1
|
Chen Z, Wang L, Zhang Y, Li G, Yin J, Fan J, Liu T, Wu H, Huang Y, Huang W, Liu D, Zheng X, Zang X, Huang X, Song L, Wen S, Li J, Ying D, Fang M, Wang Y, Wu T, Sridhar S, Zhang J, Xia N, Wang L, Lu Y, Zheng Z. Substantial spillover burden of rat hepatitis E virus in humans. Nat Commun 2025; 16:4038. [PMID: 40301345 PMCID: PMC12041280 DOI: 10.1038/s41467-025-59345-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 04/18/2025] [Indexed: 05/01/2025] Open
Abstract
The emergence of Rocahepevirus ratti genotype 1 (rat hepatitis E virus; rat HEV) in humans presents an unprecedented threat; however, the risk of rat HEV transmission to humans is not well understood. Here, we report the "Distinguishing Antibody Response Elicitation (DARE)" method, which distinguishes exposure to rat HEV. We use four study sets from China for large-scale population analysis: set 1 (hospital visit) and set 3 (ALT abnormality) from Yunnan province, a biodiversity hotspot, and set 2 (received physical examination) and set 4 (ALT abnormality) from Jiangsu province, a non-hotspot control region. rat HEV exposure risk is significantly higher in Yunnan, with 21.97% (190 of 865) in set 1 and 13.97% (70 of 501) in set 3, compared to 0.75% (9 of 1196) in Jiangsu's set 2. Six spillover infections for rat HEV are identified in set 1, with one case of abnormal ALT. The rat-1d strains carried by rats are closely related to those human infections. Our study reveals the substantial spillover burden posed by rat HEV in biodiversity hotspots and highlights the utility of DARE method for proactive surveillance of public health emergencies.
Collapse
Affiliation(s)
- Zihao Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Lifeng Wang
- Menghai County People's Hospital, Menghai, Yunnan, PR China
| | - Yongde Zhang
- Menghai County Center for Disease Control and Prevention, Menghai, Yunnan, PR China
| | - Guanghui Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Jiaxiang Yin
- Department of Epidemiology, School of Public Health, Dali University, Dali, Yunnan, PR China
| | - Jingyan Fan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Tianxu Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Han Wu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, PR China
| | - Yue Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Wenhui Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Donglin Liu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, PR China
| | - Xiaoxiang Zheng
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, PR China
| | - Xia Zang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, PR China
| | - Xingcheng Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Liuwei Song
- Xiamen Innodx Biotechnology Co., Ltd, Xiamen, Fujian, PR China
| | - Shunhua Wen
- Xiamen Innodx Biotechnology Co., Ltd, Xiamen, Fujian, PR China
| | - Jiayu Li
- Xiamen Innodx Biotechnology Co., Ltd, Xiamen, Fujian, PR China
| | - Dong Ying
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Mujin Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Yingbin Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Ting Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Siddharth Sridhar
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, PR China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, Hong Kong, PR China
- State Key Laboratory of Emerging Infectious Diseases and Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, PR China
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China.
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian, PR China.
| | - Lin Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China.
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, PR China.
| | - Zizheng Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China.
- Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, PR China.
| |
Collapse
|
2
|
Pavlova A, Kocikova B, Dolinska MU, Jackova A. Hepatitis E Virus in the Role of an Emerging Food-Borne Pathogen. Microorganisms 2025; 13:885. [PMID: 40284721 PMCID: PMC12029509 DOI: 10.3390/microorganisms13040885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Viral hepatitis E represents an important global health problem caused by the hepatitis E virus (HEV). Cases of HEV infection are increasingly associated with food-borne transmissions after the consumption of raw or undercooked food products from infected animals in high-income regions. Although most cases of infection are asymptomatic, severe courses of infection have been reported in specific groups of people, predominantly among pregnant women and immunocompromised patients. The viral nucleic acid of HEV is increasingly being reported in food-producing animals and different products of an animal origin. Even though the incubation period for HEV infection is long, several direct epidemiological links between human cases and the consumption of HEV-contaminated meat and meat products have been described. In this article, we review the current knowledge on human HEV infections, HEV in different food-producing animals and products of an animal origin, as well as the accumulation and resistance to HEV in farm and slaughterhouse environments. We also provide preventive measures to help eliminate HEV from animals, the human population, and the environment.
Collapse
Affiliation(s)
| | | | | | - Anna Jackova
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (A.P.); (B.K.); (M.U.D.)
| |
Collapse
|
3
|
Baymakova MP, Konaktchieva M, Kunchev M, Popivanov G, Kundurzhiev T, Tsachev I, Mutafchiyski V. First Insight into the Seroprevalence of Hepatitis E Virus and Associated Risk Factors Among Liver Transplant Recipients from Bulgaria. Vector Borne Zoonotic Dis 2025; 25:303-313. [PMID: 39943906 DOI: 10.1089/vbz.2024.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2025] Open
Abstract
Introduction: Hepatitis E virus (HEV) infection is caused by viruses belonging to the Hepeviridae family. HEV infection can be self-limiting; however, extrahepatic manifestations may be present. The purpose of the current study was to establish the seroprevalence of HEV among Bulgarian liver transplant recipients (LTRs) and to identify associated risk factors. Materials & Methods: The present study was conducted between April 1, 2023, and October 30, 2023, at the Military Medical Academy, Sofia, Bulgaria. All serum samples were tested for anti-HEV IgG/IgM using HEV IgG/IgM enzyme-linked immunosorbent assay on Dia.Pro (Milan, Italy). Each participating LTR completed a detailed paper-based closed-ended questionnaire regarding the associated risk factors for HEV infection. Results: The study included 73 LTRs with a mean age of 47.0 ± 14.0 years. Anti-HEV IgG antibodies were detected in 25 LTRs (34.2%), including 20 males (37.7%) and 5 females (25%). All participants were HEV-IgM negative. HEV seropositivity rates were higher but not statistically significant in LTRs aged >60 years than in those aged <60 years (40% vs. 32.7%). A significant factor by logistic regression was "high level of education" (odds ratio [OR] = 2.917; p = 0.038). Conclusion: To the best of our knowledge, this is the first seroepidemiological HEV study among LTRs from Bulgaria that found a high seroprevalence (34.2%).
Collapse
Affiliation(s)
| | - Marina Konaktchieva
- Department of Gastroenterology and Hepatology, Military Medical Academy, Sofia, Bulgaria
| | - Metodi Kunchev
- Department of Virology, Military Medical Academy, Sofia, Bulgaria
| | - Georgi Popivanov
- Department of Surgery, Military Medical Academy, Sofia, Bulgaria
| | - Todor Kundurzhiev
- Department of Occupational Medicine, Faculty of Public Health, Medical University, Sofia, Bulgaria
| | - Ilia Tsachev
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | | |
Collapse
|
4
|
Haase JA, Schlienkamp S, Ring JJ, Steinmann E. Transmission patterns of hepatitis E virus. Curr Opin Virol 2025; 70:101451. [PMID: 39892085 DOI: 10.1016/j.coviro.2025.101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
Hepatitis E virus (HEV) causes sporadic cases in industrialized countries and endemic outbreaks in areas with lower sanitation standards. The wide host reservoir of HEV makes it a potential source of new zoonotic transmission and dissemination in humans. Thus, the perception of HEV as a confined ailment has shifted to one of global concern. Considering HEV's environmental stability and heterogeneity in the host range of HEV's genotypes, various transmission pathways and sources for HEV infections are plausible. Here, we provide an overview on HEV's transmission routes and discuss the role of HEV as a foodborne zoonosis, as well as preventive measures and open research questions.
Collapse
Affiliation(s)
- Jil A Haase
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Sarah Schlienkamp
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Julian J Ring
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany; German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
5
|
Santos-Silva S, Romalde JL, Bento JT, Cruz AVS, López-López P, Gonçalves HMR, Van der Poel WHM, Nascimento MSJ, Rivero-Juarez A, Mesquita JR. Serological and Molecular Survey of Hepatitis E Virus in Small Ruminants from Central Portugal. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:516-524. [PMID: 39235492 PMCID: PMC11525313 DOI: 10.1007/s12560-024-09612-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Hepatitis E virus (HEV) is currently recognized as an emerging problem and a growing concern for public health in developed countries, with HEV infections mainly attributable to foodborne transmission of HEV-3. The zoonotic HEV genotype 3 infects a wide range of mammalian hosts, with swine considered as the primary host. This study investigates the occurrence of HEV among small ruminants in Portugal. The primary aim of the present research was to evaluate the circulation and the potential for HEV infection among sheep and goats. A total of 400 bile samples and 493 blood samples were collected from sheep and goats at a slaughterhouse in the center region of Portugal, between January 2022 and March 2023. The HEV RNA detection in bile samples was performed using a nested broad-spectrum RT-PCR targeting the ORF1 region. Serological analysis to detect anti-HEV antibodies was conducted using a commercial double-antigen sandwich multi-species ELISA. The HEV RNA was not detected in any bile samples using the nested broad-spectrum RT-PCR. Serological analysis revealed an overall HEV antibody seroprevalence of 2% (10/493, 95% CI: 0.98-3.70) among the small ruminants, namely 2.2% in goats and 2.0% in sheep. Curiously, no statistically significant association among the factors, age, sex and species and HEV seroprevalence was observed. Although HEV RNA was not detected in the bile of sheep and goats, this study the evidence of seroprevalence in these small ruminant species. Further research could provide additional insights into the factors influencing HEV transmission dynamics in small ruminants in Portugal and its potential implications for public health.
Collapse
Affiliation(s)
- Sérgio Santos-Silva
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Cross-Disciplinary Research Center in Environmental Technologies (CRETUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Andreia V S Cruz
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Pedro López-López
- Unit of Infectious Diseases, Clinical Virology and Zoonoses, Hospital Universitario Reina Sofia, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Cordoba, Spain
- Center for Biomedical Research Network (CIBER) in Infectious Diseases, Health Institute Carlos III, Madrid, Spain
| | - Helena M R Gonçalves
- LAQV, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Wim H M Van der Poel
- Quantitative Veterinary Epidemiology, Wageningen University, Wageningen, The Netherlands
- Department Virology & Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | | - António Rivero-Juarez
- Unit of Infectious Diseases, Clinical Virology and Zoonoses, Hospital Universitario Reina Sofia, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Cordoba, Spain
- Center for Biomedical Research Network (CIBER) in Infectious Diseases, Health Institute Carlos III, Madrid, Spain
| | - João R Mesquita
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal.
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade Do Porto, Porto, Portugal.
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal.
| |
Collapse
|
6
|
Duan BF, Feng Y. Current knowledge on the epidemiology and detection methods of hepatitis E virus in China. Virol J 2024; 21:307. [PMID: 39593111 PMCID: PMC11590246 DOI: 10.1186/s12985-024-02576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Hepatitis E is recognized as a significant zoonotic disease burden in China, with the hepatitis E virus (HEV) identified as the etiological agent responsible for this disease. HEV exhibits no specific host tropism, which facilitates its transmission among various mammalian species, including humans, pigs, cattle, goats, and others. Currently, the availability of effective therapeutic agents and vaccines for HEV infection is limited. Therefore, a comprehensive understanding of the epidemiological characteristics of HEV, and the existing detection methods, is crucial for disease prevention and control. In this review, we provide an overview of the current knowledge on HEV in China, mainly focusing on detection strategies, molecular characteristics, and the prevalence of this pathogen in the human population and other susceptible species. This review will be useful to enhance public awareness of HEV and to accelerate disease control efforts in the future.
