1
|
Peng X, Zheng Y, Xue Y, Liang X, He P, Chen H, He P, Peng Y, Zhao Z, Chen Y, Gui X, Yang L, Xiong Y, Lin J, Shi Y, Chu C, Zhang Y, Liu G. Super‐Stable Homogeneously Sustained‐Release System Mediates Transcatheter Arterial Ionic‐Embolization Strategy for Hepatocellular Carcinoma Therapy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202311505] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Indexed: 01/04/2025]
Abstract
AbstractThe clinical effectiveness of locoregional therapies in treating hepatocellular carcinoma (HCC) is frequently constrained by multi‐drug resistance and/or tumor metastasis. To surmount these challenges, a promising approach, transcatheter arterial ionic‐embolization (TAIE) is proposed, which can specifically and continuously disrupt the intracellular ionic balance to significantly inhibit tumor activity and invasion. The hydrophilic micro‐nanoscale sodium chloride particles (SCPs) are ingeniously intermixed with hydrophobic lipiodol to create a super‐stable homogeneous embolic formulation (lipiodol‐sodium chloride, LSC). After interventional administration, the LSC selectively deposits in HCC lesions, where lipiodol stably delivers SCPs to disrupt the cell's ionic balance, causing cell death without drug resistance. Notably, it is demonstrated that LSC can significantly hinder tumor cell migration and invasion. The mechanism is through SCP disruption of the ionic balance, which induces cell swelling and subsequent vimentin hydrolysis‐mediated cytoskeletal remodeling. In addition, it is found that LSC treatment notably downregulates the expression of MYLK, TLN, and THBS2 genes in the focal adhesion (FA) signaling pathway of HepG2 cells. LSC formulation integrated tumor‐specific deposition, intratumoral sustained release, efficient tumoricidal activity, significant metastasis inhibition, and excellent biological safety, thereby demonstrating superior in vivo tumor therapeutic effects via TAIE strategy, and showing a promising cancer therapeutic approach for clinical application.
Collapse
Affiliation(s)
- Xuqi Peng
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| | - Yating Zheng
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| | - Yi Xue
- Department of Burns and Plastic & Wound Repair Surgery Xiang'an Hospital of Xiamen University School of Medicine Xiamen University Xiamen 361102 China
| | - Xiaoliu Liang
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| | - Pan He
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
- Department of Hepatobiliary Surgery Academician (Expert) Workstation Affiliated Hospital of North Sichuan Medical College Nanchong 637600 China
| | - Hu Chen
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| | - Peng He
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| | - Yisheng Peng
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| | - Zhenwen Zhao
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| | - Yulun Chen
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| | - Xiran Gui
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| | - Lei Yang
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| | - Yongfu Xiong
- Department of Hepatobiliary Surgery Academician (Expert) Workstation Affiliated Hospital of North Sichuan Medical College Nanchong 637600 China
| | - Juan Lin
- Research Unit of Cellular Stress of Chinese Academy of Medical Sciences Cancer Research Center of Xiamen University School of Medicine Xiamen University Xiamen 361102 China
| | - Yesi Shi
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| | - Chengchao Chu
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
- Eye Institute of Xiamen University Fujian Provincial Key Laboratory of Ophthalmology and Visual Science School of Medicine Xiamen University Xiamen 361102 China
| | - Yang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
- Shen Zhen Research Institute of Xiamen University Shenzhen 518057 China
- Center for Nanomedicine and Department of Anesthesiology Perioperative and Pain Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| |
Collapse
|
2
|
Bortoletto AS, Parchem RJ. KRAS Hijacks the miRNA Regulatory Pathway in Cancer. Cancer Res 2023; 83:1563-1572. [PMID: 36946612 PMCID: PMC10183808 DOI: 10.1158/0008-5472.can-23-0296] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 03/23/2023]
Abstract
Extensive studies have focused on the misregulation of individual miRNAs in cancer. More recently, mutations in the miRNA biogenesis and processing machinery have been implicated in several malignancies. Such mutations can lead to global miRNA misregulation, which may promote many of the well-known hallmarks of cancer. Interestingly, recent evidence also suggests that oncogenic Kristen rat sarcoma viral oncogene homolog (KRAS) mutations act in part by modulating the activity of members of the miRNA regulatory pathway. Here, we highlight the vital role mutations in the miRNA core machinery play in promoting malignant transformation. Furthermore, we discuss how mutant KRAS can simultaneously impact multiple steps of miRNA processing and function to promote tumorigenesis. Although the ability of KRAS to hijack the miRNA regulatory pathway adds a layer of complexity to its oncogenic nature, it also provides a potential therapeutic avenue that has yet to be exploited in the clinic. Moreover, concurrent targeting of mutant KRAS and members of the miRNA core machinery represents a potential strategy for treating cancer.
