasitology, Pamantasan ng Lunsod ng Maynila (PLM), College of Medicine Intramuros, Manila, Philippines
| | - Lorenzo Morelli
- Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore Piacenza - Cremona, Italy
| | | | - Metehan Ozen
- Division of Pediatric Infectious Diseases, Acıbadem Mehmet Ali Aydınlar University, School of Medicine, Istanbul Turkey
| |
Collapse
|
5
|
Biswas P, Pal S, Das M, Dam S. Microbe-Induced Oxidative Stress in Cancer Development and Efficacy of Probiotics as Therapeutics in Preventing Its Onset and Progression. HANDBOOK OF OXIDATIVE STRESS IN CANCER: THERAPEUTIC ASPECTS 2022:3513-3542. [DOI: 10.1007/978-981-16-5422-0_159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Jastrząb R, Graczyk D, Siedlecki P. Molecular and Cellular Mechanisms Influenced by Postbiotics. Int J Mol Sci 2021; 22:ijms222413475. [PMID: 34948270 PMCID: PMC8707144 DOI: 10.3390/ijms222413475] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, commensal bacteria colonizing the human body have been recognized as important determinants of health and multiple pathologic conditions. Among the most extensively studied commensal bacteria are the gut microbiota, which perform a plethora of functions, including the synthesis of bioactive products, metabolism of dietary compounds, and immunomodulation, both through attenuation and immunostimulation. An imbalance in the microbiota population, i.e., dysbiosis, has been linked to many human pathologies, including various cancer types and neurodegenerative diseases. Targeting gut microbiota and microbiome-host interactions resulting from probiotics, prebiotics, and postbiotics is a growing opportunity for the effective treatment of various diseases. As more research is being conducted, the microbiome field is shifting from simple descriptive analysis of commensal compositions to more molecular, cellular, and functional studies. Insight into these mechanisms is of paramount importance for understanding and modulating the effects that microbiota, probiotics, and their derivatives exert on host health.
Collapse
|
7
|
The Short-Chain Fatty Acids Propionate and Butyrate Augment Adherent-Invasive Escherichia coli Virulence but Repress Inflammation in a Human Intestinal Enteroid Model of Infection. Microbiol Spectr 2021; 9:e0136921. [PMID: 34612688 PMCID: PMC8510176 DOI: 10.1128/spectrum.01369-21] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Short-chain fatty acids (SCFAs), which consist of six or fewer carbons, are fermentation products of the bacterial community that inhabits the intestine. Due to an immunosuppressive effect on intestinal tissue, they have been touted as a therapeutic for inflammatory conditions of the bowel. Here, we study the impact of acetate, propionate, and butyrate, the three most abundant SCFAs in the intestine, on gene expression in the intestinal pathobiont adherent-invasive Escherichia coli. We pair this with adherence, invasion, and inflammation in Caco-2 and human intestinal enteroid (HIE)-derived monolayer models of the intestinal epithelium. We report that propionate and butyrate upregulate transcription of adherent-invasive Escherichia coli (AIEC) flagellar synthesis genes and decrease expression of capsule assembly and transport genes. These changes are predicted to augment AIEC invasiveness. In fact, SCFA supplementation increases AIEC adherence to and invasion of the Caco-2 monolayer but has no effect on these parameters in the HIE model. We attribute this to the anti-inflammatory effect of propionate and butyrate on HIEs but not on Caco-2 cells. We conclude that the potential of SCFAs to increase the virulence of intestinal pathogens should be considered in their use as anti-inflammatory agents. IMPORTANCE The human terminal ileum and colon are colonized by a community of microbes known as the microbiota. Short-chain fatty acids (SCFAs) excreted by bacterial members of the microbiota define the intestinal environment. These constitute an important line of communication within the microbiota and between the microbiota and the host epithelium. In inflammatory conditions of the bowel, SCFAs are often low and there is a preponderance of a conditionally virulent bacterium termed adherent-invasive Escherichia coli (AIEC). A connection between SCFA abundance and AIEC has been suggested. Here, we study AIEC in monoculture and in coculture with human intestinal enteroid-derived monolayers and show that the SCFAs propionate and butyrate increase expression of AIEC virulence genes while concurrently bolstering the intestinal epithelial barrier and reducing intestinal inflammation. While these SCFAs have been promoted as a therapy for inflammatory bowel conditions, our findings demonstrate that their effect on bacterial virulence must be considered.
Collapse
|
8
|
Gonzalez I, Araya P, Schneider I, Lindner C, Rojas A. Pattern recognition receptors and their roles in the host response to Helicobacter pylori infection. Future Microbiol 2021; 16:1229-1238. [PMID: 34615380 DOI: 10.2217/fmb-2021-0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is highly prevalent, affecting 4.4 billion people globally. This pathogen is a risk factor in the pathogenesis of more than 75% of worldwide cases of gastric cancer. Pattern recognition receptors are essential in the innate immune response to H. pylori infection. They recognize conserved pathogen structures and myriad alarmins released by host cells in response to microbial components, cytokines or cellular stress, thus triggering a robust proinflammatory response, which is crucial in H. pylori-induced gastric carcinogenesis. In this review, we intend to highlight the main pattern recognition receptors involved in the recognition and host response to H. pylori, as well as the main structures recognized and the subsequent inflammatory response.
Collapse
Affiliation(s)
- Ileana Gonzalez
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, 3460000, Chile
| | - Paulina Araya
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, 3460000, Chile
| | - Ivan Schneider
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, 3460000, Chile
| | - Cristian Lindner
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, 3460000, Chile
| | - Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, 3460000, Chile
| |
Collapse
|
9
|
Premature neonatal gut microbial community patterns supporting an epithelial TLR-mediated pathway for necrotizing enterocolitis. BMC Microbiol 2021; 21:225. [PMID: 34362295 PMCID: PMC8343889 DOI: 10.1186/s12866-021-02285-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/21/2021] [Indexed: 01/04/2023] Open
Abstract
Background Necrotising enterocolitis (NEC) is a devastating bowel disease, primarily affecting premature infants, with a poorly understood aetiology. Prior studies have found associations in different cases with an overabundance of particular elements of the faecal microbiota (in particular Enterobacteriaceae or Clostridium perfringens), but there has been no explanation for the different results found in different cohorts. Immunological studies have indicated that stimulation of the TLR4 receptor is involved in development of NEC, with TLR4 signalling being antagonised by the activated TLR9 receptor. We speculated that differential stimulation of these two components of the signalling pathway by different microbiota might explain the dichotomous findings of microbiota-centered NEC studies. Here we used shotgun metagenomic sequencing and qPCR to characterise the faecal microbiota community of infants prior to NEC onset and in a set of matched controls. Bayesian regression was used to segregate cases from control samples using both microbial and clinical data. Results We found that the infants suffering from NEC fell into two groups based on their microbiota; one with low levels of CpG DNA in bacterial genomes and the other with high abundances of organisms expressing LPS. The identification of these characteristic communities was reproduced using an external metagenomic validation dataset. We propose that these two patterns represent the stimulation of a common pathway at extremes; the LPS-enriched microbiome suggesting overstimulation of TLR4, whilst a microbial community with low levels of CpG DNA suggests reduction of the counterbalance to TLR4 overstimulation. Conclusions The identified microbial community patterns support the concept of NEC resulting from TLR-mediated pathways. Identification of these signals suggests characteristics of the gastrointestinal microbial community to be avoided to prevent NEC. Potential pre- or pro-biotic treatments may be designed to optimise TLR signalling. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02285-0.
Collapse
|
10
|
Ghadimi D, Nielsen A, Hassan MFY, Fölster-Holst R, Ebsen M, Frahm SO, Röcken C, de Vrese M, Heller KJ. Modulation of Proinflammatory Bacteria- and Lipid-Coupled Intracellular Signaling Pathways in a Transwell Triple Co-Culture Model by Commensal Bifidobacterium Animalis R101-8. Antiinflamm Antiallergy Agents Med Chem 2021; 20:161-181. [PMID: 33135616 DOI: 10.2174/1871523019999201029115618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Following a fat-rich diet, alterations in gut microbiota contribute to enhanced gut permeability, metabolic endotoxemia, and low grade inflammation-associated metabolic disorders. To better understand whether commensal bifidobacteria influence the expression of key metaflammation-related biomarkers (chemerin, MCP-1, PEDF) and modulate the pro-inflammatory bacteria- and lipid-coupled intracellular signaling pathways, we aimed at i) investigating the influence of the establishment of microbial signaling molecules-based cell-cell contacts on the involved intercellular communication between enterocytes, immune cells, and adipocytes, and ii) assessing their inflammatory mediators' expression profiles within an inflamed adipose tissue model. MATERIAL AND METHODS Bifidobacterium animalis R101-8 and Escherichia coli TG1, respectively, were added to the apical side of a triple co-culture model consisting of intestinal epithelial HT-29/B6 cell line, human monocyte-derived macrophage cells, and adipose-derived stem cell line in the absence or presence of LPS or palmitic acid. mRNA expression levels of key lipid metabolism genes HILPDA, MCP-1/CCL2, RARRES2, SCD, SFRP2 and TLR4 were determined using TaqMan qRT-PCR. Protein expression levels of cytokines (IL-1β, IL-6, and TNF-α), key metaflammation-related biomarkers including adipokines (chemerin and PEDF), chemokine (MCP- 1) as well as cellular triglycerides were assessed by cell-based ELISA, while those of p-ERK, p-JNK, p-p38, NF-κB, p-IκBα, pc-Fos, pc-Jun, and TLR4 were assessed by Western blotting. RESULTS B. animalis R101-8 inhibited LPS- and palmitic acid-induced protein expression of inflammatory cytokines IL-1β, IL-6, TNF-α concomitant with decreases in chemerin, MCP-1, PEDF, and cellular triglycerides, and blocked NF-kB and AP-1 activation pathway through inhibition of p- IκBα, pc-Jun, and pc-Fos phosphorylation. B. animalis R101-8 downregulated mRNA and protein levels of HILPDA, MCP-1/CCL2, RARRES2, SCD and SFRP2 and TLR4 following exposure to LPS and palmitic acid. CONCLUSION B. animalis R101-8 improves biomarkers of metaflammation through at least two molecular/signaling mechanisms triggered by pro-inflammatory bacteria/lipids. First, B. animalis R101-8 modulates the coupled intracellular signaling pathways via metabolizing saturated fatty acids and reducing available bioactive palmitic acid. Second, it inhibits NF-kB's and AP-1's transcriptional activities, resulting in the reduction of pro-inflammatory markers. Thus, the molecular basis may be formed by which commensal bifidobacteria improve intrinsic cellular tolerance against excess pro-inflammatory lipids and participate in homeostatic regulation of metabolic processes in vivo.