Collapse
Affiliation(s)
- Bo-Fang Duan
- Xiangtan Central Hospital (The affiliated hospital of Hunan University), Xiangtan, 411100, Hunan Province, China
- Central for Animal Disease Control and Prevention of Yunnan Province, Kunming, 650051, Yunnan Province, China
| | - Yuan Feng
- Xiangtan Central Hospital (The affiliated hospital of Hunan University), Xiangtan, 411100, Hunan Province, China.
| |
Collapse
|
7
|
Blanda V, Giacchino I, Vaglica V, Milioto V, Migliore S, Di Bella S, Gucciardi F, Bongiorno C, Chiarenza G, Cardamone C, Mancuso I, Scatassa ML, Cannella V, Guercio A, Purpari G, Grippi F. Foodborne Pathogens Across Different Food Matrices in Sicily (Southern Italy). Pathogens 2024; 13:998. [PMID: 39599551 PMCID: PMC11597087 DOI: 10.3390/pathogens13110998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Foodborne diseases result from the consumption of foods contaminated with pathogens or their toxins and represent a serious public health problem worldwide. This study aimed to assess the presence of Rotavirus (RoV), Adenovirus (AdV), Norovirus (NoV), Hepatitis A and Hepatitis E viruses (HAV and HEV, respectively), Toxoplasma gondii, Coxiella burnetii and Leptospira spp. across various food matrices in Sicily. The analysis concerned 504 samples, including mussels, farmed meat, game meat, vegetables and bulk milk. Following appropriate pre-treatment, acid nucleic extraction was carried out and amplification of pathogen nucleic acids was carried out by molecular methods. The mussels tested positive for NoVs (3/51, 5.9%) and farm meat resulted positive for T. gondii (1/34, 2.9%). The game offal samples tested positive for HEV, which was detected in 17 out of 222 samples (7.7%), and T. gondii (18/318, 5.7%) and Leptospira spp. (2/318, 0.6%). The milk samples tested positive for C. burnetii (15/85, 17.6%), T. gondii (2/85, 2.4%) and Leptospira spp. (1/85, 1.2%). This study highlights the variability in the risk of contamination of different food matrices, confirming the importance of vigilance in the consumption of potentially contaminated food products.
Collapse
Affiliation(s)
| | | | | | | | | | - Santina Di Bella
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via G. Marinuzzi 3, 90129 Palermo, Italy; (V.B.); (I.G.); (V.V.); (V.M.); (S.M.); (C.B.); (G.C.); (C.C.); (I.M.); (M.L.S.); (V.C.); (A.G.); (G.P.); (F.G.)
| | - Francesca Gucciardi
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via G. Marinuzzi 3, 90129 Palermo, Italy; (V.B.); (I.G.); (V.V.); (V.M.); (S.M.); (C.B.); (G.C.); (C.C.); (I.M.); (M.L.S.); (V.C.); (A.G.); (G.P.); (F.G.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gong G, Xin J, Lou Y, Qiong D, Dawa Z, Gesang Z, Suolang S. Cell Culture of a Swine Genotype 4 Hepatitis E Virus Strain. J Med Virol 2024; 96:e70031. [PMID: 39530175 DOI: 10.1002/jmv.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
HEV infection has become a global health concern. The study of HEV pathogenicity has been hindered by the lack of a suitable in vitro culture system. In the present research, we systematic demonstration of efficient replication of swine GT4 HEV in A549 cells, Huh-7 cells, and HepG2/C3A cell lines. The results of the immunofluorescence assay and immunofluorescence confocal assay showed that swine GT4 HEV is efficiently replicated in three cell lines at 72 h postinoculation. Meanwhile, we also detected the virus titer quantified were increased at 2-, 6,- and 11-days postinoculation. Moreover, we successfully observed HEV virus particles in the cell suspension at 6 days postinoculation. This finding holds significance for advancing in vitro HEV studies.
Collapse
Affiliation(s)
- Ga Gong
- Animal Science College, Xizang Agriculture and Animal Husbandry University, Nyingchi, China
| | - Jiaojiao Xin
- Animal Science College, Xizang Agriculture and Animal Husbandry University, Nyingchi, China
| | - Yongzhi Lou
- Animal Science College, Xizang Agriculture and Animal Husbandry University, Nyingchi, China
| | - Da Qiong
- Animal Science College, Xizang Agriculture and Animal Husbandry University, Nyingchi, China
| | | | - Zhuoma Gesang
- Animal Disease Prevention and Control Center of Xizang Autonomous Region, Lhasa, China
| | - Sizhu Suolang
- Animal Science College, Xizang Agriculture and Animal Husbandry University, Nyingchi, China
| |
Collapse
|
9
|
Ferri G, Pennisi L, Malatesta F, Vergara A. First Detection of Hepatitis E Virus RNA in Ovine Raw Milk from Herds in Central Italy. Foods 2024; 13:3218. [PMID: 39456280 PMCID: PMC11507303 DOI: 10.3390/foods13203218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
HEV mainly enters animal and human hosts through the orofecal route, which presents a critical health concern alongside the associated environmental variable. Among products of animal origin, milk (both ovine and bovine) can harbor HEV RNA, which can potentially be transmitted to consumers. In this study, a total of 220 raw ovine milk samples were collected from Apennine breed subjects farmed (transhumance method) in three different Italian provinces, L'Aquila, Pescara, and Teramo, located in the Abruzzo region (Central Italy). All the specimens were screened using one-step real-time RT-qPCR and nested RT-PCR assays. Among them, 5/220 or 2.27% harbored HEV RNA fragments belonging to the ORF1 and ORF2 codifying regions of the genotype 3c. The average viral amount discovered was 102 GE/mL. These subjects represented 2/57 or 3.51% of the Pescara herd, and 3/105 or 2.86% of the Teramo herd. Although HEV RNA was discovered in sheep fecal samples, the original data obtained in the present study represent the first HEV RNA detection in ovine raw milk from Italy.
Collapse
Affiliation(s)
- Gianluigi Ferri
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy; (L.P.); (A.V.)
| | - Luca Pennisi
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy; (L.P.); (A.V.)
| | | | - Alberto Vergara
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy; (L.P.); (A.V.)
| |
Collapse
|
10
|
He P, Li J, Wang C, Zhang J, Jiang Y, Liu H, Zhao Y, Li Z, Gao Y, Wang Y. Incidence and risk factors of de novo hepatitis E virus infection after receiving liver transplantation. J Med Virol 2024; 96:e29939. [PMID: 39360633 DOI: 10.1002/jmv.29939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Organ transplant recipients with hepatitis E virus (HEV) infection bears high risk to develop chronic hepatitis, which is generally associated with immunosuppressive therapies. This study aimed to identify the incidence and predictors of de novo HEV infection in patients after receiving transplantation. We performed a large retrospective study to investigate the prevalence of anti-HEV at baseline, incidence of de novo HEV infection after transplantation, and the risk factors of HEV infection among patients with liver transplant in China. A total of 407 liver transplant recipients were examined for the presence of anti-HEV immunoglobulin G, IgM antibodies, and HEV RNA in serum. Basal indexes in individuals with evidence of post-transplant HEV infection were compared with those without evidence of that, and risk factors associated with HEV infection were assessed. The prevalence of anti-HEV at pretransplant in liver transplant recipients was 25.8% (105/407). Serum-negative conversion occurred in 34 (32.38%) of 105 liver transplant patients. Sixty-five out of 302 patients had de novo HEV infection after transplantation, with a cumulative incidence of 42.74% during follow-up. After transplantation, HEV infection was associated with liver failure (p = 0.012), hypoproteinemia (p = 0.030) and higher level of r-glutamyl transferase (GGT) (p = 0.022) before transplantation. Graft rejection (OR = 0.075; p = 0.045) was negatively associated with serum-negative conversion in patients who had positive anti-HEV antibody before transplantation. The incidence of de novo HEV infection after transplantation were higher in China. Liver failure, hypoproteinemia, and GGT elevation may be associated with HEV infection after liver transplantation. This study suggests that prevention and control of HEV infection after liver transplantation should be paid attention in patients bearing these risk factors.
Collapse
Affiliation(s)
- Ping He
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jialei Li
- Medical School of Nanjing University, Nanjing, China
| | - Chen Wang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jiayue Zhang
- School of Pharmacy, Jiangsu Food & Pharmaceutical Science College, Huaian, China
| | - Yiyun Jiang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Hongyang Liu
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yao Zhao
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhiwei Li
- Department of Hepato-Biliary Surgery, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yinjie Gao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yijin Wang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
11
|
Zhao W, Xia Y, Li T, Liu H, Zhong G, Chen D, Yu W, Li Y, Huang F. Hepatitis E virus infection upregulates ING5 expression in vitro and in vivo. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1365-1372. [PMID: 38877781 PMCID: PMC11532201 DOI: 10.3724/abbs.2024091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/20/2024] [Indexed: 06/16/2024] Open
Abstract
Hepatitis E virus (HEV) is the major pathogen of viral hepatitis. Immunocompromised individuals infected by HEV are prone to chronic hepatitis and increase the risk of hepato-cellular carcinoma (HCC). Inhibitor of growth family member 5 (ING5) is a tumor suppressor that is expressed at low levels in cancer tumors or cells. However, the underlying relationship between ING5 and HEV infection is unclear. In the present study, acute and chronic HEV animal models are used to explore the interaction between ING5 and HEV. Notably, the expression of ING5 is significantly increased in both the livers of acute HEV-infected BALB/c mice and chronic HEV-infected rhesus macaques. In addition, the relationship between HEV infection and ING5 expression is further identified in human hepatoma (HepG-2) cells. In conclusion, HEV infection strongly upregulates ING5 expression both in vivo and in vitro, which has significant implications for further understanding the pathogenic mechanism of HEV infection.
Collapse
Affiliation(s)
- Wanqiu Zhao
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Yueping Xia
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Tengyuan Li
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Huichan Liu
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Guo Zhong
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Dongxue Chen
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Wenhai Yu
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunming650038China
| | - Yunlong Li
- Medical FacultyKunming University of Science and TechnologyKunming650500China
- Yunnan Provincial Key Laboratory of Clinical VirologyKunming650032China
| | - Fen Huang
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| |
Collapse
|
12
|
Zahmanova G, Takova K, Lukov GL, Andonov A. Hepatitis E Virus in Domestic Ruminants and Virus Excretion in Milk-A Potential Source of Zoonotic HEV Infection. Viruses 2024; 16:684. [PMID: 38793568 PMCID: PMC11126035 DOI: 10.3390/v16050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
The hepatitis E virus is a serious health concern worldwide, with 20 million cases each year. Growing numbers of autochthonous HEV infections in industrialized nations are brought on via the zoonotic transmission of HEV genotypes 3 and 4. Pigs and wild boars are the main animal reservoirs of HEV and play the primary role in HEV transmission. Consumption of raw or undercooked pork meat and close contact with infected animals are the most common causes of hepatitis E infection in industrialized countries. However, during the past few years, mounting data describing HEV distribution has led experts to believe that additional animals, particularly domestic ruminant species (cow, goat, sheep, deer, buffalo, and yak), may also play a role in the spreading of HEV. Up to now, there have not been enough studies focused on HEV infections associated with animal milk and the impact that they could have on the epidemiology of HEV. This critical analysis discusses the role of domestic ruminants in zoonotic HEV transmissions. More specifically, we focus on concerns related to milk safety, the role of mixed farming in cross-species HEV infections, and what potential consequences these may have on public health.
