1
|
Guo X, Xu J, Huang C, Zhang Y, Zhao H, Zhu M, Wang J, Nie Y, Xu H, Zhou Y, Zhou Y. Rapamycin extenuates experimental colitis by modulating the gut microbiota. J Gastroenterol Hepatol 2023; 38:2130-2141. [PMID: 37916431 DOI: 10.1111/jgh.16381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 09/03/2023] [Accepted: 09/30/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND AND AIM Autophagy and gut microbiota correlates closely with the inflammatory bowel disease. Herein, we aimed to study the roles of rapamycin on the gut microbiota in inflammatory bowel disease. METHODS Acute colitis was induced with dextran sodium sulfate (DSS) and 2,4,6-trinitrobenzenesulfonic acid solution in mice. Mice were administered with rapamycin or hydroxychloroquine. Weight loss, disease activity index scores, histopathological score, serum inflammatory cytokines, intestinal permeability, and colonic autophagy-related proteins were detected. Cecal content was also preserved in liquid nitrogen and subsequently analyzed following the 16S DNA sequencing. The antibiotic cocktail-induced microbiome depletion was performed to further investigate the relationship between autophagy activation and gut microbiota. RESULTS Compared with the control group, the colonic autophagy-related proteins of P62, mTOR, and p-mTOR increased significantly, while the levels of LC3B and ATG16L1 decreased (all P < 0.05) in the model group. After rapamycin intervention, the colonic pathology of mice improved, while the disease activity index score decreased substantially; the colon length increased, and the expression of IL-6 and TNF-α decreased. Following hydroxychloroquine treatment, some indicators suggested aggravation of colitis. Principal coordinates analysis showed that the DSS group was located on a separate branch from the rapamycin group but was closer to the hydroxychloroquine group. Compared with the DSS group, the rapamycin group was associated with higher abundances of f_Lactobacillaceae (P = 0.0151), f_Deferribacteraceae (P = 0.0290), g_Lactobacillus (P = 0.0151), g_Mucispirillum (P = 0.0137), s_Lactobacillus_reuteri (P = 0.0028), and s_Clostridium_sp_Culture_Jar-13 (P = 0.0082) and a lower abundance of s_Bacteroides_sartorii (P = 0.0180). Linear discriminant analysis effect size showed that rapamycin increased the abundances of Lactobacillus-reuteri, Prevotellaceae, Paraprevotella, Christensenella and Streptococcus and decreased those of Peptostreptococcaceae and Romboutsia Bacteroides-sartorii. Besides, the improvement effect of autophagy activation on colitis disappears following gut microbiome depletion. CONCLUSION The therapeutic effects of rapamycin on extenuating experimental colitis may be related to the gut microbiota.
Collapse
Affiliation(s)
- Xue Guo
- Department of Gastroenterology and Hepatology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Yan Zhang
- Department of Gastroenterology and Hepatology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Hailan Zhao
- Department of Gastroenterology and Hepatology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Minzheng Zhu
- Department of Gastroenterology and Hepatology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Jiaqi Wang
- Department of Gastroenterology and Hepatology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Yuqiang Nie
- Department of Gastroenterology and Hepatology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Youlian Zhou
- Department of Gastroenterology and Hepatology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|
2
|
You Y, Xiao Y, Lu Y, Du J, Cai H, Cai W, Yan W. Postbiotic muramyl dipeptide alleviates colitis via activating autophagy in intestinal epithelial cells. Front Pharmacol 2022; 13:1052644. [PMID: 36506547 PMCID: PMC9727138 DOI: 10.3389/fphar.2022.1052644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
The pathogenesis of IBD is complicated and still unclear. Nucleotide-binding oligomerization domain 2 (NOD2) plays a significant role in regulating gut inflammation under the activation of muramyl dipeptide (MDP), which is used as a postbiotic. The study aimed to investigate the effect of MDP on the intestinal barrier in colitis and the mechanism involved. In this study, C57BL/6 mice were challenged with dextran sodium sulfate (DSS) for establishing a colitis model with the pre-treatment of MDP in vivo. Intestinal permeability was reflected by detecting the serum concentration of 4 kDa Fluorescein Isothiocyanate-Dextran. The expression of inflammation, barrier-related proteins, and autophagy was tested by Western Blotting. Proliferation and apoptosis in intestinal epithelial cells were detected by immunohistochemistry. Caco-2 cells were exposed to lipopolysaccharide for imitating inflammation in vitro. The findings showed that administration of MDP ameliorated losses of body weight loss, gross injury, and histology score of the colon in the DSS-induced colitis mice. MDP significantly ameliorated the condition of gut permeability, and promoted intestinal barrier repair by increasing the expression of Zonula occludens-1 and E-cadherin. Meanwhile, MDP promoted proliferation and reduced apoptosis of intestinal epithelial cells. In the experiment group treated with MDP, LC3 was upregulated, and p62 was downregulated, respectively. These results suggested that MDP stimulation attenuates intestinal inflammation both in vivo and in vitro. Potentially, MDP reduced the intestinal barrier damage by regulating autophagy in intestinal epithelial cells. Future trials investigating the effects of MDP-based postbiotics on IBD may be promising.
Collapse
Affiliation(s)
- Yaying You
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute for Pediatric Research, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yongtao Xiao
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute for Pediatric Research, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Lu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jun Du
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Hui Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute for Pediatric Research, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wei Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute for Pediatric Research, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China,*Correspondence: Weihui Yan, ; Wei Cai,
| | - Weihui Yan
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute for Pediatric Research, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China,*Correspondence: Weihui Yan, ; Wei Cai,
| |
Collapse
|
3
|
Dowdell AS, Cartwright IM, Kitzenberg DA, Kostelecky RE, Mahjoob O, Saeedi BJ, Welch N, Glover LE, Colgan SP. Essential role for epithelial HIF-mediated xenophagy in control of Salmonella infection and dissemination. Cell Rep 2022; 40:111409. [PMID: 36170839 PMCID: PMC9553003 DOI: 10.1016/j.celrep.2022.111409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/21/2022] [Accepted: 09/02/2022] [Indexed: 01/18/2023] Open
Abstract
The intestinal mucosa exists in a state of “physiologic hypoxia,” where oxygen tensions are markedly lower than those in other tissues. Intestinal epithelial cells (IECs) have evolved to maintain homeostasis in this austere environment through oxygen-sensitive transcription factors, including hypoxia-inducible factors (HIFs). Using an unbiased chromatin immunoprecipitation (ChIP) screen for HIF-1 targets, we identify autophagy as a major pathway induced by hypoxia in IECs. One important function of autophagy is to defend against intracellular pathogens, termed “xenophagy.” Analysis reveals that HIF is a central regulator of autophagy and that in vitro infection of IECs with Salmonella Typhimurium results in induction of HIF transcriptional activity that tracks with the clearance of intracellular Salmonella. Work in vivo demonstrates that IEC-specific deletion of HIF compromises xenophagy and exacerbates bacterial dissemination. These results reveal that the interaction between hypoxia, HIF, and xenophagy is an essential innate immune component for the control of intracellular pathogens. Dowdell et al. show that hypoxia, through stabilization of HIF-1α, activates autophagy in intestinal epithelial cells (IECs). Further, the model invasive bacterium Salmonella Typhimurium stabilizes HIF in IECs to trigger anti-bacterial autophagy (xenophagy). This mechanism demonstrates an essential mucosal innate immune response for control of invasive pathogens.
