1
|
Herranz-Montoya I, Angulo-Aguado M, Perna C, Zagorac S, García-Jimeno L, Park S, Djouder N. p53 protein degradation redefines the initiation mechanisms and drives transitional mutations in colorectal cancer. Nat Commun 2025; 16:3934. [PMID: 40287431 PMCID: PMC12033273 DOI: 10.1038/s41467-025-59282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Incidence of colorectal cancer (CRC) is increasing likely due to different mechanisms driving initiation and progression. The initial model proposed by Fearon and Vogelstein posits it as a multi-hit neoplasia, originating from adenomatous-polyps induced by WNT activation, ultimately progressing to aggressiveness through p53 loss. Integrating human data with mouse genetics, we redefine this paradigm, highlighting pivotal roles of MYC, oncogenic URI and p53 degradation to initiate CRC. Early APC loss activates MYC to transcriptionally upregulate URI, which modulates MDM2 activity, triggering p53 proteasomal degradation, essential for tumour initiation and mutation burden accrual in CRC mice. Remarkably, reinstating p53 levels via genetic URI depletion or p53 super-expression in CRC mice with WNT pathway activation prevents tumour initiation and extends lifespan. Our data reveal a "two-hit" genetic model central to APC loss-driven CRC initiation, wherein MYC/URI axis intricately controls p53 degradation, offering mechanistic insights into transitional mutation acquisition essential for CRC progression.
Collapse
Affiliation(s)
- Irene Herranz-Montoya
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Mariana Angulo-Aguado
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Cristian Perna
- Department of Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- Universidad de Alcalá, 28801, Madrid, Spain
| | - Sladjana Zagorac
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Luis García-Jimeno
- Computational Cancer Genomics Group, Structural Biology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Solip Park
- Computational Cancer Genomics Group, Structural Biology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Nabil Djouder
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain.
| |
Collapse
|
2
|
Wang S, Yang C, Tang J, Wang K, Cheng H, Yao S, Huang Z, Fei B. LSD1 is a targetable vulnerability in gastric cancer harboring TP53 frameshift mutations. Clin Epigenetics 2025; 17:26. [PMID: 39966827 PMCID: PMC11837680 DOI: 10.1186/s13148-025-01829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND TP53 mutations are linked to aggressive progression and chemoresistance in gastric cancer (GC). Frameshift mutation is the second most common mutation type of TP53. However, the consequences of this mutation type in GC were not well understood, and targeted therapies for cancer patients harboring frameshift mutations were also not established. Histone methylation significantly influences tumorigenesis in TP53-mutated cancers, and related inhibitors are emerging as specific therapeutic strategies. METHODS AND RESULTS By treating GC cell lines harboring various TP53 mutation types with a library of histone demethylase inhibitors, we identified that GSK690, a reversible inhibitor of lysine-specific demethylase 1 (LSD1), selectively inhibits GC cells harboring TP53 frameshift mutations without nuclear localization sequence (NLS) (termed TP53 Frameshift NLS), which accounts for 89% TP53 frameshift mutations in GC patients. GSK690 showed significant specific inhibition in vitro and in vivo against this subtype by inducing G1/S cell cycle arrest via the LSD1-CCNA2 axis. Importantly, dual-luciferase assays and ChIP-qPCR confirmed that the loss of transcriptional repression activities of p53 in drives LSD1 upregulation in TP53 Frameshift NLS cancer cells. CONCLUSIONS In summary, our results indicate that the nuclear localization deficiency of p53 accounts for increased expression of LSD1 in TP53 Frameshift NLS GCs. GSK690 inhibits cell cycle progression and tumor growth by suppressing aberrantly activated LSD1-CCNA2 signaling in this GC subtype, counteracting malignant proliferation and thereby providing a precise therapeutic strategy for GC patients with TP53 Frameshift NLS.
Collapse
Affiliation(s)
- Suzeng Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Chunyu Yang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Junhui Tang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Kaiqing Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hao Cheng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Bojian Fei
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
3
|
Osakabe M, Yamada N, Sugimoto R, Uesugi N, Nakao E, Honda M, Yanagawa N, Sugai T. The pattern-based interpretation of p53 immunohistochemical expression as a surrogate marker for TP53 mutations in colorectal cancer. Virchows Arch 2025; 486:333-341. [PMID: 38512505 PMCID: PMC11876225 DOI: 10.1007/s00428-024-03790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/21/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Mutations in the TP53 gene, most commonly observed in colorectal cancer (CRC), play an essential role in colorectal carcinogenesis. Although p53 immunohistochemical (IHC) expression patterns have been argued to serve as an excellent surrogate marker for TP53 mutations, its performance has not been confirmed in CRC. We aimed to determine whether p53 IHC expression patterns accurately predict TP53 mutation status as examined by next-generation sequencing (NGS). We performed p53 IHC and sequencing of TP53 by NGS in 92 CRC cases with a microsatellite stable phenotype to investigate the correlation between TP53 mutation status and p53 IHC expression. The concordance between p53 IHC and TP53 mutation was 84/92 (91.3%) overall. However, 6 mutant cases were found in 39 cases with a wild-type IHC pattern. Additionally, there were two discordant cases in which an abnormal p53 IHC pattern (overexpression or cytoplasmic pattern) was found, while NGS detected wild-type p53. Therefore, the optimized p53 IHC performs well and serves as a surrogate test for TP53 mutation in CRC cases. Furthermore, it demonstrates excellent reproducibility between two independent experienced pathologists and may have novel clinical utility for molecular classification algorithms in CRC. We suggest that the four-tier classification of p53 IHC patterns is helpful to evaluate molecular colorectal carcinogenesis.
Collapse
Affiliation(s)
- Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun'yahabachou, Morioka, 028-3695, Japan
| | - Noriyuki Yamada
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun'yahabachou, Morioka, 028-3695, Japan
| | - Ryo Sugimoto
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun'yahabachou, Morioka, 028-3695, Japan
| | - Noriyuki Uesugi
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun'yahabachou, Morioka, 028-3695, Japan
- Diagnostic Pathology Center, Southern Tohoku General Hospital, 7-115, Hachiyamada, Kooriyama City, 963-8563, Japan
| | - Eiichi Nakao
- Diagnostic Pathology Center, Southern Tohoku General Hospital, 7-115, Hachiyamada, Kooriyama City, 963-8563, Japan
- Department of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, 1 Hikarigaoka Fukushima, Fukushima, 960-1295, Japan
- Department of Surgery, Southern Tohoku General Hospital, 7-115, Hachiyamada, Kooriyama City, 963-8563, Japan
| | - Michitaka Honda
- Department of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, 1 Hikarigaoka Fukushima, Fukushima, 960-1295, Japan
- Department of Surgery, Southern Tohoku General Hospital, 7-115, Hachiyamada, Kooriyama City, 963-8563, Japan
| | - Naoki Yanagawa
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun'yahabachou, Morioka, 028-3695, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun'yahabachou, Morioka, 028-3695, Japan.
- Diagnostic Pathology Center, Southern Tohoku General Hospital, 7-115, Hachiyamada, Kooriyama City, 963-8563, Japan.
| |
Collapse
|
4
|
Andrysik Z, Espinosa JM. Harnessing p53 for targeted cancer therapy: new advances and future directions. Transcription 2025; 16:3-46. [PMID: 40031988 PMCID: PMC11970777 DOI: 10.1080/21541264.2025.2452711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
The transcription factor p53 is the most frequently impaired tumor suppressor in human cancers. In response to various stress stimuli, p53 activates transcription of genes that mediate its tumor-suppressive functions. Distinctive characteristics of p53 outlined here enable a well-defined program of genes involved in cell cycle arrest, apoptosis, senescence, differentiation, metabolism, autophagy, DNA repair, anti-viral response, and anti-metastatic functions, as well as facilitating autoregulation within the p53 network. This versatile, anti-cancer network governed chiefly by a single protein represents an immense opportunity for targeted cancer treatment, since about half of human tumors retain unmutated p53. During the last two decades, numerous compounds have been developed to block the interaction of p53 with the main negative regulator MDM2. However, small molecule inhibitors of MDM2 only induce a therapeutically desirable apoptotic response in a limited number of cancer types. Moreover, clinical trials of the MDM2 inhibitors as monotherapies have not met expectations and have revealed hematological toxicity as a characteristic adverse effect across this drug class. Currently, combination treatments are the leading strategy for enhancing efficacy and reducing adverse effects of MDM2 inhibitors. This review summarizes efforts to identify and test therapeutics that work synergistically with MDM2 inhibitors. Two main types of drugs have emerged among compounds used in the following combination treatments: first, modulators of the p53-regulated transcriptome (including chromatin modifiers), translatome, and proteome, and second, drugs targeting the downstream pathways such as apoptosis, cell cycle arrest, DNA repair, metabolic stress response, immune response, ferroptosis, and growth factor signaling. Here, we review the current literature in this field, while also highlighting overarching principles that could guide target selection in future combination treatments.
Collapse
Affiliation(s)
- Zdenek Andrysik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M. Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
Joshi TP, Tran J, MacFarlane DF. Association of cutaneous leiomyosarcoma with subsequent primary malignancies: a population-based analysis. Arch Dermatol Res 2024; 317:76. [PMID: 39643779 DOI: 10.1007/s00403-024-03595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/01/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Affiliation(s)
- Tejas P Joshi
- Wellstar Health System, Kennestone Hospital Graduate Medical Education, 677 Church Street NE, Marietta, GA, 30060, USA.
| | - Jessica Tran
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Deborah F MacFarlane
- Department of Dermatology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Martins S, Veiga P, Tralhão JG, Carreira IM, Ribeiro IP. Rectal Cancer: Exploring Predictive Biomarkers Through Molecular Pathways Involved in Carcinogenesis. BIOLOGY 2024; 13:1007. [PMID: 39765674 PMCID: PMC11673418 DOI: 10.3390/biology13121007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025]
Abstract
In 2022, colorectal cancer (CCR) had the second-highest incidence in Europe, preceded only by breast cancer [...].
Collapse
Affiliation(s)
- Sheila Martins
- Portuguese Oncology Institute of Coimbra, 3000-075 Coimbra, Portugal;
| | - Pedro Veiga
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal (J.G.T.); (I.P.R.)
| | - José Guilherme Tralhão
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal (J.G.T.); (I.P.R.)
- Surgery Department, Unidade Local de Saúde de Coimbra (ULS Coimbra), 3004-561 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB) and Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Isabel Marques Carreira
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal (J.G.T.); (I.P.R.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB) and Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ilda Patrícia Ribeiro
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal (J.G.T.); (I.P.R.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB) and Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
7
|
Schabl L, Duraes LC, Connelly T, Sancheti H, Miller J, Steele SR, Kessler H. Does stage III rectal mucinous adenocarcinoma benefit from neoadjuvant chemoradiation? Tech Coloproctol 2024; 28:146. [PMID: 39480585 DOI: 10.1007/s10151-024-03027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/21/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND This study aimed to compare clinical outcomes of patients with clinical stage III mucinous rectal adenocarcinoma (M) and non-mucinous rectal adenocarcinoma (NM) and evaluate the effectiveness of neoadjuvant chemoradiation. It was hypothesized that patients with M would fare worse with neoadjuvant chemoradiation than those with NM and that patients with M and NM not receiving chemoradiation would have similar outcomes. Moreover, it was hypothesized that patients with M would have similar outcomes regardless of chemoradiation. METHODS This study compares eligible patients distributed in three cohorts: (cohort 1) M versus NM, including only patients treated with neoadjuvant chemoradiation; (cohort 2) M versus NM, including only patients treated without neoadjuvant chemoradiation; and (cohort 3) only M patients treated with versus without neoadjuvant chemoradiation. RESULTS We identified 515 patients with an average age of 58.8 (SD 12.4) years, and 30% were female. Fifty-seven (11.1%) patients had M and 458 (88.9%) had NM. Neoadjuvant chemoradiation was administered to 382 (74%) patients, of whom 41 (10.7%) were M and 341 (89.3%) NM. In cohort 1, patients with M had advanced pathological staging (stage 3: M 68% vs. NM 42%; p < 0.001), worse pathological differentiation (poor: M, 37% vs. NM, 11%; p = 0.001), more involved lymph nodes (M 0 [0;7] vs. NM 0 [0;1]; p < 0.001) and a higher rate of local recurrence (M 22% vs. 3%; p < 0.001). Patients with M demonstrated worse 7-year cancer-specific (p = 0.007) and overall survival (p = 0.01). There were no significant differences in cohort 2 and 3. CONCLUSION Patients with clinical stage III mucinous adenocarcinomas may not benefit as much from standard neoadjuvant chemoradiation as their non-mucinous counterparts do.
Collapse
Affiliation(s)
- L Schabl
- Department for Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA.
