1
|
Tiniakos DG, Anstee QM, Brunt EM, Burt AD. Fatty Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:330-401. [DOI: 10.1016/b978-0-7020-8228-3.00005-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Diclofenac Disrupts the Circadian Clock and through Complex Cross-Talks Aggravates Immune-Mediated Liver Injury-A Repeated Dose Study in Minipigs for 28 Days. Int J Mol Sci 2023; 24:ijms24021445. [PMID: 36674967 PMCID: PMC9863319 DOI: 10.3390/ijms24021445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023] Open
Abstract
Diclofenac effectively reduces pain and inflammation; however, its use is associated with hepato- and nephrotoxicity. To delineate mechanisms of injury, we investigated a clinically relevant (3 mg/kg) and high-dose (15 mg/kg) in minipigs for 4 weeks. Initially, serum biochemistries and blood-smears indicated an inflammatory response but returned to normal after 4 weeks of treatment. Notwithstanding, histopathology revealed drug-induced hepatitis, marked glycogen depletion, necrosis and steatosis. Strikingly, the genomic study revealed diclofenac to desynchronize the liver clock with manifest inductions of its components CLOCK, NPAS2 and BMAL1. The > 4-fold induced CRY1 expression underscored an activated core-loop, and the dose dependent > 60% reduction in PER2mRNA repressed the negative feedback loop; however, it exacerbated hepatotoxicity. Bioinformatics enabled the construction of gene-regulatory networks, and we linked the disruption of the liver-clock to impaired glycogenesis, lipid metabolism and the control of immune responses, as shown by the 3-, 6- and 8-fold induced expression of pro-inflammatory CXCL2, lysozyme and ß-defensin. Additionally, diclofenac treatment caused adrenocortical hypertrophy and thymic atrophy, and we evidenced induced glucocorticoid receptor (GR) activity by immunohistochemistry. Given that REV-ERB connects the circadian clock with hepatic GR, its > 80% repression alleviated immune responses as manifested by repressed expressions of CXCL9(90%), CCL8(60%) and RSAD2(70%). Together, we propose a circuitry, whereby diclofenac desynchronizes the liver clock in the control of the hepatic metabolism and immune response.
Collapse
|
3
|
Xiao L, Tang S, Zhang L, Ma S, Zhao Y, Zhang F, Xie Z, Li L. Serum CXCL1 Is a Prognostic Factor for Patients With Hepatitis B Virus-Related Acute-On-Chronic Liver Failure. Front Med (Lausanne) 2021; 8:657076. [PMID: 34395462 PMCID: PMC8355541 DOI: 10.3389/fmed.2021.657076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022] Open
Abstract
Purpose: Neutrophils and cytokines play a major role in the pathogenesis of acute-on-chronic liver failure (ACLF). We aimed to determine whether chemokine (CXC) ligand 1 (CXCL1), a key marker of neutrophil recruitment and activation, could predict the severity and prognosis of hepatitis B virus–related ACLF (HBV-ACLF). Methods: Hospitalized patients with HBV-ACLF were enrolled in a prospective study and stratified as survivors (alive at 28 days) and nonsurvivors (deceased at 28 days). Serum CXCL1 levels were measured in healthy controls, patients with chronic HBV, patients with HBV-related compensated cirrhosis, and patients with HBV-ACLF. Univariate and multivariable logistic analyses, Pearson correlation analysis, area under the receiver operating characteristic curve (AUROC), and Z tests were used to evaluate the performance of CXCL1 as a marker in HBV-ACLF. Results: Patients with HBV-ACLF had significantly higher serum levels of CXCL1 and neutrophil count than healthy controls and patients with chronic HBV or HBV-related compensated cirrhosis (P < 0.01, respectively). Among patients with HBV-ACLF, survivors had lower serum CXCL1 levels and neutrophil count than those of nonsurvivors (P < 0.001, P < 0.05, respectively). Serum CXCL1 level was positively correlated with neutrophil count (r = 0.256, P = 0.001), ACLF grade (r = 0.295, P < 0.001) and organ failure, including coagulation (r = 0.21, P = 0.005) and brain failure (r = 0.198, P = 0.008). Multivariable logistic analyses showed serum CXCL1 [OR (95% CI) = 1.017 (1.009–1.025), P < 0.001] was an independent risk factor for 28-day mortality in HBV-ACLF. Meanwhile, the AUROC analysis demonstrated that serum CXCL1 [0.741 (0.669–0.804)] might be a reliable prognostic biomarker for patients with HBV-ACLF. Conclusions: Overall, serum CXCL1 can serve as a biomarker indicating the severity of disease and prognosis for patients with HBV-ACLF. CXCL1 might also be a therapeutic target in this disease.
Collapse
Affiliation(s)
- Lanlan Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shima Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lingjian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shanshan Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yalei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Fen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhongyang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Kandil A, Keles AG, Balci H, Demirci Tansel C. The Effects of Nitric Oxide and Inhibitor, and Combination of Albendazole and Praziquantel On Liver in Mice Injected with Echinococcus granulosus Larvae. Acta Trop 2021; 219:105917. [PMID: 33839085 DOI: 10.1016/j.actatropica.2021.105917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
In this study, the role of nitric oxide (NO) in the pathogenesis of hydatidosis and the interaction with effects of anthelmintic drugs, albendazole and praziquantel, were examined in larval infection caused by protoscolices obtained from hydatid cysts of sheep liver in Albino Balb/c mice. Animals were divided into ten groups including controls and infected groups. Larval infection was established with intraperitoneal injection of protoscolices. Eight months after infection with protoscolices, the infected animals were divided into 6 groups. The infected animals were given a selective inhibitor of inducible nitric oxide synthase (iNOS) L-N6-(1-Iminoethyl) lysine-hydrochloride (L-NIL), NO donor sodium nitroprusside (SNP), albendazole and praziquantel as anthelmintic drugs for 7 days. In addition, control groups were composed of intact group, control, anthelmintic drugs + L-NIL, and anthelmintic drugs + SNP. The liver and blood samples were taken for cytological, histological, immunohistochemical and biochemical analyses 7 days after treatments at the end of experiment. The animals injected with protoscolices showed histopathological changes including inflammation areas, infiltration and accumulation of leukocytes, dilation of sinusoids, and damage in endothelial cells and hepatocytes at light microscopy. Electron microscopy were revealed severe damage in sinusoidal endothelial cells, leukocytes especially eosinophils in sinusoid lumens and disorganization in endoplasmic reticulum and nuclear membrane. Endothelial nitric oxide synthase (eNOS) and iNOS reactions were increased in the tissue. Anthelmintic drugs decreased inflammation areas and damages; however, it did not change NOS reactions in the animals given protoscolices. L-NIL and SNP diminished both iNOS and eNOS reactions. Unlike the group administered the inhibitor, SNP treated group exhibited less inflammation areas. Combination of these substances and drugs resulted in decreased inflammation areas. eNOS and iNOS reactions decreased in the drugs and SNP administered group, while only iNOS reaction was decreased in L-NIL given infection group. In addition, the infected groups which received SNP displayed expanded sinusoids and hepatocytes with vacuoles, intriguingly. While levels of serum nitrite/nitrate elevated only in the infection group given drugs and SNP, it decreased in the L-NIL administered group. Tissue level of malondialdehyde increased in infection groups with drugs and SNP. In conclusion, the results indicated that NO plays an important role in the pathogenesis of hydatidosis.
Collapse
|
5
|
Maxwell AJ, Ding J, You Y, Dong Z, Chehade H, Alvero A, Mor Y, Draghici S, Mor G. Identification of key signaling pathways induced by SARS-CoV2 that underlie thrombosis and vascular injury in COVID-19 patients. J Leukoc Biol 2021; 109:35-47. [PMID: 33242368 PMCID: PMC7753679 DOI: 10.1002/jlb.4covr0920-552rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
The SARS-CoV-2 pandemic has led to hundreds of thousands of deaths and billions of dollars in economic damage. The immune response elicited from this virus is poorly understood. An alarming number of cases have arisen where COVID-19 patients develop complications on top of the symptoms already associated with SARS, such as thrombosis, injuries of vascular system, kidney, and liver, as well as Kawasaki disease. In this review, a bioinformatics approach was used to elucidate the immune response triggered by SARS-CoV-2 infection in primary human lung epithelial and transformed human lung alveolar. Additionally, examined the potential mechanism behind several complications that have been associated with COVID-19 and determined that a specific cytokine storm is leading to excessive neutrophil recruitment. These neutrophils are directly leading to thrombosis, organ damage, and complement activation via neutrophil extracellular trap release.
Collapse
Affiliation(s)
- Anthony J Maxwell
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Jiahui Ding
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Yuan You
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Zhong Dong
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Ayesha Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Yechiel Mor
- Department of Internal Medicine Wayne State University, Detroit, Michigan, USA
| | - Sorin Draghici
- Department of Computer Science, Wayne State University, Detroit, Michigan, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
6
|
Makkar K, Tomer S, Verma N, Rathi S, Arora SK, Taneja S, Duseja A, Chawla YK, Dhiman RK. Neutrophil dysfunction predicts 90-day survival in patients with acute on chronic liver failure: A longitudinal case-control study. JGH OPEN 2020; 4:595-602. [PMID: 32782944 PMCID: PMC7411642 DOI: 10.1002/jgh3.12344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022]
Abstract
Background and Aim Innate immune disarray is a key component in the development and progression of acute on chronic liver failure (ACLF) and predisposition to infections. We evaluated the neutrophil dysfunction and its impact on outcomes in patients with ACLF. Methods Forty patients with acute decompensation of cirrhosis (10 each of grades 0, 1, 2, and 3 ACLF) and 10 healthy controls were prospectively evaluated for neutrophil immunophenotype (NP), neutrophil phagocytic capacity (NPC), and oxidative burst (OB) in both resting and stimulated conditions. The patients were followed up for 90 days or until death or transplant, whichever was earlier. Results NP was normal (in %) and NPC (in mean fluorescence intensity [MFI]) was better in controls compared to patients with ACLF (83.74 ± 12.38 vs 63.84 ± 22.98; P = 0.007 and 98.33 ± 130.60 vs 18.73 ± 17.88, P = 0.001, respectively). Resting OB was higher in patients with ACLF compared to controls (97 ± 4.9% vs 91 ± 9%; P = 0.034), but it failed to increase further after stimulation, suggesting an immune exhaustion. NP was normal (in %) and NPC (in MFI) was better in 90‐day survivors compared to nonsurvivors (78 ± 11.9 vs 62.2 ± 24.11, P = 0.02 and 33.3 ± 22.7 vs 16.36 ± 13.3; P = 0.004, respectively). Phenotypically normal neutrophils >71.7% had 78.6% sensitivity and 65.4% specificity with an area under receiver operating curve (AUROC) of 0.70 (95% confidence interval [CI]: 0.55–0.90); P = 0.017, and NPC >17.32. MFI had 71.4% sensitivity and 69.6% specificity with an AUROC of 0.73 (95% CI: 0.54–0.86), P = 0.035, in predicting 90‐day survival. Conclusion Neutrophils have impaired bactericidal function in patients with ACLF compared to healthy adults. Neutrophil phenotype and phagocytic capacity may be used to predict 90‐day survival in patients with ACLF.