Collapse
Affiliation(s)
- Alexander S Dowdell
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Rocky Mountain Veterans Hospital, Aurora, CO, USA
| | - Ian M Cartwright
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Rocky Mountain Veterans Hospital, Aurora, CO, USA
| | - David A Kitzenberg
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rachael E Kostelecky
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Omemh Mahjoob
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Bejan J Saeedi
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nichole Welch
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Louise E Glover
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Sean P Colgan
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Rocky Mountain Veterans Hospital, Aurora, CO, USA.
| |
Collapse
|
4
|
Rapamycin Alleviates 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis through Autophagy Induction and NF-κB Pathway Inhibition in Mice. Mediators Inflamm 2022; 2022:2923216. [PMID: 36032781 PMCID: PMC9410967 DOI: 10.1155/2022/2923216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/17/2022] [Accepted: 08/02/2022] [Indexed: 12/04/2022] Open
Abstract
Background Recent genetic studies indicated that variants of autophagy genes were associated with the predisposition of Crohn's disease (CD). The autophagy deficiency may affect the innate and adaptive immunity, which is related to persistent and excessive inflammation of the bowel. However, it remains unclear how autophagy modulates the expression of immune response regulator NF-κB and proinflammatory cytokine TNF-α in CD. Aim We aimed to investigate the role of rapamycin on the expression of NF-κB p65 and TNF-α in 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced mouse colitis and lipopolysaccharide (LPS)-induced HT-29 cells. Methods TNBS-induced colitis mice were treated with saline or rapamycin, and the disease activity index (DAI) and histological scores of colonic mucosa were evaluated. The expressions of p65, ATG16L1 and LC3 were detected by western blot and immunohistochemistry staining. The monodansylcadaverine (MDC) staining and transmission electron microscopy were developed to study the autophagy in LPS-induced HT-29 cells. Expression of TNF-α from colon tissue and HT-29 cells were detected by ELISA. The expressions of p65, ATG16L1 and LC3 in active CD patients were also investigated. Results Significantly more autophagosomes were observed in rapamycin-treated cells than in controls. Rapamycin remarkably upregulated the expression of ATG16L1 and LC3II, inhibited p65 nucleus translocation and secretion of TNF-α both in vivo and in vitro. The expression of both ATG16L1 and LC3II increased in mild to moderate CD specimens, while no significant difference was noted between severe CD and normal controls. The expression of p65 increased notably in severe CD compared to those in mild to moderate patients. Conclusions In LPS-treated HT-29 cells and TNBS-induced colitis, p65 is overexpressed, which results in exaggerated secretion of TNF-α and induce or worsen the inflammation in the bowel. Rapamycin protects against colitis through induction of autophagy, thus inhibiting the activation of NF-κB pathway and secretion of TNF-α.
Collapse
|
5
|
Azam T, Zhang H, Zhou F, Wang X. Recent Advances on Drug Development and Emerging Therapeutic Agents Through Targeting Cellular Homeostasis for Ageing and Cardiovascular Disease. FRONTIERS IN AGING 2022; 3:888190. [PMID: 35821839 PMCID: PMC9261412 DOI: 10.3389/fragi.2022.888190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
Ageing is a progressive physiological process mediated by changes in biological pathways, resulting in a decline in tissue and cellular function. It is a driving factor in numerous age-related diseases including cardiovascular diseases (CVDs). Cardiomyopathies, hypertension, ischaemic heart disease, and heart failure are some of the age-related CVDs that are the leading causes of death worldwide. Although individual CVDs have distinct clinical and pathophysiological manifestations, a disturbance in cellular homeostasis underlies the majority of diseases which is further compounded with aging. Three key evolutionary conserved signalling pathways, namely, autophagy, mitophagy and the unfolded protein response (UPR) are involved in eliminating damaged and dysfunctional organelle, misfolded proteins, lipids and nucleic acids, together these molecular processes protect and preserve cellular homeostasis. However, amongst the numerous molecular changes during ageing, a decline in the signalling of these key molecular processes occurs. This decline also increases the susceptibility of damage following a stressful insult, promoting the development and pathogenesis of CVDs. In this review, we discuss the role of autophagy, mitophagy and UPR signalling with respect to ageing and cardiac disease. We also highlight potential therapeutic strategies aimed at restoring/rebalancing autophagy and UPR signalling to maintain cellular homeostasis, thus mitigating the pathological effects of ageing and CVDs. Finally, we highlight some limitations that are likely hindering scientific drug research in this field.
Collapse
Affiliation(s)
- Tayyiba Azam
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hongyuan Zhang
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Fangchao Zhou
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xin Wang
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
6
|
Qiu P, Liu L, Fang J, Zhang M, Wang H, Peng Y, Chen M, Liu J, Wang F, Zhao Q. Identification of Pharmacological Autophagy Regulators of Active Ulcerative Colitis. Front Pharmacol 2021; 12:769718. [PMID: 34925026 PMCID: PMC8672246 DOI: 10.3389/fphar.2021.769718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Ulcerative colitis (UC) is a chronic recurrent disease of unknown etiology. Recently, it has been reported that autophagy-related gene polymorphism is closely associated with increased risk of UC, and the therapeutic effect of some UC drugs is mediated by regulating autophagy pathways. This study aims to identify pivotal autophagy-related regulators in UC pathogenesis and provide novel molecular targets for the treatment of active UC. Methods: Gene expression profiles and clinical information of active UC patients were obtained from GEO databases. CIBERSORT was adopted to evaluate the immune cell infiltration. We used weighted gene co-expression network analysis (WGCNA) and differential expression analysis to identify the pivotal modules and genes associated with active UC. Subsequently, we conducted validation in the validation set and explored its relationship with commonly used UC therapeutics. Results: 36 healthy controls and 46 active UC patients have been obtained from the training set of GSE53306, GSE87466, and GSE134025. There were 423 differentially expressed genes (DEGs) found, which dramatically enriched in autophagy-related pathways. And more infiltration of mast cells, activated T cells, dendritic cells, and M1 macrophages were observed in the intestinal mucosa of active UC, while more infiltration of resting immune cells and M2 macrophages in healthy controls. WGCNA indicated that the turquoise and blue modules were the critical modules. CASP1, SERPINA1, and CCL2 have been identified as the hub autophagy-related genes of active UC, after combining DEGs and 232 autophagy-related genes from HADb with the genes of turquoise and blue modules, respectively. We further verified that CASP1, SERPINA1, and CCL2 were positively associated with active UC and served as an autophagy-related biomarker for active UC. Moreover, increased SERPINA1 in the involved intestinal mucosa was reduced in patients with active UC who responded to golimumab or glucocorticoid therapy. But, neither CASP1, SERPINA1, and CCL2 were changed by treatment of 5-aminosalicylic acid (5-ASA) and azathioprine. Conclusion: CASP1, SERPINA1, and CCL2 are autophagy-related hub genes of active UC. And SERPINA1 may serve as a new pharmacological autophagy regulator of UC, which provides a new target for the use of small molecules targeting autophagy in the treatment of active UC.