Collapse
Affiliation(s)
- Darab Ghadimi
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str 1, D-24103 Kiel, Germany
| | - Annegret Nielsen
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str 1, D-24103 Kiel, Germany
| | | | - Regina Fölster-Holst
- Clinic of Dermatology, University Hospital Schleswig-Holstein, Schittenhelmstr. 7, D-24105 Kiel, Germany
| | - Michael Ebsen
- Department of Pathology, Städtisches MVZ Kiel GmbH (Kiel City Hospital), Chemnitzstr.33, 24116 Kiel, Germany
| | - Sven Olaf Frahm
- Medizinisches Versorgungszentrum (MVZ), Pathology and Laboratory Medicine Dr. Rabenhorst, Prüner Gang 7, 24103 Kiel, Germany
| | - Christoph Röcken
- Institute of Pathology, Kiel University, University Hospital, Schleswig-Holstein, Arnold-Heller-Straße 3/14, D-24105 Kiel, Germany
| | - Michael de Vrese
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str 1, D-24103 Kiel, Germany
| | - Knut J Heller
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str 1, D-24103 Kiel, Germany
| |
Collapse
|
11
|
Raheem A, Liang L, Zhang G, Cui S. Modulatory Effects of Probiotics During Pathogenic Infections With Emphasis on Immune Regulation. Front Immunol 2021; 12:616713. [PMID: 33897683 PMCID: PMC8060567 DOI: 10.3389/fimmu.2021.616713] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
In order to inhibit pathogenic complications and to enhance animal and poultry growth, antibiotics have been extensively used for many years. Antibiotics applications not only affect target pathogens but also intestinal beneficially microbes, inducing long-lasting changes in intestinal microbiota associated with diseases. The application of antibiotics also has many other side effects like, intestinal barrier dysfunction, antibiotics residues in foodstuffs, nephropathy, allergy, bone marrow toxicity, mutagenicity, reproductive disorders, hepatotoxicity carcinogenicity, and antibiotic-resistant bacteria, which greatly compromise the efficacy of antibiotics. Thus, the development of new antibiotics is necessary, while the search for antibiotic alternatives continues. Probiotics are considered the ideal antibiotic substitute; in recent years, probiotic research concerning their application during pathogenic infections in humans, aquaculture, poultry, and livestock industry, with emphasis on modulating the immune system of the host, has been attracting considerable interest. Hence, the adverse effects of antibiotics and remedial effects of probiotics during infectious diseases have become central points of focus among researchers. Probiotics are live microorganisms, and when given in adequate quantities, confer good health effects to the host through different mechanisms. Among them, the regulation of host immune response during pathogenic infections is one of the most important mechanisms. A number of studies have investigated different aspects of probiotics. In this review, we mainly summarize recent discoveries and discuss two important aspects: (1) the application of probiotics during pathogenic infections; and (2) their modulatory effects on the immune response of the host during infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Abdul Raheem
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Lin Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
12
|
Zhang X, Zheng J, Jiang N, Sun G, Bao X, Kong M, Cheng X, Lin A, Liu H. Modulation of gut microbiota and intestinal metabolites by lactulose improves loperamide-induced constipation in mice. Eur J Pharm Sci 2021; 158:105676. [PMID: 33310029 DOI: 10.1016/j.ejps.2020.105676] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Lactulose is a common laxative and has been widely applied to clinical treatment for constipation. This study aimed to explore the improving effect of lactulose on constipation through the mediation of gut microbiota and intestinal metabolites. BALB/c mice with constipation induced by loperamide were orally treated with lactulose for four weeks. After the treatment, the constipation-related factors were determined. The effect of lactulose on the composition of gut microbiota was assessed by 16S rDNA gene sequencing. Gas chromatography or liquid chromatography-mass spectrometer (GC/LC-MS) analysis was used for the quantification of intestinal metabolites. The treatment of constipated mice with lactulose accelerated intestinal motility, suppressed inflammatory responses, protected gut barrier, and improved metabolisms of water and salt in the intestinal tract. These therapeutic effects were attributed to the reversed gut microbiota dysfunction, which conferred the benefit to the production of intestinal metabolites including bile acids, short-chain fatty acids, and tryptophan catabolites. Further, the depletion of intestinal flora from loperamide- or (loperamide + lactulose)-treated mice confirmed the significance of gut microbiota in the mediation of constipation. In summary, this study leads us to propose that lactulose may improve constipation through a prebiotic effect on gut microbiota and intestinal metabolites.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Clinical college of traditional Chinese medicine, Hubei University of Chinese Medicine, Wuhan 430060, PR China
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Nan Jiang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, PR China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, PR China
| | - Guangjun Sun
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, PR China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, PR China
| | - Xinkun Bao
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, PR China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, PR China
| | - Mingwang Kong
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Xue Cheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Aizhen Lin
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, PR China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, PR China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| |
Collapse
|
13
|
Garcia-Gonzalez N, Nuñez-Sanchez MA, Villoria Recio M, Battista N, Gahan CGM, Corsetti A. Immunomodulation of J774A.1 Murine Macrophages by Lactiplantibacillus plantarum Strains Isolated From the Human Gastrointestinal Tract and Fermented Foods. Front Microbiol 2021; 11:557143. [PMID: 33510712 PMCID: PMC7835322 DOI: 10.3389/fmicb.2020.557143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Lactobacillus plantarum species (recently re-named Lactiplantibacillus (Lpb.) plantarum subsp. plantarum) can be isolated from both either the mammalian gut or specific fermented foods where they may be present at high concentrations. Whilst Lpb. plantarum strains have been proposed as potential probiotic candidates, the ability of resident strains consumed in fermented foods to interact with the host is unclear. The main objective of this study was to investigate the cellular location and ability of three different food-borne Lpb. plantarum strains isolated from different sources (table olives and cheese) to modulate the immune response of a murine macrophage-like cell line (J774A.1). For that purpose, macrophages were exposed to the three different Lpb. plantarum strains for 24 h and the expression of a panel of genes involved in the immune response, including genes encoding pattern-recognition receptors (TLRs and NLRs) and cytokines was evaluated by qRT-PCR. We also utilized chemical inhibitors of intracellular pathways to gain some insight into potential signaling mechanisms. Results showed that the native food strains of Lpb. plantarum were able to modulate the response of J774A.1 murine macrophages through a predominately NOD signaling pathway that reflects the transient intracellular location of these strains within the macrophage. The data indicate the capacity of food-dwelling Lpb. plantarum strains to influence macrophage-mediated host responses if consumed in sufficient quantities.
Collapse
Affiliation(s)
- Natalia Garcia-Gonzalez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.,School of Microbiology, University College Cork, Cork, Ireland
| | | | - Miguel Villoria Recio
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Cormac G M Gahan
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aldo Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
14
|
Shigemori S, Namai F, Ogita T, Sato T, Shimosato T. Oral priming with oligodeoxynucleotide particles from Lactobacillus rhamnosus GG attenuates symptoms of dextran sodium sulfate-induced acute colitis in mice. Anim Sci J 2020; 91:e13468. [PMID: 33025687 DOI: 10.1111/asj.13468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/30/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
Here, we investigated the effect of prophylactic oral treatment with carbonate apatite-based particles (ID35caps) containing Lactobacillus rhamnosus GG-derived immunostimulatory oligodeoxynucleotides (ID35) when used in mice with acute colitis. Mice were administered orally with control particles (carbonate apatite particles, Caps), ID35, or ID35caps for 2 days, and then were given free access to drinking water containing 3% (w/v) dextran sodium sulfate (DSS) for 5 days (Days 0-5) to induce acute colitis. Body weight change, fecal bleeding, and stool consistency were monitored and scored as a disease activity index (DAI) to assess symptoms of colitis. On Day 10, animals were euthanized and the colon length was measured to evaluate inflammatory tissue injury. Prophylactic oral treatment with ID35caps significantly suppressed DSS-induced elevation of the DAI score and shortening of the colon compared to the respective parameters in DSS-exposed mice treated with Cap or ID35. We conclude that oral priming with ID35caps attenuates symptoms and inflammatory colonic injury in a mouse model of DSS-induced acute colitis. This finding suggests that ID35caps may be a new oral agent for preventing intestinal inflammation.