Collapse
Affiliation(s)
- Gergana Zahmanova
- Department of Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Katerina Takova
- Department of Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Georgi L. Lukov
- Faculty of Sciences, Brigham Young University–Hawaii, Laie, HI 96762, USA
| | - Anton Andonov
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
13
|
Cong C, Xia Y, Gong S, Li T, Liu H, Zhong G, Chen D, Zhao W, Yu W, Yao Y, Liu J, Wei D, Cao H, Huang F. Infectious hepatitis E virus excreted into the vagina. FASEB J 2024; 38:e23500. [PMID: 38441537 DOI: 10.1096/fj.202301519rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
Hepatitis E virus (HEV) persists in the male genital tract that associates with infertility. However, the presence of HEV in the female genital tract is unreported. Vaginal secretions, cervical smears, and cervix uteri were collected to explore the presence of HEV in the female genital tract. HEV RNA and/or antigens were detected in the vaginal secretions, cervical smears, and the cervix uteri of women. The infectivity of HEV excreted into vaginal secretions was further validated in vitro. In addition, HEV replicates in the female genital tract were identified in HEV-infected animal models by vaginal injection or vaginal mucosal infection to imitate sexual transmission. Serious genital tract damage and inflammatory responses with significantly elevated mucosal innate immunity were observed in women or animals with HEV vaginal infection. Results demonstrated HEV replicates in the female genital tract and causes serious histopathological damage and inflammatory responses.
Collapse
Affiliation(s)
- Chao Cong
- School of Medicine, The Academy for Cells and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, PR China
| | - Yueping Xia
- School of Medicine, The Academy for Cells and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, PR China
| | - Shilin Gong
- School of Medicine, The Academy for Cells and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, PR China
| | - Tengyuan Li
- School of Medicine, The Academy for Cells and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, PR China
| | - Huichan Liu
- School of Medicine, The Academy for Cells and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, PR China
| | - Guo Zhong
- School of Medicine, The Academy for Cells and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, PR China
| | - Dongxue Chen
- School of Medicine, The Academy for Cells and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, PR China
| | - Wanqiu Zhao
- School of Medicine, The Academy for Cells and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, PR China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Yinjie Yao
- Kunming City Maternal and Child Health Hospital, Kunming, PR China
| | - Jiankun Liu
- 920th Hospital of the PLA Joint Logistics Support Force, Kunming, PR China
| | - Daqiao Wei
- School of Medicine, The Academy for Cells and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, PR China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Fen Huang
- School of Medicine, The Academy for Cells and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, PR China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| |
Collapse
|
14
|
Alexandrova R, Tsachev I, Kirov P, Abudalleh A, Hristov H, Zhivkova T, Dyakova L, Baymakova M. Hepatitis E Virus (HEV) Infection Among Immunocompromised Individuals: A Brief Narrative Review. Infect Drug Resist 2024; 17:1021-1040. [PMID: 38505248 PMCID: PMC10948336 DOI: 10.2147/idr.s449221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
Hepatitis E virus (HEV) is a single-stranded positive-sense RNA virus that belongs to Hepeviridae family. HEV is the most common cause of acute viral hepatitis worldwide. According to the World Health Organization (WHO), there are estimated 20 million HEV infections worldwide every year, leading to estimated 3.3 million symptomatic cases of HEV infection. The WHO estimates that HEV infection caused approximately 44,000 deaths in 2015, which represents 3.3% of mortality rates due to viral hepatitis. In low-income (LI) countries and lower-middle-income (LMI) countries, HEV is a waterborne infection induced by HEV genotype (gt) 1 and HEV gt 2 that cause large outbreaks and affect young individuals with a high mortality rate in pregnant women from South Asian countries and patients with liver diseases. HEV gt 3, HEV gt 4, and HEV gt 7 are responsible for sporadic infections with zoonotic transmission mainly through the consumption of raw or undercooked meat from different animals. Acute HEV infection is relatively asymptomatic or mild clinical form, in rare cases the disease can be moderate/severe clinical forms and result in fulminant hepatitis or acute liver failure (ALF). Furthermore, HEV infection is associated with extrahepatic manifestations, including renal and neurological clinical signs and symptoms. Pregnant women, infants, older people, immunocompromised individuals, patients with comorbidities, and workers who come into close contact with HEV-infected animals are recognized as major risk groups for severe clinical form of HEV infection and fatal outcome. Chronic HEV infection can occur in immunocompromised individuals with the possibility of progression to cirrhosis.
Collapse
Affiliation(s)
- Radostina Alexandrova
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ilia Tsachev
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Plamen Kirov
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Abedulkadir Abudalleh
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Hristo Hristov
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tanya Zhivkova
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lora Dyakova
- Department of Synaptic Signaling and Communication, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Magdalena Baymakova
- Department of Infectious Diseases, Military Medical Academy, Sofia, Bulgaria
| |
Collapse
|
15
|
Turlewicz-Podbielska H, Ruszkowski JJ, Wojciechowski J, Pomorska-Mól M. No evidence of hepatitis E virus (HEV) infection among pet cats and dogs, and low seroprevalence of hepatitis E virus among pet rabbits in Poland. Vet Res Commun 2024; 48:597-602. [PMID: 37740104 PMCID: PMC10811079 DOI: 10.1007/s11259-023-10223-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The seroprevalence of Paslahepevirus balayani genotype 3 (hepatitis E virus genotype 3 - HEV-3; Hepeviridae family, genus Paslahepevirus) in pet cats, dogs and rabbits was evaluated. Samples from cats and dogs were collected from three veterinary practices from various parts of Poland: Poznan (wielkopolskie voivodeship), Przemysl (podkarpackie voivodeship) and Lublin (lubelskie voivodeship). Samples from rabbits were collected in Poznan. In total, serum samples from 90 cats, 82 dogs and 71 rabbits were selected and tested for specific anti-HEV-3 immunoglobulin (IgG) antibodies using a commercial ELISA test. Pathogen seroprevalence among rabbits was calculated at a 95% confidence interval (CI) for each gender, age (up to 12 months, 1-3 years, 4-7 years and over 8 years), symptoms group (healthy, gastrointestinal disorders, other disorders) and compared with a chi-squared test. No anti-HEV-3 IgG antibodies were detected in any of the samples from cats and dogs. Anti-HEV-3 IgG antibodies were detected in 2.82% of the serum samples from rabbits (2/71; 95% CI: 0.78-9.70). No significant correlations between seropositivity and gender, age, and symptoms (p > 0.05) were observed in rabbits. Our findings indicate that pet rabbits in Poland are exposed to HEV-3, develop humoral response due to infection and might constitute a source for HEV-3 transmission to humans.
Collapse
Affiliation(s)
- Hanna Turlewicz-Podbielska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animals Sciences, Poznan University of Life Sciences, Wolynska 35, 60‑637, Poznan, Poland
| | - Jakub Jędrzej Ruszkowski
- Department of Animal Anatomy, Faculty of Veterinary Medicine and Animals Sciences, Poznan University of Life Sciences, Wojska Polskiego 71C, 60‑625, Poznan, Poland
| | | | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animals Sciences, Poznan University of Life Sciences, Wolynska 35, 60‑637, Poznan, Poland.
| |
Collapse
|
16
|
Turlewicz-Podbielska H, Augustyniak A, Wojciechowski J, Pomorska-Mól M. Hepatitis E Virus in Livestock-Update on Its Epidemiology and Risk of Infection to Humans. Animals (Basel) 2023; 13:3239. [PMID: 37893962 PMCID: PMC10603682 DOI: 10.3390/ani13203239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatitis E virus (HEV) is a public health problem worldwide and an important food pathogen known for its zoonotic potential. Increasing numbers of infection cases with human HEV are caused by the zoonotic transmission of genotypes 3 and 4, mainly by consuming contaminated, undercooked or raw porcine meat. Pigs are the main reservoir of HEV. However, it should be noted that other animal species, such as cattle, sheep, goats, and rabbits, may also be a source of infection for humans. Due to the detection of HEV RNA in the milk and tissues of cattle, the consumption of infected uncooked milk and meat or offal from these species also poses a potential risk of zoonotic HEV infections. Poultry infected by avian HEV may also develop symptomatic disease, although avian HEV is not considered a zoonotic pathogen. HEV infection has a worldwide distribution with different prevalence rates depending on the affected animal species, sampling region, or breeding system.
Collapse
Affiliation(s)
- Hanna Turlewicz-Podbielska
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland; (H.T.-P.); (A.A.)
| | - Agata Augustyniak
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland; (H.T.-P.); (A.A.)
| | | | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland; (H.T.-P.); (A.A.)
| |
Collapse
|
17
|
Cao K, Wu X, Yang M, Chen C, Zhang X, Jiang D, Du Y, Chen M, You Y, Zhou W, Qi J, Chen D, Yan R, Miao Z, Yang S. Prevalence of hepatitis E virus in China from 1997 to 2022: a systematic review and meta-analysis. Front Public Health 2023; 11:1243408. [PMID: 37744517 PMCID: PMC10512461 DOI: 10.3389/fpubh.2023.1243408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Several studies have reported on hepatitis E virus (HEV) prevalence in various regions of China, but the results vary widely. Herein, we conducted a systematic review and meta-analysis to assess the seroprevalence, RNA-positive rate, genotype distribution of HEV in China, and its risk factors. Methods We included 208 related studies involving 1,785,569 participants published between 1997 and 2022. Random-effects models were used to pool prevalence, and subgroup analyses were conducted by population, gender, age, study period, regions, and rural-urban distribution. The meta regression models and pooled odds ratios (OR) were performed to identify risk factors for HEV infections. Results The pooled anti-HEV IgG, IgM, and Ag seroprevalence, and RNA detection rates in China from 1997 to 2022 were 23.17% [95% confidence interval (CI): 20.23-26.25], 0.73% (95% CI: 0.55-0.93), 0.12% (95% CI: 0.01-0.32), and 6.55% (95% CI: 3.46-12.05), respectively. The anti-HEV IgG seropositivity was higher in the occupational population (48.41%; 95% CI: 40.02-56.85) and older adult aged 50-59 years (40.87%; 95% CI: 31.95-50.11). The dominant genotype (GT) of hepatitis E in China was GT4. Notably, drinking non-tap water (OR = 1.82; 95% CI: 1.50-2.20), consumption of raw or undercooked meat (OR = 1.47; 95% CI: 1.17-1.84), and ethnic minorities (OR = 1.50; 95% CI: 1.29-1.73) were risk factors of anti-HEV IgG seroprevalence. Discussions Overall, the prevalence of hepatitis E was relatively high in China, especially among older adults, ethnic minorities, and humans with occupational exposure to pigs. Thus, there is a need for preventive measures, including HEV infection screening and surveillance, health education, and hepatitis E vaccine intervention in high-risk areas and populations. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023397036.