Collapse
Affiliation(s)
- Peishan Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Jun Fang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Meng Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Yanan Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Min Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Fan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| |
Collapse
|
7
|
Larabi A, Barnich N, Nguyen HTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy 2020; 16:38-51. [PMID: 31286804 PMCID: PMC6984609 DOI: 10.1080/15548627.2019.1635384] [Citation(s) in RCA: 510] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
One of the most significant challenges of inflammatory bowel disease (IBD) research is to understand how alterations in the symbiotic relationship between the genetic composition of the host and the intestinal microbiota, under impact of specific environmental factors, lead to chronic intestinal inflammation. Genome-wide association studies, followed by functional studies, have identified a role for numerous autophagy genes in IBD, especially in Crohn disease. Studies using in vitro and in vivo models, in addition to human clinical studies have revealed that autophagy is pivotal for intestinal homeostasis maintenance, gut ecology regulation, appropriate intestinal immune responses and anti-microbial protection. This review describes the latest researches on the mechanisms by which dysfunctional autophagy leads to disrupted intestinal epithelial function, gut dysbiosis, defect in anti-microbial peptide secretion by Paneth cells, endoplasmic reticulum stress response and aberrant immune responses to pathogenic bacteria. A better understanding of the role of autophagy in IBD pathogenesis may provide better sub-classification of IBD phenotypes and novel approaches for disease management.Abbreviations: AIEC: adherent-invasive Escherichia coli; AMPK: AMP-activated protein kinase; ATF6: activating transcription factor 6; ATG: autophagy related; Atg16l1[ΔIEC] mice: mice with Atg16l1 depletion specifically in intestinal epithelial cells; Atg16l1[HM] mice: mice hypomorphic for Atg16l1 expression; BCL2: B cell leukemia/lymphoma 2; BECN1: beclin 1, autophagy related; CALCOCO2: calcium binding and coiled-coil domain 2; CASP: caspase; CD: Crohn disease; CGAS: cyclic GMP-AMP synthase; CHUK/IKKA: conserved helix-loop-helix ubiquitous kinase; CLDN2: claudin 2; DAPK1: death associated protein kinase 1; DCs: dendritic cells; DSS: dextran sulfate sodium; EIF2A: eukaryotic translation initiation factor 2A; EIF2AK: eukaryotic translation initiation factor 2 alpha kinase; ER: endoplasmic reticulum; ERBIN: Erbb2 interacting protein; ERN1/IRE1A: ER to nucleus signaling 1; FNBP1L: formin binding protein 1-like; FOXP3: forkhead box P3; GPR65: G-protein coupled receptor 65; GSK3B: glycogen synthase kinase 3 beta; IBD: inflammatory bowel disease; IECs: intestinal epithelial cells; IFN: interferon; IL: interleukin; IL10R: interleukin 10 receptor; IRGM: immunity related GTPase M; ISC: intestinal stem cell; LAMP1: lysosomal-associated membrane protein 1; LAP: LC3-associated phagocytosis; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; LRRK2: leucine-rich repeat kinase 2; MAPK: mitogen-activated protein kinase; MHC: major histocompatibility complex; MIF: macrophage migration inhibitory factor; MIR/miRNA: microRNA; MTMR3: myotubularin related protein 3; MTOR: mechanistic target of rapamycin kinase; MYD88: myeloid differentiation primary response gene 88; NLRP3: NLR family, pyrin domain containing 3; NOD2: nucleotide-binding oligomerization domain containing 2; NPC: Niemann-Pick disease type C; NPC1: NPC intracellular cholesterol transporter 1; OMVs: outer membrane vesicles; OPTN: optineurin; PI3K: phosphoinositide 3-kinase; PRR: pattern-recognition receptor; PTPN2: protein tyrosine phosphatase, non-receptor type 2; PTPN22: protein tyrosine phosphatase, non-receptor type 22 (lymphoid); PYCARD/ASC: PYD and CARD domain containing; RAB2A: RAB2A, member RAS oncogene family; RELA: v-rel reticuloendotheliosis viral oncogene homolog A (avian); RIPK2: receptor (TNFRSF)-interacting serine-threonine kinase 2; ROS: reactive oxygen species; SNPs: single nucleotide polymorphisms; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; Th: T helper 1; TIRAP/TRIF: toll-interleukin 1 receptor (TIR) domain-containing adaptor protein; TLR: toll-like receptor; TMEM173/STING: transmembrane protein 173; TMEM59: transmembrane protein 59; TNF/TNFA: tumor necrosis factor; Treg: regulatory T; TREM1: triggering receptor expressed on myeloid cells 1; UC: ulcerative colitis; ULK1: unc-51 like autophagy activating kinase 1; WT: wild-type; XBP1: X-box binding protein 1; XIAP: X-linked inhibitor of apoptosis.
Collapse
Affiliation(s)
- Anaïs Larabi
- M2iSH, UMR 1071 Inserm, INRA USC 2018, CRNH, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Nicolas Barnich
- M2iSH, UMR 1071 Inserm, INRA USC 2018, CRNH, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Hang Thi Thu Nguyen
- M2iSH, UMR 1071 Inserm, INRA USC 2018, CRNH, University of Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
8
|
Hooper KM, Casanova V, Kemp S, Staines KA, Satsangi J, Barlow PG, Henderson P, Stevens C. The Inflammatory Bowel Disease Drug Azathioprine Induces Autophagy via mTORC1 and the Unfolded Protein Response Sensor PERK. Inflamm Bowel Dis 2019; 25:1481-1496. [PMID: 30889246 DOI: 10.1093/ibd/izz039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/26/2019] [Accepted: 02/22/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Genetic studies have strongly linked autophagy to Crohn's disease (CD), and stimulating autophagy in CD patients may be therapeutically beneficial. The aim of this study was to evaluate the effect of current inflammatory bowel disease (IBD) drugs on autophagy and investigate molecular mechanisms of action and functional outcomes in relation to this cellular process. METHODS Autophagy marker LC3 was evaluated by confocal fluorescence microscopy and flow cytometry. Drug mechanism of action was investigated by polymerase chain reaction (PCR) array with changes in signaling pathways examined by immunoblot and quantitative reverse transcription PCR (RT-qPCR). Clearance of adherent-invasive Escherichia coli (AIEC) and levels of pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) were evaluated by gentamicin protection assays and RT-qPCR, respectively. The marker LC3 was analyzed in peripheral blood mononuclear cells (PBMCs) from pediatric patients by flow cytometry. RESULTS Azathioprine induces autophagy via mechanisms involving modulation of mechanistic target of rapamycin (mTORC1) signaling and stimulation of the unfolded protein response (UPR) sensor PERK. Induction of autophagy with azathioprine correlated with the enhanced clearance of AIEC and dampened AIEC-induced increases in TNFα. Azathioprine induced significant increase in autophagosome bound LC3-II in PBMC populations ex vivo, supporting in vitro findings. In patients, the CD-associated ATG16L1 T300A single-nucleotide polymorphism did not attenuate azathioprine induction of autophagy. CONCLUSIONS Modulation of autophagy via mTORC1 and the UPR may contribute to the therapeutic efficacy of azathioprine in IBD.