Collapse
Affiliation(s)
- Suguru Shigemori
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Kamiina, Japan
| | - Fu Namai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Kamiina, Japan
| | - Tasuku Ogita
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Kamiina, Japan
| | - Takashi Sato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Kamiina, Japan
| | - Takeshi Shimosato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Kamiina, Japan
| |
Collapse
|
15
|
Kiwifruit drives human microbiota-derived DNA to stimulate IL-7 secretion in intestinal epithelial cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
16
|
Sipos F, Kiss AL, Constantinovits M, Tulassay Z, Műzes G. Modified Genomic Self-DNA Influences In Vitro Survival of HT29 Tumor Cells via TLR9- and Autophagy Signaling. Pathol Oncol Res 2019; 25:1505-1517. [PMID: 30465163 DOI: 10.1007/s12253-018-0544-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 11/16/2018] [Indexed: 02/08/2023]
Abstract
In relation of immunobiology, the consequence of the crosstalk between TLR9-signaling and autophagy is poorly documented in HT29 cancer cells. To assess the TLR9-mediated biologic effects of modified self-DNA sequences on cell kinetics and autophagy response HT29 cells were incubated separately with intact genomic (g), hypermethylated (m), fragmented (f), and hypermethylated/fragmented (m/f) self-DNAs. Cell viability, apoptosis, cell proliferation, colonosphere-formation were determined. Moreover, the relation of TLR9-signaling to autophagy response was assayed by real-time RT-PCR, immunocytochemistry and transmission electron microscopy (TEM). After incubation with g-, m-, and m/f-DNAs cell viability and proliferation decreased, while apoptosis increased. F-DNA treatment resulted in an increase of cell survival. Methylation of self-DNA resulted in decrease of TLR9 expression, while it did not influence the positive effect of DNA fragmentation on MyD88 and TRAF6 overexpression, and TNFα downregulation. Fragmentation of DNA abrogated the positive effect of methylation on IRAK2, NFκB and IL-8 mRNA upregulations. In case of the autophagy genes and proteins, g- and f-DNAs caused significant upregulation of Beclin1, Atg16L1, and LC3B. According to TEM analyses, autophagy was present in each group of tumor cells, but to a varying degree. Incubation with m-DNA suppressed tumor cell survival by inducing features of apoptotic cell death, and activated mitophagy. F-DNA treatment enhanced cell survival, and activated macroautophagy and lipophagy. Colonospheres were only present after m-DNA incubation. Our data provided evidence for a close existing interplay between TLR9-signaling and the autophagy response with remarkable influences on cell survival in HT29 cells subjected to modified self-DNA treatments.
Collapse
Affiliation(s)
- Ferenc Sipos
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi street 46, Budapest, 1088, Hungary.
| | - Anna L Kiss
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, 1094, Hungary
| | - Miklós Constantinovits
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi street 46, Budapest, 1088, Hungary
| | - Zsolt Tulassay
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi street 46, Budapest, 1088, Hungary
- Molecular Medicine Research Unit, Hungarian Academy of Sciences, Budapest, 1051, Hungary
| | - Györgyi Műzes
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi street 46, Budapest, 1088, Hungary
| |
Collapse
|
17
|
Álvarez-Mercado AI, Navarro-Oliveros M, Robles-Sánchez C, Plaza-Díaz J, Sáez-Lara MJ, Muñoz-Quezada S, Fontana L, Abadía-Molina F. Microbial Population Changes and Their Relationship with Human Health and Disease. Microorganisms 2019; 7:68. [PMID: 30832423 PMCID: PMC6463060 DOI: 10.3390/microorganisms7030068] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Specific microbial profiles and changes in intestinal microbiota have been widely demonstrated to be associated with the pathogenesis of a number of extra-intestinal (obesity and metabolic syndrome) and intestinal (inflammatory bowel disease) diseases as well as other metabolic disorders, such as non-alcoholic fatty liver disease and type 2 diabetes. Thus, maintaining a healthy gut ecosystem could aid in avoiding the early onset and development of these diseases. Furthermore, it is mandatory to evaluate the alterations in the microbiota associated with pathophysiological conditions and how to counteract them to restore intestinal homeostasis. This review highlights and critically discusses recent literature focused on identifying changes in and developing gut microbiota-targeted interventions (probiotics, prebiotics, diet, and fecal microbiota transplantation, among others) for the above-mentioned pathologies. We also discuss future directions and promising approaches to counteract unhealthy alterations in the gut microbiota. Altogether, we conclude that research in this field is currently in its infancy, which may be due to the large number of factors that can elicit such alterations, the variety of related pathologies, and the heterogeneity of the population involved. Further research on the effects of probiotics, prebiotics, or fecal transplantations on the composition of the human gut microbiome is necessary.
Collapse
Affiliation(s)
- Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix," Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
| | - Miguel Navarro-Oliveros
- Institute of Nutrition and Food Technology "José Mataix," Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
| | - Cándido Robles-Sánchez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix," Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix," Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
| | - María José Sáez-Lara
- Department of Biochemistry and Molecular Biology I, School of Sciences, University of Granada, 18071 Granada, Spain.
| | - Sergio Muñoz-Quezada
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 6094411, Chile.
- National Agency for Medicines (ANAMED), Public Health Institute, Santiago 7780050, Chile.
| | - Luis Fontana
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix," Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
| | - Francisco Abadía-Molina
- Institute of Nutrition and Food Technology "José Mataix," Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
- Department of Cell Biology, School of Sciences, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
18
|
Chen CL, Hsu PY, Pan TM. Therapeutic effects of Lactobacillus paracasei subsp. paracasei NTU 101 powder on dextran sulfate sodium-induced colitis in mice. J Food Drug Anal 2019; 27:83-92. [PMID: 30648597 PMCID: PMC9298637 DOI: 10.1016/j.jfda.2018.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
Ulcerative colitis (UC) is a form of inflammatory bowel disease (IBD) whose exact cause is still unclear. Disruption of the intestinal microflora is considered one of the main causes of the disease. Lactobacillus paracasei subsp. paracasei NTU 101 (NTU 101) is a multifunctional strain that has been shown in previous studies to possess anti-inflammatory properties and to exert a modulatory effect on intestinal bacteria associated with certain pathogenic mechanisms of IBD. In the current study, we investigated the effects of NTU 101 on dextran sulfate sodium (DSS)-induced colitis in a mouse model. Colitis was induced in male C57BL/6 mice (total number n = 60) via dissolved DSS in drinking water on days 15–21 of the experiment. The effects of continuous 25 d feeding (days 0–25) of either a half or a full dose [2.3 × 109 colony-forming units (CFU)/kg body weight (BW)/d and 4.5 × 109 CFU/kg BW/d, respectively] of NTU 101 was evaluated. Lactobacillus rhamnosus BCRC 16000 (BCRC 16000) and L. paracasei subsp. paracasei BCRC 14023 (BCRC 14023) strains were given to control groups. The results indicated that NTU 101 powder improved anti-oxidant capacity, reduced pro-inflammatory cytokine levels, increased anti-inflammatory cytokine levels, and slightly ameliorated body weight loss in DSS-treated mice during the final days of the study. This indicated that NTU 101 powder can relieve the clinical symptoms of DSS-induced colitis in mice.
Collapse
|
19
|
Commensal lactic acid-producing bacteria affect host cellular lipid metabolism through various cellular metabolic pathways: Role of mTOR, FOXO1, and autophagy machinery system. PHARMANUTRITION 2018. [DOI: 10.1016/j.phanu.2018.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Probiotics SOD inhibited food allergy via downregulation of STAT6-TIM4 signaling on DCs. Mol Immunol 2018; 103:71-77. [DOI: 10.1016/j.molimm.2018.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
|
21
|
Effects of Probiotic ( Bifidobacterium longum 35624) Supplementation on Exercise Performance, Immune Modulation, and Cognitive Outlook in Division I Female Swimmers. Sports (Basel) 2018; 6:sports6040116. [PMID: 30308984 PMCID: PMC6315752 DOI: 10.3390/sports6040116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 11/17/2022] Open
Abstract
Our aim was to determine the effects of probiotic supplementation (Bifidobacterium longum 35624; 1 billion CFU·d-1) on exercise performance, immune modulation, and cognitive outlook in collegiate female athletes during six weeks of offseason training. Seventeen National Collegiate Athletic Association (NCAA) Division 1 collegiate female swimmers participated in this two-group matched, double-blind, placebo controlled design. Via stratified randomization, participants were assigned to probiotic (B. longum 35624; n = 8) or placebo (n = 9) groups. Pre, mid, and post-training, all participants completed exercise performance testing (aerobic/anaerobic swim time trials and force plate vertical jump) as well as provided serum (cytokine and gastrointestinal inflammatory markers) and salivary immunoglobulin A samples. Recovery-stress questionnaire for athletes (RESTQ-Sport) was administered at baseline and conclusion of each week. Data were analyzed by analysis of covariance (ANCOVA) by time point with the respective baseline values of each dependent variable being the covariate. No significant differences in exercise performance and biochemical markers were observed between groups following offseason training. Recovery-Stress Questionnaire for Athletes (RESTQ-sport) values in B. longum 35624 group had significantly higher (i.e., more desired; p < 0.05) values in sport recovery (weeks five and six) than placebo. Probiotic supplementation in collegiate female swimmers did not affect exercise performance or immune function throughout offseason training, but did indicate alterations in cognitive outlook.