Collapse
Affiliation(s)
- Angelina S. Bortoletto
- Center for Cell and Gene Therapy, Stem Cell and Regenerative Medicine Center, Department of Molecular and Cellular Biology, Department of Neuroscience, Translational Biology and Molecular Medicine Program, Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Ronald J. Parchem
- Center for Cell and Gene Therapy, Stem Cell and Regenerative Medicine Center, Department of Molecular and Cellular Biology, Department of Neuroscience, Translational Biology and Molecular Medicine Program, Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
3
|
Sell MC, Ramlogan-Steel CA, Steel JC, Dhungel BP. MicroRNAs in cancer metastasis: biological and therapeutic implications. Expert Rev Mol Med 2023; 25:e14. [PMID: 36927814 PMCID: PMC10407223 DOI: 10.1017/erm.2023.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Cancer metastasis is the primary cause of cancer-related deaths. The seeding of primary tumours at a secondary site is a highly inefficient process requiring substantial alterations in the genetic architecture of cancer cells. These alterations include significant changes in global gene expression patterns. MicroRNAs are small, non-protein coding RNAs which play a central role in regulating gene expression. Here, we focus on microRNA determinants of cancer metastasis and examine microRNA dysregulation in metastatic cancer cells. We dissect the metastatic process in a step-wise manner and summarise the involvement of microRNAs at each step. We also discuss the advantages and limitations of different microRNA-based strategies that have been used to target metastasis in pre-clinical models. Finally, we highlight current clinical trials that use microRNA-based therapies to target advanced or metastatic tumours.
Collapse
Affiliation(s)
- Marie C. Sell
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Charmaine A. Ramlogan-Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Jason C. Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Bijay P. Dhungel
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
4
|
Argonaute 2 Restores Erectile Function by Enhancing Angiogenesis and Reducing Reactive Oxygen Species Production in Streptozotocin (STZ)-Induced Type-1 Diabetic Mice. Int J Mol Sci 2023; 24:ijms24032935. [PMID: 36769259 PMCID: PMC9918048 DOI: 10.3390/ijms24032935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Severe vascular and nerve damage from diabetes is a leading cause of erectile dysfunction (ED) and poor response to oral phosphodiesterase 5 inhibitors. Argonaute 2 (Ago2), a catalytic engine in mammalian RNA interference, is involved in neurovascular regeneration under inflammatory conditions. In the present study, we report that Ago2 administration can effectively improve penile erection by enhancing cavernous endothelial cell angiogenesis and survival under diabetic conditions. We found that although Ago2 is highly expressed around blood vessels and nerves, it is significantly reduced in the penis tissue of diabetic mice. Exogenous administration of the Ago2 protein restored erectile function in diabetic mice by reducing reactive oxygen species production-signaling pathways (inducing eNOS Ser1177/NF-κB Ser536 signaling) and improving cavernous endothelial angiogenesis, migration, and cell survival. Our study provides new evidence that Ago2 mediation may be a promising therapeutic strategy and a new approach for diabetic ED treatment.
Collapse
|
5
|
Zhang Z, Li J, Jiao S, Han G, Zhu J, Liu T. Functional and clinical characteristics of focal adhesion kinases in cancer progression. Front Cell Dev Biol 2022; 10:1040311. [PMID: 36407100 PMCID: PMC9666724 DOI: 10.3389/fcell.2022.1040311] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and an adaptor protein that primarily regulates adhesion signaling and cell migration. FAK promotes cell survival in response to stress. Increasing evidence has shown that at the pathological level, FAK is highly expressed in multiple tumors in several systems (including lung, liver, gastric, and colorectal cancers) and correlates with tumor aggressiveness and patient prognosis. At the molecular level, FAK promotes tumor progression mainly by altering survival signals, invasive capacity, epithelial-mesenchymal transition, the tumor microenvironment, the Warburg effect, and stemness of tumor cells. Many effective drugs have been developed based on the comprehensive role of FAK in tumor cells. In addition, its potential as a tumor marker cannot be ignored. Here, we discuss the pathological and pre-clinical evidence of the role of FAK in cancer development; we hope that these findings will assist in FAK-based clinical studies.
Collapse
Affiliation(s)
- Zhaoyu Zhang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinlong Li
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Guangda Han
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaming Zhu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tianzhou Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Cheng Z, Wang J, Xu Y, Jiang T, Xue Z, Li S, Zhao Y, Song H, Song J. N7-methylguanosine-related lncRNAs: Distinction between hot and cold tumors and construction of predictive models in colon adenocarcinoma. Front Oncol 2022; 12:951452. [PMID: 36185235 PMCID: PMC9520617 DOI: 10.3389/fonc.2022.951452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Colon adenocarcinoma (COAD) is a prevalent malignant tumor that severely threatens human health across the globe. Immunotherapy is an essential need for patients with COAD. N7-methylguanosine (m7G) has been associated with human diseases, and non-coding RNAs (lncRNAs) regulate various tumor-related biological processes. Nonetheless, the m7G-related lncRNAs involved in COAD regulation are limited. This study aims to construct the clustering features and prognostic model of m7G-related lncRNAs in COAD. First, The Cancer Genome Atlas (TCGA) database was used to identify m7G-related differentially expressed lncRNAs (DELs), based on which COAD cases could be classified into two subtypes. Subsequently, univariate Cox analysis was used to identify 9 prognostic m7G-related lncRNAs. Further, Five candidates were screened by LASSO-Cox regression to develop new models. The patients were divided into high-risk and low-risk groups based on the median risk score. Consequently, the Kaplan-Meier survival curve demonstrated a statistically significant overall survival (OS) between the high- and low-risk groups (P<0.001). Multivariate Cox regression analysis revealed that risk score is an independent prognostic factor in COAD patients (P<0.001). This confirms the clinical applicability of the model. Additionally, we performed Gene Set Enrichment Analysis (GSEA), which uncovered the biological and functional differences between risk subgroups, i.e., enrichment of immune-related diseases in the high-risk group and enrichment of metabolic-related pathways in the low-risk group. In a drug sensitivity analysis, high-risk group were more sensitive to some chemotherapeutics and targeted drugs than low-risk group. Eventually, the stability of the model was confirmed by qRT-PCR. Our study unraveled the features of different immune states of COAD and established a prognostic model, including five m7G-related lncRNAs for COAD patients. These results will bolster clinical treatment and survival prediction of COAD.