- Department for General Surgery, University Hospital of Salzburg, Salzburg, Austria.
| | - L C Duraes
- Department for Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - T Connelly
- Department for Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - H Sancheti
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - J Miller
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - S R Steele
- Department for Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - H Kessler
- Department for Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| |
Collapse
|
8
|
Pallathadka H, Hsu CY, Obaid Saleh R, Renuka Jyothi S, Kumar A, Yumashev A, Sinha A, Hussein Zwamel A, Abed Jawad M, Alsaadi SB. Specific small interfering RNAs (siRNAs) for targeting the metastasis, immune responses, and drug resistance of colorectal cancer cells (CRC). Int Immunopharmacol 2024; 140:112730. [PMID: 39083927 DOI: 10.1016/j.intimp.2024.112730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Colorectal cancer (CRC) involves various genetic alterations, with liver metastasis posing a significant clinical challenge. Furthermore, CRC cells mostly show an increase in resistance to traditional treatments like chemotherapy. It is essential to investigate more advanced and effective therapies to prevent medication resistance and metastases and extend patient life. As a result, it is anticipated that small interfering RNAs (siRNAs) would be exceptional instruments that can control gene expression by RNA interference (RNAi). In eukaryotes, RNAi is a biological mechanism that destroys specific messenger RNA (mRNA) molecules, thereby inhibiting gene expression. In the management of CRC, this method of treatment represents a potential therapeutic agent. However, it is important to acknowledge that siRNA therapies have significant issues, such as low serum stability and nonspecific absorption into biological systems. Delivery mechanisms are thus being created to address these issues. In the current work, we address the potential benefits of siRNA therapy and outline the difficulties in treating CRCby focusing on the primary signaling pathways linked to metastasis as well as genes implicated in the multi-drug resistance (MDR) process.
Collapse
Affiliation(s)
| | - Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona 85004, USA.
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Ashwani Kumar
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Russia.
| | - Aashna Sinha
- School of Applied and Life Sciences, Divison of Research and Innovation Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique college, the Islamic University of Babylon, Babylon, Iraq.
| | | | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad 10011, Iraq.
| |
Collapse
|
9
|
Suzauddula M, Kobayashi K, Park S, Sun XS, Wang W. Bioengineered Anthocyanin-Enriched Tomatoes: A Novel Approach to Colorectal Cancer Prevention. Foods 2024; 13:2991. [PMID: 39335919 PMCID: PMC11430996 DOI: 10.3390/foods13182991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, with barriers to effective prevention and treatment including tumor recurrence, chemoresistance, and limited overall survival rates. Anthocyanins, known for their strong anti-cancer properties, have shown promise in preventing and suppressing various cancers, including CRC. However, natural sources of anthocyanins often fail to provide sufficient quantities needed for therapeutic effects. Bioengineered crops, particularly anthocyanin-enriched tomatoes, offer a viable solution to enhance anthocyanin content. Given its large-scale production and consumption, tomatoes present an ideal target for bioengineering efforts aimed at increasing dietary anthocyanin intake. This review provides an overview of anthocyanins and their health benefits, elucidating the mechanisms by which anthocyanins modulate the transcription factors involved in CRC development. It also examines case studies demonstrating the successful bioengineering of tomatoes to boost anthocyanin levels. Furthermore, the review discusses the effects of anthocyanin extracts from bioengineered tomatoes on CRC prevention, highlighting their role in altering metabolic pathways and reducing tumor-related inflammation. Finally, this review addresses the challenges associated with bioengineering tomatoes and proposes future research directions to optimize anthocyanin enrichment in tomatoes.
Collapse
Affiliation(s)
- Md Suzauddula
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA; (M.S.); (K.K.)
| | - Kaori Kobayashi
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA; (M.S.); (K.K.)
| | - Sunghun Park
- Department of Horticulture and Nature Resources, Kansas State University, Manhattan, KS 66506, USA;
| | - Xiuzhi Susan Sun
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| | - Weiqun Wang
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA; (M.S.); (K.K.)
| |
Collapse
|
10
|
Yan L, Shi J, Zhu J. Cellular and molecular events in colorectal cancer: biological mechanisms, cell death pathways, drug resistance and signalling network interactions. Discov Oncol 2024; 15:294. [PMID: 39031216 PMCID: PMC11265098 DOI: 10.1007/s12672-024-01163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide, affecting millions each year. It emerges from the colon or rectum, parts of the digestive system, and is closely linked to both genetic and environmental factors. In CRC, genetic mutations such as APC, KRAS, and TP53, along with epigenetic changes like DNA methylation and histone modifications, play crucial roles in tumor development and treatment responses. This paper delves into the complex biological underpinnings of CRC, highlighting the pivotal roles of genetic alterations, cell death pathways, and the intricate network of signaling interactions that contribute to the disease's progression. It explores the dysregulation of apoptosis, autophagy, and other cell death mechanisms, underscoring the aberrant activation of these pathways in CRC. Additionally, the paper examines how mutations in key molecular pathways, including Wnt, EGFR/MAPK, and PI3K, fuel CRC development, and how these alterations can serve as both diagnostic and prognostic markers. The dual function of autophagy in CRC, acting as a tumor suppressor or promoter depending on the context, is also scrutinized. Through a comprehensive analysis of cellular and molecular events, this research aims to deepen our understanding of CRC and pave the way for more effective diagnostics, prognostics, and therapeutic strategies.
Collapse
Affiliation(s)
- Lei Yan
- Medical Department, The Central Hospital of Shaoyang Affiliated to University of South China, Shaoyang, China
| | - Jia Shi
- Department of Obstetrics and Gynecology, The Central Hospital of Shaoyang Affiliated to University of South China, Shaoyang, China
| | - Jiazuo Zhu
- Department of Oncology, Xuancheng City Central Hospital, No. 117 Tong Road, Xuancheng, Anhui, China.
| |
Collapse
|
11
|
Liu M, Jiang H, Momeni MR. Epigenetic regulation of autophagy by non-coding RNAs and exosomal non-coding RNAs in colorectal cancer: A narrative review. Int J Biol Macromol 2024; 273:132732. [PMID: 38823748 DOI: 10.1016/j.ijbiomac.2024.132732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
One of the major diseases affecting people globally is colorectal cancer (CRC), which is primarily caused by a lack of effective medical treatment and a limited understanding of its underlying mechanisms. Cellular autophagy functions to break down and eliminate superfluous proteins and substances, thereby facilitating the continual replacement of cellular elements and generating vital energy for cell processes. Non-coding RNAs and exosomal ncRNAs have a crucial impact on regulating gene expression and essential cellular functions such as autophagy, metastasis, and treatment resistance. The latest research has indicated that specific ncRNAs and exosomal ncRNA to influence the process of autophagy in CRC cells, which could have significant consequences for the advancement and treatment of this disease. It has been determined that a variety of ncRNAs have a vital function in regulating the genes essential for the formation and maturation of autophagosomes. Furthermore, it has been confirmed that ncRNAs have a considerable influence on the signaling pathways associated with autophagy, such as those involving AMPK, AKT, and mTOR. Additionally, numerous ncRNAs have the potential to affect specific genes involved in autophagy. This study delves into the control mechanisms of ncRNAs and exosomal ncRNAs and examines how they simultaneously influence autophagy in CRC.
Collapse
Affiliation(s)
- Minghua Liu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Hongfang Jiang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| | - Mohammad Reza Momeni
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
12
|
Devalle S, Aran V, Bastos Júnior CDS, Pannain VL, Brackmann P, Gregório ML, Ferreira Manso JE, Moura Neto V. A panorama of colon cancer in the era of liquid biopsy. THE JOURNAL OF LIQUID BIOPSY 2024; 4:100148. [PMID: 40027146 PMCID: PMC11863817 DOI: 10.1016/j.jlb.2024.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/05/2025]
Abstract
Colon cancer (CC) is one of the most frequent cancers worldwide being responsible for over 500 thousand deaths in 2022. Its financial and human burden is expected to increase in the next decades accompanying the growing and aging of the global population. Much of this burden could be alleviated considering that the lethality of CC is mostly due to its late diagnosis and failure in the individualized management of patients. Coordinated government actions and implementation of better diagnostic tools capable of detecting CC earlier and of tracking tumoral evolution are mandatory to achieve a reduction in CC's social impact. CtDNA-based liquid biopsy (LB) has great potential to contribute to patients' screening adhesion, CC earlier detection, and to longitudinal tumor follow-up. In this review, we will discuss the latest epidemiological data on CC disease, diagnostic, subtypes, genetics, and treatment management focusing on the advantages and limitations of ctDNA-based LB, including important bottlenecks and solutions necessary for its clinical translation. The latest ctDNA-directed CC clinical trials will also be examined.
Collapse
Affiliation(s)
- Sylvie Devalle
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Veronica Aran
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | | | - Vera Lucia Pannain
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Brackmann
- Clínica de Coloproctologia do Hospital Naval Marcílio Dias - IPB/HNMD, Rio de Janeiro, Brazil
| | - Marcelo Leal Gregório
- Instituto de Pesquisas Biomédicas do Hospital Naval Marcílio Dias - IPB/HNMD, Rio de Janeiro, Brazil
| | - José Eduardo Ferreira Manso
- Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivaldo Moura Neto
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Lee SM, Oh H. RAS/RAF mutations and microsatellite instability status in primary colorectal cancers according to HER2 amplification. Sci Rep 2024; 14:11432. [PMID: 38763942 PMCID: PMC11102903 DOI: 10.1038/s41598-024-62096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024] Open
Abstract
HER2 amplification-associated molecular alterations and clinicopathologic features in colorectal cancers (CRCs) have not been well established. In this study, we assessed the prevalence of HER2 amplification and microsatellite instability (MSI) status of 992 patients with primary CRC. In addition, molecular alterations of HER2 amplified and unamplified CRCs were examined and compared by next-generation sequencing. HER2 amplifications were found in 41 (4.1%) of 992 primary CRCs. HER2 amplification was identified in 1.0% of the right colonic tumors, 5.1% of the left colonic tumors, and 4.8% of the rectal tumors. Approximately 95% of HER2 amplification was observed in the left colon and rectum. Seven (87.5%) of eight metastatic tumors showed HER2 amplification. Most clinicopathologic features were unrelated to HER2 amplification except tumor size and MSI status. All 41 HER2 amplified CRCs were microsatellite stable. In a molecular analysis of frequently identified somatic mutations in CRCs, HER2 amplified CRCs showed a lower rate of KRAS mutations (24.4%) but a higher rate of TP53 mutations (83%) than unamplified CRCs. No BRAF and NRAS mutations were identified in HER2 amplified CRCs. Our study suggests that HER2 amplified CRCs are mutually exclusive of MSI and harbor less frequent KRAS/NRAS/BRAF mutations but frequent T53 mutations.
Collapse
Affiliation(s)
- Sun Mi Lee
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 350 W. 11th Street, Indianapolis, IN, 46202, USA.
- Department of Pathology, Jeju National University Hospital, Jeju-si, South Korea.
| | - Hyunjoo Oh
- Department of Internal Medicine, Jeju National University Hospital, Jeju-si, South Korea
| |
Collapse
|
14
|
Dosunmu GT, Shergill A. Colorectal Cancer: Genetic Underpinning and Molecular Therapeutics for Precision Medicine. Genes (Basel) 2024; 15:538. [PMID: 38790167 PMCID: PMC11120657 DOI: 10.3390/genes15050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Colorectal cancer (CRC) accounts for about 10% of all cancer cases and 9% of cancer-related deaths globally. In the United States alone, CRC represents approximately 12.6% of all cancer cases, with a mortality rate of about 8%. CRC is now the first leading cause of cancer death in men younger than age 50 and second in women younger than age 50. This review delves into the genetic landscape of CRC, highlighting key mutations and their implications in disease progression and treatment. We provide an overview of the current and emerging therapeutic strategies tailored to individual genomic profiles.
Collapse
Affiliation(s)
| | - Ardaman Shergill
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| |
Collapse
|
15
|
Albadari N, Xie Y, Li W. Deciphering treatment resistance in metastatic colorectal cancer: roles of drug transports, EGFR mutations, and HGF/c-MET signaling. Front Pharmacol 2024; 14:1340401. [PMID: 38269272 PMCID: PMC10806212 DOI: 10.3389/fphar.2023.1340401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
In 2023, colorectal cancer (CRC) is the third most diagnosed malignancy and the third leading cause of cancer death worldwide. At the time of the initial visit, 20% of patients diagnosed with CRC have metastatic CRC (mCRC), and another 25% who present with localized disease will later develop metastases. Despite the improvement in response rates with various modulation strategies such as chemotherapy combined with targeted therapy, radiotherapy, and immunotherapy, the prognosis of mCRC is poor, with a 5-year survival rate of 14%, and the primary reason for treatment failure is believed to be the development of resistance to therapies. Herein, we provide an overview of the main mechanisms of resistance in mCRC and specifically highlight the role of drug transports, EGFR, and HGF/c-MET signaling pathway in mediating mCRC resistance, as well as discuss recent therapeutic approaches to reverse resistance caused by drug transports and resistance to anti-EGFR blockade caused by mutations in EGFR and alteration in HGF/c-MET signaling pathway.