Collapse
|
22
|
Du W, Xu H, Mei X, Cao X, Gong L, Wu Y, Li Y, Yu D, Liu S, Wang Y, Li W. Probiotic Bacillus enhance the intestinal epithelial cell barrier and immune function of piglets. Benef Microbes 2018; 9:743-754. [DOI: 10.3920/bm2017.0142] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bacillus is widely used in the livestock industry. This study was designed to evaluate the effects of probiotic Bacillus amyloliquefaciens SC06 (Ba), originally isolated from soil, in piglets diet as an alternative to antibiotics (aureomycin), mainly on intestinal epithelial barrier and immune function. Ninety piglets were divided into three groups: G1 (containing 150 mg/kg aureomycin in the diet); G2 (containing 75 mg/kg aureomycin and 1×108 cfu/kg Ba in the diet); G3 (containing 2×108 cfu/kg Ba in the diet without any antibiotics). The results showed that, compared with the antibiotic group (G1), villus length, crypt depth and villus length/crypt depth ratio of intestine significantly increased in the G2 and G3 groups. In addition, intestinal villi morphology, goblet-cell number, mitochondria structure and tight junction proteins of intestinal epithelial cells in G2 and G3 were better than in G1. The relative gene expression of intestinal mucosal defensin-1, claudin3, claudin4, and human mucin-1 in G3 was significantly lower, while the expression of villin was significantly higher than in the antibiotic group. Probiotic Ba could significantly decrease serum interferon (IFN)-α, IFN-γ, interleukin (IL)-1β, and IL-4 levels, whereas increase tumour necrosis factor (TNF)-α and IL-6 secretion. Ba could also significantly decrease cytokines TNF-α, IFN-γ, IL-1β, and IL-4 level in liver, whereas it significantly increased IFN-α. Furthermore, replacing antibiotics with Ba also significantly down-regulated gene expression of TNF and IL-1α in intestinal mucosa, but up-regulated IL-6 and IL-8 transcription. Dietary addition of Ba could significantly reduce the gene expression of nuclear factor kappa beta (NFκB)-p50 and Toll-like receptor (TLR)6, while there was no significant difference for that of myeloid differentiation primary response 88, TNF receptor-associated factor-6, nucleotide-binding oligomerisation domain-containing protein 1, TLR2, TLR4, and TLR9. Taken together, our findings demonstrated that probiotic Ba could increase the intestinal epithelial cell barrier and immune function by improving intestinal mucosa structure, tight junctions and by activating the TLRs signalling pathway.
Collapse
Affiliation(s)
- W. Du
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - H. Xu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - X. Mei
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - X. Cao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - L. Gong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - Y. Wu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - Y. Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - D. Yu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - S. Liu
- National Animal Husbandry Service, Building 20, Maizidian St, Chaoyang District, 100125 Beijing, China P.R
| | - Y. Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - W. Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| |
Collapse
|
23
|
Murata M, Kondo J, Iwabuchi N, Takahashi S, Yamauchi K, Abe F, Miura K. Effects of paraprobiotic Lactobacillus paracasei MCC1849 supplementation on symptoms of the common cold and mood states in healthy adults. Benef Microbes 2018; 9:855-864. [PMID: 30099891 DOI: 10.3920/bm2017.0197] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We investigated the effects of paraprobiotic Lactobacillus paracasei MCC1849 (LAC-Shield™) on symptoms of the common cold and mood states in healthy young adults. A total of 241 participants were randomised to receive 1×1010 heat-killed L. paracasei MCC1849 cell powder (10LP), 3×1010 heat-killed L. paracasei MCC1849 cell powder (30LP), or placebo powder without any L. paracasei cells once daily for 12 weeks based on the incidence of the common cold in the previous year, so that the risk of the incidence was equal among the groups. The incidence and severity of common cold symptoms were rated daily in a subject diary. Salivary secretory immunoglobulin A concentrations and saliva flow rates were analysed at 0 and 6 weeks. The Profile of Mood States (POMS) was assessed using POMS 2 0, 6, and 12 weeks after the intervention. No significant differences were observed in the incidence of the common cold among the groups. In a prespecified subgroup of subjects who had the common cold in the previous year, the incidence, total number of days of symptoms, and symptom scores of the common cold significantly improved in the 10LP-intake group, and were slightly lower in the 30LP-intake group than in the placebo group. The level of deterioration in the positive mood state caused by stress was less in the MCC1849-intake group than in the placebo group. These results indicate that L. paracasei MCC1849 has the potential to improve resistance to common cold infections in susceptible subjects and maintain a desirable mood state, even under mental stress conditions. Further randomised controlled trials are needed in order to investigate the possible beneficial effects of paraprobiotic L. paracasei MCC1849 on the common cold in susceptible populations.
Collapse
Affiliation(s)
- M Murata
- 1 Food Ingredients & Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, 252-8583 Zama-city, Kanagawa, Japan
| | - J Kondo
- 2 Department of Food and Nutrition, Higashi Chikushi Junior College, 5-1-1, Shimoitouzu, Kokurakita-ku, 803-8511 Kitakyushu-city, Fukuoka, Japan
| | - N Iwabuchi
- 1 Food Ingredients & Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, 252-8583 Zama-city, Kanagawa, Japan
| | - S Takahashi
- 1 Food Ingredients & Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, 252-8583 Zama-city, Kanagawa, Japan
| | - K Yamauchi
- 1 Food Ingredients & Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, 252-8583 Zama-city, Kanagawa, Japan
| | - F Abe
- 1 Food Ingredients & Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, 252-8583 Zama-city, Kanagawa, Japan
| | - K Miura
- 3 Department of Nutrition, Faculty of Home Economics, Kyushu Women's University, 1-1-1, Jiyugaoka, Yahatanishi-ku, 807-8586 Kitakyushu-city, Fukuoka, Japan
| |
Collapse
|
24
|
Mohseni Moghadam Z, Mahmoodzadeh Hosseini H, Amin M, Behzadi E, Imani Fooladi AA. Microbial metabolite effects on TLR to develop autoimmune diseases. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1469512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Zeinab Mohseni Moghadam
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Department of Microbiology, College of Basic Sciences, Islamic Azad University, Shahr-e-Qods Branch, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Kordjazy N, Haj-Mirzaian A, Haj-Mirzaian A, Rohani MM, Gelfand EW, Rezaei N, Abdolghaffari AH. Role of toll-like receptors in inflammatory bowel disease. Pharmacol Res 2018; 129:204-215. [PMID: 29155256 DOI: 10.1016/j.phrs.2017.11.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/05/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) is the chronic inflammation of the gastrointestinal tract. Recently, studies of the interplay between the adaptive and innate immune responses have provided a better understanding of the immunopathogenesis of inflammatory disorders such as IBD, as well as identification of novel targets for more potent interventions. Toll-like receptors (TLRs) are a class of proteins that play a significant role in the innate immune system and are involved in inflammatory processes. Activation of TLR signal transduction pathways lead to the induction of numerous genes that function in host defense, including those for inflammatory cytokines, chemokines, and antigen presenting molecules. It was proposed that TLR mutations and dysregulation are major contributing factors to the predisposition and susceptibility to IBD. Thus, modulating TLRs represent an innovative immunotherapeutic approach in IBD therapy. This article outlines the role of TLRs in IBD, focusing on both animal and human studies; the role of TLR-targeted agonists or antagonists as potential therapeutic agents in the different stages of the disease is discussed.
Collapse
Affiliation(s)
- Nastaran Kordjazy
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arvin Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shahid Beheshti Universtity of Medical Sciences, Tehran, Iran
| | - Arya Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mojtaba Rohani
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Erwin W Gelfand
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Boston, MA, USA.
| | - Amir Hossein Abdolghaffari
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran; Department of Pharmacology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
26
|
Hampe CS, Roth CL. Probiotic strains and mechanistic insights for the treatment of type 2 diabetes. Endocrine 2017; 58:207-227. [PMID: 29052181 DOI: 10.1007/s12020-017-1433-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The intestinal microbial composition appears to differ between healthy controls and individuals with Type 2 diabetes (T2D). This observation has led to the hypothesis that perturbations of the intestinal microbiota may contribute to the development of T2D. Manipulations of the intestinal microbiota may therefore provide a novel approach in the prevention and treatment of T2D. Indeed, fecal transplants have shown promising results in both animal models for obesity and T2D and in human clinical trials. To avoid possible complications associated with fecal transplants, probiotics are considered as a viable alternative therapy. An important, however often underappreciated, characteristic of probiotics is that individual strains may have different, even opposing, effects on the host. This strain specificity exists also within the same species. A comprehensive understanding of the underlying mechanisms at the strain level is therefore crucial for the selection of suitable probiotic strains. PURPOSE The aim of this review is to discuss the mechanisms employed by specific probiotic strains of the Lactobacillus and the Bifidobacterium genuses, which showed efficacy in the treatment of obesity and T2D. Some probiotic strains employ recurring beneficial effects, including the production of anti-microbial lactic acid, while other strains display highly unique features, such as hydrolysis of tannins. CONCLUSION A major obstacle in the evaluation of probiotic strains lays in the great number of strains, differences in detection methodology and measured outcome parameters. The understanding of further research should be directed towards the development of standardized evaluation methods to facilitate the comparison of different studies.
Collapse
Affiliation(s)
- Christiane S Hampe
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98109, USA.
| | - Christian L Roth
- Center for Integrative Brain Research, Seattle Children's Hospital & Research Institute, Seattle, WA, 98101, USA
- Pediatric Endocrinology, Seattle Children's Hospital & Research Institute, Seattle, WA, 98101, USA
| |
Collapse
|
27
|
Llewellyn A, Foey A. Probiotic Modulation of Innate Cell Pathogen Sensing and Signaling Events. Nutrients 2017; 9:E1156. [PMID: 29065562 PMCID: PMC5691772 DOI: 10.3390/nu9101156] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023] Open
Abstract
There is a growing body of evidence documenting probiotic bacteria to have a beneficial effect to the host through their ability to modulate the mucosal immune system. Many probiotic bacteria can be considered to act as either immune activators or immune suppressors, which have appreciable influence on homeostasis, inflammatory- and suppressive-immunopathology. What is becoming apparent is the ability of these probiotics to modulate innate immune responses via direct or indirect effects on the signaling pathways that drive these activatory or suppressive/tolerogenic mechanisms. This review will focus on the immunomodulatory role of probiotics on signaling pathways in innate immune cells: from positive to negative regulation associated with innate immune cells driving gut mucosal functionality. Research investigations have shown probiotics to modulate innate functionality in many ways including, receptor antagonism, receptor expression, binding to and expression of adaptor proteins, expression of negative regulatory signal molecules, induction of micro-RNAs, endotoxin tolerisation and finally, the secretion of immunomodulatory proteins, lipids and metabolites. The detailed understanding of the immunomodulatory signaling effects of probiotic strains will facilitate strain-specific selective manipulation of innate cell signal mechanisms in the modulation of mucosal adjuvanticity, immune deviation and tolerisation in both healthy subjects and patients with inflammatory and suppressive pathology.