Collapse
Affiliation(s)
- Zhichao Cheng
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaqi Wang
- Department of General Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Jiang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhenyu Xue
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuai Li
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Zhao
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hu Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Jun Song, ; Hu Song,
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Jun Song, ; Hu Song,
| |
Collapse
|
7
|
The role of RNA binding proteins in hepatocellular carcinoma. Adv Drug Deliv Rev 2022; 182:114114. [PMID: 35063534 DOI: 10.1016/j.addr.2022.114114] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of overall cancer deaths worldwide with limited therapeutic options. Due to the heterogeneity of HCC pathogenesis, the molecular mechanisms underlying HCC development are not fully understood. Emerging evidence indicates that RNA-binding proteins (RBPs) play a vital role throughout hepatocarcinogenesis. Thus, a deeper understanding of how RBPs contribute to HCC progression will provide new tools for early diagnosis and prognosis of this devastating disease. In this review, we summarize the tumor suppressive and oncogenic roles of RBPs and their roles in hepatocarcinogenesis. The diagnostic and therapeutic potential of RBPs in HCC, including their limitations, are also discussed.
Collapse
|
8
|
Liang C, Huang M, Li T, Li L, Sussman H, Dai Y, Siemann DW, Xie M, Tang X. Towards an integrative understanding of cancer mechanobiology: calcium, YAP, and microRNA under biophysical forces. SOFT MATTER 2022; 18:1112-1148. [PMID: 35089300 DOI: 10.1039/d1sm01618k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An increasing number of studies have demonstrated the significant roles of the interplay between microenvironmental mechanics in tissues and biochemical-genetic activities in resident tumor cells at different stages of tumor progression. Mediated by molecular mechano-sensors or -transducers, biomechanical cues in tissue microenvironments are transmitted into the tumor cells and regulate biochemical responses and gene expression through mechanotransduction processes. However, the molecular interplay between the mechanotransduction processes and intracellular biochemical signaling pathways remains elusive. This paper reviews the recent advances in understanding the crosstalk between biomechanical cues and three critical biochemical effectors during tumor progression: calcium ions (Ca2+), yes-associated protein (YAP), and microRNAs (miRNAs). We address the molecular mechanisms underpinning the interplay between the mechanotransduction pathways and each of the three effectors. Furthermore, we discuss the functional interactions among the three effectors in the context of soft matter and mechanobiology. We conclude by proposing future directions on studying the tumor mechanobiology that can employ Ca2+, YAP, and miRNAs as novel strategies for cancer mechanotheraputics. This framework has the potential to bring insights into the development of novel next-generation cancer therapies to suppress and treat tumors.
Collapse
Affiliation(s)
- Chenyu Liang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Miao Huang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Tianqi Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Lu Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Hayley Sussman
- Department of Radiation Oncology, COM, Gainesville, FL, 32611, USA
| | - Yao Dai
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Dietmar W Siemann
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Mingyi Xie
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
- Department of Biomedical Engineering, College of Engineering (COE), University of Delaware (UD), Newark, DE, 19716, USA
| | - Xin Tang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| |
Collapse
|
9
|
FAK in Cancer: From Mechanisms to Therapeutic Strategies. Int J Mol Sci 2022; 23:ijms23031726. [PMID: 35163650 PMCID: PMC8836199 DOI: 10.3390/ijms23031726] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 01/25/2023] Open
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is overexpressed and activated in many cancer types. FAK regulates diverse cellular processes, including growth factor signaling, cell cycle progression, cell survival, cell motility, angiogenesis, and the establishment of immunosuppressive tumor microenvironments through kinase-dependent and kinase-independent scaffolding functions in the cytoplasm and nucleus. Mounting evidence has indicated that targeting FAK, either alone or in combination with other agents, may represent a promising therapeutic strategy for various cancers. In this review, we summarize the mechanisms underlying FAK-mediated signaling networks during tumor development. We also summarize the recent progress of FAK-targeted small-molecule compounds for anticancer activity from preclinical and clinical evidence.