Collapse
Affiliation(s)
| | | | - Wei Li
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
16
|
Duabil AJN, Cooper CR, Aldujaily E, Halford SER, Hirschberg S, Katugampola SD, Jones GDD. Investigations of the novel checkpoint kinase 1 inhibitor SRA737 in non-small cell lung cancer and colorectal cancer cells of differing tumour protein 53 gene status. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1210-1226. [PMID: 38214010 PMCID: PMC10776598 DOI: 10.37349/etat.2023.00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/16/2023] [Indexed: 01/13/2024] Open
Abstract
Aim In response to DNA damage the serine/threonine-specific protein kinase checkpoint kinase 1 (CHK1) is activated allowing cells to enter S phase (S) and G2 phase (G2) cell-cycle arrest. CHK1 inhibitors are expected to prevent cells from entering such arrest, thereby enhancing DNA damage-induced cytotoxicity. In contrast, normal cells with intact ataxia-telangiectasia mutated (ATM), CHK2 and tumour suppressor protein 53 (P53) signalling are still able to enter cell-cycle arrest using the functioning G1/S checkpoint, thereby being rescued from enhanced cytotoxicity. The main objective of this work is to investigate the in vitro effects of the novel CHK1 inhibitor SRA737 on pairs of non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) cell lines, all with genetic aberrations rendering them susceptible to replication stress but of differing tumour protein 53 (TP53) gene status, focusing on DNA damage induction and the subsequent effects on cell proliferation and viability. Methods NSCLC cell lines H23 [TP53 mutant (MUT)] and A549 [TP53 wild-type (WT)] and CRC cell lines HT29 (TP53 MUT) and HCT116 (TP53 WT) were incubated with differing micromolar concentrations of SRA737 for 24 h and then analysed using alkaline comet and phosphorylated H2A.X variant histone (γH2AX)-foci assays to assess mostly DNA single strand break and double strand break damage, respectively. Cell-counting/trypan blue staining was also performed to assess cell proliferation/viability. Results Clear concentration-dependent increases in comet formation and γH2AX-foci/cell were noted for the TP53 MUT cells with no or lower increases being noted in the corresponding TP53 WT cells. Also, greater anti-proliferative and cell killing effects were noted in the TP53 MUT cells than in the TP53 WT cells. Conclusions This study's data suggests that P53 status/functioning is a key factor in determining the sensitivity of NSCLC and CRC cancer cells towards CHK1 inhibition, even in circumstances conducive to high replicative stress.
Collapse
Affiliation(s)
- Ali JN Duabil
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, LE1 7RH Leics, UK
- Department of Surgery, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | - Christian R Cooper
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, LE1 7RH Leics, UK
- MRC Oxford Institute for Radiation Oncology, University of Oxford, OX3 7DQ Oxon, UK
| | - Esraa Aldujaily
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, LE1 7RH Leics, UK
- Department of Pathology & Forensic Medicine, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | - Sarah ER Halford
- Cancer Research UK Centre for Drug Development, London E20 1JQ, UK
| | | | | | - George DD Jones
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, LE1 7RH Leics, UK
| |
Collapse
|
17
|
Meng F, Ai C, Yan G, Wang G. Tumor-suppressive zinc finger protein 24 (ZNF24) sensitizes colorectal cancer cells to 5-fluorouracil by inhibiting the Wnt pathway and activating the p53 signaling. Exp Cell Res 2023; 433:113796. [PMID: 37774763 DOI: 10.1016/j.yexcr.2023.113796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/16/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Carcinogenesis and colorectal cancer (CRC) development are associated with dysregulation of various pathways, including Wnt and p53. 5-fluorouracil (5-FU) is a common chemotherapeutic agent for CRC treatment, but its efficacy is restricted by drug resistance. Doxycycline is an orally active tetracycline antibiotic known for its antimicrobial and anticancer cell proliferation activities. This study intends to delineate the potential role of bioinformatically predicted ZNF24 in the 5-FU resistance of CRC cells. The expression of ZNF24 was measured in clinically collected CRC tissues and cells. Afterward, ectopic ZNF24 expression was induced by DOX to evaluate the viability, colony-forming ability and sphere-forming ability of CRC cells. It was found that ZNF24 was validated to be poorly expressed in CRC tissues, and ectopic expression of ZNF24 was revealed to restrict the malignant phenotypes of CRC cells. In addition, restored ZNF24 attenuated 5-FU resistance of CRC cells by inhibiting the Wnt pathway and activating p53 signaling. Furthermore, an inhibitor of Wnt production 2 (IWP-2) treatment was an alternative to ZNF24 up-regulation in sensitizing CRC cells to 5-FU treatment. In conclusion, our results indicate that ZNF24 inhibits 5-FU resistance of CRC cells by suppressing the Wnt pathway and activating p53 signaling, which offers a potential strategy for managing chemoresistance in CRC.
Collapse
Affiliation(s)
- Fanqi Meng
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Chunlong Ai
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Guoqiang Yan
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Guangyi Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
18
|
Zhao P, Ning J, Huang J, Wei B, Wang Z, Huang X. High Expression of MORC2 is Associated with Poor Clinical Outcomes and Immune Infiltrates in Colon Adenocarcinoma. Int J Gen Med 2023; 16:4595-4615. [PMID: 37850194 PMCID: PMC10577261 DOI: 10.2147/ijgm.s420715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/07/2023] [Indexed: 10/19/2023] Open
Abstract
Purpose Microrchidia 2 (MORC2) is a universally expressed molecule that has recently been identified as a chromatin modulator and elevated in many malignancies. However, its prognostic value and immunological role of MORC2 in colon adenocarcinoma (COAD) have never been illustrated. Methods The clinical parameters and MORC2 expression datasets of COAD patients were obtained from The Cancer Genome Atlas (TCGA). Cancer and adjacent tissue specimens from surgically resected COAD patients were collected, and quantitative real-time PCR was used to detect MORC2 expression. Differentially expressed genes related to MORC2 were discovered and used for functional enrichment analysis. The diagnostic and prognostic values of MORC2 in COAD were conducted using receiver operating characteristics (ROC), Kaplan-Meier survival curve analysis, PrognoScan, Gene Expression Profiling Interactive Analysis (GEPIA) public databases and nomograms. Eventually, the association of MORC2 with tumor microenvironment was analyzed by using TIMER and GSVA package of R (v3.6.3). Results MORC2 expression was upregulated in COAD tissues, and the RT-qPCR results further verified the reliability of our differential analysis at the transcriptional level. Additionally, higher expression of MORC2 was correlated to a poor prognosis for COAD patients. MORC2 was an independent prognostic factor for COAD and could be a diagnostic factor for early COAD. Furthermore, MORC2 expression was positively correlated with immune cells such as NK cells, TFH cells and so on. Conclusion The findings demonstrated that overexpression of MORC2 was correlated with worse prognosis and immune infiltrates of COAD. MORC2 can serve as a reliable diagnostic and prognostic biomarker and a target of immunotherapy for COAD patients.
Collapse
Affiliation(s)
- Peizhuang Zhao
- Department of Geriatrics and Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jiajia Ning
- Department of Geriatrics and Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jun Huang
- Department of Geriatrics and Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Binqian Wei
- Department of Geriatrics and Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhen Wang
- Department of Geriatrics and Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xue Huang
- Department of Geriatrics and Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
19
|
Dimitrijević JD, Solovjova N, Bukonjić AM, Tomović DL, Milinkovic M, Caković A, Bogojeski J, Ratković ZR, Janjić GV, Rakić AA, Arsenijevic NN, Milovanovic MZ, Milovanovic JZ, Radić GP, Jevtić VV. Docking Studies, Cytotoxicity Evaluation and Interactions of Binuclear Copper(II) Complexes with S-Isoalkyl Derivatives of Thiosalicylic Acid with Some Relevant Biomolecules. Int J Mol Sci 2023; 24:12504. [PMID: 37569878 PMCID: PMC10420076 DOI: 10.3390/ijms241512504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The numerous side effects of platinum based chemotherapy has led to the design of new therapeutics with platinum replaced by another transition metal. Here, we investigated the interactions of previously reported copper(II) complexes containing S-isoalkyl derivatives, the salicylic acid with guanosine-5'-monophosphate and calf thymus DNA (CT-DNA) and their antitumor effects, in a colon carcinoma model. All three copper(II) complexes exhibited an affinity for binding to CT-DNA, but there was no indication of intercalation or the displacement of ethidium bromide. Molecular docking studies revealed a significant affinity of the complexes for binding to the minor groove of B-form DNA, which coincided with DNA elongation, and a higher affinity for binding to Z-form DNA, supporting the hypothesis that the complex binding to CT-DNA induces a local transition from B-form to Z-form DNA. These complexes show a moderate, but selective cytotoxic effect toward colon cancer cells in vitro. Binuclear complex of copper(II) with S-isoamyl derivative of thiosalicylic acid showed the highest cytotoxic effect, arrested tumor cells in the G2/M phase of the cell cycle, and significantly reduced the expression of inflammatory molecules pro-IL-1β, TNF-α, ICAM-1, and VCAM-1 in the tissue of primary heterotopic murine colon cancer, which was accompanied by a significantly reduced tumor growth and metastases in the lung and liver.
Collapse
Affiliation(s)
- Jelena D. Dimitrijević
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Serbia, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (J.D.D.); (M.M.); (M.Z.M.); (J.Z.M.)
| | - Natalija Solovjova
- Academy of Applied Studies Belgrade, The College of Health Science, Cara Dušana 254, 11080 Belgrade, Serbia;
| | - Andriana M. Bukonjić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (A.M.B.); (D.L.T.)
| | - Dušan Lj. Tomović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (A.M.B.); (D.L.T.)
| | - Mirjana Milinkovic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Serbia, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (J.D.D.); (M.M.); (M.Z.M.); (J.Z.M.)
| | - Angelina Caković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovic 12, 34000 Kragujevac, Serbia; (A.C.); (J.B.); (Z.R.R.)
| | - Jovana Bogojeski
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovic 12, 34000 Kragujevac, Serbia; (A.C.); (J.B.); (Z.R.R.)
| | - Zoran R. Ratković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovic 12, 34000 Kragujevac, Serbia; (A.C.); (J.B.); (Z.R.R.)
| | - Goran V. Janjić
- National Institute of the Republic of Serbia, Department of Chemistry, Technology and Metallurgy, University of Belgrade-Institute of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Aleksandra A. Rakić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Nebojsa N. Arsenijevic
- Faculty of Medical Sciences, Department of Microbiology and Immunology, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Marija Z. Milovanovic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Serbia, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (J.D.D.); (M.M.); (M.Z.M.); (J.Z.M.)
- Faculty of Medical Sciences, Department of Microbiology and Immunology, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
| | - Jelena Z. Milovanovic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Serbia, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (J.D.D.); (M.M.); (M.Z.M.); (J.Z.M.)
- Faculty of Medical Sciences, Department of Histology and Embryology, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Gordana P. Radić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (A.M.B.); (D.L.T.)
| | - Verica V. Jevtić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovic 12, 34000 Kragujevac, Serbia; (A.C.); (J.B.); (Z.R.R.)
| |
Collapse
|
20
|
Shechter S, Ya'ar Bar S, Khattib H, Gage MJ, Avni D. Riok1, A Novel Potential Target in MSI-High p53 Mutant Colorectal Cancer Cells. Molecules 2023; 28:molecules28114452. [PMID: 37298928 DOI: 10.3390/molecules28114452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
The vulnerabilities of cancer cells constitute a promising strategy for drug therapeutics. This paper integrates proteomics, bioinformatics, and cell genotype together with in vitro cell proliferation assays to identify key biological processes and potential novel kinases that could account, at least in part, for the clinical differences observed in colorectal cancer (CRC) patients. This study started by focusing on CRC cell lines stratified by their microsatellite (MS) state and p53 genotype. It shows that cell-cycle checkpoint, metabolism of proteins and RNA, signal transduction, and WNT signaling processes are significantly more active in MSI-High p53-WT cell lines. Conversely, MSI-High cell lines with a mutant (Mut) p53 gene showed hyperactivation of cell signaling, DNA repair, and immune-system processes. Several kinases were linked to these phenotypes, from which RIOK1 was selected for additional exploration. We also included the KRAS genotype in our analysis. Our results showed that RIOK1's inhibition in CRC MSI-High cell lines was dependent on both the p53 and KRAS genotypes. Explicitly, Nintedanib showed relatively low cytotoxicity in MSI-High with both mutant p53 and KRAS (HCT-15) but no inhibition in p53 and KRAS WT (SW48) MSI-High cells. This trend was flipped in CRC MSI-High bearing opposite p53-KRAS genotypes (e.g., p53-Mut KRAS-WT or p53-WT KRAS-Mut), where observed cytotoxicity was more extensive compared to the p53-KRAS WT-WT or Mut-Mut cells, with HCT 116 (KRAS-Mut and p53-WT) being the most sensitive to RIOK1 inhibition. These results highlight the potential of our in silico computational approach to identify novel kinases in CRC sub-MSI-High populations as well as the importance of clinical genomics in determining drug potency.