Collapse
Affiliation(s)
- Amy Llewellyn
- School of Biomedical & Healthcare Sciences, Plymouth University Peninsula Schools of Medicine & Dentistry, Drake Circus, Plymouth PL4 8AA, UK.
- Menzies School of Health Research, John Mathews Building (Building 58), Royal Darwin Hospital Campus, PO Box 41096, Casuarina NT0811, Australia.
| | - Andrew Foey
- School of Biomedical & Healthcare Sciences, Plymouth University Peninsula Schools of Medicine & Dentistry, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
28
|
Gao K, Wang C, Liu L, Dou X, Liu J, Yuan L, Zhang W, Wang H. Immunomodulation and signaling mechanism of Lactobacillus rhamnosus GG and its components on porcine intestinal epithelial cells stimulated by lipopolysaccharide. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:700-713. [DOI: 10.1016/j.jmii.2015.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/27/2015] [Accepted: 05/05/2015] [Indexed: 12/13/2022]
|
29
|
Klunder LJ, Faber KN, Dijkstra G, van IJzendoorn SCD. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027888. [PMID: 28213466 DOI: 10.1101/cshperspect.a027888] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we highlight recent advances with regard to the molecular mechanisms of cell polarity-controlled epithelial homeostasis and immunity in the human intestine.
Collapse
Affiliation(s)
- Leon J Klunder
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Sven C D van IJzendoorn
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
30
|
Shang M, Sun J. Vitamin D/VDR, Probiotics, and Gastrointestinal Diseases. Curr Med Chem 2017; 24:876-887. [PMID: 27915988 DOI: 10.2174/0929867323666161202150008] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/14/2022]
Abstract
Vitamin D is an important factor in regulating inflammation, immune responses, and carcinoma inhibition via action of its receptor, vitamin D receptor (VDR). Recent studies have demonstrated the role of vitamin D/VDR in regulating host-bacterial interactions. Probiotics are beneficial bacteria with the power of supporting or favoring life on the host. In the current review, we will discuss the recent progress on the roles of vitamin D/VDR in gut microbiome and inflammation. We will summarize evidence of probiotics in modulating vitamin D/VDR and balancing gut microbiota in health and gastrointestinal diseases. Moreover, we will review the clinical application of probiotics in prevention and therapy of IBD or colon cancer. Despite of the gains, there remain several barriers to advocate broad use of probiotics in clinical therapy. We will also discuss the limits and future direction in scientific understanding of probiotics, vitamin D/VDR, and host responses.
Collapse
Affiliation(s)
- Mei Shang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou. China
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 S Wood Street, Room 704 CSB, Chicago, IL, 60612. United States
| |
Collapse
|
31
|
Abstract
Helicobacter pylori is the most common bacterial infection worldwide, and virtually all infected persons develop co-existing gastritis. H. pylori is able to send and receive signals from the gastric mucosa, which enables both host and microbe to engage in a dynamic equilibrium. In order to persist within the human host, H. pylori has adopted dichotomous strategies to both induce inflammation as a means of liberating nutrients while simultaneously tempering the immune response to augment its survival. Toll-like receptors (TLRs) and Nod proteins are innate immune receptors that are present in epithelial cells and represent the first line of defense against pathogens. To ensure persistence, H. pylori manipulates TLR-mediated defenses using strategies that include rendering its LPS and flagellin to be non-stimulatory to TLR4 and TLR5, respectively; translocating peptidoglycan into host cells to induce NOD1-mediated anti-inflammatory responses; and translocating DNA into host cells to induce TLR9 activation.
Collapse
|
32
|
Durack J, Lynch SV. Promotion of Epithelial Barrier Integrity Via Probiotic-derived Products. J Pediatr Gastroenterol Nutr 2017; 64:335-336. [PMID: 27472476 DOI: 10.1097/mpg.0000000000001350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Juliana Durack
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco
| | | |
Collapse
|
33
|
Secretions of Bifidobacterium infantis and Lactobacillus acidophilus Protect Intestinal Epithelial Barrier Function. J Pediatr Gastroenterol Nutr 2017; 64:404-412. [PMID: 28230606 DOI: 10.1097/mpg.0000000000001310] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The secreted metabolites of probiotics are cytoprotective to intestinal epithelium and have been shown to attenuate inflammation and reduce gut permeability. The present study was designed to determine the protective effects of probiotic conditioned media (PCM) from Bifidobacterium infantis (BCM) and Lactobacillus acidophilus (LCM) on interleukin (IL)-1β-induced intestinal barrier compromise. METHODS The epithelial barrier was determined by measuring the transepithelial electrical resistance (TER) across a Caco-2 cell monolayer using a Transwell model. The paracellular permeability was determined by fluorescein isothiocyanate-labeled dextran flux. The expression of tight junction (TJ) proteins and nuclear factor-kappa B (NF-κB) p65 were determined using Western blot and the distribution of NF-κB p65 was determined by immunofluorescence staining. RESULTS BCM and LCM induced a dose-dependent increase in Caco-2 TER after 4 and 24 hours of incubation (P < 0.05). The maximal increase of Caco-2 TER occurred at 4 hours of treatment with a PCM concentration of 15%. Preincubation with BCM and LCM for 4 hours significantly prevented the decrease of Caco-2 TER induced by 24 hours of stimulation with 10 ng/mL IL-1β. BCM and LCM decreased paracellular permeability in both stimulated and unstimulated Caco-2 monolayers (P < 0.05). IL-1β stimulation decreased occludin expression and increased claudin-1 expression in Caco-2 cells (P < 0.05), which was prevented in cells treated with BCM or LCM. The changes of claudin-1 expression in H4 cells were similar to Caco-2 cells in response to PCM treatment and IL-1β stimulation; however, a similar response in occludin was not demonstrated. The IL-1β-induced nuclear translocation of NF-κB p65 in Caco-2 cells was prevented by pretreatment with both PCMs. CONCLUSIONS BCM and LCM protected the intestinal barrier against IL-1β stimulation by normalizing the protein expression of occludin and claudin-1 and preventing IL-1β-induced NF-κB activation in Caco-2 cells, which may be partly responsible for the preservation of intestinal permeability.
Collapse
|
34
|
Increased Expression of Toll-Like Receptors 4, 5, and 9 in Small Bowel Mucosa from Patients with Irritable Bowel Syndrome. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9624702. [PMID: 28246611 PMCID: PMC5303582 DOI: 10.1155/2017/9624702] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022]
Abstract
The aim of our study was to compare patients with irritable bowel syndrome (IBS) and healthy controls regarding the expression of toll-like receptors 2, 4, 5, and 9 (TLR2, TLR4, TLR5, and TLR9), the primary mucosal receptors of bacterial components, in small and large bowel mucosa. Methods. We analysed biopsies from jejunum and sigmoid colon of 22 patients (17 females) with IBS aged 18–66 (median: 39) years and 14 healthy volunteers (12 females) aged 22–61 (median: 42) years. Eight patients had constipation-predominant IBS (C-IBS), 7 had diarrhoea-predominant IBS (D-IBS), and 7 had IBS without predominance of constipation or diarrhoea. We analysed mRNA levels for TLRs using quantitative PCR and distribution of TLRs in mucosa using immunohistochemistry. Results. We found increased mRNA expression of TLR4 (mean fold change 1.85 ± 0.31 versus 1.0 ± 0.20; p < 0.05), TLR5 (1.96 ± 0.36 versus 1.0 ± 0.20; p < 0.05) and TLR9 (2.00 ± 0.24 versus 1.0 ± 0.25; p < 0.01) but not of TLR2 in the small bowel mucosa from patients with IBS compared to the controls. There was no significant difference in mRNA levels for TLRs in colon mucosa between patients and controls. Conclusion. Upregulation of TLR4, TLR5, and TLR9 suggests the involvement of bacteria or dysregulation of the immune response to commensal flora in small bowel mucosa in IBS patients.
Collapse
|
35
|
Varga MG, Piazuelo MB, Romero-Gallo J, Delgado AG, Suarez G, Whitaker ME, Krishna US, Patel RV, Skaar EP, Wilson KT, Algood HMS, Peek RM. TLR9 activation suppresses inflammation in response to Helicobacter pylori infection. Am J Physiol Gastrointest Liver Physiol 2016; 311:G852-G858. [PMID: 27758771 PMCID: PMC5130555 DOI: 10.1152/ajpgi.00175.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/13/2016] [Indexed: 01/31/2023]
Abstract
Helicobacter pylori (H. pylori) induces chronic gastritis in humans, and infection can persist for decades. One H. pylori strain-specific constituent that augments disease risk is the cag pathogenicity island. The cag island encodes a type IV secretion system (T4SS) that translocates DNA into host cells. Toll-like receptor 9 (TLR9) is an innate immune receptor that detects hypo-methylated CpG DNA motifs. In this study, we sought to define the role of the H. pylori cag T4SS on TLR9-mediated responses in vivo. H. pylori strain PMSS1 or its cagE- mutant, which fails to assemble a T4SS, were used to infect wild-type or Tlr9-/- C57BL/6 mice. PMSS1-infected Tlr9-/- mice developed significantly higher levels of inflammation, despite similar levels of colonization density, compared with PMSS1-infected wild-type mice. These changes were cag dependent, as both mouse genotypes infected with the cagE- mutant only developed minimal inflammation. Tlr9-/- genotypes did not alter the microbial phenotypes of in vivo-adapted H. pylori strains; therefore, we examined host immunological responses. There were no differences in levels of TH1 or TH2 cytokines in infected mice when stratified by host genotype. However, gastric mucosal levels of IL-17 were significantly increased in infected Tlr9-/- mice compared with infected wild-type mice, and H. pylori infection of IL-17A-/- mice concordantly led to significantly decreased levels of gastritis. Thus loss of Tlr9 selectively augments the intensity of IL-17-driven immune responses to H. pylori in a cag T4SS-dependent manner. These results suggest that H. pylori utilizes the cag T4SS to manipulate the intensity of the host immune response.