Collapse
Affiliation(s)
- Kirsty M Hooper
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, Scotland
| | - Victor Casanova
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, Scotland
| | - Sadie Kemp
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, Scotland
| | - Katherine A Staines
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, Scotland
| | - Jack Satsangi
- Centre for Genomic & Experimental Medicine, University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh Scotland
- Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, England
| | - Peter G Barlow
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, Scotland
| | - Paul Henderson
- Child Life and Health, University of Edinburgh, Edinburgh, Scotland
- Department of Pediatric Gastroenterology and Nutrition, Royal Hospital for Sick Children, Edinburgh, Scotland
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, Scotland
| |
Collapse
|
9
|
Hooper KM, Barlow PG, Henderson P, Stevens C. Interactions Between Autophagy and the Unfolded Protein Response: Implications for Inflammatory Bowel Disease. Inflamm Bowel Dis 2019; 25:661-671. [PMID: 30590697 DOI: 10.1093/ibd/izy380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis, is characterized by chronic inflammation of the gastrointestinal tract. The etiology involves a combination of genetic and environmental factors resulting in abnormal immune responses to intestinal microbiota. Genetic studies have strongly linked genes involved in autophagy to CD, and genes involved in the unfolded protein response (UPR) to IBD. The UPR is triggered in response to accumulation of misfolded proteins in the endoplasmic reticulum (ER), and autophagy plays a key role in relieving ER stress and restoring homeostasis. This review summarizes the known interactions between autophagy and the UPR and discusses the impact of these converging pathways on IBD pathogenesis. With a paucity of effective long-term treatments for IBD, targeting of synergistic pathways may provide novel and more effective therapeutic options.
Collapse
Affiliation(s)
- Kirsty M Hooper
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Peter G Barlow
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Paul Henderson
- Child Life and Health, University of Edinburgh, Edinburgh, United Kingdom
- Department of Paediatric Gastroenterology and Nutrition, Royal Hospital for Sick Children, Edinburgh, United Kingdom
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Zhou M, Xu W, Wang J, Yan J, Shi Y, Zhang C, Ge W, Wu J, Du P, Chen Y. Boosting mTOR-dependent autophagy via upstream TLR4-MyD88-MAPK signalling and downstream NF-κB pathway quenches intestinal inflammation and oxidative stress injury. EBioMedicine 2018; 35:345-360. [PMID: 30170968 PMCID: PMC6161481 DOI: 10.1016/j.ebiom.2018.08.035] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND AIMS Defective autophagy has been proposed as an important event in a growing number of autoimmune and inflammatory diseases such as rheumatoid arthritis and lupus. However, the precise role of mechanistic target of rapamycin (mTOR)-dependent autophagy and its underlying regulatory mechanisms in the intestinal epithelium in response to inflammation and oxidative stress remain poorly understood. METHODS The levels of p-mTOR, LC3B, p62 and autophagy in mice and LPS-treated cells were examined by immunoblotting, immunohistochemistry, confocal microscopy and transmission electron microscopy (TEM). We evaluated the expression of IL-1β, IL-8, TNF-α, MDA, SOD and T-AOC by quantitative real time-polymerase chain reaction (qRT-PCR) and commercially available kits after silencing of mTOR and ATG5. In vivo modulation of mTOR and autophagy was achieved by using AZD8055, rapamycin and 3-methyladenine. Finally, to verify the involvement of TLR4 signalling and the NF-κB pathway in cells and active ulcerative colitis (UC) patients, immunofluorescence, qRT-PCR, immunoblotting and TEM were performed to determine TLR4 signalling relevance to autophagy and inflammation. RESULTS The mTOR-dependent autophagic flux impairment in a murine model of colitis, human intestinal epithelial cells and active UC patients is probably regulated by TLR4-MyD88-MAPK signalling and the NF-κB pathway. Silencing mTOR remarkably attenuated, whereas inhibiting ATG5 aggravated, LPS-induced inflammation and oxidative injury. Pharmacological administration of mTOR inhibitors and autophagy stimulators markedly ameliorated experimental colitis and oxidative stress in vivo. CONCLUSIONS Our findings not only shed light on the regulatory mechanism of mTOR-dependent autophagy, but also provided potential therapeutic targets for intestinal inflammatory diseases such as refractory inflammatory bowel disease.
Collapse
Affiliation(s)
- Mingxia Zhou
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| | - Weimin Xu
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Jiazheng Wang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| | - Junkai Yan
- Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| | - Yingying Shi
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| | - Cong Zhang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| | - Wensong Ge
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Jin Wu
- Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| | - Peng Du
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
11
|
Langevin C, Chapdelaine H, Picard JM, Poitras P, Leduc R. Sirolimus in Refractory Cronkhite-Canada Syndrome and Focus on Standard Treatment. J Investig Med High Impact Case Rep 2018; 6:2324709618765893. [PMID: 29619395 PMCID: PMC5871038 DOI: 10.1177/2324709618765893] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/27/2018] [Accepted: 02/03/2018] [Indexed: 01/15/2023] Open
Abstract
Cronkhite-Canada syndrome is a rare syndrome consisting of extensive gastrointestinal polyposis and ectodermal changes including cutaneous hyperpigmentation, alopecia, and onychodystrophy. We report the case of a 45-year-old Caucasian male patient who failed multiple treatments over 2 years including steroids, azathioprine, adalimumab, and cyclosporine. He had recurrent and prolonged hospitalizations because of diarrhea, abdominal pain, weight loss, and malnutrition. Sirolimus was initiated with a significant clinical and endoscopic benefit apparent within, respectively, 2 and 8 weeks. An ongoing remission was achieved and maintained for over 6 months after prednisone tapering. We review the current evidence on treatment of Cronkhite-Canada syndrome and suggest the incorporation of sirolimus in that algorithm.
Collapse
Affiliation(s)
- Catherine Langevin
- Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Hugo Chapdelaine
- Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Montreal Clinical Research Institute, Montreal, Quebec, Canada
| | | | - Pierre Poitras
- Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Raymond Leduc
- Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Epithelial-mesenchymal transition in Crohn's disease. Mucosal Immunol 2018; 11:294-303. [PMID: 29346350 DOI: 10.1038/mi.2017.107] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023]
Abstract
Crohn's disease (CD) is often accompanied by the complications of intestinal strictures and fistulas. These complications remain obstacles in CD treatment. In recent years, the importance of epithelial-mesenchymal transition in the pathogenesis of CD-associated fistulas and intestinal fibrosis has become apparent. Epithelial-mesenchymal transition refers to a dynamic change, wherein epithelial cells lose their polarity and adherence and acquire migratory function and fibroblast features. During formation of CD-associated fistulas, intestinal epithelial cells dislocate from the basement membrane and migrate to the lining of the fistula tracts, where they convert into transitional cells as a compensatory response under the insufficient wound healing condition. In CD-associated intestinal fibrosis, epithelial-mesenchymal transition may serve as a source of new fibroblasts and consequently lead to overproduction of extracellular matrix. In this review, we present current knowledge of epithelial-mesenchymal transition and its role in the pathogenesis of CD in order to highlight new therapy targets for the associated complications.