Collapse
Affiliation(s)
- Kunaal Makkar
- Department of Internal Medicine Post Graduate Institute of Medical Education and Research Chandigarh India
| | - Shallu Tomer
- Department of Immunopathology Post Graduate Institute of Medical Education and Research Chandigarh India
| | - Nipun Verma
- Department of Hepatology Post Graduate Institute of Medical Education and Research Chandigarh India
| | - Sahaj Rathi
- Department of Hepatology Post Graduate Institute of Medical Education and Research Chandigarh India
| | - Sunil K Arora
- Department of Immunopathology Post Graduate Institute of Medical Education and Research Chandigarh India
| | - Sunil Taneja
- Department of Hepatology Post Graduate Institute of Medical Education and Research Chandigarh India
| | - Ajay Duseja
- Department of Hepatology Post Graduate Institute of Medical Education and Research Chandigarh India
| | - Yogesh K Chawla
- Department of Hepatology Post Graduate Institute of Medical Education and Research Chandigarh India
| | - Radha K Dhiman
- Department of Hepatology Post Graduate Institute of Medical Education and Research Chandigarh India
| |
Collapse
|
7
|
Comparative Transcriptome Analyses Provide Potential Insights into the Molecular Mechanisms of Astaxanthin in the Protection against Alcoholic Liver Disease in Mice. Mar Drugs 2019; 17:md17030181. [PMID: 30893931 PMCID: PMC6471478 DOI: 10.3390/md17030181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
Alcoholic liver disease (ALD) is a major cause of chronic liver disease worldwide. It is a complex process, including a broad spectrum of hepatic lesions from fibrosis to cirrhosis. Our previous study suggested that astaxanthin (AST) could alleviate the hepatic inflammation and lipid dysmetabolism induced by ethanol administration. In this study, a total of 48 male C57BL/6J mice were divided into 4 groups: a Con group (fed with a Lieber–DeCarli liquid diet), an AST group (fed with a Lieber–DeCarli liquid diet and AST), an Et group (fed with an ethanol-containing Lieber–DeCarli liquid diet), and a EtAST group (fed with an ethanol-containing Lieber–DeCarli liquid diet and AST). Then, comparative hepatic transcriptome analysis among the groups was performed by Illumina RNA sequencing. Gene enrichment analysis was conducted to identify pathways affected by the differentially expressed genes. Changes of the top genes were verified by quantitative real-time PCR (qRT-PCR) and Western blot. A total of 514.95 ± 6.89, 546.02 ± 15.93, 576.06 ± 21.01, and 690.85 ± 54.14 million clean reads were obtained for the Con, AST, Et, and EtAST groups, respectively. Compared with the Et group, 1892 differentially expressed genes (DEGs) (including 351 upregulated and 1541 downregulated genes) were identified in the AST group, 1724 differentially expressed genes (including 233 upregulated and 1491 downregulated genes) were identified in the Con group, and 1718 DEGs (including 1380 upregulated and 338 downregulated genes) were identified in the EtAST group. The enrichment analyses revealed that the chemokine signaling, the antigen processing and presentation, the nucleotide-binding and oligomerization domain (NOD)-like receptor signaling, and the Toll-like receptor signaling pathways enriched the most differentially expressed genes. The findings of this study provide insights for the development of nutrition-related therapeutics for ALD.
Collapse
|
8
|
Markose D, Kirkland P, Ramachandran P, Henderson N. Immune cell regulation of liver regeneration and repair. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.regen.2018.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Støy S, Sandahl TD, Hansen AL, Deleuran B, Vorup-Jensen T, Vilstrup H, Kragstrup TW. Decreased monocyte shedding of the migration inhibitor soluble CD18 in alcoholic hepatitis. Clin Transl Gastroenterol 2018; 9:160. [PMID: 29904132 PMCID: PMC6002386 DOI: 10.1038/s41424-018-0022-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/23/2018] [Accepted: 03/13/2018] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES During alcoholic hepatitis (AH) monocytes traverse the vascular boundaries and massively invade the liver. In principle, tissue extravasation can be limited through shedding of CD18 integrins from leukocytes, including monocytes. The soluble (s) product sCD18 conceals adhesion receptors on the endothelium, which reduces monocyte extravasation. In AH, monocytes are dysfunctional, but whether this involves their self-generated anti-migration is unknown. Our aim was, therefore, to investigate monocyte CD18 dynamics in AH. METHODS We studied 50 AH patients and 20 healthy controls. We measured monocyte expression and conformational activation of CD18, plasma (P)-sCD18, stimulated in vitro CD18 shedding and P-sCD18 in a short-term chronic-binge mouse model. RESULTS AH-derived monocytes had a 30-60% higher expression of active CD18 receptors (p < 0.01), but the sCD18 concentration per monocyte was reduced in vivo by 30% and in vitro by 120% (p < 0.01). Ethanol reduced the in vitro shedding of CD18 in the patients only. TNFα increased sCD18 concentration per monocyte, but less so in the patients (p < 0.04). P-sCD18 per monocyte was inversely related to disease severity. In early alcoholic liver disease, P-sCD18 was decreased in the mouse model. CONCLUSIONS The monocyte CD18 integrins are highly activated in AH and the single monocyte shedding of CD18 was decreased favoring tissue extravasation. Alcohol in itself and altered monocyte responsiveness to TNFα may explain this lowered shedding. TRANSLATIONAL IMPACT The contribution of this mechanism to the excessive monocyte liver infiltration in AH should be further explored as it may serve as a potential therapeutic target to limit liver inflammation.
Collapse
Affiliation(s)
- Sidsel Støy
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Tue Wenzel Kragstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Zahr NM. Peripheral TNFα elevations in abstinent alcoholics are associated with hepatitis C infection. PLoS One 2018; 13:e0191586. [PMID: 29408932 PMCID: PMC5800541 DOI: 10.1371/journal.pone.0191586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
Substantial evidence supports the view that inflammatory processes contribute to brain alterations in HIV infection. Mechanisms recently proposed to underlie neuropathology in Alcohol Use Disorder (AUD) include elevations in peripheral cytokines that sensitize the brain to the damaging effects of alcohol. This study included 4 groups: healthy controls, individuals with AUD (abstinent from alcohol at examination), those infected with HIV, and those comorbid for HIV and AUD. The aim was to determine whether inflammatory cytokines are elevated in AUD as they are in HIV infection. Cytokines showing group differences included interferon gamma-induced protein 10 (IP-10) and tumor necrosis factor α (TNFα). Follow-up t-tests revealed that TNFα and IP-10 were higher in AUD than controls but only in AUD patients who were seropositive for Hepatitis C virus (HCV). Specificity of TNFα and IP-10 elevations to HCV infection status was provided by correlations between cytokine levels and HCV viral load and indices of liver integrity including albumin/globulin ratio, fibrosis scores, and AST/platelet count ratio. Because TNFα levels were mediated by HCV infection, this study provides no evidence for elevations in peripheral cytokines in "uncomplicated", abstinent alcoholics, independent of liver disease or HCV infection. Nonetheless, these results corroborate evidence for elevations in IP-10 and TNFα in HIV and for IP-10 levels in HIV+HCV co-infection.
Collapse
Affiliation(s)
- Natalie M. Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
- Neuroscience Department, SRI International, Menlo Park, CA, United States of America
- * E-mail:
| |
Collapse
|
11
|
|
12
|
Abstract
Alcoholic liver disease (ALD) is a leading cause of chronic liver disease with a wide spectrum of manifestations including simple steatosis to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Liver injury in ALD is caused by chronic inflammation, which has been actively investigated as a therapeutic target for the treatment of ALD for over the last four decades. In this review, we summarize a wide variety of inflammatory mediators that have been shown to contribute to the pathogenesis of ALD, and discuss the therapeutic potential of these mediators for the treatment of ALD.
Collapse
|
13
|
Graubardt N, Vugman M, Mouhadeb O, Caliari G, Pasmanik-Chor M, Reuveni D, Zigmond E, Brazowski E, David E, Chappell-Maor L, Jung S, Varol C. Ly6C hi Monocytes and Their Macrophage Descendants Regulate Neutrophil Function and Clearance in Acetaminophen-Induced Liver Injury. Front Immunol 2017; 8:626. [PMID: 28620383 PMCID: PMC5451509 DOI: 10.3389/fimmu.2017.00626] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022] Open
Abstract
Monocyte-derived macrophages (MoMF) play a pivotal role in the resolution of acetaminophen-induced liver injury (AILI). Timely termination of neutrophil activity and their clearance are essential for liver regeneration following injury. Here, we show that infiltrating Ly6Chi monocytes, their macrophage descendants, and neutrophils spatially and temporally overlap in the centrilobular necrotic areas during the necroinflammatory and resolution phases of AILI. At the necroinflammatory phase, inducible ablation of circulating Ly6Chi monocytes resulted in reduced numbers and fractions of reactive oxygen species (ROS)-producing neutrophils. In alignment with this, neutrophils sorted from monocyte-deficient livers exhibited reduced expression of NADPH oxidase 2. Moreover, human CD14+ monocytes stimulated with lipopolysaccharide or hepatocyte apoptotic bodies directly induced ROS production by cocultured neutrophils. RNA-seq-based transcriptome profiling of neutrophils from Ly6Chi monocyte-deficient versus normal livers revealed 449 genes that were differentially expressed with at least twofold change (p ≤ 0.05). In the absence of Ly6Chi monocytes, neutrophils displayed gene expression alterations associated with decreased innate immune activity and increased cell survival. At the early resolution phase, Ly6Chi monocytes differentiated into ephemeral Ly6Clo MoMF and their absence resulted in significant accumulation of late apoptotic neutrophils. Further gene expression analysis revealed the induced expression of a specific repertoire of bridging molecules and receptors involved with apoptotic cell clearance during the transition from Ly6Chi monocytes to MoMF. Collectively, our findings establish a phase-dependent task division between liver-infiltrating Ly6Chi monocytes and their MoMF descendants with the former regulating innate immune functions and cell survival of neutrophils and the later neutrophil clearance.