Collapse
Affiliation(s)
- Matthew G. Varga
- 1Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - M. Blanca Piazuelo
- 2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Judith Romero-Gallo
- 2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Alberto G. Delgado
- 2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Giovanni Suarez
- 2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Morgan E. Whitaker
- 2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Uma S. Krishna
- 2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Rachna V. Patel
- 3Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Eric P. Skaar
- 3Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee; and ,4Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Keith T. Wilson
- 1Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; ,2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; ,3Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee; and ,4Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Holly M. S. Algood
- 2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; ,3Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee; and ,4Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Richard M. Peek
- 1Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; ,2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; ,3Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| |
Collapse
|
36
|
Ameliorating Active Ulcerative Colitis via an Orally Available Toll-Like Receptor-9 Modifier: A Prospective Open-Label, Multicenter Phase II Trial. Dig Dis Sci 2016; 61:3246-3254. [PMID: 27572942 DOI: 10.1007/s10620-016-4276-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/10/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Treatment of active ulcerative colitis is associated with incomplete efficacy, adverse events, and loss of response. Toll-like receptor-9 mediates innate and adaptive immune response toward intestinal microorganisms. The oral synthetic oligonucleotide toll-like receptor-9 modulator has demonstrated anti-inflammatory properties in colitis murine models and a satisfactory safety profile in humans. AIM To evaluate the efficacy and safety of BL-7040 (a Toll-like receptor-9 modulator) in patients with moderately active ulcerative colitis. METHODS Moderately active ulcerative colitis patients were included in this multicenter, open-label phase IIa trial. Concomitant mesalamine and steroids at a stable dose were allowed. Clinical outcome was evaluated using the Mayo score, histology, and mucosal cytokine levels. Side effects were registered. RESULTS Sixteen out of 22 patients completed a 5-week treatment course and 2-week follow-up. Six patients discontinued the study, three of them due to adverse events. Clinical remission was observed in two patients (12.5 %), and clinical response as well as mucosal healing were achieved in half (50 %) of the patients, while all others remained stable. Furthermore, mucosal neutrophil (p = 0.002) and mucosal interleukin-6 levels (p = 0.046) were significantly reduced in responders compared to non-responders. Toll-like receptor-9 was well tolerated with only one unrelated to study drug serious adverse event (hemoglobin decrease) and 29 mild-to-moderate adverse events. CONCLUSIONS Oral administration of the Toll-like receptor-9 agonist BL-7040 appeared efficacious, safe and well tolerated in patients with moderately active ulcerative colitis.
Collapse
|
37
|
Ananthan A, Balasubramanian H, Rao S, Patole S. Probiotic supplementation in children with cystic fibrosis-a systematic review. Eur J Pediatr 2016; 175:1255-66. [PMID: 27576473 DOI: 10.1007/s00431-016-2769-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 08/09/2016] [Accepted: 08/19/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED Probiotics may benefit in cystic fibrosis (CF) as gut dysbiosis is associated with gastrointestinal symptoms and exacerbation of respiratory symptoms in CF. We conducted a systematic review of randomized controlled trials (RCTs) and non-RCTs of probiotic supplementation in children with CF, using the Cochrane methodology, preferred reporting items for systematic reviews (PRISMA) statement, and meta-analysis of observational studies in epidemiology (MOOSE) guidelines. Primary outcomes were pulmonary exacerbations, duration of hospitalization and antibiotics, and all-cause mortality. Secondary outcomes included gastrointestinal symptoms, markers of gut inflammation, and intestinal microbial balance. A total of nine studies (RCTs, 6, non-RCTs, 3; N = 275) with some methodological weaknesses were included in the review. The pooled estimate showed significant reduction in the rate of pulmonary exacerbation (fixed effects model, two parallel group RCTs and one cross-over trial: relative risk (RR) 0.25, (95 % confidence interval (95 % CI) 0.15,0.41); p < 0.00001; level of evidence: low) and decrease in fecal calprotectin (FCLP) levels (fixed effect model, three RCTs: mean difference (MD) -16.71, 95 % CI -27.30,-6.13); p = 0.002; level of evidence: low) after probiotic supplementation. Probiotic supplementation significantly improved gastrointestinal symptoms (one RCT, one non-RCT) and gut microbial balance (decreased Proteobacteria, increased Firmicutes, and Bacteroides in one RCT, one non-RCT). CONCLUSION Limited low-quality evidence exists on the effects of probiotics in children with CF. Well-designed adequately powered RCTs assessing clinically meaningful outcomes are required to study this important issue. WHAT IS KNOWN • Gut dysbiosis is frequent in children with cystic fibrosis due to frequent exposure to pathogens and antibiotics. • Probiotics decrease gut dysbiosis and improve gut maturity and function. What is New: • This comprehensive systematic review shows that current evidence on the safety and efficacy of probiotics in children with cystic fibrosis is limited and of low quality. • Well-designed and adequately powered trials assessing clinically important outcomes are required considering the health burden of cystic fibrosis and the potential benefits of probiotics.
Collapse
Affiliation(s)
- Anitha Ananthan
- Department of Neonatal Paediatrics, King Edward Memorial Hospital for Women, 378 Bagot Road, Subiaco, Perth, WA, 6008, Australia.
| | - Haribalakrishna Balasubramanian
- Department of Neonatal Paediatrics, King Edward Memorial Hospital for Women, 378 Bagot Road, Subiaco, Perth, WA, 6008, Australia
| | - Shripada Rao
- Department of Neonatal Paediatrics, Princess Margaret Hospital for Children, Perth, WA, Australia.,Centre for Neonatal Research and Education, University of Western Australia, Crawley, Australia
| | - Sanjay Patole
- Department of Neonatal Paediatrics, King Edward Memorial Hospital for Women, 378 Bagot Road, Subiaco, Perth, WA, 6008, Australia.,Centre for Neonatal Research and Education, University of Western Australia, Crawley, Australia
| |
Collapse
|
38
|
Wang H, Gao K, Wen K, Allen IC, Li G, Zhang W, Kocher J, Yang X, Giri-Rachman E, Li GH, Clark-Deener S, Yuan L. Lactobacillus rhamnosus GG modulates innate signaling pathway and cytokine responses to rotavirus vaccine in intestinal mononuclear cells of gnotobiotic pigs transplanted with human gut microbiota. BMC Microbiol 2016; 16:109. [PMID: 27301272 PMCID: PMC4908676 DOI: 10.1186/s12866-016-0727-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/06/2016] [Indexed: 12/12/2022] Open
Abstract
Background A better understanding of mechanisms underlying dose-effects of probiotics in their applications as treatments of intestinal infectious or inflammatory diseases and as vaccine adjuvant is needed. In this study, we evaluated the modulatory effects of Lactobacillus rhamnosus GG (LGG) on transplanted human gut microbiota (HGM) and on small intestinal immune cell signaling pathways in gnotobiotic pigs vaccinated with an oral attenuated human rotavirus (AttHRV) vaccine. Results Neonatal HGM transplanted pigs were given two doses of AttHRV on 5 and 15 days of age and were divided into three groups: none-LGG (AttHRV), 9-doses LGG (AttHRV + LGG9X), and 14-doses LGG (AttHRV + LGG14X) (n = 3–4). At post-AttHRV-inoculation day 28, all pigs were euthanized and intestinal contents and ileal tissue and mononuclear cells (MNC) were collected. AttHRV + LGG14X pigs had significantly increased LGG titers in the large intestinal contents and shifted structure of the microbiota as indicated by the formation of a cluster that is separated from the cluster formed by the AttHRV and AttHRV + LGG9X pigs. The increase in LGG titers concurred with significantly increased ileal HRV-specific IFN-γ producing T cell responses to the AttHRV vaccine reported in our previous publication, suggesting pro-Th1 adjuvant effects of the LGG. Both 9- and 14-doses LGG fed pig groups had significantly higher IkBα level and p-p38/p38 ratio, while significantly lower p-ERK/ERK ratio than the AttHRV pigs, suggesting activation of regulatory signals during immune activation. However, 9-doses, but not 14-doses LGG fed pigs had enhanced IL-6, IL-10, TNF-α, TLR9 mRNA levels, and p38 MAPK and ERK expressions in ileal MNC. Increased TLR9 mRNA was in parallel with higher mRNA levels of cytokines, p-NF-kB and higher p-p38/p38 ratio in MNC of the AttHRV + LGG9X pigs. Conclusions The relationship between modulation of gut microbiota and regulation of host immunity by different doses of probiotics is complex. LGG exerted divergent dose-dependent effects on the intestinal immune cell signaling pathway responses, with 9-doses LGG being more effective in activating the innate immunostimulating TLR9 signaling pathway than 14-doses in the HGM pigs vaccinated with AttHRV. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0727-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA.,Present address: College of Animal Science and Technology, Zhejiang A & F University, Lin'an, 311300, Zhejiang Province, People's Republic of China
| | - Kan Gao
- Present address: College of Animal Science and Technology, Zhejiang A & F University, Lin'an, 311300, Zhejiang Province, People's Republic of China
| | - Ke Wen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Irving Coy Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Guohua Li
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Wenming Zhang
- Present address: College of Animal Science and Technology, Zhejiang A & F University, Lin'an, 311300, Zhejiang Province, People's Republic of China
| | - Jacob Kocher
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Xingdong Yang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Ernawati Giri-Rachman
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA.,Present address: School of Life Science and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Guan-Hong Li
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Sherrie Clark-Deener
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
| |
Collapse
|
39
|
Solano-Aguilar G, Molokin A, Botelho C, Fiorino AM, Vinyard B, Li R, Chen C, Urban J, Dawson H, Andreyeva I, Haverkamp M, Hibberd PL. Transcriptomic Profile of Whole Blood Cells from Elderly Subjects Fed Probiotic Bacteria Lactobacillus rhamnosus GG ATCC 53103 (LGG) in a Phase I Open Label Study. PLoS One 2016; 11:e0147426. [PMID: 26859761 PMCID: PMC4747532 DOI: 10.1371/journal.pone.0147426] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 12/31/2015] [Indexed: 02/07/2023] Open
Abstract