Collapse
|
13
|
Vanhove W, Nys K, Arijs I, Cleynen I, Noben M, De Schepper S, Van Assche G, Ferrante M, Vermeire S. Biopsy-derived Intestinal Epithelial Cell Cultures for Pathway-based Stratification of Patients With Inflammatory Bowel Disease. J Crohns Colitis 2018; 12:178-187. [PMID: 29029005 PMCID: PMC6443034 DOI: 10.1093/ecco-jcc/jjx122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Endoplasmic reticulum [ER] stress was shown to be pivotal in the pathogenesis of inflammatory bowel disease. Despite progress in inflammatory bowel disease [IBD] drug development, not more than one-third of patients achieve steroid-free remission and mucosal healing with current therapies. Furthermore, patient stratification tools for therapy selection are lacking. We aimed to identify and quantify epithelial ER stress in a patient-specific manner in an attempt towards personalised therapy. METHODS A biopsy-derived intestinal epithelial cell culture system was developed and characterised. ER stress was induced by thapsigargin and quantified with a BiP enzyme-linked immunosorbent assay [ELISA] of cell lysates from 35 patients with known genotypes, who were grouped based on the number of IBD-associated ER stress and autophagy risk alleles. RESULTS The epithelial character of the cells was confirmed by E-cadherin, ZO-1, and MUC2 staining and CK-18, CK-20, and LGR5 gene expression. Patients with three risk alleles had higher median epithelial BiP-induction [vs untreated] levels compared with patients with one or two risk alleles [p = 0.026 and 0.043, respectively]. When autophagy risk alleles were included and patients were stratified in genetic risk quartiles, patients in Q2, Q3, and Q4 had significantly higher ER stress [BiP] when compared with Q1 [p = 0.034, 0.040, and 0.034, respectively]. CONCLUSIONS We developed and validated an ex vivo intestinal epithelial cell culture system and showed that patients with more ER stress and autophagy risk alleles have augmented epithelial ER stress responses. We thus presented a personalised approach whereby patient-specific defects can be identified, which in turn could help in selecting tailored therapies.
Collapse
Affiliation(s)
- Wiebe Vanhove
- Translational Research in Gastrointestinal Disorders [TARGID], Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Kris Nys
- Translational Research in Gastrointestinal Disorders [TARGID], Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Ingrid Arijs
- Translational Research in Gastrointestinal Disorders [TARGID], Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
- Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Jessa Hospital, Hasselt, Belgium
| | - Isabelle Cleynen
- Laboratory for Complex Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Manuel Noben
- Translational Research in Gastrointestinal Disorders [TARGID], Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
- Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Sebastiaan De Schepper
- Translational Research in Gastrointestinal Disorders [TARGID], Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Gert Van Assche
- Translational Research in Gastrointestinal Disorders [TARGID], Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Marc Ferrante
- Translational Research in Gastrointestinal Disorders [TARGID], Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Translational Research in Gastrointestinal Disorders [TARGID], Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov 2017; 16:487-511. [PMID: 28529316 DOI: 10.1038/nrd.2017.22] [Citation(s) in RCA: 639] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy is central to the maintenance of organismal homeostasis in both physiological and pathological situations. Accordingly, alterations in autophagy have been linked to clinically relevant conditions as diverse as cancer, neurodegeneration and cardiac disorders. Throughout the past decade, autophagy has attracted considerable attention as a target for the development of novel therapeutics. However, such efforts have not yet generated clinically viable interventions. In this Review, we discuss the therapeutic potential of autophagy modulators, analyse the obstacles that have limited their development and propose strategies that may unlock the full therapeutic potential of autophagy modulation in the clinic.
Collapse
|
15
|
Ke P, Shao BZ, Xu ZQ, Chen XW, Liu C. Intestinal Autophagy and Its Pharmacological Control in Inflammatory Bowel Disease. Front Immunol 2017; 7:695. [PMID: 28119697 PMCID: PMC5220102 DOI: 10.3389/fimmu.2016.00695] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022] Open
Abstract
Intestinal mucosal barrier, mainly composed of the intestinal mucus layer and the epithelium, plays a critical role in nutrient absorption as well as protection from pathogenic microorganisms. It is widely acknowledged that the damage of intestinal mucosal barrier or the disturbance of microorganism balance in the intestinal tract contributes greatly to the pathogenesis and progression of inflammatory bowel disease (IBD), which mainly includes Crohn’s disease and ulcerative colitis. Autophagy is an evolutionarily conserved catabolic process that involves degradation of protein aggregates and damaged organelles for recycling. The roles of autophagy in the pathogenesis and progression of IBD have been increasingly studied. This present review mainly describes the roles of autophagy of Paneth cells, macrophages, and goblet cells in IBD, and finally, several potential therapeutic strategies for IBD taking advantage of autophagy.
Collapse
Affiliation(s)
- Ping Ke
- Department of Pharmacology, Second Military Medical University , Shanghai , China
| | - Bo-Zong Shao
- Department of Pharmacology, Second Military Medical University , Shanghai , China
| | - Zhe-Qi Xu
- Department of Pharmacology, Second Military Medical University , Shanghai , China
| | - Xiong-Wen Chen
- Department of Pharmacology, Second Military Medical University , Shanghai , China
| | - Chong Liu
- Department of Pharmacology, Second Military Medical University , Shanghai , China
| |
Collapse
|
16
|
Marzaro G, Castagliuolo I, Schirato G, Palu' G, Dalla Via M, Chilin A, Brun P. Substituted quinazolinones as kinase inhibitors endowed with anti-fibrotic properties. Eur J Med Chem 2016; 115:416-25. [DOI: 10.1016/j.ejmech.2016.03.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 12/30/2022]
|
17
|
Genua M, Becker C, Vetrano S. Anti-TNF Antibodies and Autophagy: A Hidden Nexus for a Successful Therapeutic Response? J Crohns Colitis 2016; 10:237-8. [PMID: 26645640 PMCID: PMC4957480 DOI: 10.1093/ecco-jcc/jjv222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/25/2015] [Indexed: 02/08/2023]
Affiliation(s)
- Marco Genua
- IBD Center, Humanitas Research Hospital, Rozzano, Italy,Department of Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Christoph Becker
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany,
| | - Stefania Vetrano
- IBD Center, Humanitas Research Hospital, Rozzano, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
18
|
Puri K, Kocoshis S, Risma K, Perez L, Hart C, Chin C, Ryan TD, Jefferies JL, Schumacher KR, Castleberry C. Basiliximab treatment for autoimmune bowel disease in a pediatric heart transplant patient. Pediatr Transplant 2015; 19:E165-9. [PMID: 26374667 PMCID: PMC8215525 DOI: 10.1111/petr.12584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2015] [Indexed: 01/09/2023]
Abstract
Autoimmune-mediated bowel disease has been reported after pediatric heart transplantation. Recognition and treatment of these patients has been difficult. We describe a patient who responded to steroids and basiliximab therapy after an inflammatory process secondary to abnormal T-cell activation. Our patient is a 28-month-old female who received a heart transplant at five wk of age. At 24 months post-transplant, she developed fever and bloody stools. Initial investigations were significant for an elevated ESR (>120) and CRP (15.2). Symptoms persisted despite bowel rest and mycophenolate discontinuation. Endoscopic evaluation revealed discontinuous ulcerative disease involving esophagus, terminal ileum, right and left colon, necessitating extensive bowel resection. She had additional airway inflammation leading to a TEF at the site of esophageal ulceration, requiring tracheostomy. Immune evaluation revealed autoimmune dysregulation that responded to parenteral methylprednisolone. Chronic basiliximab therapy allowed for successful weaning of steroids with sustained remission. She has been transitioned to sirolimus and tacrolimus maintenance immunosuppression with plans to discontinue basiliximab once off steroids. In conclusion, bowel disease in the setting of pediatric heart transplantation can be severe and refractory to traditional treatment methods. Tailoring immune therapy to activated T cells can result in remission. Basiliximab therapy was used in our patient to maintain steroid-induced remission, but long-term complications of this disease process are unknown.