Collapse
Affiliation(s)
- Kexin Cao
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyue Wu
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengya Yang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Can Chen
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Daixi Jiang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuxia Du
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengsha Chen
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue You
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenkai Zhou
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaxing Qi
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Dingmo Chen
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Yan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ziping Miao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Shigui Yang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Santos-Silva S, da Silva Dias Moraes DF, López-López P, Rivero-Juarez A, Mesquita JR, Nascimento MSJ. Hepatitis E Virus in the Iberian Peninsula: A Systematic Review. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:193-211. [PMID: 37434079 PMCID: PMC10499749 DOI: 10.1007/s12560-023-09560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
One of the most frequent causes of acute viral hepatitis is hepatitis E virus (HEV) causing 20 million infections worldwide each year and 44,000 deaths. Studies on HEV in the Iberian Peninsula have been increasing through time with HEV infection being identified in humans and animals. The aim of the present systematic review was to compile and evaluate all the published data on HEV from studies performed in humans, animals and environmental samples in the Iberian Peninsula. The electronic databases Mendeley, PubMed, Scopus, and Web of Science were thoroughly searched, and research published up until February 01, 2023 were included. Resulting in a total of 151 eligible papers by full reading and application of PRISMA exclusion/inclusion criteria. Overall, the present review shows that several HEV genotypes, namely HEV-1, 3, 4, and 6 as well as Rocahepevirus, are circulating in humans, animals, and in the environment in the Iberian Peninsula. HEV-3 was the most common genotype circulating in humans in Portugal and Spain, as expected for developed countries, with HEV-1 only being detected in travelers and emigrants from HEV endemic regions. Spain is the biggest pork producer in Europe and given the high circulation of HEV in pigs, with HEV-3 being primarily associated to zoonotic transmission through consumption of swine meat and meat products, in our opinion, the introduction of an HEV surveillance system in swine and inclusion of HEV in diagnostic routines for acute and chronic human hepatitis would be important. Additionally, we propose that establishing a monitoring mechanism for HEV is crucial in order to gain a comprehensive understanding of the prevalence of this illness and the various strains present in the Iberian Peninsula, as well as their potential impact on public health.
Collapse
Affiliation(s)
- Sérgio Santos-Silva
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | - Pedro López-López
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Reina Sofía, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - António Rivero-Juarez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Reina Sofía, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - João R Mesquita
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal.
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | | |
Collapse
|
19
|
Chakraborty S. Countering hepatitis E infection in South Sudan in the backdrop of recent outbreak. New Microbes New Infect 2023; 54:101165. [PMID: 37485075 PMCID: PMC10362128 DOI: 10.1016/j.nmni.2023.101165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
|
20
|
Nemes K, Persson S, Simonsson M. Hepatitis A Virus and Hepatitis E Virus as Food- and Waterborne Pathogens-Transmission Routes and Methods for Detection in Food. Viruses 2023; 15:1725. [PMID: 37632066 PMCID: PMC10457876 DOI: 10.3390/v15081725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Foodborne viruses are an important threat to food safety and public health. Globally, there are approximately 5 million cases of acute viral hepatitis due to hepatitis A virus (HAV) and hepatitis E virus (HEV) every year. HAV is responsible for numerous food-related viral outbreaks worldwide, while HEV is an emerging pathogen with a global health burden. The reported HEV cases in Europe have increased tenfold in the last 20 years due to its zoonotic transmission through the consumption of infected meat or meat products. HEV is considered the most common cause of acute viral hepatitis worldwide currently. This review focuses on the latest findings on the foodborne transmission routes of HAV and HEV and the methods for their detection in different food matrices.
Collapse
Affiliation(s)
- Katalin Nemes
- European Union Reference Laboratory for Foodborne Viruses, Swedish Food Agency, Dag Hammarskjölds väg 56 A, 75237 Uppsala, Sweden; (S.P.); (M.S.)
| | | | | |
Collapse
|
21
|
Tsachev I, Gospodinova K, Pepovich R, Takova K, Kundurzhiev T, Zahmanova G, Kaneva K, Baymakova M. First Insight into the Seroepidemiology of Hepatitis E Virus (HEV) in Dogs, Cats, Horses, Cattle, Sheep, and Goats from Bulgaria. Viruses 2023; 15:1594. [PMID: 37515279 PMCID: PMC10385379 DOI: 10.3390/v15071594] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, hepatitis E virus (HEV) infection has been found to be widespread among different animal species worldwide. In Bulgaria, high HEV seropositivity was found among pigs (60.3%), wild boars (40.8%), and East Balkan swine (82.5%). The aim of the present study was to establish the seroprevalence of HEV among dogs, cats, horses, cattle, sheep, and goats in Bulgaria. In total, 720 serum samples from six animal species were randomly collected: dogs-90 samples; cats-90; horses-180; cattle-180; sheep-90; and goats-90. The serum samples were collected from seven districts of the country: Burgas, Kardzhali, Pazardzhik, Plovdiv, Sliven, Smolyan, and Stara Zagora. The animal serum samples were tested for HEV antibodies using the commercial Wantai HEV-Ab ELISA kit (Beijing, China). The overall HEV seroprevalence among different animal species from Bulgaria was as follows: dogs-21.1%; cats-17.7%; horses-8.3%; cattle-7.7%; sheep-32.2%; and goats-24.4%. We found the lowest overall HEV seropositivity in Plovdiv district (6.2%; 4/64; p = 0.203) and Smolyan district (8.8%; 4/45; p = 0.129), vs. the highest in Pazardzhik district (21.6%; 29/134; p = 0.024) and Burgas district (28.8%; 26/90; p = 0.062). To the best of our knowledge, this is the first serological evidence of HEV infection in dogs, cats, horses, cattle, sheep, and goats from Bulgaria. We found high HEV seropositivity in small ruminants (sheep and goats), moderate seropositivity in pets (dogs and cats), and a low level of seropositivity in large animals (horses and cattle). Previous Bulgarian studies and the results of this research show that HEV infection is widespread among animals in our country. In this regard, the Bulgarian health authorities must carry out increased surveillance and control of HEV infection among animals in Bulgaria.
Collapse
Affiliation(s)
- Ilia Tsachev
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Krasimira Gospodinova
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Roman Pepovich
- Department of Infectious Pathology, Hygiene, Technology and Control of Foods from Animal Origin, Faculty of Veterinary Medicine, University of Forestry, 1797 Sofia, Bulgaria
| | - Katerina Takova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Todor Kundurzhiev
- Department of Occupational Medicine, Faculty of Public Health, Medical University, 1527 Sofia, Bulgaria
| | - Gergana Zahmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Kristin Kaneva
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Magdalena Baymakova
- Department of Infectious Diseases, Military Medical Academy, 1606 Sofia, Bulgaria
| |
Collapse
|
22
|
Bouquet P, Alexandre V, De Lamballerie M, Ley D, Lesage J, Goffard A, Cocquerel L. Effect of High Hydrostatic Pressure Processing and Holder Pasteurization of Human Milk on Inactivation of Human Coronavirus 229E and Hepatitis E Virus. Viruses 2023; 15:1571. [PMID: 37515257 PMCID: PMC10384040 DOI: 10.3390/v15071571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
In preterm infants, sterilized donor milk (DM) is frequently used for feeding when breast milk is lacking. Most human milk banks use the Holder pasteurization method (HoP) to ensure the microbiological safety of DM. However, this method degrades many bioactive factors and hormones. Recently, high hydrostatic pressure (HHP) processing, which preserves bioactive factors in human milk, has been proposed as an alternative method to ensure the safety of DM. Although HHP treatment has been shown to be effective for viral inactivation, the effect of HHP on viruses that may be present in the complex nutritional matrix of human milk has not yet been defined. In the present study, we compared the efficacy of two HHP protocols (4 cycles at 350 MPa at 38 °C designated as 4xHP350 treatment, and 1 cycle at 600 MPa at 20 °C designated as 1xHP600 treatment) with the HoP method on artificially virus-infected DM. For this purpose, we used human coronavirus 229E (HCoV-229E) and hepatitis E virus (HEV) as surrogate models for enveloped and non-enveloped viruses. Our results showed that HCoV-229E is inactivated by HHP and HoP treatment. In particular, the 4xHP350 protocol is highly effective in inactivating HCoV-229E. However, our results demonstrated a matrix effect of human milk on HCoV-229E inactivation. Furthermore, we demonstrated that HEV is stable to moderate pressure HHP treatment, but the milk matrix does not protect it from inactivation by the high-pressure HHP treatment of 600 MPa. Importantly, the complex nutritional matrix of human milk protects HEV from inactivation by HoP treatment. In conclusion, we demonstrated that HHP and HoP treatments do not lead to complete inactivation of both surrogate virus models, indicating that these treatments cannot guarantee total viral safety of donor milk.
Collapse
Affiliation(s)
- Peggy Bouquet
- Unit of Clinical Microbiology, Institut Pasteur de Lille, F-59000 Lille, France
| | - Virginie Alexandre
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | | | - Delphine Ley
- CHU Lille, Division of Gastroenterology Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children's Hospital, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Jean Lesage
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Anne Goffard
- Unit of Clinical Microbiology, Institut Pasteur de Lille, F-59000 Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Laurence Cocquerel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
23
|
Prpić J, Baymakova M. Hepatitis E Virus (HEV) Infection among Humans and Animals: Epidemiology, Clinical Characteristics, Treatment, and Prevention. Pathogens 2023; 12:931. [PMID: 37513778 PMCID: PMC10383665 DOI: 10.3390/pathogens12070931] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The public health significance of hepatitis E is very important [...].
Collapse
Affiliation(s)
- Jelena Prpić
- Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia
| | - Magdalena Baymakova
- Department of Infectious Diseases, Military Medical Academy, 1606 Sofia, Bulgaria
| |
Collapse
|
24
|
Qian Z, Li T, Xia Y, Cong C, Chen S, Zhang Y, Gong S, Wang W, Liu H, Chen D, Zhao W, Zhong G, Deng Y, Yu W, Wei D, Yu X, Huang F. Genotype 4 Hepatitis E virus replicates in the placenta, causes severe histopathological damage, and vertically transmits to fetuses. J Infect 2023; 87:34-45. [PMID: 37160209 DOI: 10.1016/j.jinf.2023.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND Hepatitis E virus (HEV) infection in pregnant women causes adverse pregnancy outcomes, including maternal death, premature delivery, stillbirth, and fetal infection. However, the pathogenesis of maternal and fetal HEV infection is unclear. METHODS Placenta and placental appendixes were collected from HEV-4 infected pregnant women to explore the vertical transmission of HEV from mothers to fetuses. RESULTS HEV-4 replicated in the placenta, placental membrane, and umbilical cord and was vertically transmitted from mothers to fetuses. HEV-4 placental infection resulted in serious histopathological damage, such as fibrosis and calcification, and severe inflammatory responses. Adverse maternal outcomes were observed in 38.5% of HEV-4 infected pregnant women. The distinct cytokine/chemokine expression patterns of HEV-infected pregnant women and nonpregnant women may contribute to the adverse pregnancy outcomes. Furthermore, the impaired maternal and fetal innate immune responses against HEV-4 facilitated viral replication during pregnancy. CONCLUSION HEV-4 replicates in the placenta and is vertically transmitted from mothers to fetuses, causing severe histopathological damage.