We examined gene expression of whole blood cells (WBC) from 11 healthy elderly volunteers participating on a Phase I open label study before and after oral treatment with Lactobacillus rhamnosus GG-ATCC 53103 (LGG)) using RNA-sequencing (RNA-Seq). Elderly patients (65–80 yrs) completed a clinical assessment for health status and had blood drawn for cellular RNA extraction at study admission (Baseline), after 28 days of daily LGG treatment (Day 28) and at the end of the study (Day 56) after LGG treatment had been suspended for 28 days. Treatment compliance was verified by measuring LGG-DNA copy levels detected in host fecal samples. Normalized gene expression levels in WBC RNA were analyzed using a paired design built within three analysis platforms (edgeR, DESeq2 and TSPM) commonly used for gene count data analysis. From the 25,990 transcripts detected, 95 differentially expressed genes (DEGs) were detected in common by all analysis platforms with a nominal significant difference in gene expression at Day 28 following LGG treatment (FDR<0.1; 77 decreased and 18 increased). With a more stringent significance threshold (FDR<0.05), only two genes (FCER2 and LY86), were down-regulated more than 1.5 fold and met the criteria for differential expression across two analysis platforms. The remaining 93 genes were only detected at this threshold level with DESeq2 platform. Data analysis for biological interpretation of DEGs with an absolute fold change of 1.5 revealed down-regulation of overlapping genes involved with Cellular movement, Cell to cell signaling interactions, Immune cell trafficking and Inflammatory response. These data provide evidence for LGG-induced transcriptional modulation in healthy elderly volunteers because pre-treatment transcription levels were restored at 28 days after LGG treatment was stopped. To gain insight into the signaling pathways affected in response to LGG treatment, DEG were mapped using biological pathways and genomic data mining packages to indicate significant biological relevance. Trial Registration: ClinicalTrials.gov NCT01274598
Collapse
Affiliation(s)
- Gloria Solano-Aguilar
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
- * E-mail:
| | - Aleksey Molokin
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Christine Botelho
- Division of Global Health, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Anne-Maria Fiorino
- Division of Global Health, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Bryan Vinyard
- Statistics Group, Northeast Area, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Robert Li
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Celine Chen
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Joseph Urban
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Harry Dawson
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Irina Andreyeva
- Division of Global Health, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Miriam Haverkamp
- Division of Global Health, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Patricia L. Hibberd
- Division of Global Health, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
40
|
Abstract
The mammalian intestinal tract is the largest immune organ in the body and comprises cells from non-hemopoietic (epithelia, Paneth cells, goblet cells) and hemopoietic (macrophages, dendritic cells, T-cells) origin, and is also a dwelling for trillions of microbes collectively known as the microbiota. The homeostasis of this large microbial biomass is prerequisite to maintain host health by maximizing beneficial symbiotic relationships and minimizing the risks of living in such close proximity. Both microbiota and host immune system communicate with each other to mutually maintain homeostasis in what could be called a "love-hate relationship." Further, the host innate and adaptive immune arms of the immune system cooperate and compensate each other to maintain the equilibrium of a highly complex gut ecosystem in a stable and stringent fashion. Any imbalance due to innate or adaptive immune deficiency or aberrant immune response may lead to dysbiosis and low-grade to robust gut inflammation, finally resulting in metabolic diseases.
Collapse
Affiliation(s)
| | | | | | | | - Matam Vijay-Kumar
- Department of Nutritional Sciences, The Pennsylvania State University, University Park; Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
41
|
Th17 Cells as Potential Probiotic Therapeutic Targets in Inflammatory Bowel Diseases. Int J Mol Sci 2015; 16:20841-58. [PMID: 26340622 PMCID: PMC4613231 DOI: 10.3390/ijms160920841] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are characterized by wasting and chronic intestinal inflammation triggered by various cytokine-mediated pathways. In recent years, it was shown that T helper 17 (Th17) cells are involved in the pathogenesis of IBD, which makes them an attractive therapeutic target. Th17 cells preferentially produce interleukin (IL)-17A–F as signature cytokines. The role of the interplay between host genetics and intestinal microbiota in the pathogenesis of IBD was demonstrated. Probiotics are live microorganisms that when orally ingested in adequate amounts, confer a health benefit to the host by modulating the enteric flora or by stimulating the local immune system. Several studies indicated the effectiveness of probiotics in preventing and treating IBD (ulcerative colitis, and Crohn’s disease). Furthermore, there is mounting evidence of probiotics selectively targeting the Th17 lineage in the prevention and management of inflammatory and autoimmune diseases such as IBD. This review highlights critical roles of Th17 cells in the pathogenesis of IBD and the rationale for using probiotics as a novel therapeutic approach for IBD through manipulation of Th17 cells. The potential molecular mechanisms by which probiotics modulate Th17 cells differentiation and production are also discussed.
Collapse
|
42
|
Natural environments, ancestral diets, and microbial ecology: is there a modern "paleo-deficit disorder"? Part II. J Physiol Anthropol 2015; 34:9. [PMID: 25889196 PMCID: PMC4353476 DOI: 10.1186/s40101-014-0040-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/29/2014] [Indexed: 12/19/2022] Open
Abstract
Famed microbiologist René J. Dubos (1901–1982) was an early pioneer in the developmental origins of health and disease (DOHaD) construct. In the 1960s, he conducted groundbreaking research concerning the ways in which early-life experience with nutrition, microbiota, stress, and other environmental variables could influence later-life health outcomes. He recognized the co-evolutionary relationship between microbiota and the human host. Almost 2 decades before the hygiene hypothesis, he suggested that children in developed nations were becoming too sanitized (vs. our ancestral past) and that scientists should determine whether the childhood environment should be “dirtied up in a controlled manner.” He also argued that oft-celebrated growth chart increases via changes in the global food supply and dietary patterns should not be equated to quality of life and mental health. Here in the second part of our review, we reflect the words of Dubos off contemporary research findings in the areas of diet, the gut-brain-axis (microbiota and anxiety and depression) and microbial ecology. Finally, we argue, as Dubos did 40 years ago, that researchers should more closely examine the relevancy of silo-sequestered, reductionist findings in the larger picture of human quality of life. In the context of global climate change and the epidemiological transition, an allergy epidemic and psychosocial stress, our review suggests that discussions of natural environments, urbanization, biodiversity, microbiota, nutrition, and mental health, are often one in the same.
Collapse
|
43
|
Ladda B, Theparee T, Chimchang J, Tanasupawat S, Taweechotipatr M. In vitro modulation of tumor necrosis factor α production in THP-1 cells by lactic acid bacteria isolated from healthy human infants. Anaerobe 2015; 33:109-16. [PMID: 25759008 DOI: 10.1016/j.anaerobe.2015.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/28/2022]
Abstract
The human microbiota is a source of probiotics capable of modulating the host immune system. In this study, we collected fecal samples from 100 healthy infants and isolated lactic acid bacteria which were screened for immune modulating effects on tumor necrosis factor α (TNF-α) production. Cell-free culture supernatants from 26 isolates were able to decrease TNF-α production in vitro and three of the isolates were selected as candidate probiotics (MSMC39-1, MSMC39-3, MSMC57-1). These isolates were identified using 16S ribosomal DNA sequencing as Lactobacillus paracasei, Lactobacillus casei, and Weissella confusa respectively. All three isolates were acid tolerant and bile tolerant to pH 3.0 and 4% bile respectively. Preparations of cell-free culture supernatants were processed and tested, and revealed that cell-free culture supernatants of isolates L. paracasei MSMC39-1, L. casei MSMC39-3, and W. confusa MSMC57-1 decreased the production of TNF-α significantly and were heat resistant. Only L. paracasei MSMC39-1 supernatant was proteinase-K sensitive. The effects of viable bacteria, heat-killed bacteria, and sonicated bacteria were compared. The heat-killed preparations of isolate W. confusa MSMC57-1 decreased the production of TNF-α. Sonicated cell preparations did not significantly alter TNF-α production. For isolates L. paracasei MSMC39-1 and L. casei MSMC39-3, this suggests that a substance in the cell-free culture supernatant may be responsible for in vitro cytokine modulation.
Collapse
Affiliation(s)
- Boonyarut Ladda
- Molecular Biology Program, Faculty of Medicine, Srinakharinwirot University, Thailand
| | - Talent Theparee
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Thailand
| | - Juntana Chimchang
- Molecular Biology Program, Faculty of Medicine, Srinakharinwirot University, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Science, Chulalongkorn University, Thailand
| | - Malai Taweechotipatr
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Thailand.
| |
Collapse
|
44
|
Immunomodulatory effects of Lactobacillus rhamnosus GG on dendritic cells, macrophages and monocytes from healthy donors. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
45
|
Yang JX, Yang JC. Mechanisms underlying protective effects of probiotics on intestinal epithelial. Shijie Huaren Xiaohua Zazhi 2015; 23:577-583. [DOI: 10.11569/wcjd.v23.i4.577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intestinal epithelial cells (IECs), the first line of defense against pathogens, are an initial point of contact between the host and intestinal microbes. Growing evidence suggests that the interactions between the host and intestinal microbes may lead to dysregulated immune responses, while probiotics can reinforce the barrier function and exert a modest stimulation of the immune system to prevent this situation. On one hand, probiotics exert antagonistic functions via competition for nutrients, metabolites, and occupying effect. Therefore, probiotics can regulate the endogenous gastrointestinal flora and restrain exogenous pathogenic bacteria. On the other hand, IECs recognize probiotics and their metabolites through pattern recognition receptors to stimulate the non-specific immune responses. In addition, probiotics can induce IECs to produce the mucus layer covering the entire intestinal tract and prevent attachment and invasion of various bacterial pathogens. Clinical trials have also shown beneficial effects of probiotics as a potential preventive method for inflammatory bowel disease such as Crohn disease and ulcerative colitis.