Collapse
Affiliation(s)
- Nadine Graubardt
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Milena Vugman
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Odelia Mouhadeb
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Gabriele Caliari
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, G. S. Wise Faculty of Life Science, Tel-Aviv University, Tel Aviv, Israel
| | - Debby Reuveni
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ehud Zigmond
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Eli Brazowski
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Chen Varol
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Neutrophil adhesion and crawling dynamics on liver sinusoidal endothelial cells under shear flow. Exp Cell Res 2017; 351:91-99. [DOI: 10.1016/j.yexcr.2017.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/05/2017] [Accepted: 01/07/2017] [Indexed: 02/07/2023]
|
15
|
Ramaiah S, Rivera C, Arteel G. Early-Phase Alcoholic Liver Disease: An Update on Animal Models, Pathology, and Pathogenesis. Int J Toxicol 2016; 23:217-31. [PMID: 15371166 DOI: 10.1080/10915810490502069] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) remains to be one of the most common etiology of liver disease and is a major cause of morbidity and mortality worldwide. The pathologic stages of ALD comprises of steatosis, steatohepatitis, and fibrosis/cirrhosis. Steatosis and steatohepatitis represents the early phase of ALD and are precursor stages for fibrosis/cirrhosis. Numerous research efforts have been directed at recognizing cofactors interacting with alcohol in the pathogenesis of steatosis and steatohepatitis. This review will elucidate the constellation of complex pathogenesis, available animal models, and microscopic pathologic findings mostly in the early-phase of ALD. The role of endotoxin, reactive oxygen species, alcohol metabolism, and cytokines are discussed. Understanding the mechanisms of early-phase ALD should provide insight into the development of therapeutic strategies and thereby decrease the morbidity and mortality associated with ALD.
Collapse
Affiliation(s)
- Shashi Ramaiah
- Department of Pathobiology, Texas Veterinary Medical Center, College of Veterinary Medicine, Texas A and M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
16
|
Lu S, Shi G, Xu X, Wang G, Lan X, Sun P, Li X, Zhang B, Gu X, Ichim TE, Wang H. Human endometrial regenerative cells alleviate carbon tetrachloride-induced acute liver injury in mice. J Transl Med 2016; 14:300. [PMID: 27770815 PMCID: PMC5075169 DOI: 10.1186/s12967-016-1051-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/05/2016] [Indexed: 01/08/2023] Open
Abstract
Background The endometrial regenerative cell (ERC) is a novel type of adult mesenchymal stem cell isolated from menstrual blood. Previous studies demonstrated that ERCs possess unique immunoregulatory properties in vitro and in vivo, as well as the ability to differentiate into functional hepatocyte-like cells. For these reasons, the present study was undertaken to explore the effects of ERCs on carbon tetrachloride (CCl4)–induced acute liver injury (ALI). Methods An ALI model in C57BL/6 mice was induced by administration of intraperitoneal injection of CCl4. Transplanted ERCs were intravenously injected (1 million/mouse) into mice 30 min after ALI induction. Liver function, pathological and immunohistological changes, cell tracking, immune cell populations and cytokine profiles were assessed 24 h after the CCl4 induction. Results ERC treatment effectively decreased the CCl4-induced elevation of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and improved hepatic histopathological abnormalities compared to the untreated ALI group. Immunohistochemical staining showed that over-expression of lymphocyte antigen 6 complex, locus G (Ly6G) was markedly inhibited, whereas expression of proliferating cell nuclear antigen (PCNA) was increased after ERC treatment. Furthermore, the frequency of CD4+ and CD8+ T cell populations in the spleen was significantly down-regulated, while the percentage of splenic CD4+CD25+FOXP3+ regulatory T cells (Tregs) was obviously up-regulated after ERC treatment. Moreover, splenic dendritic cells in ERC-treated mice exhibited dramatically decreased MHC-II expression. Cell tracking studies showed that transplanted PKH26-labeled ERCs engrafted to lung, spleen and injured liver. Compared to untreated controls, mice treated with ERCs had lower levels of IL-1β, IL-6, and TNF-α but higher level of IL-10 in both serum and liver. Conclusions Human ERCs protect the liver from acute injury in mice through hepatocyte proliferation promotion, as well as through anti-inflammatory and immunoregulatory effects.
Collapse
Affiliation(s)
- Shanzheng Lu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Ganggang Shi
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Xiaoxi Xu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Grace Wang
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Xu Lan
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Peng Sun
- Department of General Surgery, Affiliated Hospital of Weifang Medical University, Shandong, China
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Baoren Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Xiangying Gu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin General Surgery Institute, Tianjin, China.
| |
Collapse
|
17
|
Giles DA, Moreno-Fernandez ME, Divanovic S. IL-17 Axis Driven Inflammation in Non-Alcoholic Fatty Liver Disease Progression. Curr Drug Targets 2016; 16:1315-23. [PMID: 26028039 DOI: 10.2174/1389450116666150531153627] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/25/2015] [Indexed: 02/08/2023]
Abstract
Obesity is a primary risk factor for the development of non-alcoholic fatty liver disease (NAFLD). NAFLD, the most common chronic liver disease in the world, represents a spectrum of disorders that range from steatosis (NAFL) to steatohepatitis (NASH) to cirrhosis. It is anticipated that NAFLD will soon surpass chronic hepatitis C infection as the leading cause for needing liver transplantation. Despite its clinical and public health significance no specific therapies are available. Although the etiology of NAFLD is multifactorial and remains largely enigmatic, it is well accepted that inflammation is a central component of NAFLD pathogenesis. Despite the significance, critical immune mediators, loci of immune activation, the immune signaling pathways and the mechanism(s) underlying disease progression remain incompletely understood. Recent findings have focused on the role of Interleukin 17 (IL-17) family of proinflammatory cytokines in obesity and pathogenesis of obesity-associated sequelae. Notably, obesity favors a Th17 bias and is associated with increased IL-17A expression in both humans and mice. Further, in mice, IL-17 axis has been implicated in regulation of both obesity and NAFLD pathogenesis. However, despite these recent advances several important questions require further evaluation including: the relevant cellular source of IL-17A production; the critical IL- 17RA-expressing cell type; the critical liver infiltrating immune cells; and the underlying cellular effector mechanisms. Addressing these questions may aid in the identification and development of novel therapeutic targets for prevention of inflammation- driven NAFLD progression.
Collapse
Affiliation(s)
| | | | - Senad Divanovic
- Division of Immunobiology Cincinnati Children's Hospital Medical Center TCHRF - Location S, Room #S.5.409 3333 Burnet Avenue Cincinnati, Ohio 45229-3039 U.S.A.
| |
Collapse
|
18
|
Dual effect of red wine on liver redox status: a concise and mechanistic review. Arch Toxicol 2015; 89:1681-93. [PMID: 26026610 DOI: 10.1007/s00204-015-1538-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/12/2015] [Indexed: 01/09/2023]
|
19
|
Qi Z, Wang X, Wei H, Sun R, Tian Z. Infiltrating neutrophils aggravate metabolic liver failure in fah-deficient mice. Liver Int 2015; 35:774-85. [PMID: 24840069 DOI: 10.1111/liv.12594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/12/2014] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Mice deficient in tyrosine catabolic enzyme fumarylacetoacetate hydrolase (fah(-/-) ) was a useful animal model for studying liver failure. Tyrosine metabolic toxicants accumulate in hepatocytes over time in fah(-/-) mice, leading to hepatocyte necrosis which we propose release many type of damage associated molecular patterns (DAMPs) and cause chronic inflammation. However, whether immune-mediated inflammations cause a second wave of liver damage in fah(-/-) mice have never been investigated. METHODS The progressive changes in body weight, survival rate and liver inflammation were examined after the protective drug (NTBC) withdrawal. Cell depletion and receptor blocking were used to define the key immune cells and molecules in liver injury. RESULTS After removing of NTBC, fah(-/-) mice lost their body weight gradually, and finally died when the body weight largely reduced (low to 70%), along with increased serum ALT and total bilirubin. Importantly, a large amount of liver-infiltrating neutrophils were observed. Neutrophils depletion reduced the liver failure, and resulted in a better survival of fah(-/-) mice after NTBC withdrawal. The liver tissues produce more CCR2 chemokine, with neutrophils expressing more CCR2. CCR2 inhibition reduced the number of liver-infiltrating neutrophils and increased the expression of repair cytokine IL-22, with a longer survival of fah(-/-) mice after NTBC withdrawal. CONCLUSIONS The excess infiltrating neutrophils exacerbate liver failure in fah(-/-) mice which can be attenuated by blocking CCR2.