Collapse
Affiliation(s)
- K. Puri
- The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - S. Kocoshis
- Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - K. Risma
- Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - L. Perez
- Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - C. Hart
- Otolaryngology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - C. Chin
- The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - T. D. Ryan
- The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - J. L. Jefferies
- The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - K. R. Schumacher
- Pediatric Cardiology, CS Mott Children’s Hospital, Ann Arbor, MI, USA
| | - C. Castleberry
- The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
19
|
Valatas V, Bamias G, Kolios G. Experimental colitis models: Insights into the pathogenesis of inflammatory bowel disease and translational issues. Eur J Pharmacol 2015; 759:253-264. [PMID: 25814256 DOI: 10.1016/j.ejphar.2015.03.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 02/03/2015] [Accepted: 03/12/2015] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases, ulcerative colitis and Crohn׳s disease are characterized by chronic relapsing inflammation of the gastrointestinal tract of unknown etiology that seems to be the consequence of a genetically driven dysregulated immune response against various local and environmental triggers through a defective epithelial barrier. During the last decades, a large number of animal experimental models of intestinal inflammation have been generated and provided valuable insights into the mechanisms that either maintain mucosal homeostasis or drive intestinal inflammation. Their study enabled the identification of various treatment targets and the development a large pipeline of new drugs, mostly biologics. Safety and therapeutic efficacy of these agents have been evaluated in a large number of clinical trials but only a minority has reached the clinic so far. Translational successes but mostly translational failures have prompted to re-evaluate results of efficacy and safety generated by pre-clinical testing and to re-examine the way to interpret experimental in vivo data. This review examines the contribution of the most popular experimental colitis models to our understanding of the pathogenesis of human inflammatory bowel diseases and their translational input in drug development and discusses ways to improve translational outcome.
Collapse
Affiliation(s)
- Vassilis Valatas
- Laboratory of Gastroenterology, Faculty of Medicine, University of Crete, Greece.
| | - Giorgos Bamias
- Academic Department of Gastroenterology, Laikon Hospital, Kapodistriakon University of Athens, Athens, Greece.
| | - George Kolios
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|
20
|
Zhou Y, Rychahou P, Wang Q, Weiss HL, Evers BM. TSC2/mTORC1 signaling controls Paneth and goblet cell differentiation in the intestinal epithelium. Cell Death Dis 2015; 6:e1631. [PMID: 25654764 PMCID: PMC4669793 DOI: 10.1038/cddis.2014.588] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 12/18/2022]
Abstract
The intestinal mucosa undergoes a continual process of proliferation, differentiation and apoptosis, which is regulated by multiple signaling pathways. Notch signaling is critical for the control of intestinal stem cell maintenance and differentiation. However, the precise mechanisms involved in the regulation of differentiation are not fully understood. Previously, we have shown that tuberous sclerosis 2 (TSC2) positively regulates the expression of the goblet cell differentiation marker, MUC2, in intestinal cells. Using transgenic mice constitutively expressing a dominant negative TSC2 allele, we observed that TSC2 inactivation increased mTORC1 and Notch activities, and altered differentiation throughout the intestinal epithelium, with a marked decrease in the goblet and Paneth cell lineages. Conversely, treatment of mice with either Notch inhibitor dibenzazepine (DBZ) or mTORC1 inhibitor rapamycin significantly attenuated the reduction of goblet and Paneth cells. Accordingly, knockdown of TSC2 activated, whereas knockdown of mTOR or treatment with rapamycin decreased, the activity of Notch signaling in the intestinal cell line LS174T. Importantly, our findings demonstrate that TSC2/mTORC1 signaling contributes to the maintenance of intestinal epithelium homeostasis by regulating Notch activity.
Collapse
Affiliation(s)
- Y Zhou
- Markey Cancer Center, The University of Kentucky, Lexington, KY, USA
| | - P Rychahou
- 1] Markey Cancer Center, The University of Kentucky, Lexington, KY, USA [2] Department of Surgery, The University of Kentucky, Lexington, KY, USA
| | - Q Wang
- 1] Markey Cancer Center, The University of Kentucky, Lexington, KY, USA [2] Department of Surgery, The University of Kentucky, Lexington, KY, USA
| | - H L Weiss
- Markey Cancer Center, The University of Kentucky, Lexington, KY, USA
| | - B M Evers
- 1] Markey Cancer Center, The University of Kentucky, Lexington, KY, USA [2] Department of Surgery, The University of Kentucky, Lexington, KY, USA
| |
Collapse
|
21
|
Latella G, Di Gregorio J, Flati V, Rieder F, Lawrance IC. Mechanisms of initiation and progression of intestinal fibrosis in IBD. Scand J Gastroenterol 2015; 50:53-65. [PMID: 25523556 DOI: 10.3109/00365521.2014.968863] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intestinal fibrosis is a common complication of the inflammatory bowel diseases (IBDs). It becomes clinically apparent in >30% of patients with Crohn's disease (CD) and in about 5% with ulcerative colitis (UC). Fibrosis is a consequence of local chronic inflammation and is characterized by excessive extracellular matrix (ECM) protein deposition. ECM is produced by activated myofibroblasts, which are modulated by both, profibrotic and antifibrotic factors. Fibrosis depends on the balance between the production and degradation of ECM proteins. This equilibrium can be impacted by a complex and dynamic interaction between profibrotic and antifibrotic mediators. Despite the major therapeutic advances in the treatment of active inflammation in IBD over the past two decades, the incidence of intestinal strictures in CD has not significantly changed as the current anti-inflammatory therapies neither prevent nor reverse the established fibrosis and strictures. This implies that control of intestinal inflammation does not necessarily affect the associated fibrotic process. The conventional view that intestinal fibrosis is an inevitable and irreversible process in patients with IBD is also gradually changing in light of an improved understanding of the cellular and molecular mechanisms that underline the pathogenesis of fibrosis. Comprehension of the mechanisms of intestinal fibrosis is thus vital and may pave the way for the developments of antifibrotic agents and new therapeutic approaches in IBD.