Collapse
|
46
|
Fan Y, Liu B. Expression of Toll-like receptors in the mucosa of patients with ulcerative colitis. Exp Ther Med 2015; 9:1455-1459. [PMID: 25780451 PMCID: PMC4353785 DOI: 10.3892/etm.2015.2258] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 12/01/2014] [Indexed: 12/13/2022] Open
Abstract
Patients with ulcerative colitis (UC) have a high risk of developing colorectal cancer. The aim of the present study was to evaluate the expression pattern of Toll-like receptors (TLRs) in the colonic mucosa of patients with UC. Colonic mucosal biopsy specimens were collected during colonoscopy from 30 patients with UC and 30 patients with normal findings as controls. The protein and mRNA expression levels of TLRs 1-4 and TLR9 were measured by immunohistochemistry and reverse transcription-quantitative polymerase chain reaction analysis, respectively. The results showed that the mRNA and protein expression of TLR2, TLR4 and TLR9, but not TLR1 and TLR3, was significantly increased in the colonic mucosa of patients with UC compared with that in the normal controls. TLR (TLR2, TLR4 and TLR9) immunoreactivity was found in the cytoplasm of epithelial cells in the mucosa, and occasionally in the endothelium of small vessels of the stromal tissues. In conclusion, TLR2, TLR4 and TLR9 expression may be important in the biological pathogenesis of UC. TLR alterations in the innate response system may contribute to the pathogenesis of UC.
Collapse
Affiliation(s)
- Yujing Fan
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150080, P.R. China
| | - Bingrong Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150080, P.R. China
| |
Collapse
|
47
|
Ozen M, Kocabas Sandal G, Dinleyici EC. Probiotics for the prevention of pediatric upper respiratory tract infections: a systematic review. Expert Opin Biol Ther 2014; 15:9-20. [PMID: 25430686 DOI: 10.1517/14712598.2015.980233] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Acute upper respiratory tract infections (URTIs) contribute substantially to pediatric morbidity and mortality worldwide. Prevention of these infections in childhood is a very important public health challenge. Previous systematic reviews, including both adult and childhood populations, have reported that probiotics seem promising, but with modest evidence. This study aimed to focus on prophylactic probiotic use in the prevention of URTIs in childhood. METHODS Relevant trials on two databases were identified in a systematic review, from inception to June 2014. Study selection, data extraction and quality assessment were carried out by two reviewers. In this review, the effects of probiotics, particularly the Lactobacillus and Bifidobacterium strains, on the incidence and symptom scores of URTI in otherwise healthy children were evaluated for the first time. This review comprises 14 randomized controlled trials (RCTs) applied to a pediatric population with high-quality methodology. RESULTS This systematic review suggests that probiotics in immunocompetent children have a modest effect both in diminishing the incidence of URTIs and the severity of the infection symptoms. CONCLUSIONS At least one beneficial effect of prophylactic probiotic was observed in the majority of RCTs. Even a minimal reduction of 5 - 10% in the incidence of URTIs would have an important clinical and economic mpact on societies. Furthermore, the long-term administration of probiotics appeared to have a good safety profile in childhood and none of the studies reported any serious adverse events related to the probiotic strain.
Collapse
Affiliation(s)
- Metehan Ozen
- Department of Pediatrics, Acibadem University Faculty of Medicine , Istanbul , Turkey
| | | | | |
Collapse
|
48
|
Plaza-Diaz J, Gomez-Llorente C, Fontana L, Gil A. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics. World J Gastroenterol 2014; 20:15632-15649. [PMID: 25400447 PMCID: PMC4229528 DOI: 10.3748/wjg.v20.i42.15632] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/04/2014] [Accepted: 06/21/2014] [Indexed: 02/06/2023] Open
Abstract
The potential for the positive manipulation of the gut microbiome through the introduction of beneficial microbes, as also known as probiotics, is currently an active area of investigation. The FAO/WHO define probiotics as live microorganisms that confer a health benefit to the host when administered in adequate amounts. However, dead bacteria and bacterial molecular components may also exhibit probiotic properties. The results of clinical studies have demonstrated the clinical potential of probiotics in many pathologies, such as allergic diseases, diarrhea, inflammatory bowel disease and viral infection. Several mechanisms have been proposed to explain the beneficial effects of probiotics, most of which involve gene expression regulation in specific tissues, particularly the intestine and liver. Therefore, the modulation of gene expression mediated by probiotics is an important issue that warrants further investigation. In the present paper, we performed a systematic review of the probiotic-mediated modulation of gene expression that is associated with the immune system and inflammation. Between January 1990 to February 2014, PubMed was searched for articles that were published in English using the MeSH terms "probiotics" and "gene expression" combined with "intestines", "liver", "enterocytes", "antigen-presenting cells", "dendritic cells", "immune system", and "inflammation". Two hundred and five original articles matching these criteria were initially selected, although only those articles that included specific gene expression results (77) were later considered for this review and separated into three major topics: the regulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver. Particular strains of Bifidobacteria, Lactobacilli, Escherichia coli, Propionibacterium, Bacillus and Saccharomyces influence the gene expression of mucins, Toll-like receptors, caspases, nuclear factor-κB, and interleukins and lead mainly to an anti-inflammatory response in cultured enterocytes. In addition, the interaction of commensal bacteria and probiotics with the surface of antigen-presenting cells in vitro results in the downregulation of pro-inflammatory genes that are linked to inflammatory signaling pathways, whereas other anti-inflammatory genes are upregulated. The effects of probiotics have been extensively investigated in animal models ranging from fish to mice, rats and piglets. These bacteria induce a tolerogenic and hyporesponsive immune response in which many genes that are related to the immune system, in particular those genes expressing anti-inflammatory cytokines, are upregulated. By contrast, information related to gene expression in human intestinal cells mediated by the action of probiotics is scarce. There is a need for further clinical studies that evaluate the mechanism of action of probiotics both in healthy humans and in patients with chronic diseases. These types of clinical studies are necessary for addressing the influence of these microorganisms in gene expression for different pathways, particularly those that are associated with the immune response, and to better understand the role that probiotics might have in the prevention and treatment of disease.
Collapse
|
49
|
Segers ME, Lebeer S. Towards a better understanding of Lactobacillus rhamnosus GG--host interactions. Microb Cell Fact 2014; 13 Suppl 1:S7. [PMID: 25186587 PMCID: PMC4155824 DOI: 10.1186/1475-2859-13-s1-s7] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lactobacillus rhamnosus GG (LGG) is one of the most widely used probiotic strains. Various health effects are well documented including the prevention and treatment of gastro-intestinal infections and diarrhea, and stimulation of immune responses that promote vaccination or even prevent certain allergic symptoms. However, not all intervention studies could show a clinical benefit and even for the same conditions, the results are not univocal. Clearly, the host phenotype governed by age, genetics and environmental factors such as the endogenous microbiota, plays a role in whether individuals are responders or non-responders. However, we believe that a detailed knowledge of the bacterial physiology and the LGG molecules that play a key role in its host-interaction capacity is crucial for a better understanding of its potential health benefits. Molecules that were yet identified as important factors governing host interactions include its adhesive pili or fimbriae, its lipoteichoic acid molecules, its major secreted proteins and its galactose-rich exopolysaccharides, as well as specific DNA motifs. Nevertheless, future studies are needed to correlate specific health effects to these molecular effectors in LGG, and also in other probiotic strains.
Collapse
|
50
|
de Kivit S, Tobin MC, DeMeo MT, Fox S, Garssen J, Forsyth CB, Keshavarzian A, Landay AL. In vitro evaluation of intestinal epithelial TLR activation in preventing food allergic responses. Clin Immunol 2014; 154:91-9. [PMID: 25058467 DOI: 10.1016/j.clim.2014.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/09/2014] [Accepted: 07/12/2014] [Indexed: 12/21/2022]
Abstract
Alterations in the gut microbiota composition are associated with food allergy. Toll-like receptors (TLRs) respond to microbial stimuli. We studied the effects of the ligation of TLRs on intestinal epithelial cells (IECs) in preventing an allergic effector response. IEC monolayers (T84 cells) were co-cultured with CD3/28-activated PBMCs from healthy controls or atopic patients and simultaneously apically exposed to TLR2, TLR4 or TLR9 ligands. The barrier integrity of T84 cell monolayers was significantly reduced upon co-culture with PBMCs of food allergic subjects compared to healthy subjects. Apical exposure of IECs to a TLR9 ligand prevented PBMC-induced epithelial barrier disruption. Using PBMCs from food allergic subjects, apical TLR9 activation on IECs increased the IFN-γ/IL-13 and IL-10/IL-13 ratio, while suppressing pro-inflammatory IL-6, IL-8 and TNF-α production in an IEC-dependent manner. Hence, the activation of apical TLR9 on IECs, potentially by microbiota-derived signals, may play an important role in the prevention of allergic inflammation.
Collapse
Affiliation(s)
- Sander de Kivit
- Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA.
| | - Mary C Tobin
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, USA
| | - Mark T DeMeo
- Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Susan Fox
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, USA
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands; Department of Immunology, Nutricia Research, The Netherlands
| | - Christopher B Forsyth
- Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA; Division of Pharmacology, Utrecht Institute Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands
| | - Alan L Landay
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, USA; Division of Pharmacology, Utrecht Institute Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands
| |
Collapse
|