Collapse
Affiliation(s)
- Sharon Shechter
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854-2874, USA
| | - Sapir Ya'ar Bar
- Department of Natural Compound, Nutrition, and Health, MIGAL Galilee Research Institute, Kiryat Shmona 1101600, Israel
| | - Hamdan Khattib
- Department of Natural Compound, Nutrition, and Health, MIGAL Galilee Research Institute, Kiryat Shmona 1101600, Israel
| | - Matthew J Gage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854-2874, USA
| | - Dorit Avni
- Department of Natural Compound, Nutrition, and Health, MIGAL Galilee Research Institute, Kiryat Shmona 1101600, Israel
| |
Collapse
|
21
|
Sun K, Zhu H, Chai W, Yan F. TP53 Mutation Estimation Based on MRI Radiomics Analysis for Breast Cancer. J Magn Reson Imaging 2023; 57:1095-1103. [PMID: 35771720 DOI: 10.1002/jmri.28323] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Noninvasive detection of TP53 mutations is useful for the molecular stratification of breast cancer. PURPOSE To explore MRI radiomics features reflecting TP53 mutations in breast cancer and propose a classifier for detecting such mutations. STUDY TYPE Retrospective. POPULATION/SUBJECTS A total of 139 breast cancer patients with TP53 expression profiling (98 with TP53 mutations and 41 without TP53 mutations). FIELD STRENGTH/SEQUENCE 1.5 T, T1-weighted (T1W) DCE-MRI. ASSESSMENT Lesions were manually segmented using subtracted T1WI. A total of 944 radiomics features (including 744 wavelet-related features) and 7 clinicopathological features were extracted from each lesion. Principal component analysis and Pearson's correlation analysis were used to preprocess the features. Linear discriminant analysis, logistic regression (LR), support vector machine (SVM), and random forest (RF) were used as the classifiers. STATISTICAL TESTS Analysis of variance, Kruskal-Wallis and recursive features elimination were used to select features. Receiver operating characteristic (ROC) analysis was performed to compare the diagnostic accuracy. RESULTS For the radiomics model, the validation cohorts AUCs of the four classifiers ranged from 0.69 (RF) to 0.74 (LR), and LR (0.74) attained the highest AUCs. For the clinicopathological-radiomics combined model, the validation AUCs of the four classifiers ranged from 0.68 (RF) to 0.86 (SVM), and SVM (0.86) attained highest AUCs. In the subgroup analysis of triple-negative (TN) and luminal type breast cancer, RF achieved the highest AUCs (0.83 and 0.94). DATA CONCLUSION Clinicopathological-radiomics combined model with SVM could be used as noninvasive biomarkers for predicting TP53 mutations. RF was recommended for the detection of TP53 mutations in TN and luminal type breast cancer. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Kun Sun
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Zhu
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weimin Chai
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Dual roles of TRIM3 in colorectal cancer by retaining p53 in the cytoplasm to decrease its nuclear expression. Cell Death Discov 2023; 9:85. [PMID: 36894560 PMCID: PMC9998637 DOI: 10.1038/s41420-023-01386-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Colorectal cancer is a very heterogeneous disease caused by the interaction of genetic and environmental factors. P53, as a frequent mutation gene, plays a critical role in the adenoma-carcinoma transition during the tumorous pathological process. Our team discovered TRIM3 as a tumor-associated gene in CRC by high-content screening techniques. TRIM3 demonstrated both tumor-suppressive and tumorigenic features in cell experiments dependent on the cell status of wild or mutant p53. TRIM3 could directly interact with the C terminus of p53 (residues 320 to 393), a common segment of wtp53 and mutp53. Moreover, TRIM3 could exert different neoplastic features by retaining p53 in the cytoplasm to decrease its nuclear expression in a wtp53 or mutp53-dependent pathway. Chemotherapy resistance develops in nearly all patients with advanced CRC and seriously limits the therapeutic efficacies of anticancer drugs. TRIM3 could reverse the chemotherapy resistance of oxaliplatin in mutp53 CRC cells by degradation of mutp53 in the nuclei to downregulate the multidrug resistance gene. Therefore, TRIM3 could be a potential therapeutic strategy to improve the survival of CRC patients with mutp53.
Collapse
|
23
|
Liu Z, Georgakopoulos-Soares I, Ahituv N, Wong KC. Risk scoring based on DNA methylation-driven related DEGs for colorectal cancer prognosis with systematic insights. Life Sci 2023; 316:121413. [PMID: 36682524 DOI: 10.1016/j.lfs.2023.121413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Colorectal cancer is a common malignant tumor of the digestive tract. Despite advances in diagnostic techniques and medications. Its prognosis remains challenging. DNA methylation-driven related circulating tumor cells have attracted enormous interest in diagnosing owing to their non-invasive nature and early recognition properties. However, the mechanism through which risk biomarkers act remains elusive. Here, we designed a risk model based on differentially expressed genes, DNA methylation, robust, and survival-related factors in the framework of Cox regression. The model has satisfactory performance and is independently verified by an external and isolated dataset in terms of C-index value, ROC, and tROC. The model was applied to Colorectal cancer patients who were subsequently divided into high- and low-risk groups. Functional annotations, genomic alterations, tumor immune environment, and drug sensitivity were analyzed. We observed that up-regulated genes are associated with epithelial cell differentiation and MAPK signaling pathways. The down-regulated genes are related to IL-7 signaling and apoptosis-induced DNA fragmentation. Interestingly, the immune system was inhibited in high-risk groups. High-frequency mutation genes tend to co-occur. High-risk score patients are related to copy number amplification events. To address the challenges, we suggested eleven and twenty-one drugs that are sensitive to low- and high-risk patients. Finally, an artificial neural network was provided to evaluate the immunotherapeutic efficiency. Taken together, the findings demonstrated that our risk score model is robust and reliable for evaluating the prognosis with novel diagnostic and treatment targets. It also yields benefits for the treatment and provides unique insights into developing therapeutic strategies.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
24
|
Merhi M, Ahmad F, Taib N, Inchakalody V, Uddin S, Shablak A, Dermime S. The complex network of transcription factors, immune checkpoint inhibitors and stemness features in colorectal cancer: A recent update. Semin Cancer Biol 2023; 89:1-17. [PMID: 36621515 DOI: 10.1016/j.semcancer.2023.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Cancer immunity is regulated by several mechanisms that include co-stimulatory and/or co-inhibitory molecules known as immune checkpoints expressed by the immune cells. In colorectal cancer (CRC), CTLA-4, LAG3, TIM-3 and PD-1 are the major co-inhibitory checkpoints involved in tumor development and progression. On the other hand, the deregulation of transcription factors and cancer stem cells activity plays a major role in the development of drug resistance and in the spread of metastatic disease in CRC. In this review, we describe how the modulation of such transcription factors affects the response of CRC to therapies. We also focus on the role of cancer stem cells in tumor metastasis and chemoresistance and discuss both preclinical and clinical approaches for targeting stem cells to prevent their tumorigenic effect. Finally, we provide an update on the clinical applications of immune checkpoint inhibitors in CRC and discuss the regulatory effects of transcription factors on the expression of the immune inhibitory checkpoints with specific focus on the PD-1 and PD-L1 molecules.
Collapse
Affiliation(s)
- Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Alaaeldin Shablak
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
25
|
Meier Strømme J, Johannessen B, Skotheim RI. Deviating Alternative Splicing as a Molecular Subtype of Microsatellite Stable Colorectal Cancer. JCO Clin Cancer Inform 2023; 7:e2200159. [PMID: 36821799 DOI: 10.1200/cci.22.00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
PURPOSE Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Biomarkers to aid in prognostication and treatment decisions are in high demand, and to facilitate their development, a better understanding of the underlying biology of the highly heterogeneous disease is needed. METHODS A genome-scale alternative splicing (AS) analysis using RNA-sequencing data from primary microsatellite stable (MSS) CRCs from 127 patients was performed. Splice variant-specific expression levels of individual cancer samples were compared with the total set of samples, and a metric for a tumor sample's global amount of deviating AS was developed. This metric varied considerably across the cohort and ranged from 6 to 282 deviating AS events per tumor sample. A threshold of 45 or more deviating events was set to distinguish cancers with high (n = 44) and low (n = 83) levels of deviating AS. RESULTS Patients with high amounts of AS deviations had significantly shorter time to relapse compared with patients with fewer deviations (P = .04). Furthermore, differential gene expression analysis revealed nine known cancer-critical genes that are significantly upregulated in samples with high amounts of deviating AS. Validation of the results in an independent cohort of MSS CRCs showed the same tendency toward shorter progression-free survival among the high-deviation group. In both cohorts, enrichment for growth factors was identified among upregulated genes associated with this phenotype. CONCLUSION There is a large variation in the amount of deviating AS among MSS CRCs, and we provide evidence that those with high amounts of deviations represent different cancer biology.
Collapse
Affiliation(s)
- Jonas Meier Strømme
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway.,Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Bjarne Johannessen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway.,Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Yang Y, Yuan H, Zhao L, Guo S, Hu S, Tian M, Nie Y, Yu J, Zhou C, Niu J, Wang G, Song Y. Targeting the miR-34a/LRPPRC/MDR1 axis collapse the chemoresistance in P53 inactive colorectal cancer. Cell Death Differ 2022; 29:2177-2189. [PMID: 35484333 PMCID: PMC9613927 DOI: 10.1038/s41418-022-01007-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
P53 mutation is an important cause of chemoresistance in colorectal cancer (CRC). The investigation and identification of the downstream targets and underlying molecular mechanism of chemoresistance induced by P53 abnormalities are therefore of great clinical significance. In this study, we demonstrated and reported for the first time that leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) is a key functional downstream factor and therapeutic target for P53 mutation-induced chemoresistance. Due to its RNA binding function, LRPPRC specifically bound to the mRNA of multidrug resistance 1 (MDR1), increasing MDR1 mRNA stability and protein expression. In normal cells, P53 induced by chemotherapy inhibited the expression of LRPPRC via miR-34a and in turn reduced the expression of MDR1. However, chemotherapy-induced P53/miR-34a/LRPPRC/MDR1 signalling pathway activation was lost when P53 was mutated. Additionally, the accumulated LRPPRC and MDR1 promoted drug resistance. Most importantly, gossypol-acetic acid (GAA) was recently reported by our team as the first specific inhibitor of LRPPRC. In CRC cells with P53 mutation, GAA effectively induced degradation of the LRPPRC protein and reduced chemoresistance. Both in vivo and in vitro experiments revealed that combination chemotherapy with GAA and 5-fluorouracil (5FU) yielded improved treatment outcomes. In this study, we reported a novel mechanism and target related to P53-induced drug resistance and provided corresponding interventional strategies for the precision treatment of CRC.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Hongyu Yuan
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lianmei Zhao
- Research center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Shichao Guo
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Sijun Hu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710000, China
| | - Miaomiao Tian
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710000, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710000, China
| | - Jiarui Yu
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chaoxi Zhou
- The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Jian Niu
- The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Guiying Wang
- The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050051, China.
| | - Yongmei Song
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
27
|
Huang M, Ye Y, Chen Y, Zhu J, Xu L, Cheng W, Lu X, Yan F. Identification and validation of an inflammation-related lncRNAs signature for improving outcomes of patients in colorectal cancer. Front Genet 2022; 13:955240. [PMID: 36246600 PMCID: PMC9561096 DOI: 10.3389/fgene.2022.955240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Colorectal cancer is the fourth most deadly cancer worldwide. Although current treatment regimens have prolonged the survival of patients, the prognosis is still unsatisfactory. Inflammation and lncRNAs are closely related to tumor occurrence and development in CRC. Therefore, it is necessary to establish a new prognostic signature based on inflammation-related lncRNAs to improve the prognosis of patients with CRC. Methods: LASSO-penalized Cox analysis was performed to construct a prognostic signature. Kaplan-Meier curves were used for survival analysis and ROC curves were used to measure the performance of the signature. Functional enrichment analysis was conducted to reveal the biological significance of the signature. The R package "maftool" and GISTIC2.0 algorithm were performed for analysis and visualization of genomic variations. The R package "pRRophetic", CMap analysis and submap analysis were performed to predict response to chemotherapy and immunotherapy. Results: An effective and independent prognostic signature, IRLncSig, was constructed based on sixteen inflammation-related lncRNAs. The IRLncSig was proved to be an independent prognostic indicator in CRC and was superior to clinical variables and the other four published signatures. The nomograms were constructed based on inflammation-related lncRNAs and detected by calibration curves. All samples were classified into two groups according to the median value, and we found frequent mutations of the TP53 gene in the high-risk group. We also found some significantly amplificated regions in the high-risk group, 8q24.3, 20q12, 8q22.3, and 20q13.2, which may regulate the inflammatory activity of cancer cells in CRC. Finally, we identified chemotherapeutic agents for high-risk patients and found that these patients were more likely to respond to immunotherapy, especially anti-CTLA4 therapy. Conclusion: In short, we constructed a new signature based on sixteen inflammation-related lncRNAs to improve the outcomes of patients in CRC. Our findings have proved that the IRLncSig can be used as an effective and independent marker for predicting the survival of patients with CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaofan Lu
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangrong Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
28
|
Gong SX, Yang FS, Qiu DD. CircPTK2 accelerates tumorigenesis of colorectal cancer by upregulating AKT2 expression via miR-506-3p. Kaohsiung J Med Sci 2022; 38:1060-1069. [PMID: 36156852 DOI: 10.1002/kjm2.12589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 12/24/2022] Open
Abstract
With the rapid increase in its incidence in the last decade, colorectal cancer (CRC) is becoming one of the most life-threatening cancers. Circular RNA PTK2 (circPTK2) has multiple functions in oncogenesis, including in CRC. However, it remains elusive if circPTK2 also plays an important role in CRC malignancy. The levels of circPTK2, miR-506-3p, and AKT serine/threonine kinase 2 (AKT2) were measured by qPCR. The protein level of AKT2 was evaluated by western blotting assay. The proliferation, migration, and invasion of CRC cancer cells were evaluated by MTT, colony formation, wound-healing, and transwell assays. The interaction between circPTK2 and miR-506-3p and between miR-506-3p and AKT2 mRNA were verified by dual-luciferase reporter assay. The expressions of circPTK2 and AKT2 were elevated in CRC cells, with a concomitant reduction of miR-506-3p. The knockdown of circPTK2 suppressed the proliferation, migration, and invasion of CRC cells. CircPTK2 targeted miR-506-3p and negatively regulated its expression. Furthermore, miR-506-3p overexpression suppressed the CRC progression by downregulating the AKT2 expression. AKT2 overexpression or miR-506-3p inhibition restored the suppression of growth and invasiveness of CRC cancer cells caused by circPTK2 silencing. The circPTK2/miR-506-3p/AKT2 axis plays a novel and essential role in promoting CRC progression, providing potential targets for CRC therapeutic modality.