Collapse
Affiliation(s)
- Ziping Qi
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | | | | | | | | |
Collapse
|
20
|
Kumar L, Chhibber S, Harjai K. Zingerone suppresses liver inflammation induced by antibiotic mediated endotoxemia through down regulating hepatic mRNA expression of inflammatory markers in Pseudomonas aeruginosa peritonitis mouse model. PLoS One 2014; 9:e106536. [PMID: 25184525 PMCID: PMC4159778 DOI: 10.1371/journal.pone.0106536] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 07/31/2014] [Indexed: 01/01/2023] Open
Abstract
Antibiotic-induced endotoxin release is associated with high mortality rate even when appropriate antibiotics are used for the treatment of severe infections in intensive care units. Since liver is involved in systemic clearance and detoxification of endotoxin hence it becomes a primary target organ for endotoxin mediated inflammation. Currently available anti-inflammatory drugs give rise to serious side effects. Hence, there is an urgent need for safe and effective anti-inflammatory therapy. It is likely that anti-inflammatory phytochemicals and neutraceutical agents may have the potential to reduce the endotoxin mediated inflammation and complications associated with endotoxin release. Keeping this in mind, the present study was planned to evaluate the hepatoprotective potential of zingerone (active compound of zingiber officinale) against liver inflammation induced by antibiotic mediated endotoxemia. The selected antibiotics capable of releasing high content of endotoxin were employed for their in vivo efficacy in P.aeruginosa peritonitis model. Released endotoxin induced inflammation and zingerone as co-anti-inflammatory therapy significantly reduced inflammatory response. Improved liver histology and reduced inflammatory markers MDA, RNI, MPO, tissue damage markers (AST, ALT, ALP) and inflammatory cytokines (MIP-2, IL-6 and TNF-α) were indicative of therapeutic potential of zingerone. The mechanism of action of zingerone may be related to significant inhibition of the mRNA expression of inflammatory markers (TLR4, RelA, NF-kB2, TNF- α, iNOS, COX-2) indicating that zingerone interferes with cell signalling pathway and suppresses hyper expression of cell signaling molecules of inflammatory pathway. Zingerone therapy significantly protected liver from endotoxin induced inflammatory damage by down regulating biochemical as well as molecular markers of inflammation. In conclusion, this study provides evidence that zingerone is a potent anti-inflammatory phytomedicine against hepatic inflammation induced by antibiotic mediated endotoxemia. These results thus suggest that zingerone treatment can be used as a co-therapy with antibiotics to reduced endotoxin induced inflammation during treatment of severe P.aeruginosa infections.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Microbiology, BMS Block, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, BMS Block, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, BMS Block, Panjab University, Chandigarh, India
- * E-mail:
| |
Collapse
|
21
|
Wree A, Eguchi A, McGeough MD, Pena CA, Johnson CD, Canbay A, Hoffman HM, Feldstein AE. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology 2014; 59:898-910. [PMID: 23813842 PMCID: PMC4008151 DOI: 10.1002/hep.26592] [Citation(s) in RCA: 742] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 06/14/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED Inflammasome activation plays a central role in the development of drug-induced and obesity-associated liver disease. However, the sources and mechanisms of inflammasome-mediated liver damage remain poorly understood. Our aim was to investigate the effect of NLRP3 inflammasome activation on the liver using novel mouse models. We generated global and myeloid cell-specific conditional mutant Nlrp3 knock-in mice expressing the D301N Nlrp3 mutation (ortholog of D303N in human NLRP3), resulting in a hyperactive NLRP3. To study the presence and significance of NLRP3-initiated pyroptotic cell death, we separated hepatocytes from nonparenchymal cells and developed a novel flow-cytometry-based (fluorescence-activated cell sorting; FACS) strategy to detect and quantify pyroptosis in vivo based on detection of active caspase 1 (Casp1)- and propidium iodide (PI)-positive cells. Liver inflammation was quantified histologically by FACS and gene expression analysis. Liver fibrosis was assessed by Sirius Red staining and quantitative polymerase chain reaction for markers of hepatic stellate cell (HSC) activation. NLRP3 activation resulted in shortened survival, poor growth, and severe liver inflammation; characterized by neutrophilic infiltration and HSC activation with collagen deposition in the liver. These changes were partially attenuated by treatment with anakinra, an interleukin-1 receptor antagonist. Notably, hepatocytes from global Nlrp3-mutant mice showed marked hepatocyte pyroptotic cell death, with more than a 5-fold increase in active Casp1/PI double-positive cells. Myeloid cell-restricted mutant NLRP3 activation resulted in a less-severe liver phenotype in the absence of detectable pyroptotic hepatocyte cell death. CONCLUSIONS Our data demonstrate that global and, to a lesser extent, myeloid-specific NLRP3 inflammasome activation results in severe liver inflammation and fibrosis while identifying hepatocyte pyroptotic cell death as a novel mechanism of NLRP3-mediated liver damage.
Collapse
Affiliation(s)
- Alexander Wree
- Department of Pediatrics, University of California – San Diego, 9500 Gilman Drive, La Jolla, USA
- University Hospital Essen, Department of Gastroenterology and Hepatology, Hufelandstrasse 55, 45122 Essen, Germany
| | - Akiko Eguchi
- Department of Pediatrics, University of California – San Diego, 9500 Gilman Drive, La Jolla, USA
| | - Matthew D. McGeough
- Department of Pediatrics, University of California – San Diego, 9500 Gilman Drive, La Jolla, USA
| | - Carla A. Pena
- Department of Pediatrics, University of California – San Diego, 9500 Gilman Drive, La Jolla, USA
| | - Casey D. Johnson
- Department of Pediatrics, University of California – San Diego, 9500 Gilman Drive, La Jolla, USA
| | - Ali Canbay
- University Hospital Essen, Department of Gastroenterology and Hepatology, Hufelandstrasse 55, 45122 Essen, Germany
| | - Hal M. Hoffman
- Department of Pediatrics, University of California – San Diego, 9500 Gilman Drive, La Jolla, USA
- Rady Children's Hospital of San Diego
| | - Ariel E. Feldstein
- Department of Pediatrics, University of California – San Diego, 9500 Gilman Drive, La Jolla, USA
- Rady Children's Hospital of San Diego
| |
Collapse
|
22
|
Williams CD, Bajt ML, Sharpe MR, McGill MR, Farhood A, Jaeschke H. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans. Toxicol Appl Pharmacol 2014; 275:122-33. [PMID: 24440789 DOI: 10.1016/j.taap.2014.01.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/03/2014] [Accepted: 01/08/2014] [Indexed: 12/17/2022]
Abstract
Following acetaminophen (APAP) overdose there is an inflammatory response triggered by the release of cellular contents from necrotic hepatocytes into the systemic circulation which initiates the recruitment of neutrophils into the liver. It has been demonstrated that neutrophils do not contribute to APAP-induced liver injury, but their role and the role of NADPH oxidase in injury resolution are controversial. C57BL/6 mice were subjected to APAP overdose and neutrophil activation status was determined during liver injury and liver regeneration. Additionally, human APAP overdose patients (ALT: >800 U/L) had serial blood draws during the injury and recovery phases for the determination of neutrophil activation. Neutrophils in the peripheral blood of mice showed an increasing activation status (CD11b expression and ROS priming) during and after the peak of injury but returned to baseline levels prior to complete injury resolution. Hepatic sequestered neutrophils showed an increased and sustained CD11b expression, but no ROS priming was observed. Confirming that NADPH oxidase is not critical to injury resolution, gp91(phox)⁻/⁻ mice following APAP overdose displayed no alteration in injury resolution. Peripheral blood from APAP overdose patients also showed increased neutrophil activation status after the peak of liver injury and remained elevated until discharge from the hospital. In mice and humans, markers of activation, like ROS priming, were increased and sustained well after active liver injury had subsided. The similar findings between surviving patients and mice indicate that neutrophil activation may be a critical event for host defense or injury resolution following APAP overdose, but not a contributing factor to APAP-induced injury.
Collapse
Affiliation(s)
- C David Williams
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mary Lynn Bajt
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Matthew R Sharpe
- Department of Internal Medicine, University of Kansas Hospital, Kansas City, KS, USA
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anwar Farhood
- Department of Pathology, St. David's North Austin Medical Center, Austin, TX 78756, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
23
|
Bertola A, Park O, Gao B. Chronic plus binge ethanol feeding synergistically induces neutrophil infiltration and liver injury in mice: a critical role for E-selectin. Hepatology 2013; 58:1814-23. [PMID: 23532958 PMCID: PMC3726575 DOI: 10.1002/hep.26419] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/20/2013] [Accepted: 03/20/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED Chronic plus binge ethanol feeding acts synergistically to induce liver injury in mice, but the mechanisms underlying this phenomenon remain unclear. Here, we show that chronic plus binge ethanol feeding synergistically up-regulated the hepatic expression of interleukin-1β and tumor necrosis factor alpha and induced neutrophil accumulation in the liver, compared with chronic or binge feeding alone. In vivo depletion of neutrophils through administration of an anti-Ly6G antibody markedly reduced chronic-binge ethanol feeding-induced liver injury. Real-time polymerase chain reaction analyses revealed that hepatic E-selectin expression was up-regulated 10-fold, whereas expression of other neutrophil infiltration-related adhesion molecules (e.g., P-selectin, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1) was slightly up- or down-regulated in this chronic-binge model. The genetic deletion of E-selectin prevented chronic-binge ethanol-induced hepatic neutrophil infiltration as well as elevation of serum transaminases without affecting ethanol-induced steatosis. In addition, E-selectin-deficient mice showed reduced hepatic expression of several proinflammatory cytokines, chemokines, and adhesion molecules, compared to wild-type mice, after chronic-binge ethanol feeding. Finally, the expression of E-selectin was highly up-regulated in human alcoholic fatty livers, but not in alcoholic cirrhosis. CONCLUSIONS Chronic-binge ethanol feeding up-regulates expression of proinflammatory cytokines, followed by the induction of E-selectin. Elevated E-selectin plays an important role in hepatic neutrophil infiltration and injury induced by chronic-binge feeding in mice and may also contribute to the pathogenesis of early stages of human alcoholic liver disease.
Collapse
Affiliation(s)
- Adeline Bertola
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | | | | |
Collapse
|
24
|
Lu J, Roth RA, Malle E, Ganey PE. Roles of the hemostatic system and neutrophils in liver injury from co-exposure to amiodarone and lipopolysaccharide. Toxicol Sci 2013; 136:51-62. [PMID: 23912913 DOI: 10.1093/toxsci/kft170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has been demonstrated that co-treatment of rats with amiodarone (AMD) and bacterial lipopolysaccharide (LPS) produces idiosyncrasy-like liver injury. In this study, the hypothesis that the hemostatic system and neutrophils contribute to AMD/LPS-induced liver injury was explored. Rats were treated with AMD (400 mg/kg, ip) or vehicle and 16 h later with LPS (1.6×10⁶ endotoxin units/kg, iv) or saline (Sal). AMD did not affect the hemostatic system by itself but significantly potentiated LPS-induced coagulation activation and fibrinolysis impairment. Increased hepatic fibrin deposition and subsequent hypoxia were observed only in AMD/LPS-treated animals, starting before the onset of liver injury. Administration of anticoagulant heparin abolished AMD/LPS-induced hepatic fibrin deposition and reduced AMD/LPS-induced liver damage. Polymorphonuclear neutrophils (PMNs) accumulated in liver after treatment with LPS or AMD/LPS, but PMN activation was only observed in AMD/LPS-treated rats. Rabbit anti-rat PMN serum, which reduced accumulation of PMNs in liver, prevented PMN activation and attenuated AMD/LPS-induced liver injury in rats. PMN depletion did not affect hepatic fibrin deposition. Anticoagulation prevented PMN activation without affecting PMN accumulation. In summary, both the hemostatic system alteration and PMN activation contributed to AMD/LPS-induced liver injury in rats, in which fibrin deposition was critical for the activation of PMNs.