Collapse
|
10
|
Machado-Pereira M, Saraiva C, Bernardino L, Cristóvão AC, Ferreira R. Argonaute-2 protects the neurovascular unit from damage caused by systemic inflammation. J Neuroinflammation 2022; 19:11. [PMID: 34991639 PMCID: PMC8740421 DOI: 10.1186/s12974-021-02324-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The brain vasculature plays a pivotal role in the inflammatory process by modulating the interaction between blood cells and the neurovascular unit. Argonaute-2 (Ago2) has been suggested as essential for endothelial survival but its role in the brain vasculature or in the endothelial-glial crosstalk has not been addressed. Thus, our aim was to clarify the significance of Ago2 in the inflammatory responses elicited by these cell types. METHODS Mouse primary cultures of brain endothelial cells, astrocytes and microglia were used to evaluate cellular responses to the modulation of Ago2. Exposure of microglia to endothelial cell-conditioned media was used to assess the potential for in vivo studies. Adult mice were injected intraperitoneally with lipopolysaccharide (LPS) (2 mg/kg) followed by three daily intraperitoneal injections of Ago2 (0.4 nM) to assess markers of endothelial disruption, glial reactivity and neuronal function. RESULTS Herein, we demonstrated that LPS activation disturbed the integrity of adherens junctions and downregulated Ago2 in primary brain endothelial cells. Exogenous treatment recovered intracellular Ago2 above control levels and recuperated vascular endothelial-cadherin expression, while downregulating LPS-induced nitric oxide release. Primary astrocytes did not show a significant change in Ago2 levels or response to the modulation of the Ago2 system, although endogenous Ago2 was shown to be critical in the maintenance of tumor necrosis factor-α basal levels. LPS-activated primary microglia overexpressed Ago2, and Ago2 silencing contained the inflammatory response to some extent, preventing interleukin-6 and nitric oxide release. Moreover, the secretome of Ago2-modulated brain endothelial cells had a protective effect over microglia. The intraperitoneal injection of LPS impaired blood-brain barrier and neuronal function, while triggering inflammation, and the subsequent systemic administration of Ago2 reduced or normalized endothelial, glial and neuronal markers of LPS damage. This outcome likely resulted from the direct action of Ago2 over the brain endothelium, which reestablished glial and neuronal function. CONCLUSIONS Ago2 could be regarded as a putative therapeutic agent, or target, in the recuperation of the neurovascular unit in inflammatory conditions.
Collapse
Affiliation(s)
- Marta Machado-Pereira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Cláudia Saraiva
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
- Present Address: Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Liliana Bernardino
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Ana C. Cristóvão
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
- NeuroSoV, UBImedical, EM506, University of Beira Interior, Covilhã, Portugal
| | - Raquel Ferreira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
- CEDOC, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| |
Collapse
|
11
|
Teixeira AL, Patrão AS, Dias F, Silva C, Vieira I, Silva JF, Ferreira M, Morais A, Maurício J, Medeiros R. AGO2 expression levels and related genetic polymorphisms: influence in renal cell progression and aggressive phenotypes. Pharmacogenomics 2021; 22:1069-1079. [PMID: 34672687 DOI: 10.2217/pgs-2021-0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Renal cell carcinoma (RCC) is the most lethal urological cancer and up to 40% of patients submitted to surgery will relapse. Thus, the study aim was to analyze the associations of AGO2 SNPs with RCC patients' prognosis, and evaluate their effect on AGO2 mRNA levels. Materials & methods: The AGO2 rs4961280, rs3928672 and rs11996715 polymorphisms and the relative quantification of AGO2 mRNA levels were analyzed by real-time PCR. Results: We observed that AGO2 rs4961280 AC + AA genotypes carriers presented a higher cancer progression risk (odds ratio= 3.13, p < 0.001), a reduced progression-free survival (log rank test, p = 0.003) and an increased risk of an early relapse (hazard ratio= 2.26, p = 0.008). In fact, these patients also presented higher circulating levels of AGO2 mRNA (p = 0.043), with the high levels being associated with more aggressive tumors. Conclusion: The AGO2 rs4961280 AA/AC genotypes are unfavorable RCC prognostic biomarkers, with the AGO2 levels being a useful RCC aggressive phenotype biomarker.