Collapse
Affiliation(s)
- Shuang-Xi Gong
- Department of Gastrointestinal Surgery, The First Hospital of Changsha, Changsha, China
| | - Feng-Shuai Yang
- Department of Gastrointestinal Surgery, The First Hospital of Changsha, Changsha, China
| | - Dong-Da Qiu
- Department of Gastrointestinal Surgery, The First Hospital of Changsha, Changsha, China
| |
Collapse
|
29
|
Analysis of the B2M Expression in Colon Adenocarcinoma and Its Correlation with Patient Prognosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7264503. [PMID: 35982994 PMCID: PMC9381202 DOI: 10.1155/2022/7264503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Colon adenocarcinoma (COAD) is one of the most common malignant tumors in clinics. It is often found at an advanced stage, with high incidence and poor prognosis; early diagnosis is difficult and treatment methods are limited. In order to find new methods for diagnosis and treatment of COAD, people pay more and more attention to the discovery and functional research of new oncogenes and tumor suppressor genes of COAD. β2-microglobulin (B2M) plays different physiological and pathological roles in tumor cells and nontumor cells. At present, there is no public report on the expression of B2M in COAD. In this study, the expression of B2M mRNA in COAD tissues was compared with that in normal tissues. The relationship between the expression of B2M mRNA and the stage, histological subtype, lymph node metastasis, TP53 mutation, and survival time of COAD was discussed. It was found that B2M is a potential tumor suppressor gene in COAD. The decreased expression of B2M after mutation can cause immune escape of COAD cells, thus affecting the therapeutic effect and prognosis. This study provides a new idea for the prevention and treatment of COAD.
Collapse
|
30
|
Introduction of mutant TP53 related genes in metabolic pathways and evaluation their correlation with immune cells, drug resistance and sensitivity. Life Sci 2022; 303:120650. [PMID: 35667517 DOI: 10.1016/j.lfs.2022.120650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Although the relationship between TP53 mutation, TP53 metabolism pathways, and tumorigenesis has been investigated, pan-cancer analysis of TP53 mutations and related metabolism pathways is not completely available in common types of human cancers. Thus, this study was going to represent TP53 mutant-related metabolism genes and pathways in a pan-cancer study and investigate the relationship between selected genes and drug resistance. METHODS The DNA-seq data, RNA-seq data, and clinical information of 12 types of cancer were downloaded from the cancer genome atlas (TCGA) database. GSE70479 data were obtained from GEO database for validation of our TCGA data. To evaluate the survival rate of patients, GEPIA2 was applied. The CCLE and GDSC database were used to investigate drug resistance and sensitivity. RESULTS Our findings indicated that TTN, MUC16, and TP53 were present in 12 types of cancer with high level of mutation frequency which abundance of TP53 mutations was higher. Mutant TP53-related (mTP53) pathways and genes including PKM, SLC16A3, HK2, PFKP, PHGDH, and CTSC were obtained from enrichment analysis and interestingly, top pathways were associated with metabolism including glycolysis and mTORC1 pathway. Our results showed the expression of some candidate genes correlated with immune markers, prognosis, and drug resistance. CONCLUSIONS Top mutant genes for 12 cancers were highlighted while TP53 was selected as top mutant gene, and metabolic genes associated with the TP53 mutation were identified that some of which are important in poor prognosis. In doing so, mutations in TP53 could run some metabolic pathways and drug resistance and sensitivity.
Collapse
|
31
|
Dashti H, Dehzangi I, Bayati M, Breen J, Beheshti A, Lovell N, Rabiee HR, Alinejad-Rokny H. Integrative analysis of mutated genes and mutational processes reveals novel mutational biomarkers in colorectal cancer. BMC Bioinformatics 2022; 23:138. [PMID: 35439935 PMCID: PMC9017053 DOI: 10.1186/s12859-022-04652-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/24/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Recent studies have observed causative mutations in susceptible genes related to colorectal cancer in 10 to 15% of the patients. This highlights the importance of identifying mutations for early detection of this cancer for more effective treatments among high risk individuals. Mutation is considered as the key point in cancer research. Many studies have performed cancer subtyping based on the type of frequently mutated genes, or the proportion of mutational processes. However, to the best of our knowledge, combination of these features has never been used together for this task. This highlights the potential to introduce better and more inclusive subtype classification approaches using wider range of related features to enable biomarker discovery and thus inform drug development for CRC. RESULTS In this study, we develop a new pipeline based on a novel concept called 'gene-motif', which merges mutated gene information with tri-nucleotide motif of mutated sites, for colorectal cancer subtype identification. We apply our pipeline to the International Cancer Genome Consortium (ICGC) CRC samples and identify, for the first time, 3131 gene-motif combinations that are significantly mutated in 536 ICGC colorectal cancer samples. Using these features, we identify seven CRC subtypes with distinguishable phenotypes and biomarkers, including unique cancer related signaling pathways, in which for most of them targeted treatment options are currently available. Interestingly, we also identify several genes that are mutated in multiple subtypes but with unique sequence contexts. CONCLUSION Our results highlight the importance of considering both the mutation type and mutated genes in identification of cancer subtypes and cancer biomarkers. The new CRC subtypes presented in this study demonstrates distinguished phenotypic properties which can be effectively used to develop new treatments. By knowing the genes and phenotypes associated with the subtypes, a personalized treatment plan can be developed that considers the specific phenotypes associated with their genomic lesion.
Collapse
Affiliation(s)
- Hamed Dashti
- Bioinformatics and Computational Biology Lab, Department of Computer Engineering, Sharif University of Technology, 11365, Tehran, Iran
| | - Iman Dehzangi
- Center for Computational and Integrative Biology (CCIB), Rutgers University, Camden, NJ, 08102, USA
| | - Masroor Bayati
- Bioinformatics and Computational Biology Lab, Department of Computer Engineering, Sharif University of Technology, 11365, Tehran, Iran
| | - James Breen
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, 5006, Australia.,Bioinformatics Hub, University of Adelaide, Adelaide, SA, 5006, Australia
| | - Amin Beheshti
- Department of Computing, Macquarie University, Sydney, NSW, 2109, Australia
| | - Nigel Lovell
- Tyree Institute of Health Engineering and The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hamid R Rabiee
- Bioinformatics and Computational Biology Lab, Department of Computer Engineering, Sharif University of Technology, 11365, Tehran, Iran.
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia. .,UNSW Data Science Hub, The University of New South Wales, Sydney, NSW, 2052, Australia. .,Health Data Analytics Program, AI-Enabled Processes (AIP) Research Centre, Macquarie University, Sydney, 2109, Australia.
| |
Collapse
|
32
|
Krishnamurthy K, Urioste SN, Cusnir M, Schwartz M, Alghamdi S, Sriganeshan V, Poppiti R. The mutational landscape of upper gastrointestinal adenocarcinomas- A study of similarities and differences. Pathol Res Pract 2022; 232:153830. [DOI: 10.1016/j.prp.2022.153830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/13/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
|
33
|
Suzuki T, Hirokawa T, Maeda A, Harata S, Watanabe K, Yanagita T, Ushigome H, Nakai N, Maeda Y, Shiga K, Ogawa R, Mitsui A, Kimura M, Matsuo Y, Takahashi H, Takiguchi S. ATR inhibitor AZD6738 increases the sensitivity of colorectal cancer cells to 5‑fluorouracil by inhibiting repair of DNA damage. Oncol Rep 2022; 47:78. [PMID: 35191521 PMCID: PMC8892626 DOI: 10.3892/or.2022.8289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/27/2022] [Indexed: 11/06/2022] Open
Abstract
The repair of DNA damage caused by chemotherapy in cancer cells occurs mainly at two cell cycle checkpoints (G1 and G2) and is a factor contributing to chemoresistance. Most colorectal cancers harbor mutations in p53, the main pathway involved in the G1 checkpoint, and thus, are particularly dependent on the G2 checkpoint for DNA repair. The present study examined the effect of AZD6738, a specific inhibitor of ataxia telangiectasia mutated and rad3‑related (ATR) involved in the G2 checkpoint, combined with 5‑fluorouracil (5‑FU), a central chemotherapeutic agent, on colorectal cancer cells. Since 5‑FU has a DNA‑damaging effect, its combination with AZD6738 is likely to enhance the therapeutic effect. The effects of the AZD6738/5‑FU combination were evaluated in various colorectal cancer cells (HT29, SW480, HCT116 and DLD‑1 cells) by flow cytometry (HT29 cells), western blotting (HT29 cells) and water‑soluble tetrazolium 1 assays (HT29, SW480, HCT116 and DLD‑1 cells), as well as in an experimental animal model (HT29 cells). In vitro, the AZD6738/5‑FU combination increased the number of mitotic cells according to flow cytometry, decreased the checkpoint kinase 1 phosphorylation levels and increased cleaved caspase‑3 and phosphorylated form of H2A.X variant histone levels according to western blotting, and decreased the proliferation rate of four colon cancer cell lines according to cell viability experiments. In vivo, xenografted colorectal cancer cells treated with the AZD6738/5‑FU combination exhibited a marked decrease in proliferation compared with the 5‑FU alone group. The present results suggested that AZD6738 enhanced the effect of 5‑FU in p53‑mutated colorectal cancer.
Collapse
Affiliation(s)
- Takuya Suzuki
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takahisa Hirokawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
- Department of Gastroenterological Surgery, Kariya Toyota General Hospital, Kariya, Aichi 448-8505, Japan
| | - Anri Maeda
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Shinnosuke Harata
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Kaori Watanabe
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takeshi Yanagita
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hajime Ushigome
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Nozomi Nakai
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yuzo Maeda
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Kazuyoshi Shiga
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Ryo Ogawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Akira Mitsui
- Department of Gastroenterological Surgery, Nagoya City University West Medical Center, Nagoya, Aichi 462-8508, Japan
| | - Masahiro Kimura
- Department of Gastroenterological Surgery, Nagoya City University East Medical Center, Nagoya, Aichi 464-8547, Japan
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hiroki Takahashi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|
34
|
Bano I, Horky P, Abbas SQ, Majid M, Bilal AHM, Ali F, Behl T, Hassan SSU, Bungau S. Ferroptosis: A New Road towards Cancer Management. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072129. [PMID: 35408533 PMCID: PMC9000380 DOI: 10.3390/molecules27072129] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/26/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Ferroptosis is a recently described programmed cell death mechanism that is characterized by the buildup of iron (Fe)-dependent lipid peroxides in cells and is morphologically, biochemically, and genetically distinct from other forms of cell death, having emerged to play an important role in cancer biology. Ferroptosis has significant importance during cancer treatment because of the combination of factors, including suppression of the glutathione peroxidase 4 (Gpx4), cysteine deficiency, and arachidonoyl (AA) peroxidation, which cause cells to undergo ferroptosis. However, the physiological significance of ferroptosis throughout development is still not fully understood. This current review is focused on the factors and molecular mechanisms with the diagrammatic illustrations of ferroptosis that have a role in the initiation and sensitivity of ferroptosis in various malignancies. This knowledge will open a new road for research in oncology and cancer management.
Collapse
Affiliation(s)
- Iqra Bano
- Faculty of Bio-Sciences, SBBUVAS, Sakrand 67210, Pakistan
- Correspondence: (I.B.); (S.S.u.H.); (S.B.)
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, 61300 Brno, Czech Republic;
| | - Syed Qamar Abbas
- Department of Pharmacy, Sarhad University of Science and Technology, Peshawar 25000, Pakistan;
| | - Muhammad Majid
- Department of Pharmacy, Capital University of Science and Technology, Islamabad 44000, Pakistan;
| | - Akram Hafiz Muhammad Bilal
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Fawad Ali
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan;
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India;
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (I.B.); (S.S.u.H.); (S.B.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (I.B.); (S.S.u.H.); (S.B.)
| |
Collapse
|
35
|
Li J, Chen D, Shen M. Tumor Microenvironment Shapes Colorectal Cancer Progression, Metastasis, and Treatment Responses. Front Med (Lausanne) 2022; 9:869010. [PMID: 35402443 PMCID: PMC8984105 DOI: 10.3389/fmed.2022.869010] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most devastating diseases that accounts for numerous deaths worldwide. Tumor cell-autonomous pathways, such as the oncogenic signaling activation, significantly contribute to CRC progression and metastasis. Recent accumulating evidence suggests that the CRC microenvironment also profoundly promotes or represses this process. As the roles of the tumor microenvironment (TME) in CRC progression and metastasis is gradually uncovered, the importance of these non-cell-autonomous signaling pathways is appreciated. However, we are still at the beginning of this TME function exploring process. In this review, we summarize the current understanding of the TME in CRC progression and metastasis by focusing on the gut microbiota and host cellular and non-cellular components. We also briefly discuss TME-remodeling therapies in CRC.