Collapse
Affiliation(s)
- Jingtao Lu
- * Department of Biochemistry and Molecular Biology
| | | | | | | |
Collapse
|
25
|
Chen F, He JL, Zheng M, Zhu HH, Li SP, Wang K, Zhang XX, Zhao YR, Wu SS, Chen Z. Complementary laboratory indices for predicting the disease status of patients with hepatitis B virus infection. J Viral Hepat 2013; 20:566-74. [PMID: 23808995 DOI: 10.1111/jvh.12067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/02/2012] [Indexed: 01/05/2023]
Abstract
To identify complementary laboratory indices for determining the disease status of patients with hepatitis B virus. Subjects were divided into six groups: hepatitis B virus carrier, mild chronic hepatitis B, moderate chronic hepatitis B, severe chronic hepatitis B, fulminant hepatitis B and healthy controls. Serum alanine aminotransferase, total bilirubin and direct bilirubin were measured by an automatic analyser. The levels of T-cell immunoglobulin domain and mucin-domain-containing molecule-3, macrophage inflammatory protein 2, neutrophil gelatinase-associated lipocalin and inducible nitric oxide synthase were measured by ELISA. T-cell immunoglobulin domain, mucin-domain-containing molecule-3, macrophage inflammatory protein 2 and inducible nitric oxide synthase levels were significantly higher in patients with severe chronic hepatitis B compared with those in patients with mild and moderate chronic hepatitis B or fulminant hepatitis B (P < 0.05). When normal or abnormal alanine aminotransferase was present, significant differences between macrophage inflammatory protein 2 and T-cell immunoglobulin domain and mucin-domain-containing molecule-3 levels between patients with mild, moderate, severe chronic hepatitis B or fulminant hepatitis B were observed (P < 0.05). Our results suggest that T-cell immunoglobulin domain and mucin-domain-containing molecule-3 and macrophage inflammatory protein 2 could serve as alanine aminotransferase, direct bilirubin or total bilirubin complementary indices for determining the status of patients with hepatitis B.
Collapse
Affiliation(s)
- F Chen
- State Key Laboratory of Infectious Disease Diagnosis and Treatment, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Infectious Diseases, Zhejiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Marques PE, Amaral SS, Pires DA, Nogueira LL, Soriani FM, Lima BHF, Lopes GAO, Russo RC, Avila TV, Melgaço JG, Oliveira AG, Pinto MA, Lima CX, De Paula AM, Cara DC, Leite MF, Teixeira MM, Menezes GB. Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology 2012; 56:1971-82. [PMID: 22532075 DOI: 10.1002/hep.25801] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/16/2012] [Indexed: 12/12/2022]
Abstract
UNLABELLED Acetaminophen (APAP) is a safe analgesic and antipyretic drug. However, APAP overdose leads to massive hepatocyte death. Cell death during APAP toxicity occurs by oncotic necrosis, in which the release of intracellular contents can elicit a reactive inflammatory response. We have previously demonstrated that an intravascular gradient of chemokines and mitochondria-derived formyl peptides collaborate to guide neutrophils to sites of liver necrosis by CXC chemokine receptor 2 (CXCR2) and formyl peptide receptor 1 (FPR1), respectively. Here, we investigated the role of CXCR2 chemokines and mitochondrial products during APAP-induced liver injury and in liver neutrophil influx and hepatotoxicity. During APAP overdose, neutrophils accumulated into the liver, and blockage of neutrophil infiltration by anti-granulocyte receptor 1 depletion or combined CXCR2-FPR1 antagonism significantly prevented hepatotoxicity. In agreement with our in vivo data, isolated human neutrophils were cytotoxic to HepG2 cells when cocultured, and the mechanism of neutrophil killing was dependent on direct contact with HepG2 cells and the CXCR2-FPR1-signaling pathway. Also, in mice and humans, serum levels of both mitochondrial DNA (mitDNA) and CXCR2 chemokines were higher during acute liver injury, suggesting that necrosis products may reach remote organs through the circulation, leading to a systemic inflammatory response. Accordingly, APAP-treated mice exhibited marked systemic inflammation and lung injury, which was prevented by CXCR2-FPR1 blockage and Toll-like receptor 9 (TLR9) absence (TLR9(-/-) mice). CONCLUSION Chemokines and mitochondrial products (e.g., formyl peptides and mitDNA) collaborate in neutrophil-mediated injury and systemic inflammation during acute liver failure. Hepatocyte death is amplified by liver neutrophil infiltration, and the release of necrotic products into the circulation may trigger a systemic inflammatory response and remote lung injury.
Collapse
Affiliation(s)
- Pedro E Marques
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kubes P, Mehal WZ. Sterile inflammation in the liver. Gastroenterology 2012; 143:1158-1172. [PMID: 22982943 DOI: 10.1053/j.gastro.2012.09.008] [Citation(s) in RCA: 505] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/10/2012] [Accepted: 09/13/2012] [Indexed: 12/13/2022]
Abstract
Inflammation In the absence of pathogens occurs in all tissues in response to a wide range of stimuli that cause tissue stress and injury. Such sterile inflammation (SI) is a key process in drug-induced liver injury, nonalcoholic steatohepatitis, and alcoholic steatohepatitis and is a major determinant of fibrosis and carcinogenesis. In SI, endogenous damage-associated molecular patterns (DAMPS), which are usually hidden from the extracellular environment, are released on tissue injury and activate receptors on immune cells. More than 20 such DAMPS have been identified and activate cellular pattern recognition receptors, which were originally identified as sensors of pathogen-associated molecular patterns. Activation of pattern recognition receptors by DAMPS results in a wide range of immune responses, including production of proinflammatory cytokines and localization of immune cells to the site of injury. DAMPS result in the assembly of a cytosolic protein complex termed the inflammasome, which activates the serine protease caspase-1, resulting in activation and secretion of interleukin-1β and other cytokines. SI-driven liver diseases are responsible for the majority of liver pathology in industrially developed countries and lack specific therapy. Identification of DAMPS, their receptors, signaling pathways, and cytokines now provides a wide range of therapeutic targets for which many antagonists are already available.
Collapse
Affiliation(s)
- Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Wajahat Z Mehal
- Section of Digestive Diseases, Yale University, and West Haven Veterans Medical Center, New Haven, Connecticut.
| |
Collapse
|
28
|
Sharda DR, Miller-Lee JL, Kanski GM, Hunter JC, Lang CH, Kennett MJ, Korzick DH. Comparison of the agar block and Lieber-DeCarli diets to study chronic alcohol consumption in an aging model of Fischer 344 female rats. J Pharmacol Toxicol Methods 2012; 66:257-63. [PMID: 22951285 DOI: 10.1016/j.vascn.2012.08.166] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/08/2012] [Accepted: 08/13/2012] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Post-menopausal women have a greater risk of developing alcoholic complications compared to age-matched men. Unfortunately, animal models of chronic ethanol consumption with estrogen deficiency are lacking. Here, we characterize the ability of the agar block and Lieber-DeCarli models of chronic ethanol consumption to produce elevated blood alcohol content (BAC) and liver pathology in the F344 postmenopausal animal model of aging. METHODS Adult (3 mo) and aged (18 mo) F344 ovary-intact or ovariectomized rats were administered ethanol for 14-20 weeks as follows: diet 1, standard chow access, 10% ethanol in drinking water, and 40% ethanol in agar blocks; diet 2, diet 1 plus low phytoestrogen chow (known to affect ethanol metabolism) for the final 4 weeks; diet 3, Lieber-DeCarli all liquid diet with 36% kcal ethanol. Control animals were matched isocalorically with dextrin. RESULTS For the agar block diet, average BAC was 13±4 mg/dL across groups. BAC was unaffected by reducing dietary phytoestrogen content (12±4 mg/dL), which is known to interfere with ethanol metabolism. Liver pathology was unaffected by the agar block diet. In contrast, the Lieber-DeCarli diet resulted in BAC of 45±5 mg/dL in conjunction with more severe hepatopathology.223 DISCUSSION We conclude that the Lieber-DeCarli diet produces greater BAC and hepatopathology to study the effects of chronic ethanol administration in the F344 postmenopausal rodent model of aging when compared to an ethanol agar block diet.
Collapse
Affiliation(s)
- Daniel R Sharda
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Icam-1 upregulation in ethanol-induced Fatty murine livers promotes injury and sinusoidal leukocyte adherence after transplantation. HPB SURGERY : A WORLD JOURNAL OF HEPATIC, PANCREATIC AND BILIARY SURGERY 2012; 2012:480893. [PMID: 22778492 PMCID: PMC3385666 DOI: 10.1155/2012/480893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/30/2012] [Indexed: 12/02/2022]
Abstract
Background. Transplantation of ethanol-induced steatotic livers causes increased graft injury. We hypothesized that upregulation of hepatic ICAM-1 after ethanol produces increased leukocyte adherence, resulting in increased generation of reactive oxygen species (ROS) and injury after liver transplantation (LT). Methods. C57BL/6 wildtype (WT) and ICAM-1 knockout (KO) mice were gavaged with ethanol (6 g/kg) or water. LT was then performed into WT recipients. Necrosis and apoptosis, 4-hydroxynonenal (4-HNE) immunostaining, and sinusoidal leukocyte movement by intravital microscopy were assessed. Results. Ethanol gavage of WT mice increased hepatic triglycerides 10-fold compared to water treatment (P < 0.05). ICAM-1 also increased, but ALT was normal. At 8 h after LT of WT grafts, ALT increased 2-fold more with ethanol than water treatment (P < 0.05). Compared to ethanol-treated WT grafts, ALT from ethanol-treated KO grafts was 78% less (P < 0.05). Apoptosis also decreased by 75% (P < 0.05), and 4-HNE staining after LT was also decreased in ethanol-treated KO grafts compared to WT. Intravital microscopy demonstrated a 2-fold decrease in leukocyte adhesion in KO grafts compared to WT grafts. Conclusions. Increased ICAM-1 expression in ethanol-treated fatty livers predisposes to leukocyte adherence after LT, which leads to a disturbed microcirculation, oxidative stress and graft injury.