Collapse
Affiliation(s)
- Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto CCC)
| | - Ana Sofia Patrão
- Medical Oncology Department of The Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISECI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto CCC)
| | - Carlos Silva
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISECI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto CCC)
| | - Isabel Vieira
- Urology Department of The Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - José Fernando Silva
- Urology Department of The Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Marta Ferreira
- Medical Oncology Department of The Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - António Morais
- Urology Department of The Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Joaquina Maurício
- Medical Oncology Department of The Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISECI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto CCC).,ICBAS, Abel Salazar Institute for The Biomedical Sciences, University of Porto, Portugal.,FMUP, Faculty of Medicine, University of Porto, Portugal.,Research Department, LPCC- Portuguese League Against Cancer (NR Norte), Porto, Portugal.,Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal
| |
Collapse
|
12
|
Tien JCY, Chugh S, Goodrum AE, Cheng Y, Mannan R, Zhang Y, Wang L, Dommeti VL, Wang X, Xu A, Hon J, Kenum C, Su F, Wang R, Cao X, Shankar S, Chinnaiyan AM. AGO2 promotes tumor progression in KRAS-driven mouse models of non-small cell lung cancer. Proc Natl Acad Sci U S A 2021; 118:e2026104118. [PMID: 33972443 PMCID: PMC8157917 DOI: 10.1073/pnas.2026104118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Lung cancer is the deadliest malignancy in the United States. Non-small cell lung cancer (NSCLC) accounts for 85% of cases and is frequently driven by activating mutations in the gene encoding the KRAS GTPase (e.g., KRASG12D). Our previous work demonstrated that Argonaute 2 (AGO2)-a component of the RNA-induced silencing complex (RISC)-physically interacts with RAS and promotes its downstream signaling. We therefore hypothesized that AGO2 could promote KRASG12D-dependent NSCLC in vivo. To test the hypothesis, we evaluated the impact of Ago2 knockout in the KPC (LSL-KrasG12D/+;p53f/f;Cre) mouse model of NSCLC. In KPC mice, intratracheal delivery of adenoviral Cre drives lung-specific expression of a stop-floxed KRASG12D allele and biallelic ablation of p53 Simultaneous biallelic ablation of floxed Ago2 inhibited KPC lung nodule growth while reducing proliferative index and improving pathological grade. We next applied the KPHetC model, in which the Clara cell-specific CCSP-driven Cre activates KRASG12D and ablates a single p53 allele. In these mice, Ago2 ablation also reduced tumor size and grade. In both models, Ago2 knockout inhibited ERK phosphorylation (pERK) in tumor cells, indicating impaired KRAS signaling. RNA sequencing (RNA-seq) of KPC nodules and nodule-derived organoids demonstrated impaired canonical KRAS signaling with Ago2 ablation. Strikingly, accumulation of pERK in KPC organoids depended on physical interaction of AGO2 and KRAS. Taken together, our data demonstrate a pathogenic role for AGO2 in KRAS-dependent NSCLC. Given the prevalence of this malignancy and current difficulties in therapeutically targeting KRAS signaling, our work may have future translational relevance.
Collapse
Affiliation(s)
- Jean Ching-Yi Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Seema Chugh
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Andrew E Goodrum
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Yunhui Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Lisha Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Vijaya L Dommeti
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Xiaoming Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Alice Xu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Jennifer Hon
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Carson Kenum
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
| | - Sunita Shankar
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109;
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
- Department of Urology, University of Michigan, Ann Arbor, MI 48109
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
13
|
Liu X, Meng X, Peng X, Yao Q, Zhu F, Ding Z, Sun H, Liu X, Li D, Lu Y, Tang H, Li B, Peng Z. Impaired AGO2/miR-185-3p/NRP1 axis promotes colorectal cancer metastasis. Cell Death Dis 2021; 12:390. [PMID: 33846300 PMCID: PMC8042018 DOI: 10.1038/s41419-021-03672-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Increasing evidence suggests that global downregulation of miRNA expression is a hallmark of human cancer, potentially due to defects in the miRNA processing machinery. In this study, we found that the protein expression of Argonaute 2 (AGO2), a key regulator of miRNA processing, was downregulated in colorectal cancer (CRC) tissues, which was also consistent with the findings of the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Furthermore, the correlation between the levels of AGO2 and epithelial-mesenchymal transition (EMT) markers (E-cadherin and vimentin) indicated that reduced levels of AGO2 promoted EMT in CRC. Low expression of AGO2 was an indicator of a poor prognosis among CRC patients. Knockdown of AGO2 in CRC cells promoted migration, invasion and metastasis formation in vitro and in vivo but had no influence on proliferation. To provide detailed insight into the regulatory roles of AGO2, we performed integrated transcriptomic, quantitative proteomic and microRNA sequencing (miRNA-seq) analyses of AGO2 knockdown cells and the corresponding wild-type cells and identified neuropilin 1 (NRP1) as a new substrate of AGO2 via miR-185-3p. Our data provided evidence that knockdown of AGO2 resulted in a reduction of miR-185-3p expression, leading to the upregulation of the expression of NRP1, which is a direct target of miR-185-3p, and elevated CRC cell metastatic capacity. Inhibition of NRP1 or treatment with a miR-185-3p mimic successfully rescued the phenotypes of impaired AGO2, which suggested that therapeutically targeting the AGO2/miR-185-3p/NRP1 axis may be a potential treatment approach for CRC.
Collapse
Affiliation(s)
- Xisheng Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaole Meng
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao Peng
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Qianlan Yao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fangming Zhu
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhongyi Ding
- Laboratory Animal Center, Institute Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai, China
| | - Hongze Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueni Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huamei Tang
- Department of Pathology, Xiang'an Hospital of Xiamen University, Xiamen, China.