Collapse
Affiliation(s)
- Jun Li
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dawei Chen
- Wayne State University School of Medicine, Detroit, MI, United States
| | - Minhong Shen
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology and Microenvironment Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, United States
- *Correspondence: Minhong Shen,
| |
Collapse
|
36
|
Nagao K, Koshino A, Sugimura-Nagata A, Nagano A, Komura M, Ueki A, Ebi M, Ogasawara N, Tsuzuki T, Kasai K, Takahashi S, Kasugai K, Inaguma S. The Complete Loss of p53 Expression Uniquely Predicts Worse Prognosis in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23063252. [PMID: 35328677 PMCID: PMC8948732 DOI: 10.3390/ijms23063252] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
p53 immunohistochemistry is considered an accurate surrogate marker reflecting the underlying TP53 mutation status and has utility in tumor diagnostics. In the present study, 269 primary CRCs were immunohistochemically evaluated for p53 expression to assess its utility in diagnostic pathology and prognostication. p53 expression was wild-type in 59 cases (23%), overexpressed in 143 cases (55%), completely lost in 50 cases (19%), and cytoplasmic in 10 cases (4%). p53 immunoreactivity was associated with tumor size (p = 0.0056), mucus production (p = 0.0015), and mismatch repair (MMR) system status (p < 0.0001). Furthermore, among CRCs with wild-type p53 expression, a significantly higher number of cases had decreased CDX2 than those with p53 overexpression (p = 0.012) or complete p53 loss (p = 0.043). In contrast, among CRCs with p53 overexpression, there were significantly fewer ALCAM-positive cases than p53 wild-type cases (p = 0.0045). However, no significant association was detected between p53 immunoreactivity and the “stem-like” immunophenotype defined by CDX2 downregulation and ALCAM-positivity. Multivariate Cox hazards regression analysis identified tubular-forming histology (hazard ratio [HR] = 0.17, p < 0.0001), younger age (HR = 0.52, p = 0.021), and female sex (HR = 0.55, p = 0.046) as potential favorable factors. The analysis also revealed complete p53 loss (HR = 2.16, p = 0.0087), incomplete resection (HR = 2.65, p = 0.0068), and peritoneal metastasis (HR = 5.32, p < 0.0001) as potential independent risk factors for patients with CRC. The sub-cohort survival analyses classified according to chemotherapy after surgery revealed that CRC patients with wild-type p53 expression tended to have better survival than those with overexpression or complete loss after chemotherapy. Thus, immunohistochemistry for p53 could be used for the prognostication and chemotherapy target selection of patients with CRC.
Collapse
Affiliation(s)
- Kazuhiro Nagao
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (K.N.); (A.K.); (A.S.-N.); (M.E.); (N.O.); (K.K.)
| | - Akira Koshino
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (K.N.); (A.K.); (A.S.-N.); (M.E.); (N.O.); (K.K.)
| | - Akane Sugimura-Nagata
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (K.N.); (A.K.); (A.S.-N.); (M.E.); (N.O.); (K.K.)
| | - Aya Nagano
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (A.N.); (M.K.); (A.U.); (S.T.)
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (A.N.); (M.K.); (A.U.); (S.T.)
| | - Akane Ueki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (A.N.); (M.K.); (A.U.); (S.T.)
| | - Masahide Ebi
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (K.N.); (A.K.); (A.S.-N.); (M.E.); (N.O.); (K.K.)
| | - Naotaka Ogasawara
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (K.N.); (A.K.); (A.S.-N.); (M.E.); (N.O.); (K.K.)
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan;
| | - Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan;
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (A.N.); (M.K.); (A.U.); (S.T.)
| | - Kunio Kasugai
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (K.N.); (A.K.); (A.S.-N.); (M.E.); (N.O.); (K.K.)
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (A.N.); (M.K.); (A.U.); (S.T.)
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan;
- Department of Pathology, Nagoya City University East Medical Center, Nagoya 464-8547, Japan
- Correspondence:
| |
Collapse
|
37
|
Zhong X, Ni J, Jia Z, Yan H, Zhang Y, Liu Y. CBX3 is associated with metastasis and glutathione/glycosphingolipid metabolism in colon adenocarcinoma. J Gastrointest Oncol 2022; 13:246-255. [PMID: 35284119 PMCID: PMC8899731 DOI: 10.21037/jgo-22-97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/18/2022] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Metastasis is the major cause of colon adenocarcinoma (COAD) mortality. Increasing studies demonstrated that the epigenetics and downstream expression change of pivotal genes may act as a major role in promoting COAD progression and metastasis. Therefore, identifying the dysregulation of key genes associating with COAD metastasis may provide a new strategy for the discovery of potential treatment targets. METHODS This study included a single-cell RNA sequencing profile consisting of 17,469 tumor cells derived from 23 samples, and 326 COADs available from The Cancer Genome Atlas (TCGA), etc. The study was performed using comparative analysis to characterize the role of CBX3 in COAD metastasis and progression. RESULTS This study revealed that the mRNA level of Chromebox homolog 3 (CBX3) in the metastatic COAD was significantly higher than that of the primary COAD and normal colon tissues (Wilcoxon's rank-sum test, P<0.05). Activation of CBX3 was involved in regulating an interaction network consisting of CCT6A, LSM5, and GGCT, etc., which may subsequently participate in glutathione metabolism. Besides, CBX3 also exhibited a negative correlation with glycosphingolipid metabolism, which may associate with the regulation of CBX3 on DNA methylation. Clinical data analysis demonstrated that patients with high CBX3 mRNA levels showed a nearly 2-fold shorter overall survival time than the control group (hazard ratio =1.59; likelihood ratio test, P=0.04). CONCLUSIONS Our study demonstrated that CBX3 overexpression is associated with COAD metastasis. CBX3 downstream regulation network involves in TCP1 complex, LSM family, and glutathione metabolism, which may provide a potential target for suppressing tumor metastasis.
Collapse
Affiliation(s)
- Xiaoling Zhong
- Department of Blood Transfusion, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jun Ni
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhijun Jia
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hong Yan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yunyun Liu
- Department of Pathology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Pathology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Mohd Y, Kumar P, Kuchi Bhotla H, Meyyazhagan A, Balasubramanian B, Ramesh Kumar MK, Pappusamy M, Alagamuthu KK, Orlacchio A, Keshavarao S, Sampathkumar P, Arumugam VA. Transmission Jeopardy of Adenomatosis Polyposis Coli and Methylenetetrahydrofolate Reductase in Colorectal Cancer. J Renin Angiotensin Aldosterone Syst 2021; 2021:7010706. [PMID: 34956401 PMCID: PMC8683247 DOI: 10.1155/2021/7010706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/14/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the globally prevalent and virulent types of cancer with a distinct alteration in chromosomes. Often, any alterations in the adenomatosis polyposis coli (APC), a tumor suppressor gene, and methylenetetrahydrofolate reductase (MTHFR) gene are related to surmise colorectal cancer significantly. In this study, we have investigated chromosomal and gene variants to discern a new-fangled gene and its expression in the southern populations of India by primarily spotting the screened APC and MTHFR variants in CRC patients. An equal number of CRC patients and healthy control subjects (n = 65) were evaluated to observe a chromosomal alteration in the concerted and singular manner for APC and MTHFR genotypes using standard protocols. The increasing prognosis was observed in persons with higher alcoholism and smoking (P < 0.05) with frequent alterations in chromosomes 1, 5, 12, 13, 15, 17, 18, 21, and 22. The APC Asp 1822Val and MTHFR C677T genotypes provided significant results, while the variant alleles of this polymorphism were linked with an elevated risk of CRC. Chromosomal alterations can be the major cause in inducing carcinogenic outcomes in CRCs and can drive to extreme pathological states.
Collapse
Affiliation(s)
- Younis Mohd
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, School of Life Sciences, Bharathiar University, 641046 Tamil Nadu, India
| | - Parvinder Kumar
- Department of Zoology, Jammu University, Jammu, 180006 Jammu and Kashmir, India
- Institution of Human Genetics, Jammu University, Jammu, 180006 Jammu and Kashmir, India
| | - Haripriya Kuchi Bhotla
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 461046 Tamil Nadu, India
| | - Arun Meyyazhagan
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560029, India
| | | | - Mithun Kumar Ramesh Kumar
- Department of General Surgery, Mahatma Gandhi Medical College and Research Institute, Pillaiyarkuppam, 607403 Pondicherry, India
| | - Manikantan Pappusamy
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560029, India
| | - Karthick Kumar Alagamuthu
- Department of Biotechnology, Selvamm Arts and Science College (Autonomous), Namakkal, Tamil Nadu 637003, India
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Sasikala Keshavarao
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 461046 Tamil Nadu, India
| | - Palanisamy Sampathkumar
- Department of Chemistry and Biosciences, SASTRA Deemed to be University, Kumbakonam Tamil Nadu 612001, India
| | - Vijaya Anand Arumugam
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, School of Life Sciences, Bharathiar University, 641046 Tamil Nadu, India
| |
Collapse
|
39
|
Nemati R, Valizadeh M, Mohammadi M, Kamali A. Bioinformatic analysis reveals in common genes between colorectal cancer and recurrent colorectal malignancy. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Song K, Zhao Z, Ma Y, Wang J, Wu W, Qiang Y, Zhao J, Chaudhary S. A multitask dual-stream attention network for the identification of KRAS mutation in colorectal cancer. Med Phys 2021; 49:254-270. [PMID: 34806195 DOI: 10.1002/mp.15361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/11/2021] [Accepted: 11/06/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE It is of great significance to accurately identify the KRAS gene mutation status for patients in tumor prognosis and personalized treatment. Although the computer-aided diagnosis system based on deep learning has gotten all-round development, its performance still cannot meet the current clinical application requirements due to the inherent limitations of small-scale medical image data set and inaccurate lesion feature extraction. Therefore, our aim is to propose a deep learning model based on T2 MRI of colorectal cancer (CRC) patients to identify whether KRAS gene is mutated. METHODS In this research, a multitask attentive model is proposed to identify KRAS gene mutations in patients, which is mainly composed of a segmentation subnetwork and an identification subnetwork. Specifically, at first, the features extracted by the encoder of segmentation model are used as guidance information to guide the two attention modules in the identification network for precise activation of the lesion area. Then the original image of the lesion and the segmentation result are concatenated for feature extraction. Finally, features extracted from the second step are combined with features activated by the attention modules to identify the gene mutation status. In this process, we introduce the interlayer loss function to encourage the similarity of the two subnetwork parameters and ensure that the key features are fully extracted to alleviate the overfitting problem caused by small data set to some extent. RESULTS The proposed identification model is benchmarked primarily using 15-fold cross validation. Three hundred and eighty-two images from 36 clinical cases were used to test the model. For the identification of KRAS mutation status, the average accuracy is 89.95 ± 1.23%, the average sensitivity is 89.29 ± 1.79%, the average specificity is 90.53 ± 2.45%, and the average area under the curve (AUC) is 95.73 ± 0.52%. For segmentation of lesions, the average dice is 88.11 ± 0.86%. CONCLUSIONS We developed a novel deep learning-based model to identify the KRAS status in CRC. We demonstrated the excellent properties of the proposed identification through comparison with ground truth gene mutation status of 36 clinical cases. And all these results show that the novel method has great potential for clinical application.
Collapse
Affiliation(s)
- Kai Song
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Zijuan Zhao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yulan Ma
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - JiaWen Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Wei Wu
- Department of Clinical Laboratory, Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Yan Qiang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Juanjuan Zhao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Suman Chaudhary
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
41
|
Krasteva N, Staneva D, Vasileva B, Miloshev G, Georgieva M. Bioactivity of PEGylated Graphene Oxide Nanoparticles Combined with Near-Infrared Laser Irradiation Studied in Colorectal Carcinoma Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3061. [PMID: 34835825 PMCID: PMC8619681 DOI: 10.3390/nano11113061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 01/12/2023]
Abstract
Central focus in modern anticancer nanosystems is given to certain types of nanomaterials such as graphene oxide (GO). Its functionalization with polyethylene glycol (PEG) demonstrates high delivery efficiency and controllable release of proteins, bioimaging agents, chemotherapeutics and anticancer drugs. GO-PEG has a good biological safety profile, exhibits high NIR absorbance and capacity in photothermal treatment. To investigate the bioactivity of PEGylated GO NPs in combination with NIR irradiation on colorectal cancer cells we conducted experiments that aim to reveal the molecular mechanisms of action of this nanocarrier, combined with near-infrared light (NIR) on the high invasive Colon26 and the low invasive HT29 colon cancer cell lines. During reaching cancer cells the phototoxicity of GO-PEG is modulated by NIR laser irradiation. We observed that PEGylation of GO nanoparticles has well-pronounced biocompatibility toward colorectal carcinoma cells, besides their different malignant potential and treatment times. This biocompatibility is potentiated when GO-PEG treatment is combined with NIR irradiation, especially for cells cultured and treated for 24 h. The tested bioactivity of GO-PEG in combination with NIR irradiation induced little to no damages in DNA and did not influence the mitochondrial activity. Our findings demonstrate the potential of GO-PEG-based photoactivity as a nanosystem for colorectal cancer treatment.