Collapse
|
30
|
Abstract
Frank Burr Mallory's landmark observation in 1911 on the histopathology of alcoholic liver disease (ALD) was the first identification of a link between inflammation and ALD. In this review, we summarize recent advances regarding the origins and roles of various inflammatory components in ALD. Metabolism of ethanol generates a number of metabolites, including acetate, reactive oxygen species, acetaldehyde, and epigenetic changes, that can induce inflammatory responses. Alcohol and its metabolites can also initiate and aggravate inflammatory conditions by promoting gut leakiness of microbial products, by sensitizing immune cells to stimulation, and by activating innate immune pathways, such as complement. Chronic alcohol consumption also sensitizes nonimmune cells, e.g., hepatocytes, to inflammatory signals and impairs their ability to respond to protective signals. Based on these advances, a number of inflammatory targets have been identified with potential for therapeutic intervention in ALD, presenting new opportunities and challenges for translational research.
Collapse
Affiliation(s)
- H Joe Wang
- Division of Metabolism and Health Effects, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
31
|
Brunt EM, Neuschwander-Tetri BA, Burt AD. Fatty liver disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2012:293-359. [DOI: 10.1016/b978-0-7020-3398-8.00006-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
32
|
McDonald B, Kubes P. Neutrophils and intravascular immunity in the liver during infection and sterile inflammation. Toxicol Pathol 2011; 40:157-65. [PMID: 22105645 DOI: 10.1177/0192623311427570] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The liver is a target of many inflammatory pathologies of both infectious and noninfectious etiology. As key effectors of the innate immune system, neutrophils are critical for defense against microbial infections but are often the source of profound collateral damage to host tissues during disease states. In this article based on the authors' presentation at the 2011 Society of Toxicologic Pathology Annual Symposium, they review the molecular mechanisms of neutrophil recruitment to the liver in response to sepsis/endotoxemia, as well as sterile inflammation, and discuss variations in the molecular choreography of neutrophil trafficking in response to these different insults. Furthermore, the authors discuss the functional contributions of neutrophils within the liver microvasculature during severe sepsis, including their contributions to both host defense and organ damage. Given that inappropriate neutrophilic inflammation contributes to the pathogenesis of many liver diseases, a thorough understanding of the molecular mechanisms that regulate the recruitment of neutrophils to the liver, and their functions therein, may reveal new avenues for therapeutic interventions to treat inflammatory liver pathologies.
Collapse
Affiliation(s)
- Braedon McDonald
- Calvin, Phoebe, and Joan Snyder Institute for Infection, Immunity, and Inflammation, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
33
|
Therapeutic strategies for severe alcoholic hepatitis. Clin Res Hepatol Gastroenterol 2011; 35:738-44. [PMID: 21840788 DOI: 10.1016/j.clinre.2011.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 06/30/2011] [Accepted: 07/11/2011] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS Severe alcoholic hepatitis (SAH) is an inflammatory response with multiple morbidity factors like leucocytosis, hepatomegaly, renal failure, hepatic encephalopathy, endotoxemia, and has a high mortality rate. Accordingly, identifying therapeutic interventions that can support prognosis is the goal of research. METHODS Questionnaires were sent to 1234 medical institutions asking for information on patients with SAH during 2004 to 2008 including patients' demography, disease profile and the therapeutic interventions patients had received during hospitalization. RESULTS Twenty-nine hospitals had treated SAH patients, and provided full demographic data on 62 patients. Twenty-seven patients had received no treatment, 10 patients had received granulocytes/monocytes apheresis (GMA) to deplete elevated myeloid linage leucocytes, the rest had received one or more of the following treatments, corticosteroids, plasma exchange (PE) and haemodialysis (HD). Further, 23 patients had died and 39 had survived within 100 days of hospitalization. Serum creatinine (Cr) was higher in patients who had died vs patients who had survived (P=0.026). Likewise, patients with white blood cells (WBC) ≥ 10(4)/μL had higher mortality rate vs patients with WBC<10(4)/μL (P=0.039). GMA in patients with WBC ≥ 10(4)/μL showed 100% prognosis vs patients with WBC ≥ 10(4)/μL who did not receive GMA (P=0.0007). Corticosteroids, PE and HD did not significantly impact prognosis of SAH patients. CONCLUSIONS Our perception is that, patients with elevated myeloid leucocytes benefit most from GMA, while PE appears to support patients with coagulation deficiency or high plasma bilirubin and HD has indication in patients with high Cr.
Collapse
|
34
|
Abstract
Integrins and other cell adhesion molecules regulate numerous physiological and pathological mechanisms by mediating the interaction between cells and their extracellular environment. Although the significance of integrins in the evolution and progression of certain cancers is well recognized, their involvement in nonmalignant processes, such as organ fibrosis or inflammation, is only beginning to emerge. However, accumulating evidence points to an instrumental role of integrin-mediated signaling in a variety of chronic and acute noncancerous diseases, particularly of the liver.
Collapse
Affiliation(s)
- Eleonora Patsenker
- Department of Visceral Surgery and Medicine, Inselspital, University of Bern, Switzerland.
| | | |
Collapse
|
35
|
Xiao J, Liong EC, Ling MT, Ching YP, Fung ML, Tipoe GL. S-allylmercaptocysteine reduces carbon tetrachloride-induced hepatic oxidative stress and necroinflammation via nuclear factor kappa B-dependent pathways in mice. Eur J Nutr 2011; 51:323-33. [PMID: 21681437 PMCID: PMC3313023 DOI: 10.1007/s00394-011-0217-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 06/01/2011] [Indexed: 12/31/2022]
Abstract
Purpose To study the protective effects and underlying molecular mechanisms of SAMC on carbon tetrachloride (CCl4)-induced acute hepatotoxicity in the mouse model. Methods Mice were intraperitoneally injected with CCl4 (50 μl/kg; single dose) to induce acute hepatotoxicity with or without a 2-h pre-treatment of SAMC intraperitoneal injection (200 mg/kg; single dose). After 8 h, the blood serum and liver samples of mice were collected and subjected to measurements of histological and molecular parameters of hepatotoxicity. Results SAMC reduced CCl4-triggered cellular necrosis and inflammation in the liver under histological analysis. Since co-treatment of SAMC and CCl4 enhanced the expressions of antioxidant enzymes, reduced the nitric oxide (NO)-dependent oxidative stress, and inhibited lipid peroxidation induced by CCl4. SAMC played an essential antioxidative role during CCl4-induced hepatotoxicity. Administration of SAMC also ameliorated hepatic inflammation induced by CCl4 via inhibiting the activity of NF-κB subunits p50 and p65, thus reducing the expressions of pro-inflammatory cytokines, mediators, and chemokines, as well as promoting pro-regenerative factors at both transcriptional and translational levels. Conclusions Our results indicate that SAMC mitigates cellular damage, oxidative stress, and inflammation in CCl4-induced acute hepatotoxicity mouse model through regulation of NF-κB. Garlic or garlic derivatives may therefore be a potential food supplement in the prevention of liver damage.
Collapse
Affiliation(s)
- Jia Xiao
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L1-41, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
36
|
Li S, Liu H, Jin Y, Lin S, Cai Z, Jiang Y. Metabolomics study of alcohol-induced liver injury and hepatocellular carcinoma xenografts in mice. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2369-75. [PMID: 21763219 DOI: 10.1016/j.jchromb.2011.06.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 06/03/2011] [Accepted: 06/08/2011] [Indexed: 12/16/2022]
Abstract
Alcohol abuse is one of the major causes of liver injury and a promoter for hepatocellular carcinoma (HCC). To understand the disease-associated metabolic changes, we investigated and compared the profiles of metabolites in nude mice with alcohol-induced liver injury or bearing a HCC xenograft (HCCX). Alcohol-induced liver injury was achieved by daily administration of grain liquor, and HCC xenografts were generated by subcutaneous inoculation of HepG2 cells in nude mice. Metabolites in serum samples were profiled by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS). The acquired data was analyzed by principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) to identify potential disease-specific biomarkers. Results showed that the phosphatidylcholine (PC) levels were significantly higher in both liver injury and HCCX mice compared with the control. Interestingly, lysophosphatidylcholines (LPCs) that contain saturated or monounsaturated fatty acids were reduced in both liver injury and HCCX mice, but polyunsaturated fatty acids LPCs were elevated in liver injury mice only. These data delineated the disease-related metabolic alterations of LPCs in liver injury and HCC, suggesting that the LPC profile in serum may be biomarkers for these two common liver diseases.
Collapse
Affiliation(s)
- Shangfu Li
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | | | | | | | | | | |
Collapse
|
37
|
von Heesen M, Hülser M, Seibert K, Scheuer C, Dold S, Kollmar O, Wagner M, Menger MD, Schilling MK, Moussavian MR. Split-liver procedure and inflammatory response: improvement by pharmacological preconditioning. J Surg Res 2011; 168:e125-35. [PMID: 21435665 DOI: 10.1016/j.jss.2011.01.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 01/10/2023]
Abstract
BACKGROUND Final outcome of split-liver (SL) transplantation is impaired due to an increased rate of vascular complications and primary non-function. Herein, we hypothesized that an in situ split-liver procedure induces an inflammatory response and a deterioration of graft quality. We further studied whether graft quality can be improved by pharmacologic preconditioning. MATERIAL AND METHODS SL-procedure was performed in rats. One group (SL-HPP; n = 8) was pretreated according to a defined protocol [Homburg preconditioning protocol (HPP)], including pentoxyphylline, glycine, deferoxamine, N-acetylcysteine, erythropoietin, melatonin, and simvastatin. A second SL group (SL-Con; n = 8) received NaCl. Untreated non-SL served as controls (Sham; n = 8). Cytokines release, leukocyte invasion, endothelial activation and liver morphology were studied directly after liver harvest and after 8 h cold storage. Lung tissue was studied to determine remote injury. RESULTS The SL-procedure induced an increase of TNF-α concentration, intercellular-adhesion-molecule 1 (ICAM-1) expression, leukocytic-tissue infiltration and vacuolization. This was associated with an increased number of apoptotic hepatocytes. HPP reduced TNF-α release, ICAM-1 expression, the number of infiltrated leukocytes, as well as hepatocellular vacuolization and apoptosis. In lung tissue, the SL-procedure caused an increased IL-1 and IL-6 concentration and leukocyte infiltration. CONCLUSIONS HPP was capable of abrogating cytokine-mediated leukocytic response. Pharmacologic preconditioning of liver donors prevents the SL procedure-mediated inflammatory response, resulting in an improved graft quality.