Collapse
Affiliation(s)
- Zhongyao Qian
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Tengyuan Li
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Yueping Xia
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Chao Cong
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Shuangfeng Chen
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Yike Zhang
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Shiling Gong
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Wenjing Wang
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Huichan Liu
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Dongxue Chen
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Wanqiu Zhao
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Guo Zhong
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Yinlong Deng
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China.
| | - Daqiao Wei
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China.
| | - Xiongwu Yu
- Qujing Maternal and Child Health-care Hospital Affiliated Hospital of Kunming University of Science and Technology, Qujing, PR China
| | - Fen Huang
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China; Yunnan Provincial Key Laboratory of Clinical Virology, Kunming, PR China.
| |
Collapse
|
25
|
Qian Z, Cong C, Li Y, Bi Y, He Q, Li T, Xia Y, Xu L, Mickael HK, Yu W, Liu J, Wei D, Huang F. Quantification of host proteomic responses to genotype 4 hepatitis E virus replication facilitated by pregnancy serum. Virol J 2023; 20:111. [PMID: 37264422 PMCID: PMC10233519 DOI: 10.1186/s12985-023-02080-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) infection is a common cause of acute hepatitis worldwide and causes approximately 30% case fatality rate among pregnant women. Pregnancy serum (PS), which contains a high concentration of estradiol, facilitates HEV replication in vitro through the suppression of the PI3K-AKT-mTOR and cAMPK-PKA-CREB signaling pathways. However, the proteomics of the complex host responses to HEV infection, especially how PS facilitates viral replication, remains unclear. METHODS In this study, the differences in the proteomics of HEV-infected HepG2 cells supplemented with fetal bovine serum (FBS) from those of HEV-infected HepG2 cells supplemented with serum from women in their third trimester of pregnancy were quantified by using isobaric tags for relative and absolute quantification technology. RESULTS A total of 1511 proteins were identified, among which 548 were defined as differentially expressed proteins (DEPs). HEV-infected cells supplemented with PS exhibited the most significant changes at the protein level. A total of 328 DEPs, including 66 up-regulated and 262 down-regulated proteins, were identified in HEV-infected cells supplemented with FBS, whereas 264 DEPs, including 201 up-regulated and 63 down-regulated proteins, were found in HEV-infected cells supplemented with PS. Subsequently, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that in HEV-infected cells, PS supplementation adjusted more host genes and signaling pathways than FBS supplementation. The DEPs involved in virus-host interaction participated in complex interactions, especially a large number of immune-related protein emerged in HEV-infected cells supplemented with PS. Three significant or interesting proteins, including filamin-A, thioredoxin, and cytochrome c, in HEV-infected cells were functionally verified. CONCLUSIONS The results of this study provide new and comprehensive insight for exploring virus-host interactions and will benefit future studies on the pathogenesis of HEV in pregnant women.
Collapse
Affiliation(s)
- Zhongyao Qian
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Chao Cong
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Yi Li
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Yanhong Bi
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Qiuxia He
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Tengyuan Li
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Yueping Xia
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Liangheng Xu
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Houfack K Mickael
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China.
| | - Jiankun Liu
- 920th Hospital of Joint Logistics Support Force of PLA, Kunming, People's Republic of China.
| | - Daqiao Wei
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China.
| | - Fen Huang
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China.
| |
Collapse
|
26
|
Elkhawaga AA, El-Mokhtar MA, Mahmoud AA, Ali WE, Mohamed DS, Kamel AM, Mesalam AA, Mousa NHS, Ashmawy AM, Abdel Aziz EM, Sayed IM, Ramadan HKA, Elkholy YS. First Report on Abnormal Renal Function in Acute Hepatitis E Genotype 1 Infection. Pathogens 2023; 12:pathogens12050687. [PMID: 37242358 DOI: 10.3390/pathogens12050687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Impaired renal functions have been reported with Hepatitis E virus (HEV) infections, especially with genotypes 3 and 4. These complications were reported during the acute and chronic phases of infection. HEV genotype 1 causes acute infection, and the effect of HEV-1 infections on renal functions is not known. We examined the kidney function parameters in the serum of HEV-1 patients (AHE, n = 31) during the acute phase of infection. All of the included patients developed an acute self-limiting course of infection, without progression to fulminant hepatic failure. We compared the demographic, laboratory, and clinical data between AHE patients with normal kidney function parameters and those with abnormal renal parameters. Out of 31 AHE patients, 5 (16%) had abnormal kidney function tests (KFTs) during the acute phase of infection. Three patients had abnormal serum urea and creatinine, and two patients had either abnormal urea or creatinine. Four out of five patients had an estimated glomerular filtration rate (eGFR) below 60 mL/min/1.73 m2. AHE patients with abnormal KFTs were older and had a lower level of albumin, but a slightly elevated alanine transaminase (ALT) compared to AHE patients with normal KFTs. There were no significant differences between the two groups in terms of age, sex, liver transaminase levels, and the viral load. Similarly, the clinical presentations were comparable in both groups. Interestingly, these KFTs in patients with abnormal renal parameters returned to normal levels at the recovery. The serum creatinine level was not correlated with patients' age or liver transaminase levels, but it was significantly negatively correlated with albumin level. In conclusion, this study is the first report that evaluated KFTs in patients during the acute phase of HEV-1 infections. Impaired KFTs in some AHE patients resolved at convalescence. KFTs and renal complications should be monitored during HEV-1 infections.
Collapse
Affiliation(s)
- Amal A Elkhawaga
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Amal A Mahmoud
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Wael Esmat Ali
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University Assuit Branch, Assiut 71524, Egypt
| | - Doaa Safwat Mohamed
- Department of Microbiology & Immunology, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Ayat M Kamel
- Microbiology and Immunology Department, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Ahmed Atef Mesalam
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), Dokki, Cairo 12622, Egypt
| | - Nermien H S Mousa
- Botany & Microbiology Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Ahmed M Ashmawy
- Department of Internal Medicine, Gastroenterology and Hepatology Unit, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Essam M Abdel Aziz
- Department of Internal Medicine, Nephrology Division, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Ibrahim M Sayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Haidi Karam-Allah Ramadan
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Yasmine Samy Elkholy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
27
|
Kapoor S, Goel AD, Jain V. Milk-borne diseases through the lens of one health. Front Microbiol 2023; 14:1041051. [PMID: 37089537 PMCID: PMC10117966 DOI: 10.3389/fmicb.2023.1041051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 03/13/2023] [Indexed: 04/09/2023] Open
Abstract
Reviewing “zoonotic diseases” classically brings to mind human infections contracted in close association with animals, where outdoor occupations and afforested lands usually play a key role in the epidemiological triad. However, there is a very common, yet overlooked route of infection where humans may not come in direct contact with animals or implicated environments. Milk-borne diseases are a unique set of infections affecting all age groups and occupational categories of humans, causing 4% of all the foodborne diseases in the world. The infection reservoir may lie with milch animals and associated enzootic cycles, and the infectious agent is freely secreted into the animal’s milk. Commercial pooling and processing of milk create unique environmental challenges, where lapses in quality control could introduce infective agents during downstream processing and distribution. The infectious agent is finally brought to the doorstep of both rural and urban households through such animal products. The domestic hygiene of the household finally determines human infections. One health approach can target preventive measures like immunization in animals, pasteurization and stringent quality control during the commercial processing of milk, and finally, hygienic practices at the level of the consumer, to reduce the burden of milk-borne diseases. This review hopes to draw the attention of policymakers to this unique route of infection, because it can be easily regulated with cost-effective interventions, to ensure the safety of this precious food product, permeating the life and livelihood of humans from all walks of life.
Collapse
Affiliation(s)
- Sunandini Kapoor
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, India
| | - Akhil Dhanesh Goel
- Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Vidhi Jain
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, India
- *Correspondence: Vidhi Jain,
| |
Collapse
|
28
|
Santos-Silva S, López-López P, Gonçalves HMR, Rivero-Juarez A, Van der Poel WHM, Nascimento MSJ, Mesquita JR. A Systematic Review and Meta-Analysis on Hepatitis E Virus Detection in Farmed Ruminants. Pathogens 2023; 12:550. [PMID: 37111437 PMCID: PMC10146180 DOI: 10.3390/pathogens12040550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Swine are widely recognized as the main reservoir of zoonotic HEV; however, a growing body of data on the HEV prevalence in farmed ruminants of different species also points to a potential route for HEV transmission through ruminants and ruminant products and by-products. Definite information on the zoonotic potential of ruminants is still absent or unclear, compelling the necessity for increasing knowledge on this. The aim of the current study was to analyze the state-of-the-art in this research topic and provide a summary of HEV detection and characterization in farmed ruminants. A total of 1567 papers were retrieved from four search databases that resulted in 35 eligible papers after application of exclusion/inclusion criteria. Studies on HEV in farmed ruminants were mainly based on the detection of HEV RNA and were reported in Africa (n = 1), America (n = 3), Asia (n = 18) and Europe (n = 13), and focused on a variety of ruminants species, namely cow, goat, sheep, deer, buffalo and yak. The overall pooled prevalence of HEV was 0.02% (0.01-0.03, 95% CI). The subgroup pooled prevalence of HEV RNA was 0.01% (0.00-0.02, 95% CI) in cow milk, stool, serum, liver, intestinal, bile, blood, spleen and rectal swab samples; 0.09% (0.02-0.18, 95% CI) in goat serum, bile, stool, milk, liver, rectal swab and blood samples; 0.01% (0.00-0.04, 95% CI) in sheep stool, serum, milk, blood and liver samples. Most of the HEV genotypes found in farmed ruminants belonged to the zoonotic HEV-3 (subtypes 3a, 3c) and HEV-4 (subtype 4d, 4h), with Rocahepevirus also found. The wide HEV circulation observed in different farmed ruminants raises concerns for the possibility of HEV transmission through products from infected ruminants and alerts for the potential zoonotic route for HEV in ruminant products, such as meat and dairy products. Also, contact exposure to infected farmed animals could be a risk factor. Further research should be conducted in order to understand the circulation of HEV in these animals and its zoonotic potential, as there is currently a lack of data on this topic.
Collapse
Affiliation(s)
- Sérgio Santos-Silva
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
| | - Pedro López-López
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), 14004 Cordoba, Spain
- Center for Biomedical Research Network (CIBER) in Infectious Diseases, Health Institute Carlos III, 28220 Madrid, Spain
| | - Helena M. R. Gonçalves
- Biosensor NTech—Nanotechnology Services, Lda, Avenida da Liberdade, 249, 1º Andar, 1250-143 Lisboa, Portugal
- Porto School of Engineering, Rede de Química e Tecnologia—REQUIMTE, 4200-072 Porto, Portugal
| | - António Rivero-Juarez
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), 14004 Cordoba, Spain
- Center for Biomedical Research Network (CIBER) in Infectious Diseases, Health Institute Carlos III, 28220 Madrid, Spain
| | - Wim H. M. Van der Poel
- Quantitative Veterinary Epidemiology, Wageningen University, 6708 PB Wageningen, The Netherlands
- Department Virology & Molecular Biology, Wageningen Bioveterinary Research, 8200 AB Lelystad, The Netherlands
| | | | - João R. Mesquita
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| |
Collapse
|
29
|
Hennechart-Collette C, Fourniol L, Fraisse A, Martin-Latil S, Perelle S. Evaluation of a Proteinase K-Based Extraction Method to Detect Hepatitis A Virus, Hepatitis E Virus and Norovirus in Artificially Contaminated Dairy Products. Foods 2023; 12:foods12071489. [PMID: 37048310 PMCID: PMC10093961 DOI: 10.3390/foods12071489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Human norovirus and hepatitis viruses (hepatitis A (HAV) and hepatitis E (HEV)) are leading causes of foodborne disease worldwide. Among the various food products, different types of dairy products can be implicated in viral foodborne outbreaks and contamination can occur at different stages, such as preparation, contact with contaminated equipment or via other foods. The aim of this study was to characterise a proteinase K method adapted from the ISO 15216 method for the detection of HAV, HEV and norovirus in artificially contaminated dairy products, based on the recent international standard of ISO 16140-4. Results showed that the recovery yields obtained from pure RNA in dairy products ranged from 5.76% to 76.40% for HAV, from 35.09% to 100.00% for HEV, from 25.09% to 100.00% for norovirus GI and from 47.83% to 100.00% for norovirus GII. The process control MNV-1 was detected in all RNA extracts, with recovery yields between 36.83% and 100.00%. The limit of detection (LOD) of the method was between 184 and 642 genome copies/mL (or/g) for the LOD50 and 802 and 2800 genome copies/mL or/g for the LOD95 according to the virus analysed. This method proved to be suitable for detecting viruses in dairy products for routine diagnostic needs.