Collapse
Affiliation(s)
- Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L'Aquila , L'Aquila , Italy
| | | | | | | | | |
Collapse
|
22
|
Balato A, Di Caprio R, Lembo S, Mattii M, Megna M, Schiattarella M, Tarantino G, Balato N, Ayala F, Monfrecola G. Mammalian Target of Rapamycin in Inflammatory Skin Conditions. EUR J INFLAMM 2014; 12:341-350. [DOI: 10.1177/1721727x1401200213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
The conserved serine/threonine kinase mammalian target of rapamycin (mTOR) is a major regulator of survival growth, proliferation and motility, in response to mitogens, energy and nutrient levels. Dysregulation of mTOR pathway has been observed in various inflammatory or neoplastic human diseases. To assess the potential involvement of mTOR in some of the most common inflammatory skin diseases, and its interaction with other inflammatory mediators, we investigated mTOR expression in psoriasis, allergic contact dermatitis (ACD) and atopic dermatitis (AD). mTOR gene expression was assessed in the following conditions: i) skin biopsies from 15 patients affected by psoriasis, 5 patients with ACD, 5 patients with AD and 3 patients with EGFR-inhibitor-induced skin rash; ii) in immortalized keratinocytes HaCaT, primary human keratinocytes (KCs) and full thickness skin organ cultures, incubated with tumor necrosis factor (TNF)-α, interleukin (IL) 17A or their combination; iii) in HaCaT cells stimulated with ultraviolet (UV)B; iv) in skin biopsies from 5 psoriatic patients before and after 16 weeks of anti-TNF-α therapy; mTOR expression was also evaluated through immunohistochemistry in lesional and non-lesional skin samples from 5 psoriatic patients. Moreover, mTOR major up-stream and down-stream regulator gene expression was assessed in skin biopsies from 15 patients affected by psoriasis, 5 patients with ACD, 5 patients with AD and 3 patients with EGFR-inhibitor-induced skin rash. All analyzed skin diseases showed an increase of mTOR gene expression whereas mTOR up-stream negative regulators were reduced or not enhanced in all of them. mTOR was strongly expressed in all epidermal layers of lesional and non-lesional psoriatic skin. Conversely, pro-inflammatory conditions, in vitro, were not able to increase mTOR levels, except for UVB. Similarly, anti-TNF-α therapy was not able to reduce mTOR gene expression in patients with psoriasis. Our study provides evidence that mTOR is involved in cutaneous inflammatory process, but through a signalling not directly dependent from Th1-Th17 pathway.
Collapse
Affiliation(s)
- A. Balato
- Department of Dermatology, University of Naples Federico II, Naples, Italy
| | - R. Di Caprio
- Department of Dermatology, University of Naples Federico II, Naples, Italy
| | - S. Lembo
- Department of Dermatology, University of Naples Federico II, Naples, Italy
| | - M. Mattii
- Department of Dermatology, University of Naples Federico II, Naples, Italy
| | - M. Megna
- Department of Dermatology, University of Naples Federico II, Naples, Italy
| | - M. Schiattarella
- Department of Dermatology, University of Naples Federico II, Naples, Italy
| | - G. Tarantino
- Department of Clinical and Experimental Medicine, University of Naples Federico II, Naples, Italy
| | - N. Balato
- Department of Dermatology, University of Naples Federico II, Naples, Italy
| | - F. Ayala
- Department of Dermatology, University of Naples Federico II, Naples, Italy
| | - G. Monfrecola
- Department of Dermatology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
23
|
Bettenworth D, Rieder F. Medical therapy of stricturing Crohn's disease: what the gut can learn from other organs - a systematic review. FIBROGENESIS & TISSUE REPAIR 2014; 7:5. [PMID: 24678903 PMCID: PMC4230721 DOI: 10.1186/1755-1536-7-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/06/2014] [Indexed: 12/11/2022]
Abstract
Crohn’s disease (CD) is a chronic remitting and relapsing disease. Fibrostenosing complications such as intestinal strictures, stenosis and ultimately obstruction are some of its most common long-term complications. Despite recent advances in the pathophysiological understanding of CD and a significant improvement of anti-inflammatory therapeutics, medical therapy for stricturing CD is still inadequate. No specific anti-fibrotic therapy exists and the incidence rate of strictures has essentially remained unchanged. Therefore, the current therapy of established fibrotic strictures comprises mainly endoscopic dilation as well as surgical approaches. However, these treatment options are associated with major complications as well as high recurrence rates. Thus, a specific anti-fibrotic therapy for CD is urgently needed. Importantly, there is now a growing body of evidence for prevention as well as effective medical treatment of fibrotic diseases of other organs such as the skin, lung, kidney and liver. In face of the similarity of molecular mechanisms of fibrogenesis across these organs, translation of therapeutic approaches from other fibrotic diseases to the intestine appears to be a promising treatment strategy. In particular transforming growth factor beta (TGF-β) neutralization, selective tyrosine kinase inhibitors, blockade of components of the renin-angiotensin system, IL-13 inhibitors and mammalian target of rapamycin (mTOR) inhibitors have emerged as potential drug candidates for anti-fibrotic therapy and may retard progression or even reverse established intestinal fibrosis. However, major challenges have to be overcome in the translation of novel anti-fibrotics into intestinal fibrosis therapy, such as the development of appropriate biomarkers that predict the development and accurately monitor therapeutic responses. Future clinical studies are a prerequisite to evaluate the optimal timing for anti-fibrotic treatment approaches, to elucidate the best routes of application, and to evaluate the potential of drug candidates to reach the ultimate goal: the prevention or reversal of established fibrosis and strictures in CD patients.
Collapse
Affiliation(s)
| | - Florian Rieder
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Pathobiology, Lerner Research Institute, NC22, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
24
|
Latella G, Vetuschi A, Sferra R, Speca S, Gaudio E. Localization of ανβ6 integrin-TGF-β1/Smad3, mTOR and PPARγ in experimental colorectal fibrosis. Eur J Histochem 2013; 57:e40. [PMID: 24441193 PMCID: PMC3896042 DOI: 10.4081/ejh.2013.e40] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/26/2013] [Accepted: 11/04/2013] [Indexed: 02/08/2023] Open
Abstract
A simultaneous action of several pro-fibrotic mediators appears relevant in the development of fibrosis. There are evidences that transforming growth factor-β (TGF-β)/Smad3 pathway forms with αvβ6 integrin, mammalian target of Rapamycin (mTOR) and peroxisome proliferator-activated receptor-γ (PPARγ) a complex signalling network with extensive crosstalk and strong effects on fibrosis development. The present study evaluated the expression of TGFβ, Smad3, αvβ6 integrin, mTOR and PPARγ in 2, 4, 6-trinitrobenzenesulphonic acid (TNBS)-induced colorectal fibrosis in Smad3 wild-type (WT) and null mice. Smad3 WT mice treated with TNBS developed a marked colorectal fibrosis and showed a concomitant up-regulation of TGFβ, Smad3, αvβ6 and mTOR and a reduction of PPARγ expression. On the other hand, Smad3 Null mice similarly treated with TNBS did not develop fibrosis and showed a very low or even absent expression of TGFβ, Smad3, αvβ6 and mTOR and a marked over-expression of PPARγ. At the same time the expression of α-smooth muscle actin (a marker of activated myofibroblasts), collagen I-III and connective tissue growth factor (a downstream effector of TGFβ/Smad3-induced extracellular matrix proteins) were up-regulated in Smad3 WT mice treated with TNBS compared to Null TNBS-treated mice. These preliminary results suggest a possible interaction between these pro-fibrotic molecules in the development of intestinal fibrosis.