| | - Bin Li
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhihai Peng
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China. .,Hepatobiliary and Pancreatic & Organ Transplantation Surgery Department, Xiang'an Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
14
|
Nowak I, Sarshad AA. Argonaute Proteins Take Center Stage in Cancers. Cancers (Basel) 2021; 13:cancers13040788. [PMID: 33668654 PMCID: PMC7918559 DOI: 10.3390/cancers13040788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The dysregulation of RNA interference (RNAi) has often been observed in cancers, where the main focus of research has been on the small RNA molecules directing RNAi. In this review, we focus on the activity of Argonaute proteins, central components of RNAi, in tumorigenesis, and also highlight their potential applications in grading tumors and anti-cancer therapies. Abstract Argonaute proteins (AGOs) play crucial roles in RNA-induced silencing complex (RISC) formation and activity. AGOs loaded with small RNA molecules (miRNA or siRNA) either catalyze endoribonucleolytic cleavage of target RNAs or recruit factors responsible for translational silencing and target destabilization. miRNAs are well characterized and broadly studied in tumorigenesis; nevertheless, the functions of the AGOs in cancers have lagged behind. Here, we discuss the current state of knowledge on the role of AGOs in tumorigenesis, highlighting canonical and non-canonical functions of AGOs in cancer cells, as well as the biomarker potential of AGO expression in different of tumor types. Furthermore, we point to the possible application of the AGOs in development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Iwona Nowak
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden;
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Aishe A. Sarshad
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden;
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
15
|
Li L, Huang K, Lu Z, Zhao H, Li H, Ye Q, Peng G. Bioinformatics analysis of LINC01554 and its co‑expressed genes in hepatocellular carcinoma. Oncol Rep 2020; 44:2185-2197. [PMID: 33000250 PMCID: PMC7551476 DOI: 10.3892/or.2020.7779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related morbidity and mortality globally. Despite the remarkable improvements in comprehensive HCC treatment, the underlying mechanistic details of HCC remain elusive. We screened HCC patients for differentially expressed genes (DEGs) using the Gene Expression Omnibus (GSE113850) and The Cancer Genome Atlas (TCGA) datasets. LINC01554 expression in 40 paired samples was determined by quantitative reverse transcription polymerase chain reaction (RT-qPCR), and its clinical significance was assessed. LINC01554 was found to have a gain-of-function role in HCC in vitro. Additionally, the bioinformatics analysis of the genes co-expressed with LINC01554 was performed using the Co-LncRNA website, and potential molecular mechanisms were investigated using the Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes resources and validated by in vitro experiments. A total of 229 DEGs were identified from the GSE113850 dataset. Among the identified DEGs, three long non-coding RNAs (lncRNAs) (DIO3OS, LINC01554, and LINC01093) with |logFC| ≥2 and P<0.05 were screened. A total of 148 lncRNAs with |logFC| ≥1 and P<0.05 were identified from TCGA dataset. Low LINC01554 expression levels were significantly correlated with overall survival, pathological stage, hepatitis B infection, tumour size, portal vein tumour thrombus, and TNM stage. Using gain-of-function assays, we further showed that LINC01554 inhibited the proliferation, migration, and invasion of the HCCLM9 and SK-Hep1 cells and promoted G0/G1 arrest, but it did not significantly affect apoptosis. Western blotting revealed that LINC01554 overexpression resulted in increased ZO-1 and E-cadherin expression levels, but decreased N-cadherin and vimentin expression levels. Moreover, LINC01554 overexpression inhibited Akt, p-Akt, β-catenin, and p-Gsk3β expression. Our results showed that LINC01554 repressed HCC cell invasiveness and epithelial-to-mesenchymal transition partly by inhibiting Wnt and PI3K-Akt signalling in vitro. Taken together, our findings provide new insights into the molecular mechanisms underlying HCC tumourigenesis and implicate LINC01554 as a potential target for HCC therapy.
Collapse
Affiliation(s)
- Ling Li
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Kang Huang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Zhongshan Lu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Huijia Zhao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Hao Li
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Guizhu Peng
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
16
|
Levy A, Alhazzani K, Dondapati P, Alaseem A, Cheema K, Thallapureddy K, Kaur P, Alobid S, Rathinavelu A. Focal Adhesion Kinase in Ovarian Cancer: A Potential Therapeutic Target for Platinum and Taxane-Resistant Tumors. Curr Cancer Drug Targets 2020; 19:179-188. [PMID: 29984656 DOI: 10.2174/1568009618666180706165222] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/30/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase, which is an essential player in regulating cell migration, invasion, adhesion, proliferation, and survival. Its overexpression and activation have been identified in sixty-eight percent of epithelial ovarian cancer patients and this is significantly associated with higher tumor stage, metastasis, and shorter overall survival of these patients. Most recently, a new role has emerged for FAK in promoting resistance to taxane and platinum-based therapy in ovarian and other cancers. The development of resistance is a complex network of molecular processes that make the identification of a targetable biomarker in platinum and taxane-resistant ovarian cancer a major challenge. FAK overexpression upregulates ALDH and XIAP activity in platinum-resistant and increases CD44, YB1, and MDR-1 activity in taxaneresistant tumors. FAK is therefore now emerging as a prognostically significant candidate in this regard, with mounting evidence from recent successes in preclinical and clinical trials using small molecule FAK inhibitors. This review will summarize the significance and function of FAK in ovarian cancer, and its emerging role in chemotherapeutic resistance. We will discuss the current status of FAK inhibitors in ovarian cancers, their therapeutic competencies and limitations, and further propose that the combination of FAK inhibitors with platinum and taxane-based therapies could be an efficacious approach in chemotherapeutic resistant disease.