Collapse
Affiliation(s)
- Maximilian von Heesen
- Department of General, Vascular and Pediatric Surgery, University of Saarland, Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fogle RL, Hollenbeak CS, Stanley BA, Vary TC, Kimball SR, Lynch CJ. Functional proteomic analysis reveals sex-dependent differences in structural and energy-producing myocardial proteins in rat model of alcoholic cardiomyopathy. Physiol Genomics 2011; 43:346-56. [PMID: 21245415 DOI: 10.1152/physiolgenomics.00203.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Long-term ethanol exposure leads to a sexually dimorphic response in both the susceptibility to cardiac pathology (protective effect of the female heart) and the expression of selected myocardial proteins. The purpose of the present study was to use proteomics to examine the effect of chronic alcohol consumption on a broader array of cardiac proteins and how these were affected between the sexes. Male and female rats were maintained for 18 wk on a 40% ethanol-containing diet in which alcohol was provided in drinking water and agar blocks. Differences in the content of specific cardiac proteins in isopycnic centrifugal fractions were determined using mass spectrometry on iTRAQ-labeled tryptic fragments. A random effects model of meta-analysis was developed to combine the results from multiple iTRAQ experiments. Analysis of a network of proteins involved in cardiovascular system development and function showed that troponins were oppositely regulated by alcohol exposure in females (upregulated) vs. males (downregulated), and this effect was validated by Western blot analysis. Pathway analysis also revealed that alcohol-consuming males showed increased expression of proteins involved in various steps of oxidative phosphorylation including complexes I, III, IV, and V, whereas females showed no change or decreased content. One implication from these findings is that females may be protected from the toxic effects of alcohol due to their ability to maintain contractile function, maintain efficiency of force generation, and minimize oxidative stress. However, the alcohol-induced insult may lead to increased production of reactive oxygen species and structural abnormalities in male myocardium.
Collapse
Affiliation(s)
- Rachel L Fogle
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
39
|
[The role of oxidative/nitrosative stress in pathogenesis of paracetamol-induced toxic hepatitis]. MEDICINSKI PREGLED 2010; 63:827-32. [PMID: 21553462 DOI: 10.2298/mpns1012827r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Paracetamol is an effective analgesic/antipyretic drug when used at therapeutic doses. However, the overdose of paracetamol can cause severe liver injury and liver necrosis. The mechanism of paracetamol-induced liver injury is still not completely understood. Reactive metabolite formation, depletion of glutathione and alkylation of proteins are the triggers of inhibition of mitochondrial respiration, adenosine triphosphate depletion and mitochondrial oxidant stress leading to hepatocellular necrosis. ROLE OF OXIDATIVE STRESS IN PARACETAMOL-INDUCED LIVER INJURY: The importance of oxidative stress in paracetamol hepatotoxicity is controversial. Paracetamol-induced liver injury cause the formation of reactive oxygen species. The potent sources of reactive oxygen are mitochondria, neutrophils. Kupffer cells and the enzyme xatnine oxidase. Free radicals lead to lipid peroxidation, enzymatic inactivation and protein oxidation. ROLE OF MITOCHONDRIA IN PARACETAMOL-INDUCED OXIDATIVE STRESS: The production of mitochondrial reactive oxygen species is increased, and the glutathione content is decreased in paracetamol overdose. Oxidative stress in mitochondria leads to mitochondrial dysfunction with adenosine triphosphate depletion, increase mitochondrial permeability transition, deoxyribonucleic acid fragmentation which contribute to the development of hepatocellular necrosis in the liver after paracetamol overdose. ROLE OF KUPFFER CELLS IN PARACETAMOL-INDUCED LIVER INJURY: Paracetamol activates Kupffer cells, which then release numerous cytokines and signalling molecules, including nitric oxide and superoxide. Kupffer cells are important in peroxynitrite formation. On the other hand, the activated Kupffer cells release anti-inflammatory cytokines. ROLE OF NEUTROPHILS IN PARACETAMOL-INDUCED LIVER INJURY: Paracetamol-induced liver injury leads to the accumulation of neutrophils, which release lysosomal enzymes and generate superoxide anion radicals through the enzyme nicotinamide adenine dinucleotide phosphate oxidase. Hydrogen peroxide, which is influenced by the neutrophil-derived enzyme myeloperoxidase, generates hypochlorus acid as a potent oxidant. ROLE OF PEROXYNITRITE IN PARACETAMOL-INDUCED OXIDATIVE STRESS: Superoxide can react with nitric oxide to form peroxynitrite, as a potent oxidant. Nitrotyrosine is formed by the reaction of tyrosine with peroxynitrite in paracetamol hepatotoxicity. CONCLUSION Overdose of paracetamol may produce severe liver injury with hepatocellular necrosis. The most important mechanisms of cell injury are metabolic activation of paracetamol, glutathione depletion, alkylation of proteins, especially mitochondrial proteins, and formation of reactive oxygen/nitrogen species.
Collapse
|
40
|
Williams CD, Bajt ML, Farhood A, Jaeschke H. Acetaminophen-induced hepatic neutrophil accumulation and inflammatory liver injury in CD18-deficient mice. Liver Int 2010; 30:1280-92. [PMID: 20500806 PMCID: PMC4278356 DOI: 10.1111/j.1478-3231.2010.02284.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Acetaminophen (APAP) hepatotoxicity is currently the most frequent cause of acute liver failure in the US and many European countries. Although intracellular signalling mechanisms are critical for hepatocellular injury, a contribution of inflammatory cells, especially neutrophils, has been suggested. However, conflicting results were obtained when using immunological intervention strategies. AIMS The role of neutrophils was investigated using a CD18-deficient mouse model. RESULTS Treatment of C57Bl/6 wild type mice with 300 mg/kg APAP resulted in severe liver cell necrosis at 12 and 24 h. This injury was accompanied by formation of cytokines and chemokines and accumulation of neutrophils in the liver. However, there was no difference in the inflammatory response or liver injury in CD18-deficient mice compared with wild-type animals. In contrast to treatment with endotoxin, no upregulation of CD11b or priming for reactive oxygen was observed on neutrophils isolated from the peripheral blood or the liver after APAP administration. Furthermore, animals treated with endotoxin 3 h after APAP experienced an exaggerated inflammatory response as indicated by substantially higher cytokine and chemokine formation and twice the number of neutrophils in the liver. However, liver injury in the two-hit model was the same as with APAP alone. CONCLUSIONS Our data do not support the hypothesis that neutrophils contribute to APAP hepatotoxicity or that a neutrophil-mediated injury phase could be provoked by a second, pro-inflammatory hit. Thus, APAP-induced liver injury in mice is dominated by intracellular mechanisms of cell death rather than by neutrophilic inflammation.
Collapse
Affiliation(s)
- C. David Williams
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mary Lynn Bajt
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anwar Farhood
- Department of Pathology, Brackenridge Hospital, Austin, Texas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
41
|
D'Souza El-Guindy NB, Kovacs EJ, De Witte P, Spies C, Littleton JM, de Villiers WJS, Lott AJ, Plackett TP, Lanzke N, Meadows GG. Laboratory models available to study alcohol-induced organ damage and immune variations: choosing the appropriate model. Alcohol Clin Exp Res 2010; 34:1489-511. [PMID: 20586763 PMCID: PMC2929290 DOI: 10.1111/j.1530-0277.2010.01234.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The morbidity and mortality resulting from alcohol-related diseases globally impose a substantive cost to society. To minimize the financial burden on society and improve the quality of life for individuals suffering from the ill effects of alcohol abuse, substantial research in the alcohol field is focused on understanding the mechanisms by which alcohol-related diseases develop and progress. Since ethical concerns and inherent difficulties limit the amount of alcohol abuse research that can be performed in humans, most studies are performed in laboratory animals. This article summarizes the various laboratory models of alcohol abuse that are currently available and are used to study the mechanisms by which alcohol abuse induces organ damage and immune defects. The strengths and weaknesses of each of the models are discussed. Integrated into the review are the presentations that were made in the symposium "Methods of Ethanol Application in Alcohol Model-How Long is Long Enough" at the joint 2008 Research Society on Alcoholism (RSA) and International Society for Biomedical Research on Alcoholism (ISBRA) meeting, Washington, DC, emphasizing the importance not only of selecting the most appropriate laboratory alcohol model to address the specific goals of a project but also of ensuring that the findings can be extrapolated to alcohol-induced diseases in humans.
Collapse
Affiliation(s)
- Nympha B D'Souza El-Guindy
- Department of Internal Medicine, Division of Digestive Diseases, University of Kentucky and Veterans Affairs Medical Center, Lexington, Kentucky, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fogle RL, Lynch CJ, Palopoli M, Deiter G, Stanley BA, Vary TC. Impact of chronic alcohol ingestion on cardiac muscle protein expression. Alcohol Clin Exp Res 2010; 34:1226-34. [PMID: 20477769 DOI: 10.1111/j.1530-0277.2010.01200.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chronic alcohol abuse contributes not only to an increased risk of health-related complications, but also to a premature mortality in adults. Myocardial dysfunction, including the development of a syndrome referred to as alcoholic cardiomyopathy, appears to be a major contributing factor. One mechanism to account for the pathogenesis of alcoholic cardiomyopathy involves alterations in protein expression secondary to an inhibition of protein synthesis. However, the full extent to which myocardial proteins are affected by chronic alcohol consumption remains unresolved. METHODS The purpose of this study was to examine the effect of chronic alcohol consumption on the expression of cardiac proteins. Male rats were maintained for 16 weeks on a 40% ethanol-containing diet in which alcohol was provided both in drinking water and agar blocks. Control animals were pair-fed to consume the same caloric intake. Heart homogenates from control- and ethanol-fed rats were labeled with the cleavable isotope coded affinity tags (ICAT). Following the reaction with the ICAT reagent, we applied one-dimensional gel electrophoresis with in-gel trypsin digestion of proteins and subsequent MALDI-TOF-TOF mass spectrometric techniques for identification of peptides. Differences in the expression of cardiac proteins from control- and ethanol-fed rats were determined by mass spectrometry approaches. RESULTS Initial proteomic analysis identified and quantified hundreds of cardiac proteins. Major decreases in the expression of specific myocardial proteins were observed. Proteins were grouped depending on their contribution to multiple activities of cardiac function and metabolism, including mitochondrial-, glycolytic-, myofibrillar-, membrane-associated, and plasma proteins. Another group contained identified proteins that could not be properly categorized under the aforementioned classification system. CONCLUSIONS Based on the changes in proteins, we speculate modulation of cardiac muscle protein expression represents a fundamental alteration induced by chronic alcohol consumption, consistent with changes in myocardial wall thickness measured under the same conditions.