Collapse
|
25
|
Nguyen HTT, Lapaquette P, Bringer MA, Darfeuille-Michaud A. Autophagy and Crohn's disease. J Innate Immun 2013; 5:434-43. [PMID: 23328432 DOI: 10.1159/000345129] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/15/2012] [Indexed: 12/27/2022] Open
Abstract
Advances in genetics have shed light on the molecular basis of Crohn's disease (CD) predisposition and pathogenesis, via linkage disequilibrium analysis to genome-wide association studies. The discovery of genetic variants of NOD2, an intracellular pathogen molecular sensor, as risk factors for CD has paved the way for further research on innate immunity in this disease. Remarkably, polymorphisms in autophagy genes, such as ATG16L1 and IRGM, have been identified, allowing the pivotal role of autophagy in innate immunity to be uncovered. In this review, we summarize recent studies on the CD-associated NOD2, ATG16L1 and IRGM risk variants and their contribution to the autophagy functions that have most influenced our understanding of CD pathophysiology.
Collapse
|
26
|
Speca S, Giusti I, Rieder F, Latella G. Cellular and molecular mechanisms of intestinal fibrosis. World J Gastroenterol 2012; 18:3635-61. [PMID: 22851857 PMCID: PMC3406417 DOI: 10.3748/wjg.v18.i28.3635] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/26/2012] [Accepted: 04/09/2012] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is a chronic and progressive process characterized by an excessive accumulation of extracellular matrix (ECM) leading to stiffening and/or scarring of the involved tissue. Intestinal fibrosis may develop in several different enteropathies, including inflammatory bowel disease. It develops through complex cell, extracellular matrix, cytokine and growth factor interactions. Distinct cell types are involved in intestinal fibrosis, such as resident mesenchymal cells (fibroblasts, myofibroblasts and smooth muscle cells) but also ECM-producing cells derived from epithelial and endothelial cells (through a process termed epithelial- and endothelial-mesenchymal transition), stellate cells, pericytes, local or bone marrow-derived stem cells. The most important soluble factors that regulate the activation of these cells include cytokines, chemokines, growth factors, components of the renin-angiotensin system, angiogenic factors, peroxisome proliferator-activated receptors, mammalian target of rapamycin, and products of oxidative stress. It soon becomes clear that although inflammation is responsible for triggering the onset of the fibrotic process, it only plays a minor role in the progression of this condition, as fibrosis may advance in a self-perpetuating fashion. Definition of the cellular and molecular mechanisms involved in intestinal fibrosis may provide the key to developing new therapeutic approaches.
Collapse
|
27
|
Etiology of Crohn’s disease: many roads lead to autophagy. J Mol Med (Berl) 2012; 90:987-96. [DOI: 10.1007/s00109-012-0934-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 01/19/2023]
|
28
|
Kabi A, Nickerson KP, Homer CR, McDonald C. Digesting the genetics of inflammatory bowel disease: insights from studies of autophagy risk genes. Inflamm Bowel Dis 2012; 18:782-92. [PMID: 21936032 PMCID: PMC3245781 DOI: 10.1002/ibd.21868] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 07/26/2011] [Indexed: 12/16/2022]
Abstract
The success of genetic analyses identifying multiple loci associated with inflammatory bowel disease (IBD) susceptibility has resulted in the identification of several risk genes linked to a common cellular process called autophagy. Autophagy is a process involving the encapsulation of cytosolic cellular components in double-membrane vesicles, their subsequent lysosomal degradation, and recycling of the degraded components for use by the cell. It plays an important part in the innate immune response to a variety of intracellular pathogens, and it is this component of autophagy that appears to be defective in IBD. This has lead to the hypothesis that Crohn's disease may result from an impaired antibacterial response, which leads to ineffective control of bacterial infection, dysbiosis of the intestinal microbiota, and chronic inflammation. Several recurrent themes have surfaced from studies examining the function of autophagy-related genes in the context of IBD, with cellular context, disease status, risk variant effect, and risk gene interplay all affecting the interpretation of these studies. The identification of autophagy as a major risk pathway in IBD is a significant step forward and may lead to pathway-focused therapy in the future; however, there is more to understand in order to unravel the complexity of this disease.
Collapse
Affiliation(s)
- Amrita Kabi
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kourtney P. Nickerson
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Craig R. Homer
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Christine McDonald
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio,Correspondence to: Christine McDonald, Ph.D., Department of Pathobiology, NC22, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, (216) 445-7058 phone, (216) 636-0104 fax,
| |
Collapse
|
29
|
Brest P, Corcelle E, Cesaro A, Chargui A, Belaïd A, Klionsky D, Vouret-Craviari V, Hebuterne X, Hofman P, Mograbi B. Autophagy and Crohn's disease: at the crossroads of infection, inflammation, immunity, and cancer. Curr Mol Med 2010; 10:486-502. [PMID: 20540703 PMCID: PMC3655526 DOI: 10.2174/156652410791608252] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 11/13/2009] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel diseases (IBD) are common inflammatory disorders of the gastrointestinal tract that include ulcerative colitis (UC) and Crohn's disease (CD). The incidences of IBD are high in North America and Europe, affecting as many as one in 500 people. These diseases are associated with high morbidity and mortality. Colorectal cancer risk is also increased in IBD, correlating with inflammation severity and duration. IBD are now recognized as complex multigenetic disorders involving at least 32 different risk loci. In 2007, two different autophagy-related genes, ATG16L1 (autophagy-related gene 16-like 1) and IRGM (immunity-related GTPase M) were shown to be specifically involved in CD susceptibility by three independent genome-wide association studies. Soon afterwards, more than forty studies confirmed the involvement of ATG16L1 and IRGM variants in CD susceptibility and gave new information on the importance of macroautophagy (hereafter referred to as autophagy) in the control of infection, inflammation, immunity and cancer. In this review, we discuss how such findings have undoubtedly changed our understanding of CD pathogenesis. A unifying autophagy model then emerges that may help in understanding the development of CD from bacterial infection, to inflammation and finally cancer. The Pandora's box is now open, releasing a wave of hope for new therapeutic strategies in treating Crohn's disease.
Collapse
Affiliation(s)
- P. Brest
- Inserm ERI-21/EA 4319, Faculty of Medicine, University of Nice Sophia Antipolis, Nice, France
| | - E.A. Corcelle
- Apoptosis Department and Centre for Genotoxic Stress Research, Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark
| | - A. Cesaro
- Inserm ERI-21/EA 4319, Faculty of Medicine, University of Nice Sophia Antipolis, Nice, France
| | - A. Chargui
- Inserm ERI-21/EA 4319, Faculty of Medicine, University of Nice Sophia Antipolis, Nice, France
| | - A. Belaïd
- Inserm ERI-21/EA 4319, Faculty of Medicine, University of Nice Sophia Antipolis, Nice, France
| | - D.J. Klionsky
- University of Michigan, Life Sciences Institute, Ann Arbor, Michigan, USA
| | - V. Vouret-Craviari
- Inserm ERI-21/EA 4319, Faculty of Medicine, University of Nice Sophia Antipolis, Nice, France
| | - X. Hebuterne
- Inserm ERI-21/EA 4319, Faculty of Medicine, University of Nice Sophia Antipolis, Nice, France
- Centre Hospitalier Universitaire de Nice, Pôle Digestif, Hôpital L'Archet II, Nice, France
| | - P. Hofman
- Inserm ERI-21/EA 4319, Faculty of Medicine, University of Nice Sophia Antipolis, Nice, France
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice, France
| | - B. Mograbi
- Inserm ERI-21/EA 4319, Faculty of Medicine, University of Nice Sophia Antipolis, Nice, France
| |
Collapse
|