Collapse
Affiliation(s)
| | - Lisa Fourniol
- Laboratory for Food Safety, Université Paris-Est, Anses, F-94700 Maisons-Alfort, France
| | - Audrey Fraisse
- Laboratory for Food Safety, Université Paris-Est, Anses, F-94700 Maisons-Alfort, France
| | - Sandra Martin-Latil
- Laboratory for Food Safety, Université Paris-Est, Anses, F-94700 Maisons-Alfort, France
| | - Sylvie Perelle
- Laboratory for Food Safety, Université Paris-Est, Anses, F-94700 Maisons-Alfort, France
| |
Collapse
|
30
|
Batmagnai E, Boldbaatar B, Sodbayasgalan A, Kato-Mori Y, Hagiwara K. Hepatitis E Virus (HEV) Spreads from Pigs and Sheep in Mongolia. Animals (Basel) 2023; 13:ani13050891. [PMID: 36899748 PMCID: PMC10000034 DOI: 10.3390/ani13050891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Hepatitis E is a viral infectious disease in pigs, wild boars, cows, deer, rabbits, camels, and humans as hosts caused by Paslahepevirus. Recently, it has been detected in a wide variety of animals including domestic small ruminants. Mongolia is a land of nomadic people living with livestock such as sheep, goats, and cattle. Due to how Mongolian lifestyles have changed, pork has become popular and swine diseases have emerged. Among them, Hepatitis E disease has become a zoonotic infectious disease that needs to be addressed. The HEV problem in pigs is that infected pigs excrete the virus without showing clinical symptoms and it spreads into the environment. We attempted to detect HEV RNA in sheep which had been raised in Mongolia for a long time, and those animals living together with pigs in the same region currently. We also conducted a longitudinal analysis of HEV infection in pigs in the same area and found that they were infected with HEV of the same genotype and cluster. In this study, we examined 400 feces and 120 livers (pigs and sheep) by RT-PCR in Töv Province, Mongolia. HEV detection in fecal samples was 2% (4/200) in sheep and 15% (30/200) in pigs. The results of ORF2 sequence analysis of the HEV RT-PCR-positive pigs and sheep confirmed genotype 4 in both animals. The results suggest that HEV infection is widespread in both pigs and sheep and that urgent measures to prevent infection are needed. This case study points to the changing nature of infectious diseases associated with livestock farming. It will be necessary to reconsider livestock husbandry and public health issues based on these cases.
Collapse
Affiliation(s)
- Enkhbaatar Batmagnai
- Laboratory of Virology, Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Bazartseren Boldbaatar
- Department of Infectious Diseases and Microbiology, School of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Amarbayasgalan Sodbayasgalan
- Laboratory of Virology, Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Yuko Kato-Mori
- Graduate School of Science, Technology and Innovation, Kobe University, 7-1-49 Minatojima Minami-Machi, Chuo-ku, Kobe 650-0047, Japan
| | - Katsuro Hagiwara
- Department of Pathobiology, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido 069-8501, Japan
- Correspondence:
| |
Collapse
|
31
|
Animal reservoirs for hepatitis E virus within the Paslahepevirus genus. Vet Microbiol 2023; 278:109618. [PMID: 36640568 DOI: 10.1016/j.vetmic.2022.109618] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Hepatitis E virus (HEV) is responsible for acute hepatitis in humans. It is a single-stranded, positive-sense RNA virus that belongs to the Hepeviridae family. The majority of concerning HEV genotypes belong to the Paslahepevirus genus and are subsequently divided into eight genotypes. HEV genotypes 1 and 2 exclusively infect humans and primates while genotypes 3 and 4 infect both humans and other mammals. Whereas HEV genotypes 5 and 6 are isolated from wild boars and genotypes 7 and 8 were identified from camels in the United Arab Emirates and China, respectively. HEV mainly spreads from humans to humans via the fecal-oral route. However, some genotypes with the capability of zoonotic transmissions, such as 3 and 4 transmit from animals to humans through feces, direct contact, and ingestion of contaminated meat products. As we further continue to uncover novel HEV strains in various animal species, it is becoming clear that HEV has a broad host range. Therefore, understanding the potential animal reservoirs for this virus will allow for better risk management and risk mitigation of infection with HEV. In this review, we mainly focused on animal reservoirs for the members of the species Paslahepevirus balayani and provided a comprehensive list of the host animals identified to date.
Collapse
|
32
|
Xia Y, Yang W, Li Y, Qian Z, Chen S, Zhang Y, Cong C, Li T, Liu H, Chen D, Zhao W, Zhong G, Wei D, Yu W, Huang F. Severe maternal-fetal pathological damage and inflammatory responses contribute to miscarriage caused by hepatitis E viral infection during pregnancy. Liver Int 2023; 43:317-328. [PMID: 36305303 DOI: 10.1111/liv.15468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/04/2022] [Accepted: 10/25/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Hepatitis E virus (HEV) infection causes serious adverse pregnancy outcomes during pregnancy. However, the maternal and fetal damage induced by HEV infection is rarely reported. METHODS A BALB/c pregnant mouse model was established to explore the maternal and fetal pathological damage and inflammatory responses caused by HEV infection. RESULTS Notably, miscarriages and stillbirths were observed in HEV-infected pregnant mice. HEV infections were identified by qRT-PCR, immunohistochemical analysis and immunofluorescence assay in the uterus, placenta, umbilical cords and livers and brains of fetuses. Serious inflammatory responses and pathological damage were triggered in the uterus and placenta of HEV-infected pregnant mice. Vertical transmission of HEV resulted in severe pathological damage and inflammatory responses in the livers and brains of fetuses, as well as emerging apoptosis cells in the brains of fetuses. Most of the cytokines/chemokines in the sera were significantly increased in the HEV-infected pregnant mice. Remarkably, cytokines/chemokines were significantly different between HEV-infected pregnant and miscarriage mice; IL9, GM-CSF and IL1α were the most important three cytokines/chemokines in determining the pregnancy outcomes. CONCLUSION HEV infections cause serious maternal/fetal pathological damage, inflammatory responses and apoptosis, which may be responsible for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Yueping Xia
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Weimin Yang
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Yi Li
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Zhongyao Qian
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Shuangfeng Chen
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Yike Zhang
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Chao Cong
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Tengyuan Li
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Huichan Liu
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Dongxue Chen
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Wanqiu Zhao
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Guo Zhong
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Daqiao Wei
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China
| | - Fen Huang
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, People's Republic of China.,Yunnan Provincial Key Laboratory of Clinical Virology, Kunming, People's Republic of China
| |
Collapse
|
33
|
Detection of Hepatitis E Virus Genotype 3 in Feces of Capybaras (Hydrochoeris hydrochaeris) in Brazil. Viruses 2023; 15:v15020335. [PMID: 36851548 PMCID: PMC9959927 DOI: 10.3390/v15020335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen associated with relevant public health issues. The aim of this study was to investigate HEV presence in free-living capybaras inhabiting urban parks in São Paulo state, Brazil. Molecular characterization of HEV positive samples was undertaken to elucidate the genetic diversity of the virus in these animals. A total of 337 fecal samples were screened for HEV using RT-qPCR and further confirmed by conventional nested RT-PCR. HEV genotype and subtype were determined using Sanger and next-generation sequencing. HEV was detected in one specimen (0.3%) and assigned as HEV-3f. The IAL-HEV_921 HEV-3f strain showed a close relationship to European swine, wild boar and human strains (90.7-93.2% nt), suggesting an interspecies transmission. Molecular epidemiology of HEV is poorly investigated in Brazil; subtype 3f has been reported in swine. This is the first report of HEV detected in capybara stool samples worldwide.
Collapse
|
34
|
Bhilegaonkar KN, Kolhe RP. Transfer of viruses implicated in human disease through food. PRESENT KNOWLEDGE IN FOOD SAFETY 2023:786-811. [DOI: 10.1016/b978-0-12-819470-6.00060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
35
|
Wang Y, Zhao C, Qi Y, Geng Y. Hepatitis E Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:1-13. [PMID: 37223855 DOI: 10.1007/978-981-99-1304-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Since the sequence of hepatitis E virus (HEV) was determined from a patient with enterically transmitted non-A, non-B hepatitis in 1989, similar sequences have been isolated from many different animals, including pigs, wild boars, deer, rabbits, bats, rats, chicken, and trout. All of these sequences have the same genomic organization, which contains open reading frames (ORFs) 1, 2, and 3, although their genomic sequences are variable. Some have proposed that they be classified as new family, Hepeviridae, which would be further divided into different genera and species according to their sequence variability. The size of these virus particles generally ranged from 27 to 34 nm. However, HEV virions produced in cell culture differ in structure from the viruses found in feces. Those from cell culture have a lipid envelope and either lack or have a little ORF3, whereas the viruses isolated from feces lack a lipid envelope but have ORF3 on their surfaces. Surprisingly, most of the secreted ORF2 proteins from both these sources are not associated with HEV RNA.
Collapse
Affiliation(s)
- Youchun Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China.
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Ying Qi
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yansheng Geng
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, China
| |
Collapse
|
36
|
Sayed IM, Abdelwahab SF. Is Hepatitis E Virus a Neglected or Emerging Pathogen in Egypt? Pathogens 2022; 11:1337. [PMID: 36422589 PMCID: PMC9697431 DOI: 10.3390/pathogens11111337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 09/02/2023] Open
Abstract
Though Egypt ranks among the top countries for viral hepatitis and death-related liver disease, Hepatitis E virus (HEV) is a neglected pathogen. Living in villages and rural communities with low sanitation, use of underground well water and contact with animals are the main risk factors for HEV infection. Domestic animals, especially ruminants and their edible products, are one source of infection. Contamination of water by either human or animal stools is the main route of infection. In addition, HEV either alone or in coinfection with other hepatotropic viruses has been recorded in Egyptian blood donors. HEV seropositivity among Egyptian villagers was 60-80%, especially in the first decade of life. Though HEV seropositivity is the highest among Egyptians, HEV infection is not routinely diagnosed in Egyptian hospitals. The initial manifestations of HEV among Egyptians is a subclinical infection, although progression to fulminant hepatic failure has been recorded. With the improvement in serological and molecular approaches and increasing research on HEV, it is becoming clear that HEV represents a threat for Egyptians and preventive measures should be considered to reduce the infection rate and possible complications.