Collapse
Affiliation(s)
- Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Dessislava Staneva
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (D.S.); (B.V.); (G.M.)
| | - Bela Vasileva
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (D.S.); (B.V.); (G.M.)
| | - George Miloshev
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (D.S.); (B.V.); (G.M.)
| | - Milena Georgieva
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (D.S.); (B.V.); (G.M.)
| |
Collapse
|
42
|
Garland-Kledzik M, Scholer A, Ensenyat-Mendez M, Orozco JIJ, Khader A, Santamaria-Barria J, Fischer T, Pigazzi A, Marzese DM. Establishing Novel Molecular Subtypes of Appendiceal Cancer. Ann Surg Oncol 2021; 29:2118-2125. [PMID: 34718915 DOI: 10.1245/s10434-021-10945-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Appendiceal cancer is a rare disease process with complex treatment strategies. The objective of this study was to identify mutation-based genetic subtypes that may differ from the current histological classification, compare the genetic make-up of primaries and metastases, and find novel targetable alterations. METHODS The analyses involved the curation and normalization of gene mutation panels from appendiceal adenocarcinoma and mucinous adenocarcinoma (n = 196) stored in the AACR GENIE Database v6.0. Genes mutated in less than one patient and tumors profiled with incomplete mutation panels were excluded from the study. The optimal number of AC subtypes was established using the Nonnegative Matrix Factorization algorithm. Statistical comparisons of mutation frequencies were performed using Pearson's χ2 test. RESULTS AC patients were stratified into five mutation subtypes, based on a final set of 41 cancer-related genes. AC0 had no mutations. The most frequently mutated genes varied between the subtypes were: AC1: KRAS (91.9%) and GNAS (77.4%); AC2: KRAS (52.5%), APC (32.5%), and GNAS (30%); AC3: KMT2D (38.7%), TP53 (38.7%), KRAS (35.5%), EP300 (22.6%); and AC4: TP53 (97.2%), KRAS (77.8%), and SMAD4 (36.1%). Additionally, AC3 was less likely to be mucinous (22.6% vs. 50.0-74.2%, p < 0.001) and had a higher mutation frequency (3.6 vs. 0-3.1, p < 0.001). There were no significant differences between primary tumors and metastases in the 41 assessed genes (p = 0.35). CONCLUSIONS The characterization of these subtypes suggests a need for molecular approaches to complement anatomical and histopathological staging for AC. A prospective comparison of subtype prognosis and response to surgery and adjuvant treatment is needed to identify the clinical applications of the novel molecular subtypes.
Collapse
Affiliation(s)
| | - Anthony Scholer
- Department of Surgery, Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, CA, USA
| | - Miquel Ensenyat-Mendez
- Cancer Epigenetic Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, Islas Baleares, Spain
| | - Javier I J Orozco
- Cancer Epigenetics Laboratory, Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, CA, USA
| | - Adam Khader
- Department of Surgery, Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, CA, USA
| | - Juan Santamaria-Barria
- Department of Surgery, Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, CA, USA
| | - Trevan Fischer
- Department of Surgery, Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, CA, USA
| | - Alessio Pigazzi
- Colon and Rectal Surgery, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | - Diego M Marzese
- Cancer Epigenetic Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, Islas Baleares, Spain
| |
Collapse
|
43
|
Exploring polyps to colon carcinoma voyage: can blocking the crossroad halt the sequence? J Cancer Res Clin Oncol 2021; 147:2199-2207. [PMID: 34115239 DOI: 10.1007/s00432-021-03685-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/05/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer is an important public health concern leading to significant cancer associate mortality. A vast majority of colon cancer arises from polyp which later follows adenoma, adenocarcinoma, and carcinoma sequence. This whole process takes several years to complete and recent genomic and proteomic technologies are identifying several targets involved in each step of polyp to carcinoma transformation in a large number of studies. Current text presents interaction network of targets involved in polyp to carcinoma transformation. In addition, important targets involved in each step according to network biological parameters are also presented. The functional overrepresentation analysis of each step targets and common top biological processes and pathways involved in carcinoma indicate several insights about this whole mechanism. Interaction networks indicate TP53, AKT1, GAPDH, INS, EGFR, and ALB as the most important targets commonly involved in polyp to carcinoma sequence. Though several important pathways are known to be involved in CRC, the central common involvement of PI3K-AKT indicates its potential for devising CRC management strategies. The common and central targets and pathways involved in polyp to carcinoma progression can shed light on its mechanism and potential management strategies. The data-driven approach aims to add valuable inputs to the mechanism of the years-long polyp-carcinoma sequence.
Collapse
|
44
|
Malkomes P, Lunger I, Oppermann E, Abou-El-Ardat K, Oellerich T, Günther S, Canbulat C, Bothur S, Schnütgen F, Yu W, Wingert S, Haetscher N, Catapano C, Dietz MS, Heilemann M, Kvasnicka HM, Holzer K, Serve H, Bechstein WO, Rieger MA. Transglutaminase 2 promotes tumorigenicity of colon cancer cells by inactivation of the tumor suppressor p53. Oncogene 2021; 40:4352-4367. [PMID: 34103685 PMCID: PMC8225513 DOI: 10.1038/s41388-021-01847-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Despite a high clinical need for the treatment of colorectal carcinoma (CRC) as the second leading cause of cancer-related deaths, targeted therapies are still limited. The multifunctional enzyme Transglutaminase 2 (TGM2), which harbors transamidation and GTPase activity, has been implicated in the development and progression of different types of human cancers. However, the mechanism and role of TGM2 in colorectal cancer are poorly understood. Here, we present TGM2 as a promising drug target.In primary patient material of CRC patients, we detected an increased expression and enzymatic activity of TGM2 in colon cancer tissue in comparison to matched normal colon mucosa cells. The genetic ablation of TGM2 in CRC cell lines using shRNAs or CRISPR/Cas9 inhibited cell expansion and tumorsphere formation. In vivo, tumor initiation and growth were reduced upon genetic knockdown of TGM2 in xenotransplantations. TGM2 ablation led to the induction of Caspase-3-driven apoptosis in CRC cells. Functional rescue experiments with TGM2 variants revealed that the transamidation activity is critical for the pro-survival function of TGM2. Transcriptomic and protein-protein interaction analyses applying various methods including super-resolution and time-lapse microscopy showed that TGM2 directly binds to the tumor suppressor p53, leading to its inactivation and escape of apoptosis induction.We demonstrate here that TGM2 is an essential survival factor in CRC, highlighting the therapeutic potential of TGM2 inhibitors in CRC patients with high TGM2 expression. The inactivation of p53 by TGM2 binding indicates a general anti-apoptotic function, which may be relevant in cancers beyond CRC.
Collapse
Affiliation(s)
- Patrizia Malkomes
- Goethe University Hospital Frankfurt, Department of General, Visceral and Transplant Surgery, Frankfurt am Main, Germany
| | - Ilaria Lunger
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
| | - Elsie Oppermann
- Goethe University Hospital Frankfurt, Department of General, Visceral and Transplant Surgery, Frankfurt am Main, Germany
| | - Khalil Abou-El-Ardat
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- German Cancer Consortium and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Oellerich
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- German Cancer Consortium and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Department I Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Can Canbulat
- Goethe University Hospital Frankfurt, Department of General, Visceral and Transplant Surgery, Frankfurt am Main, Germany
| | - Sabrina Bothur
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
| | - Frank Schnütgen
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- German Cancer Consortium and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | - Weijia Yu
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
| | - Susanne Wingert
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
| | - Nadine Haetscher
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
| | - Claudia Catapano
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marina S Dietz
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mike Heilemann
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Hans-Michael Kvasnicka
- Goethe University Frankfurt, Senckenberg Institute for Pathology, Frankfurt am Main, Germany
| | - Katharina Holzer
- Goethe University Hospital Frankfurt, Department of General, Visceral and Transplant Surgery, Frankfurt am Main, Germany
- Philipps University of Marburg, Department of Visceral-, Thoracic- and Vascular Surgery, Marburg, Germany
| | - Hubert Serve
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- German Cancer Consortium and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | - Wolf Otto Bechstein
- Goethe University Hospital Frankfurt, Department of General, Visceral and Transplant Surgery, Frankfurt am Main, Germany
| | - Michael A Rieger
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany.
- German Cancer Consortium and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Frankfurt Cancer Institute, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute, Frankfurt am Main, Germany.
| |
Collapse
|
45
|
Cenariu D, Zimta AA, Munteanu R, Onaciu A, Moldovan CS, Jurj A, Raduly L, Moldovan A, Florea A, Budisan L, Pop LA, Magdo L, Albu MT, Tonea RB, Muresan MS, Ionescu C, Petrut B, Buiga R, Irimie A, Gulei D, Berindan-Neagoe I. Hsa-miR-125b Therapeutic Role in Colon Cancer Is Dependent on the Mutation Status of the TP53 Gene. Pharmaceutics 2021; 13:664. [PMID: 34066331 PMCID: PMC8148199 DOI: 10.3390/pharmaceutics13050664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022] Open
Abstract
Colon cancer is the third most common cancer type worldwide and is highly dependent on DNA mutations that progressively appear and accumulate in the normal colon epithelium. Mutations in the TP53 gene appear in approximately half of these patients and have significant implications in disease progression and response to therapy. miR-125b-5p is a controversial microRNA with a dual role in cancer that has been reported to target specifically TP53 in colon adenocarcinomas. Our study investigated the differential therapeutic effect of miR-125b-5p replacement in colon cancer based on the TP53 mutation status of colon cancer cell lines. In TP53 mutated models, miR-125b-5p overexpression slows cancer cells' malignant behavior by inhibiting the invasion/migration and colony formation capacity via direct downregulation of mutated TP53. In TP53 wild type cells, the exogenous modulation of miR-125b-5p did not significantly affect the molecular and phenotypic profile. In conclusion, our data show that miR-125b-5p has an anti-cancer effect only in TP53 mutated colon cancer cells, explaining partially the dual behavior of this microRNA in malignant pathologies.
Collapse
Affiliation(s)
- Diana Cenariu
- MEDFUTURE—Research Center for Advanced Medicine, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Marinescu 23 Street/Louis Pasteur 4–6 Street, 400337 Cluj-Napoca, Romania; (D.C.); (A.-A.Z.); (R.M.); (A.O.); (C.S.M.); (A.M.)
| | - Alina-Andreea Zimta
- MEDFUTURE—Research Center for Advanced Medicine, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Marinescu 23 Street/Louis Pasteur 4–6 Street, 400337 Cluj-Napoca, Romania; (D.C.); (A.-A.Z.); (R.M.); (A.O.); (C.S.M.); (A.M.)
| | - Raluca Munteanu
- MEDFUTURE—Research Center for Advanced Medicine, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Marinescu 23 Street/Louis Pasteur 4–6 Street, 400337 Cluj-Napoca, Romania; (D.C.); (A.-A.Z.); (R.M.); (A.O.); (C.S.M.); (A.M.)
| | - Anca Onaciu
- MEDFUTURE—Research Center for Advanced Medicine, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Marinescu 23 Street/Louis Pasteur 4–6 Street, 400337 Cluj-Napoca, Romania; (D.C.); (A.-A.Z.); (R.M.); (A.O.); (C.S.M.); (A.M.)
| | - Cristian Silviu Moldovan
- MEDFUTURE—Research Center for Advanced Medicine, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Marinescu 23 Street/Louis Pasteur 4–6 Street, 400337 Cluj-Napoca, Romania; (D.C.); (A.-A.Z.); (R.M.); (A.O.); (C.S.M.); (A.M.)
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (L.R.); (L.B.); (L.A.P.); (I.B.-N.)
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (L.R.); (L.B.); (L.A.P.); (I.B.-N.)
| | - Alin Moldovan
- MEDFUTURE—Research Center for Advanced Medicine, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Marinescu 23 Street/Louis Pasteur 4–6 Street, 400337 Cluj-Napoca, Romania; (D.C.); (A.-A.Z.); (R.M.); (A.O.); (C.S.M.); (A.M.)
| | - Adrian Florea
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Louis Pasteur St., 400349 Cluj-Napoca, Romania;
| | - Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (L.R.); (L.B.); (L.A.P.); (I.B.-N.)
| | - Laura Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (L.R.); (L.B.); (L.A.P.); (I.B.-N.)
| | - Lorand Magdo
- Faculty of Medicine, “Iuliu-Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (L.M.); (M.T.A.); (R.B.T.)
| | - Mihai Tudor Albu
- Faculty of Medicine, “Iuliu-Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (L.M.); (M.T.A.); (R.B.T.)
| | - Rares Bogdan Tonea
- Faculty of Medicine, “Iuliu-Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (L.M.); (M.T.A.); (R.B.T.)
| | - Mihai-Stefan Muresan
- 5th Surgical Department, Municipal Hospital, 11 Tăbăcarilor Street, 400139 Cluj-Napoca, Romania; (M.-S.M.); (C.I.)
- Surgical and Gynecological Oncology Department, Prof. Dr. Ion Chiricuta” Oncology Institute, Republicii 34–36 Street, 400015 Cluj-Napoca, Romania
- Department of Surgery V, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Calin Ionescu
- 5th Surgical Department, Municipal Hospital, 11 Tăbăcarilor Street, 400139 Cluj-Napoca, Romania; (M.-S.M.); (C.I.)
- Department of Surgery V, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Bogdan Petrut
- Department of Urology, “Prof. Dr. Ion Chiricuta” Oncology Institute, Republicii 34–36 Street, 400015 Cluj-Napoca, Romania;
- Department of Urology, “Iuliu-Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Rares Buiga
- Department of Pathology, “Prof. Dr. Ion Chiricuta” Oncology Institute, Republicii 34–36 Street, 400015 Cluj-Napoca, Romania;
- Department of Pathology, “Iuliu-Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Alexandru Irimie
- 11th Department of Surgical Oncology and Gynaecological Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
- Department of Surgery, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Diana Gulei
- MEDFUTURE—Research Center for Advanced Medicine, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Marinescu 23 Street/Louis Pasteur 4–6 Street, 400337 Cluj-Napoca, Romania; (D.C.); (A.-A.Z.); (R.M.); (A.O.); (C.S.M.); (A.M.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (L.R.); (L.B.); (L.A.P.); (I.B.-N.)