Collapse
Affiliation(s)
- Arkene Levy
- College of Medical Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Khalid Alhazzani
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Priya Dondapati
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Ali Alaseem
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Khadijah Cheema
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Keerthi Thallapureddy
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Paramjot Kaur
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Saad Alobid
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Appu Rathinavelu
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
17
|
From the Argonauts Mythological Sailors to the Argonautes RNA-Silencing Navigators: Their Emerging Roles in Human-Cell Pathologies. Int J Mol Sci 2020; 21:ijms21114007. [PMID: 32503341 PMCID: PMC7312461 DOI: 10.3390/ijms21114007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
Regulation of gene expression has emerged as a fundamental element of transcript homeostasis. Key effectors in this process are the Argonautes (AGOs), highly specialized RNA-binding proteins (RBPs) that form complexes, such as the RNA-Induced Silencing Complex (RISC). AGOs dictate post-transcriptional gene-silencing by directly loading small RNAs and repressing their mRNA targets through small RNA-sequence complementarity. The four human highly-conserved family-members (AGO1, AGO2, AGO3, and AGO4) demonstrate multi-faceted and versatile roles in transcriptome’s stability, plasticity, and functionality. The post-translational modifications of AGOs in critical amino acid residues, the nucleotide polymorphisms and mutations, and the deregulation of expression and interactions are tightly associated with aberrant activities, which are observed in a wide spectrum of pathologies. Through constantly accumulating information, the AGOs’ fundamental engagement in multiple human diseases has recently emerged. The present review examines new insights into AGO-driven pathology and AGO-deregulation patterns in a variety of diseases such as in viral infections and propagations, autoimmune diseases, cancers, metabolic deficiencies, neuronal disorders, and human infertility. Altogether, AGO seems to be a crucial contributor to pathogenesis and its targeting may serve as a novel and powerful therapeutic tool for the successful management of diverse human diseases in the clinic.
Collapse
|
18
|
Torres-Fernández LA, Jux B, Bille M, Port Y, Schneider K, Geyer M, Mayer G, Kolanus W. The mRNA repressor TRIM71 cooperates with Nonsense-Mediated Decay factors to destabilize the mRNA of CDKN1A/p21. Nucleic Acids Res 2020; 47:11861-11879. [PMID: 31732746 PMCID: PMC7145526 DOI: 10.1093/nar/gkz1057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/22/2019] [Accepted: 11/10/2019] [Indexed: 12/30/2022] Open
Abstract
Nonsense-mediated decay (NMD) plays a fundamental role in the degradation of premature termination codon (PTC)-containing transcripts, but also regulates the expression of functional transcripts lacking PTCs, although such 'non-canonical' functions remain ill-defined and require the identification of factors targeting specific mRNAs to the NMD machinery. Our work identifies the stem cell-specific mRNA repressor protein TRIM71 as one of these factors. TRIM71 plays an essential role in embryonic development and is linked to carcinogenesis. For instance, TRIM71 has been correlated with advanced stages and poor prognosis in hepatocellular carcinoma. Our data shows that TRIM71 represses the mRNA of the cell cycle inhibitor and tumor suppressor CDKN1A/p21 and promotes the proliferation of HepG2 tumor cells. CDKN1A specific recognition involves the direct interaction of TRIM71 NHL domain with a structural RNA stem-loop motif within the CDKN1A 3'UTR. Importantly, CDKN1A repression occurs independently of miRNA-mediated silencing. Instead, the NMD factors SMG1, UPF1 and SMG7 assist TRIM71-mediated degradation of CDKN1A mRNA, among other targets. Our data sheds light on TRIM71-mediated target recognition and repression mechanisms and uncovers a role for this stem cell-specific factor and oncogene in non-canonical NMD, revealing the existence of a novel mRNA surveillance mechanism which we have termed the TRIM71/NMD axis.
Collapse
Affiliation(s)
- Lucia A Torres-Fernández
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Bettina Jux
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Maximilian Bille
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Yasmine Port
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Karin Schneider
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University Clinics Bonn, University of Bonn, 53127 Bonn, Germany
| | - Günter Mayer
- Center of Aptamer Research & Development; Chemical Biology & Chemical Genetics, Life & Medical Sciences Institute (LIMES). University of Bonn, 53121 Bonn, Germany
| | - Waldemar Kolanus
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
19
|
Santhekadur PK, Kumar DP. RISC assembly and post-transcriptional gene regulation in Hepatocellular Carcinoma. Genes Dis 2020; 7:199-204. [PMID: 32215289 PMCID: PMC7083748 DOI: 10.1016/j.gendis.2019.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022] Open
Abstract
RNA-induced silencing complex (RISC) is one of the basic eukaryotic cellular machinery which plays a pivotal role in post-transcriptional gene regulation. Discovery of miRNAs and their role in gene regulation have changed the course of modern biology. The method of gene silencing using small interfering RNAs and miRNAs has become major tool in molecular biology and genetic engineering. Hepatocellular Carcinoma (HCC) is a very common malignancy of liver in developing countries and due to various risk factors; the prevalence of this disease is rapidly increasing throughout the globe. There exists an imbalance in interplay between oncogenes and tumor suppressor genes and their regulation plays a major role in HCC growth, development and metastasis. The regulatory function of RISC and miRNAs make them a very important mediators of cancer signaling in HCC. Therefore, targeting the RISC complex for HCC therapy is the need of the time.