Collapse
Affiliation(s)
- Ibrahim M. Sayed
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Sayed F. Abdelwahab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
37
|
Santos-Silva S, Gonçalves HMR, Rivero-Juarez A, Van der Poel WHM, Nascimento MSJ, Mesquita JR. Detection of hepatitis E virus in milk: Current evidence for viral excretion in a wide range of mammalian hosts. Transbound Emerg Dis 2022; 69:3173-3180. [PMID: 35989468 DOI: 10.1111/tbed.14683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/31/2022] [Accepted: 08/17/2022] [Indexed: 02/04/2023]
Abstract
Infection with hepatitis E virus (HEV) is common in both developing and industrialized nations. Genotypes 3 and 4 are increasingly being reported, particularly in high-income countries where the precise extent of HEV transmission via food is currently unclear. Recently, HEV has been found to be excreted in milk; however, data on the potential milk-borne transmission is still lacking or conflicting and warrants further research on the topic. As such, the aim of the present study was to review the current scientific knowledge and to summarize the existing studies in which HEV has been detected in milk. Exhaustive searches were carried out in Mendeley, PubMed, Scopus and Web of Science. A total of 157 papers were retrieved from the four electronic databases. After removing duplicate articles from the databases (n = 30), exclusion criteria identified unrelated research (n = 115). This allowed the identification of 12 eligible papers. To date, studies on HEV detection in milk were mostly from China (n = 5), followed by Egypt (n = 2), Germany (n = 1), Belgium and Holland (n = 1), Turkey (n = 1), Czech Republic (n = 1) and Spain (n = 1) and were focused on a variety of animals (cow, goat, donkey, buffalo, sheep and camel) and humans. Four out of the 12 eligible studies did not find any evidence of HEV in milk. Moreover, 3 out of the 12 studies detected low rates of HEV (0.2-1.8%) and two were based on a low sample size (n = 1 and n = 4). Interestingly, one study showed very high detection rates and also detected HEV genotype 1 in an animal milk sample, an unusual finding since it only occurs in humans, deserving further studies for confirmation and characterization. Two studies detected high prevalence of HEV genotype 4 in bovine samples from China, with one showing indication of the presence of infectious HEV in milk. To date, there is still a small amount of available data on the HEV presence in milk, posing important questions regarding both animal and human health. Thus, further efforts on this potentially underestimated zoonotic route for HEV should be given, warranting further studies on the topic.
Collapse
Affiliation(s)
- Sérgio Santos-Silva
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | - António Rivero-Juarez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Reina Sofía, Universidad de Córdoba, Córdoba, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Wim H M Van der Poel
- Quantitative Veterinary Epidemiology, Wageningen University, Wageningen, The Netherlands
- Department Virology & Molecular Biology, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | | | - João R Mesquita
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| |
Collapse
|
38
|
Sayed IM, Karam-Allah Ramadan H, Hafez MHR, Elkhawaga AA, El-Mokhtar MA. Hepatitis E virus (HEV) open reading frame 2: Role in pathogenesis and diagnosis in HEV infections. Rev Med Virol 2022; 32:e2401. [PMID: 36209386 DOI: 10.1002/rmv.2401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/12/2022]
Abstract
Hepatitis E virus (HEV) infection occurs worldwide. The HEV genome includes three to four open reading frames (ORF1-4). ORF1 proteins are essential for viral replication, while the ORF3 protein is an ion channel involved in the exit of HEV from the infected cells. ORF2 proteins form the viral capsid required for HEV invasion and assembly. They also suppress interferon production and inhibit antibody-mediated neutralisation of HEV, allowing the virus to hijack the host immune response. ORF2 is the only detectable viral protein in the human liver during HEV infection and it is secreted in the plasma, stool, and urine of HEV-infected patients, making it a reliable diagnostic marker. The plasma HEV ORF2 antigen level can predict the outcome of HEV infections. Hence, monitoring HEV ORF2 antigen levels may be useful in assessing the efficacy of anti-HEV therapy. The ORF2 antigen is immunogenic and includes epitopes that can induce neutralising antibodies; therefore, it is a potential HEV vaccine candidate. In this review, we highlighted the different forms of HEV ORF2 protein and their roles in HEV pathogenesis, diagnosis, monitoring the therapeutic efficacy, and vaccine development.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Haidi Karam-Allah Ramadan
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mahmoud H R Hafez
- International Scholar, African Leadership Academy, Johannesburg, South Africa
| | - Amal A Elkhawaga
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Microbiology and Immunology Department, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| |
Collapse
|
39
|
Kinast V, Klöhn M, Nocke MK, Todt D, Steinmann E. Hepatitis E virus species barriers: seeking viral and host determinants. Curr Opin Virol 2022; 56:101274. [PMID: 36283248 DOI: 10.1016/j.coviro.2022.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/03/2022]
Abstract
The intimate relationship between virus and host cell can result in highly adapted viruses that are restricted to a single host. However, some viruses have the ability to infect multiple host species. Remarkably, hepatitis E viruses (HEV) comprise genotypes that are either 'single-host' or 'multi-host' genotypes, a trait that raises fundamental questions: Why do different genotypes differ in their host range, despite a high degree of genomic similarity? What are the underlying molecular determinants that shape species barriers? Here, we review the current knowledge of viral and host determinants that may affect the evolutionary trajectories of HEV. We also provide a perspective on techniques and methods that address open questions of HEV host range and adaptation.
Collapse
Affiliation(s)
- Volker Kinast
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Maximilian K Nocke
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany.
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
40
|
Current Knowledge of Hepatitis E Virus (HEV) Epidemiology in Ruminants. Pathogens 2022; 11:pathogens11101124. [PMID: 36297181 PMCID: PMC9609093 DOI: 10.3390/pathogens11101124] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus (HEV) infection represents an emerging public health concern worldwide. In industrialized countries, increasing numbers of autochthonous cases of human HEV infection are caused by zoonotic transmission of genotypes 3 and 4, mainly through the consumption of contaminated raw or undercooked meat of infected pigs and wild boars, which are considered the main reservoirs of HEV. However, in the last few years, accumulating evidence seems to indicate that several other animals, including different ruminant species, may harbor HEV. Understanding the impact of HEV infection in ruminants and identifying the risk factors affecting transmission among animals and to humans is critical in order to determine their role in the epidemiological cycle of HEV. In this review, we provide a summary of current knowledge on HEV ecology in ruminants. A growing body of evidence has revealed that these animal species may be potential important hosts of HEV, raising concerns about the possible implications for public health.
Collapse
|
41
|
Wong LP, Tay ST, Chua KH, Goh XT, Alias H, Zheng Z, Zhao Q, Wu T, Xia N, Hu Z, Lin Y. Serological Evidence of Hepatitis E Virus (HEV) Infection Among Ruminant Farmworkers: A Retrospective Study from Malaysia. Infect Drug Resist 2022; 15:5533-5541. [PMID: 36164335 PMCID: PMC9508706 DOI: 10.2147/idr.s367394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background As scant data are available about Hepatitis E virus (HEV) infection in Malaysia, this study aimed to determine the seroprevalence of HEV amongst ruminant farmworkers in Malaysia. Methods A total of 87 farmworkers provided serum samples, which were collected from eight farms. All serum samples were tested for anti-HEV IgG and anti-HEV IgM by an enzyme-linked immunosorbent assay (ELISA) using the Wantai HEV-IgG and HEV-IgM ELISA kits from Beijing Wantai Biological Pharmacy Enterprise Co., Ltd, Beijing, China. Results Farmworkers from six cattle farms, one sheep farm and one goat farm were investigated in this study. Only one farm practices zero-grazing, with the rest using rotational grazing. Of the 87 farmworkers, males comprised 83.9%, and almost half (47.1%) were aged 20-35 years old. By ethnic group, the vast majority were Malay. Most of the farmworkers have good hygiene practices; washing or changing their clothes and showering after dealing with farm animals were common. None of the farmworker serum samples had anti-HEV IgM and IgG detected (95% confidence interval (CI): 0, 0.0415). Conclusion The finding suggests that the farmworkers had no previous exposure to Hepatitis E, and were not at risk of occupational exposure to HEV infection. Our findings suggest that a zero seroprevalence of HEV infection among ruminant farmworkers in the Muslim majority country. Good farm management, hygiene practices and the absence of contact with swine-related contamination might have contributed to the no or minimal zoonotic risks of HEV amongst farmworkers surveyed in this study.
Collapse
Affiliation(s)
- Li Ping Wong
- Centre for Epidemiology and Evidence-Based Practice, Department of Social and Preventive Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.,Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Xiang Ting Goh
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Haridah Alias
- Centre for Epidemiology and Evidence-Based Practice, Department of Social and Preventive Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Zizheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China.,The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Zhijian Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China
| | - Yulan Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China
| |
Collapse
|
42
|
Pedroni L, Dellafiora L, Varrà MO, Galaverna G, Ghidini S. In silico study on the Hepatitis E virus RNA Helicase and its inhibition by silvestrol, rocaglamide and other flavagline compounds. Sci Rep 2022; 12:15512. [PMID: 36109625 PMCID: PMC9477874 DOI: 10.1038/s41598-022-19818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Hepatitis E Virus (HEV) follows waterborne or zoonotic/foodborne transmission. Genotype 3 HEV infections are worldwide spread, especially in swine populations, representing an emerging threat for human health, both for farm workers and pork meat consumers. Unfortunately, HEV in vitro culture and analysis are still difficult, resulting in a poor understanding of its biology and hampering the implementation of counteracting strategies. Indeed, HEV encodes for only one non-structural multifunctional and multidomain protein (ORF1), which might be a good candidate for anti-HEV drugging strategies. In this context, an in silico molecular modelling approach that consisted in homology modelling to derive the 3D model target, docking study to simulate the binding event, and molecular dynamics to check complex stability over time was used. This workflow succeeded to describe ORF1 RNA Helicase domain from a molecular standpoint allowing the identification of potential inhibitory compounds among natural plant-based flavagline-related molecules such as silvestrol, rocaglamide and derivatives thereof. In the context of scouting potential anti-viral compounds and relying on the outcomes presented, further dedicated investigations on silvestrol, rocaglamide and a promising oxidized derivative have been suggested. For the sake of data reproducibility, the 3D model of HEV RNA Helicase has been made publicly available.
Collapse
|
43
|
Qian Z, Hao X, Xia Y, Yu W, Huang F. Rat Hepatitis E virus is a potential zoonotic pathogen to humans. J Hepatol 2022; 77:868-870. [PMID: 35643204 DOI: 10.1016/j.jhep.2022.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022]
Affiliation(s)
- Zhongyao Qian
- Medical Faculty, Kunming University of Science and Technology, Yunnan Provincal Key Laboratory of Clinical Virology, 727 Jingming Road, Kunming, China
| | - Xianhui Hao
- Medical Faculty, Kunming University of Science and Technology, Yunnan Provincal Key Laboratory of Clinical Virology, 727 Jingming Road, Kunming, China
| | - Yueping Xia
- Medical Faculty, Kunming University of Science and Technology, Yunnan Provincal Key Laboratory of Clinical Virology, 727 Jingming Road, Kunming, China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China.
| | - Fen Huang
- Medical Faculty, Kunming University of Science and Technology, Yunnan Provincal Key Laboratory of Clinical Virology, 727 Jingming Road, Kunming, China.
| |
Collapse
|
44
|
Ou X, Mao S, Dong J, Chen J, Sun D, Wang M, Zhu D, Jia R, Chen S, Liu M, Yang Q, Wu Y, Zhao X, Zhang S, Huang J, Gao Q, Liu Y, Zhang L, Miao Z, Li Y, Li Y, Pan Q, Cheng A. A proposed disease classification system for duck viral hepatitis. Poult Sci 2022; 101:102042. [PMID: 35905549 PMCID: PMC9334327 DOI: 10.1016/j.psj.2022.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/29/2022] Open
Abstract
The nomenclature of duck viral hepatitis (DVH) was historically not a problem. However, 14 hepatotropic viruses among 10 different genera are associated with the same disease name, DVH. Therefore, the disease name increasingly lacks clarity and may no longer fit the scientific description of the disease. Because one disease should not be attributed to 10 genera of viruses, this almost certainly causes misunderstanding regarding the disease-virus relationship. Herein, we revisited the problem and proposed an update to DVH disease classification. This classification is based on the nomenclature of human viral hepatitis and the key principle of Koch's postulates (“one microbe and one disease”). In total, 10 types of disease names have been proposed. These names were literately matched with hepatitis-related viruses. We envision that this intuitive nomenclature system will facilitate scientific communication and consistent interpretation in this field, especially in the Asian veterinary community, where these diseases are most commonly reported.