- Department of Functional Genomics and Experimental Pathology, “Prof. Dr. Ion Chiricuta” Oncology Institute, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
46
|
Liu Q, Li J, Xu L, Wang J, Zeng Z, Fu J, Huang X, Chu Y, Wang J, Zhang HY, Zeng F. Individualized Prediction of Colorectal Cancer Metastasis Using a Radiogenomics Approach. Front Oncol 2021; 11:620945. [PMID: 33996544 PMCID: PMC8113949 DOI: 10.3389/fonc.2021.620945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/15/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives: To evaluate whether incorporating the radiomics, genomics, and clinical features allows prediction of metastasis in colorectal cancer (CRC) and to develop a preoperative nomogram for predicting metastasis. Methods: We retrospectively analyzed radiomics features of computed tomography (CT) images in 134 patients (62 in the primary cohort, 28 in the validation cohort, and 44 in the independent-test cohort) clinicopathologically diagnosed with CRC at Dazhou Central Hospital from February 2018 to October 2019. Tumor tissues were collected from all patients for RNA sequencing, and clinical data were obtained from medical records. A total of 854 radiomics features were extracted from enhanced venous-phase CT of CRC. Least absolute shrinkage and selection operator regression analysis was utilized for data dimension reduction, feature screen, and radiomics signature development. Multivariable logistic regression analysis was performed to build a multiscale predicting model incorporating the radiomics, genomics, and clinical features. The receiver operating characteristic curve, calibration curve, and decision curve were conducted to evaluate the performance of the nomogram. Results: The radiomics signature based on 16 selected radiomics features showed good performance in metastasis assessment in both primary [area under the curve (AUC) = 0.945, 95% confidence interval (CI) 0.892–0.998] and validation cohorts (AUC = 0.754, 95% CI 0.570–0.938). The multiscale nomogram model contained radiomics features signatures, four-gene expression related to cell cycle pathway, and CA 19-9 level. The multiscale model showed good discrimination performance in the primary cohort (AUC = 0.981, 95% CI 0.953–1.000), the validation cohort (AUC = 0.822, 95% CI 0.635–1.000), and the independent-test cohort (AUC = 0.752, 95% CI 0.608–0.896) and good calibration. Decision curve analysis confirmed the clinical application value of the multiscale model. Conclusion: This study presented a multiscale model that incorporated the radiological eigenvalues, genomics features, and CA 19-9, which could be conveniently utilized to facilitate the individualized preoperatively assessing metastasis in CRC patients.
Collapse
Affiliation(s)
- Qin Liu
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Jie Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Lin Xu
- Department of Radiology, Dazhou Central Hospital, Dazhou, China
| | - Jiasi Wang
- Department of Clinical Laboratory, Dazhou Central Hospital, Dazhou, China
| | - Zhaoping Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Jiangping Fu
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Xuan Huang
- Department of Ophthalmology, Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yanpeng Chu
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Jing Wang
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China.,School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
47
|
Zhuang Y, Wang H, Jiang D, Li Y, Feng L, Tian C, Pu M, Wang X, Zhang J, Hu Y, Liu P. Multi gene mutation signatures in colorectal cancer patients: predict for the diagnosis, pathological classification, staging and prognosis. BMC Cancer 2021; 21:380. [PMID: 33836681 PMCID: PMC8034139 DOI: 10.1186/s12885-021-08108-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/28/2021] [Indexed: 12/14/2022] Open
Abstract
Background Identifying gene mutation signatures will enable a better understanding for the occurrence and development of colorectal cancer (CRC), and provide some potential biomarkers for clinical practice. Currently, however, there is still few effective biomarkers for early diagnosis and prognostic judgment in CRC patients. The purpose was to identify novel mutation signatures for the diagnosis and prognosis of CRC. Methods Clinical information of 531 CRC patients and their sequencing data were downloaded from TCGA database (training group), and 53 clinical patients were collected and sequenced with targeted next generation sequencing (NGS) technology (validation group). The relationship between the mutation genes and the diagnosis, pathological type, stage and prognosis of CRC were compared to construct signatures for CRC, and then analyzed their relationship with RNA expression, immunocyte infiltration and tumor microenvironment (TME). Results Mutations of TP53, APC, KRAS, BRAF and ATM covered 97.55% of TCGA population and 83.02% validation patients. Moreover, 57.14% validation samples and 22.06% TCGA samples indicated that patients with mucinous adenocarcinoma tended to have BRAF mutation, but no TP53 mutation. Mutations of TP53, PIK3CA, FAT4, FMN2 and TRRAP had a remarkable difference between I-II and III-IV stage patients (P < 0.0001). Besides, the combination of PIK3CA, LRP1B, FAT4 and ROS1 formed signatures for the prognosis and survival of CRC patients. The mutations of TP53, APC, KRAS, BRAF, ATM, PIK3CA, FAT4, FMN2, TRRAP, LRP1B, and ROS1 formed the signatures for predicting diagnosis and prognosis of CRC. Among them, mutation of TP53, APC, KRAS, BRAF, ATM, PIK3CA, FAT4 and TRRAP significantly reduced their RNA expression level. Stromal score, immune score and ESTIMATE score were lower in patients with TP53, APC, KRAS, PIK3CA mutation compared non-mutation patients. All the 11 gene mutations affected the distributions of immune cells. Conclusion This study constructed gene mutation signatures for the diagnosis, treatment and prognosis in CRC, and proved that their mutations affected RNA expression levels, TME and immunocyte infiltration. Our results put forward further insights into the genotype of CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08108-9.
Collapse
Affiliation(s)
- Yan Zhuang
- Department of Colorectal Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Hailong Wang
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No.354 Beima Road, Hongqiao District, Tianjin, 300120, China
| | - Da Jiang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Ying Li
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Lixia Feng
- Department of Nursing, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300300, China
| | - Caijuan Tian
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd, Tianjin, 300381, China
| | - Mingyu Pu
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd, Tianjin, 300381, China
| | - Xiaowei Wang
- Tianjin Yunquan Intelligent Technology Co., Ltd, Tianjin, 300381, China
| | - Jiangyan Zhang
- Tianjin Yunquan Intelligent Technology Co., Ltd, Tianjin, 300381, China
| | - Yuanjing Hu
- Department of Gynecological Oncology, Tianjin Central Hospital of Obstetrics & Gynecology, No. 156 Nankai Third Road, Nankai District, Tianjin, 300100, China.
| | - Pengfei Liu
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No.354 Beima Road, Hongqiao District, Tianjin, 300120, China.
| |
Collapse
|
48
|
Ramos H, Soares MIL, Silva J, Raimundo L, Calheiros J, Gomes C, Reis F, Monteiro FA, Nunes C, Reis S, Bosco B, Piazza S, Domingues L, Chlapek P, Vlcek P, Fabian P, Rajado AT, Carvalho ATP, Veselska R, Inga A, Pinho E Melo TMVD, Saraiva L. A selective p53 activator and anticancer agent to improve colorectal cancer therapy. Cell Rep 2021; 35:108982. [PMID: 33852837 DOI: 10.1016/j.celrep.2021.108982] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Impairment of the p53 pathway is a critical event in cancer. Therefore, reestablishing p53 activity has become one of the most appealing anticancer therapeutic strategies. Here, we disclose the p53-activating anticancer drug (3S)-6,7-bis(hydroxymethyl)-5-methyl-3-phenyl-1H,3H-pyrrolo[1,2-c]thiazole (MANIO). MANIO demonstrates a notable selectivity to the p53 pathway, activating wild-type (WT)p53 and restoring WT-like function to mutant (mut)p53 in human cancer cells. MANIO directly binds to the WT/mutp53 DNA-binding domain, enhancing the protein thermal stability, DNA-binding ability, and transcriptional activity. The high efficacy of MANIO as an anticancer agent toward cancers harboring WT/mutp53 is further demonstrated in patient-derived cells and xenograft mouse models of colorectal cancer (CRC), with no signs of undesirable side effects. MANIO synergizes with conventional chemotherapeutic drugs, and in vitro and in vivo studies predict its adequate drug-likeness and pharmacokinetic properties for a clinical candidate. As a single agent or in combination, MANIO will advance anticancer-targeted therapy, particularly benefiting CRC patients harboring distinct p53 status.
Collapse
Affiliation(s)
- Helena Ramos
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria I L Soares
- University of Coimbra, Coimbra Chemistry Centre and Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Joana Silva
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Liliana Raimundo
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Juliana Calheiros
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Célia Gomes
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Flávio Reis
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Filipe A Monteiro
- Departamento de Biomedicina, Unidade de Biologia Experimental, FMUP - Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal; Pain Research Group, IBMC - Instituto de Biologia Celular e Molecular, 4150-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4150-180 Porto, Portugal
| | - Cláudia Nunes
- LAQV/REQUIMTE, Laboratório de Química Aplicada, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Salette Reis
- LAQV/REQUIMTE, Laboratório de Química Aplicada, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Bartolomeo Bosco
- Department CIBIO, Laboratory of Transcriptional Networks, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Silvano Piazza
- Department CIBIO, Laboratory of Transcriptional Networks, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Petr Chlapek
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Petr Vlcek
- 1st Department of Surgery, St. Anne's University Hospital, Brno, Czech Republic
| | - Pavel Fabian
- Department of Oncological and Experimental Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ana Teresa Rajado
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - A T P Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Alberto Inga
- Department CIBIO, Laboratory of Transcriptional Networks, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Teresa M V D Pinho E Melo
- University of Coimbra, Coimbra Chemistry Centre and Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
49
|
Arnaout K, Hawa N, Agha S, Kadoura L, Aloulou M, Ayoub K. A case report of multiple bilateral breast metastases after colorectal cancer. Int J Surg Case Rep 2021; 81:105759. [PMID: 33743246 PMCID: PMC8010451 DOI: 10.1016/j.ijscr.2021.105759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 01/09/2023] Open
Abstract
CRC metastasizes commonly to the regional lymph nodes, liver, lung, and rarely to breast. The radiologic investigations can play a role in the differentiation between the diagnosis of primary breast cancer and metastases. Immunohistochemically, the majority of breast adenocarcinomas are: negative for CDX2 and CK20 and positive for CK7, while colorectal adenocarcinomas are: positive for CDX2 and CK20, and negative for ER, PR, HER2, and CK7. The management plan of CRC metastases to the breast is complex and requires a multidisciplinary team. Introduction and importance Although primary breast cancer is the most common tumor in women, breast metastases are rare findings. We report the first case in English literature with CRC metastases to the breast and adrenal gland concurrently. Case presentation A 42-year-old Caucasian female complained of abdominal pain over the last 3 days. Her history was remarkable for stage 2 colon cancer and she was free of disease for 2 years before the presentation, due to receiving Surgical-chemotherapy. The radiologic investigation showed a well-defined cystic mass in the left adrenal gland and left breast nodule. After adrenalectomy, the diagnosis of the mass was metastatic mucinous adenocarcinoma. During the surgical preparation, bilateral breast lumps were noticed. Histopathology of breast mass showed mucinous adenocarcinoma. Immunohistochemical staining revealed that the neoplastic gland was positive for CDX2, CK20, and P53 mutation and negative for CK7, PR, ER, and HER2. Overall, the diagnosis was metastatic colorectal adenocarcinoma to the breast. Clinical discussion Metastatic lesions in the adrenal gland tend to be bilateral with irregular shape. Breast metastases are singular unilateral lesions with predominance in the left breast. Biopsy and immunohistochemistry make the final diagnosis. The management plan is complex and depends on many factors like the general condition of the patient and the presence of other metastases. However, breast metastases may be a clinical clue to disseminated disease. Conclusion Breast metastases should be in the differential diagnosis in patients with a history of colorectal adenocarcinoma, in order to provide the appropriate clinical care.
Collapse
Affiliation(s)
- Khaled Arnaout
- Faculty of Medicine, University of Aleppo, Aleppo, Syria.
| | - Nouran Hawa
- Faculty of Medicine, University of Aleppo, Aleppo, Syria.
| | - Sarab Agha
- Department of Pathology, Faculty of Medicine, Aleppo University, Aleppo, Syria.
| | - Lama Kadoura
- Department of Surgery, University of Aleppo, Aleppo, Syria.
| | - Marwa Aloulou
- Faculty of Medicine, University of Aleppo, Aleppo, Syria.
| | - Kusay Ayoub
- Instructor at General Surgery Department, Aleppo University Hospital, Aleppo University, Faculty of Medicine, Aleppo, Syria.
| |
Collapse
|
50
|
Shimizu H, Nakayama KI. A universal molecular prognostic score for gastrointestinal tumors. NPJ Genom Med 2021; 6:6. [PMID: 33542224 PMCID: PMC7862603 DOI: 10.1038/s41525-021-00172-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/06/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal and gastric cancers are a leading cause of cancer deaths in developed countries. Precise estimation of prognosis is important with regard to clinical decision making for individuals with such cancers. We here comprehensively compiled a complete atlas of prognostic genes based on an integrated meta-analysis of one of the largest assembled colorectal cancer cohorts. A simple yet robust machine learning approach was then applied to establish a universal molecular prognostic score (mPS_colon) that relies on the expression status of only 16 genes and which was validated with independent data sets. This score was found to be an independent prognostic indicator in multivariate models including cancer stage, to be valid independent of tumor characteristics or patient ethnicity, and to be also applicable to gastric cancer. We conclude that mPS_colon is a universal prognostic classifier for patients with gastrointestinal cancers and that it should prove informative for optimization of personalized therapy for such patients.
Collapse
Affiliation(s)
- Hideyuki Shimizu
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|