Collapse
Affiliation(s)
- Rachel L Fogle
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Cytokines are thought to play a role in acute and/or immune-mediated adverse drug reactions (ADRs) due to their ability to regulate the innate and adaptive immune systems. This role is highly complex owing to the pluripotent nature of cytokines, which enables the same cytokine to play multiple roles depending on target organ(s) involved. As a result, the discussion of cytokine involvement in ADRs is organized according to target organ(s); specifically, ADRs targeting skin and liver, as well as ADRs targeting multiple organs, such as drug-induced autoimmunity and infusion-related reactions. In addition to discussing the mechanism(s) by which cytokines contribute to the initiation, propagation, and resolution of ADRs, we also discuss the usefulness and limitations of current methodologies available to conduct such mechanistic studies. While animal models appear to hold the most promise for uncovering additional mechanisms, this field is plagued by a lack of good animal models and, as a result, the mechanism of cytokine involvement in ADRs is often studied using less informative in vitro studies. The recent formation of the Drug-Induced Liver Injury Network, whose goal is collect thousands of samples from drug-induced liver injury patients, has enormous potential to advance knowledge in this field, by enabling large-scale cytokine polymorphism studies. In conclusion, we discuss how further advances in this field could be of significant benefit to patients in terms of preventing, predicting, and treating ADRs.
Collapse
|
44
|
Bharali MK, Dutta K. Hepatic Histopathological Abnormalities in Rats Treated Topically with Para-Phenylene
Diamine (PPD). ACTA ACUST UNITED AC 2009. [DOI: 10.3923/jpt.2009.221.228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Kono H, Fujii H, Tsuchiya M, Hirai Y, Ishii K, Hosomura N, Tanaka N. Inhibition of the Kupffer Cell and Neutralization of IL-10 Increase the Expression of Chemokines in the Lung in a Rat Peritonitis Model. J Surg Res 2008; 150:169-82. [DOI: 10.1016/j.jss.2008.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 02/26/2008] [Accepted: 04/10/2008] [Indexed: 12/26/2022]
|
46
|
Ramaiah SK, Jaeschke H. Hepatic Neutrophil Infiltration in the Pathogenesis of Alcohol-Induced Liver Injury. Toxicol Mech Methods 2008; 17:431-40. [DOI: 10.1080/00952990701407702] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Karinch AM, Martin JH, Vary TC. Acute and chronic ethanol consumption differentially impact pathways limiting hepatic protein synthesis. Am J Physiol Endocrinol Metab 2008; 295:E3-9. [PMID: 18334613 PMCID: PMC2493597 DOI: 10.1152/ajpendo.00026.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This review identifies the various pathways responsible for modulating hepatic protein synthesis following acute and chronic alcohol intoxication and describes the mechanism(s) responsible for these changes. Alcohol intoxication induces a defect in global protein synthetic rates that is localized to impaired translation of mRNA at the level of peptide-chain initiation. Translation initiation is regulated at two steps: formation of the 43S preinitiation complex [controlled by eukaryotic initiation factors 2 (eIF2) and 2B (eIF2B)] and the binding of mRNA to the 40S ribosome (controlled by the eIF4F complex). To date, alcohol-induced alterations in eIF2 and eIF2B content and activity are best investigated. Ethanol decreases eIF2B activity when ingested either acutely or chronically. The reduced eIF2B activity most likely is a consequence of twofold increased phosphorylation of the alpha-subunit of eIF2 on Ser(51) following acute intoxication. The increase in eIF2alpha phosphorylation after chronic alcohol consumption is the same as that induced by acute ethanol intoxication, and protein synthesis is not further reduced by long-term alcohol ingestion despite additional reduced expression of initiation factors and elongation factors. eIF2alpha phosphorylation alone appears sufficient to maximally inhibit hepatic protein synthesis. Indeed, pretreatment with Salubrinal, an inhibitor of eIF2alpha(P) phosphatase, before ethanol treatment does not further inhibit protein synthesis or increase eIF2alpha phosphorylation, suggesting that acute ethanol intoxication causes maximal eIF2alpha phosphorylation elevation and hepatic protein synthesis inhibition. Ethanol-induced inhibition of hepatic protein synthesis is not rapidly reversed by cessation of ethanol consumption. In conclusion, sustained eIF2alpha phosphorylation is a hallmark of excessive alcohol intake leading to inhibition of protein synthesis. Enhanced phosphorylation of eIF2alpha represents a unique response of liver to alcohol intoxication, because the ethanol-induced elevation of eIF2alpha(P) is not observed in skeletal muscle or heart.
Collapse
Affiliation(s)
- Anne M Karinch
- Department of Cellular and Molecular Physiology, MC H166, Penn State Univ. College of Medicine, 500 Univ. Drive, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
48
|
Ramaiah SK, Jaeschke H. Role of neutrophils in the pathogenesis of acute inflammatory liver injury. Toxicol Pathol 2008; 35:757-66. [PMID: 17943649 DOI: 10.1080/01926230701584163] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polymorphonuclear leukocytes (neutrophils) are essential in the defense against invading microorganisms, tissue trauma or any inciting inflammatory signals. Hepatic infiltration of neutrophils is an acute response to recent or ongoing liver injury, hepatic stress or unknown systemic inflammatory signals. Once neutrophils reach the liver, they can cause mild-to-severe tissue damage and consequent liver failure. For neutrophils to appear in the liver, neutrophils have to undergo systemic activation (priming) by inflammatory mediators such as cytokines, chemokines, complement factors, immune complexes, opsonized particles and other biologically active molecules, e.g., platelet activating factor. Neutrophils accumulated in the hepatic microvasculature (sinusoids and postsinusoidal venules) can extravasate (transmigrate) into the hepatic parenchyma if they receive a signal from distressed cells. Transmigration can be mediated by a chemokine gradient established towards the hepatic parenchyma and generally involves orchestration by adhesion molecules on neutrophils (beta(2) integrins) and on endothelial cells (intracellular adhesion molecules, ICAM-1). After transmigration, neutrophils adhere to distressed hepatocytes through their beta(2) integrins and ICAM-1 expressed on hepatocytes. Neutrophil contact with hepatocytes mediate oxidative killing of hepatocytes by initiation of respiratory burst and neutrophil degranulation leading to hepatocellular oncotic necrosis. Neutrophil-mediated liver injury has been demonstrated in a variety of diseases and chemical/drug toxicities. Relevant examples are discussed in this review.
Collapse
Affiliation(s)
- Shashi K Ramaiah
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA.
| | | |
Collapse
|
49
|
Wang CC, Cheng PY, Peng YJ, Wu ESC, Wei HP, Yen MH. Naltrexone Protects Against Lipopolysaccharide/D-Galactosamine–Induced Hepatitis in Mice. J Pharmacol Sci 2008; 108:239-47. [DOI: 10.1254/jphs.08096fp] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
50
|
Vary TC, Deiter G, Lantry R. Chronic alcohol feeding impairs mTOR(Ser 2448) phosphorylation in rat hearts. Alcohol Clin Exp Res 2007; 32:43-51. [PMID: 18028531 DOI: 10.1111/j.1530-0277.2007.00544.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Chronic alcohol administration impairs protein synthesis ultimately causing a loss of proteins in cardiac muscle. Inhibition of protein synthesis resides in the process of mRNA translation. The present set of experiments were designed to examine the potential regulatory effect of chronic alcohol consumption on mammalian target of rapamycin (mTOR), a serine/threonine kinase important in controlling signaling cascades in the mRNA translation initiation pathway in rat hearts. METHODS Rats were fed a diet containing ethanol for 20 to 26 weeks. Pair-fed rats served as controls. Rates of protein synthesis were measured following intravenous infusion of [(3)H]-L-phenylalanine (150 mM, 30 microCi/ml; 1 ml/100 g body weight). The phosphorylation state of mTOR, eukaryotic initiation factor 4G (eIF4G), protein kinase B (PKB) and S6K1 in heart were measured using immunoblot techniques with phospho-specific antibodies. RESULTS Protein synthesis was reduced by 35% in animals consuming a diet containing ethanol. The fall in protein synthesis was accompanied by diminished S6K1(Thr(389)) and eIF4G (Ser(1108)) phosphorylation, both downstream effectors of mTOR signaling. These changes in phosphorylation of S6K1 and eIF4G were not associated with differences in the distribution of mTOR between TORC1 and TORC2. Instead, phosphorylation of mTOR on Ser(2448) but not on Ser(2481) was significantly reduced following feeding rats an ethanol containing diet. Decreased phosphorylation of mTOR(Ser(2448)) was not associated with a corresponding lessening of tumor suppressor complex 2 phosphorylation or expression of regulated in development and DNA damage 1, both upstream regulators of mTOR. Likewise, phosphorylation of PKB on either Ser(473) or Thr(308) was unaffected by long-term alcohol consumption. CONCLUSIONS Chronic ethanol consumption does not alter the distribution of mTOR between TORC1 and TORC2, but instead diminishes mTOR phosphorylation on Ser(2448) independent of changes in tumor suppressor complex 2 and PKB phosphorylation. Furthermore, the data suggest that protein synthesis in rats fed a diet containing ethanol is limited by mTOR-dependent reduction in phosphorylation of S6K1(Thr(389)) and eIF4G(Ser(1108)) secondary to reduced phosphorylation of mTOR(Ser(2448)).
Collapse
Affiliation(s)
- Thomas C Vary
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|