Collapse
Affiliation(s)
- Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Jingwen Dong
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Jiayi Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Zhijiang Miao
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, the Netherlands
| | - Yunlong Li
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, the Netherlands
| | - Yang Li
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, the Netherlands; Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China.
| |
Collapse
|
45
|
Caballeria L, Martínez-Escudé A, Expósito C, Rodríguez L, Torán-Monserrat P. Hepatitis E. Epidemiología y relevancia clínica. FMC - FORMACIÓN MÉDICA CONTINUADA EN ATENCIÓN PRIMARIA 2022; 29:230-238. [DOI: 10.1016/j.fmc.2021.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
46
|
Occurrence of hepatitis E virus (HEV) in Calabrian wild boars. Int J Food Microbiol 2022; 371:109671. [DOI: 10.1016/j.ijfoodmicro.2022.109671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/14/2022] [Accepted: 04/03/2022] [Indexed: 11/24/2022]
|
47
|
Caballero-Gómez J, García-Bocanegra I, Jiménez-Martín D, Cano-Terriza D, Risalde MA, López-López P, Jiménez-Ruiz S, Rivero A, Rivero-Juarez A. Epidemiological survey and risk factors associated with hepatitis E virus in small ruminants in southern Spain. Zoonoses Public Health 2022; 69:387-393. [PMID: 35244968 PMCID: PMC9311081 DOI: 10.1111/zph.12935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/21/2022]
Abstract
Autochthonous cases of hepatitis E (HE) associated with zoonotic genotypes HEV-3 and HEV-4 have significantly increased in industrialized countries over the last decade. Suidae are generally recognized as the main reservoirs of these genotypes. Susceptibility to HE virus (HEV) infection and zoonotic potential have also been confirmed in other species, including sheep and goat. However, the information about their role in the epidemiology of HEV remains very scarce. The objective of this study was to assess the prevalence, spatial distribution and risk factors associated with HEV exposure in sheep and goats in southern Spain, the country with the highest census of small domestic ruminants in the European Union. Blood samples from 240 sheep and 240 goats were collected between 2015 and 2017. Sera were analysed in parallel using a commercial double-antigen ELISA and real-time PCR. A total of 38 (7.9%; 95%CI: 5.5-10.3) out of 480 sampled animals showed anti-HEV antibodies. By species, the seroprevalences found in sheep and goats were 2.1% (5/240; 95%CI: 0.3-3.9) and 13.8% (33/240; 95%CI: 9.4-18.1) respectively. Anti-HEV antibodies were found on 19 (59.4%; 95%CI: 42.4-76.4) of the 32 sampled farms. The GEE model showed that species (goat) and number of small ruminants in the farm (≤348 animals and ≥538 animals) were risk factors potentially associated with HEV exposure in small ruminants in the study area. HEV RNA was not detected in any of the 480 (0.0%; 95%CI: 0.0-0.8) tested animals. Our results confirm that sheep and goats are naturally, but not equally exposed to HEV and indicate the widespread spatial distribution of HEV among small ruminant populations in southern Spain. Further studies are required to elucidate the role of sheep and goat in the epidemiology of HEV and their potential implications for public health.
Collapse
Affiliation(s)
- Javier Caballero-Gómez
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain.,Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC
| | - Ignacio García-Bocanegra
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC
| | - Débora Jiménez-Martín
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| | - David Cano-Terriza
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC
| | - María A Risalde
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC.,Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Pedro López-López
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC
| | - Saúl Jiménez-Ruiz
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain.,Health & Biotechnology (SaBio) Group, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Antonio Rivero
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC
| | - Antonio Rivero-Juarez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC
| |
Collapse
|
48
|
Jian Z, Li Y, Xu Z, Zhao J, Li F, Deng H, Sun X, Zhu L. Research on a rat model of genotype IV swine hepatitis E virus. Vet Med Sci 2022; 8:886-898. [PMID: 34981892 PMCID: PMC8959259 DOI: 10.1002/vms3.707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) is an important zoonotic pathogen, Genotypes 3 and 4 are the main zoonotic genotype. Due to the lack of mature and effective culture cell lines, researches on genotype IV swine HEV (SHEV-4) infection and pathogenic mechanism have been carried out in pigs, gerbils and non-human primate models. OBJECTIVES The aim of this study was to establish a rat infection model by intra-peritoneal infection with SHEV-4, which provided a new research idea and scientific basis for further revealing the mechanism of HEV infection and preventing HEV infection. METHODS SHEV-4 virus was administered intra-peritoneally to 6- to 8-week-old mice to observe the serological changes and virus release. RESULTS According to the results of the rat serum HEV IgG, ALT and AST levels, swine HEV, minus-strand HEV RNA can infect Sprague-Dawley rats across species, and there are no obvious clinical symptoms after infection. HEV RNA was detected in most tissues and organs after infection, but the viral load was low. The liver had pathological changes of chronic hepatitis. CONCLUSIONS We found that the rat model of porcine HEV infection is a small animal model suitable for the study of HEV infection.
Collapse
Affiliation(s)
- Zhijie Jian
- College of Veterinary MedicineSichuan Agricultural UniversityChengduP. R. China
| | - Youyou Li
- Sichuan Water Conservancy College, College of Veterinary MedicineChengduP. R. China
| | - Zhiwen Xu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary MedicineSichuan Agricultural UniversityChengduP. R. China
| | - Jun Zhao
- College of Veterinary MedicineSichuan Agricultural UniversityChengduP. R. China
| | - Fengqin Li
- College of Veterinary MedicineSichuan Agricultural UniversityChengduP. R. China
- College of Animal ScienceXichang UniversityXichangSichuanP. R. China
| | - Huidan Deng
- College of Veterinary MedicineSichuan Agricultural UniversityChengduP. R. China
| | - Xiangang Sun
- College of Veterinary MedicineSichuan Agricultural UniversityChengduP. R. China
| | - Ling Zhu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary MedicineSichuan Agricultural UniversityChengduP. R. China
| |
Collapse
|
49
|
Shaheen MNF. The concept of one health applied to the problem of zoonotic diseases. Rev Med Virol 2022; 32:e2326. [PMID: 35060214 DOI: 10.1002/rmv.2326] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022]
Abstract
Zoonotic diseases are a burden on healthcare systems globally, particularly underdeveloped nations. Numerous vertebrate animals (e.g., birds, mammals and reptiles) serve as amplifier hosts or reservoirs for viral zoonoses. The spread of zoonotic disease is associated with environmental factors, climate change, animal health as well as other human activities including globalization, urbanization and travel. Diseases at the human-animal environment interface (e.g., zoonotic diseases, vector-borne diseases, food/water borne diseases) continue to pose risk to animals and humans with a great significant mortality and morbidity. It is estimated that of 1400 infectious diseases known to affect humans, 60% of them are of animal origin. In addition, 75% of the emerging infectious diseases have a zoonotic nature, worldwide. The one health concept plays an important role in the control and prevention of zoonoses by integrating animal, human, and environmental health through collaboration and communication among osteopaths, wildlife, physicians, veterinarians professionals, public health and environmental experts, nurses, dentists, physicists, biomedical engineers, plant pathologists, biochemists, and others. No one sector, organization, or person can address issues at the animal-human-ecosystem interface alone.
Collapse
Affiliation(s)
- Mohamed N F Shaheen
- Environmental Virology Laboratory, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Center, Giza, Egypt
| |
Collapse
|
50
|
Tialla D, Cissé A, Ouédraogo GA, Hübschen JM, Tarnagda Z, Snoeck CJ. Prevalence of hepatitis E virus antibodies in cattle in Burkina Faso associated with swine mixed farming. J Vet Sci 2022; 23:e33. [PMID: 35332710 PMCID: PMC9149500 DOI: 10.4142/jvs.21235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/03/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Background Endemic circulation of human-specific hepatitis E virus (HEV) genotypes 1 and 2 may occult the importance of sporadic zoonotic HEV transmissions in Africa. Increasing numbers of studies reporting anti-HEV antibodies in cattle and the discovery of infectious HEV in cow milk has raised public health concern, but cattle exposure has seldom been investigated in Africa. Objectives This study aimed at investigating the role of cows in the epidemiology of HEV in Burkina Faso and farmers habits in terms of dairy product consumption as a prerequisite to estimate the risk of transmission to humans. Methods Sera from 475 cattle and 192 pigs were screened for the presence of anti-HEV antibodies while HEV RNA in swine stools was detected by reverse transcription polymerase chain reaction. Data on mixed farming, dairy product consumption and selling habits were gathered through questionnaires. Results The overall seroprevalence in cattle was 5.1% and herd seroprevalence reached 32.4% (11/34). Herd seropositivity was not associated with husbandry practice or presence of rabbits on the farms. However, herd seropositivity was associated with on-site presence of pigs, 80.7% of which had anti-HEV antibodies. The majority of farmers reported to preferentially consume raw milk based dairy products. Conclusions Concomitant presence of pigs on cattle farms constitutes a risk factor for HEV exposure of cattle. However, the risk of HEV infections associated with raw cow dairy product consumption is currently considered as low.
Collapse
Affiliation(s)
- Dieudonné Tialla
- Unit of Epidemic-Prone Diseases, Emerging Diseases and Zoonoses (UMEMEZ), National Influenza Reference Laboratory (LNR-G), Department of Biomedical and Public Health, Health Science Research Institute (IRSS), National Centre for Scientific and Technological Research (CNRST), Ouagadougou, 03 BP 7192, Burkina Faso
- Department Animal Health, National School of Animal Husbandry and Health (ENESA), Ouagadougou, Secteur 28, Burkina Faso
| | - Assana Cissé
- Unit of Epidemic-Prone Diseases, Emerging Diseases and Zoonoses (UMEMEZ), National Influenza Reference Laboratory (LNR-G), Department of Biomedical and Public Health, Health Science Research Institute (IRSS), National Centre for Scientific and Technological Research (CNRST), Ouagadougou, 03 BP 7192, Burkina Faso
| | - Georges Anicet Ouédraogo
- Laboratory of Research and Teaching in Health and Animal Biotechnology (LARESBA), University Nazi Boni, Bobo-Dioulasso, 01 BP 109, Burkina Faso
| | - Judith M. Hübschen
- Clinical and Applied Virology Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, L-4354, Luxembourg
| | - Zékiba Tarnagda
- Unit of Epidemic-Prone Diseases, Emerging Diseases and Zoonoses (UMEMEZ), National Influenza Reference Laboratory (LNR-G), Department of Biomedical and Public Health, Health Science Research Institute (IRSS), National Centre for Scientific and Technological Research (CNRST), Ouagadougou, 03 BP 7192, Burkina Faso
| | - Chantal J. Snoeck
- Clinical and Applied Virology Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, L-4354, Luxembourg
| |
Collapse
|