Collapse
Affiliation(s)
- Prasanna K. Santhekadur
- Corresponding author. Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagar, Mysore 570015, Karnataka, India.
| | | |
Collapse
|
20
|
Accumulation of AGO2 Facilitates Tumorigenesis of Human Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1631843. [PMID: 32420319 PMCID: PMC7210519 DOI: 10.1155/2020/1631843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/09/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022]
Abstract
AGO2 (Argonaute RISC Catalytic Component 2) plays an important role in small RNA-guided gene silencing processes. It has been implied in tumorigenesis of different types of tumors. In this study, we found that AGO2 expression was remarkably increased in human hepatocellular carcinoma (HCC) tissues when compared with adjacent noncancerous tissues. High expression of AGO2 was associated with poor prognosis in HCC patients. The CRISPR/Cas9-mediated knockout of AGO2 in SMMC-7721 cells inhibited cell proliferation and induced significant G1 phase arrest of cell cycle. Inhibition of cell migration was also observed in SMMC-7721 AGO2−/− cells. In vivo experiments showed that tumors grew slower in nude mice transplanted with AGO2−/− cells than in SMMC-7721 cell-derived xenograft mice. Microarray analysis and western blot analysis revealed that AGO2 depletion decreased expression of Survivin, Vimentin, and Snail. Overexpression of AGO2 in SMMC-7721 and Huh-7 cells could reverse the knockout-induced inhibition effects on either cell behaviors or expression of Survivin, Vimentin, and Snail Therefore, our data demonstrated that AGO2 might facilitate HCC tumorigenesis and metastasis through modulating expression of Survivin, Vimentin, and Snail.
Collapse
|
21
|
Zhang K, Pomyen Y, Barry AE, Martin SP, Khatib S, Knight L, Forgues M, Dominguez DA, Parhar R, Shah AP, Bodzin AS, Wang XW, Dang H. AGO2 Mediates MYC mRNA Stability in Hepatocellular Carcinoma. Mol Cancer Res 2020; 18:612-622. [PMID: 31941754 DOI: 10.1158/1541-7786.mcr-19-0805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/07/2019] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
Abstract
Deregulated RNA-binding proteins (RBP), such as Argonaute 2 (AGO2), mediate tumor-promoting transcriptomic changes during carcinogenesis, including hepatocellular carcinoma (HCC). While AGO2 is well characterized as a member of the RNA-induced silencing complex (RISC), which represses gene expression through miRNAs, its role as a bona fide RBP remains unclear. In this study, we investigated AGO2's role as an RBP that regulates the MYC transcript to promote HCC. Using mRNA and miRNA arrays from patients with HCC, we demonstrate that HCCs with elevated AGO2 levels are more likely to have the mRNA transcriptome deregulated and are associated with poor survival. Moreover, AGO2 overexpression stabilizes the MYC transcript independent of miRNAs. These observations provide a novel mechanism of gene regulation by AGO2 and provide further insights into the potential functions of AGO2 as an RBP in addition to RISC. IMPLICATIONS: Authors demonstrate that the RBP Argonaute 2 stabilizes the MYC transcript to promote HCC.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Surgery, Department of Surgical Research, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yotsawat Pomyen
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,Translational Research Unit, Chulabhorn Research Institute, Bangkok, Thailand
| | - Anna E Barry
- Department of Surgery, Department of Surgical Research, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sean P Martin
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Subreen Khatib
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lucy Knight
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Dana A Dominguez
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Ravinder Parhar
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Ashesh P Shah
- Department of Surgery, Department of Surgical Research, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam S Bodzin
- Department of Surgery, Department of Surgical Research, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| | - Hien Dang
- Department of Surgery, Department of Surgical Research, Thomas Jefferson University, Philadelphia, Pennsylvania. .,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Huang W, Huang F, Lei Z, Luo H. LncRNA SNHG11 Promotes Proliferation, Migration, Apoptosis, and Autophagy by Regulating hsa-miR-184/AGO2 in HCC. Onco Targets Ther 2020; 13:413-421. [PMID: 32021286 PMCID: PMC6969695 DOI: 10.2147/ott.s237161] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022] Open
Abstract
Background The most common malignant tumor of the digestive system is HCC. However, the mechanism and pathogenesis of HCC occurrence and progress are still unknown. LncRNA is closely related to the occurrence and progress of HCC. It is important to investigate the effect and role of lncRNA in HCC. Materials and Methods LncRNA microarray assay was used to screen the differential expression profile of lncRNA. SNHG11, miR-184 and GO2 expression was analyzed by RT-PCR. The ability of SNHG11 to serve as a sponge for miRNA and the fact that miR-184 directly targets mRNA were revealed by dual luciferase assay and RIP. Apoptosis and autophagy related proteins were detected by Western blot. Cell proliferation, invasion, migration, and apoptosis were detected by CCK-8 assay, wound healing assay, transwell assay, and flow cytometry. Results LncRNA microarray assay and RT-PCR results revealed that the expression of SNHG11 was increased in HCC tumor tissues and also upregulated in HCC cells. SNHG11 had a connection with poor survival rate in HCC. In addition, dual luciferase assay and RIP results revealed that SNHG11 serves as a sponge for miR-184 and miR-184 directly targets AGO2. Pearson correlation analysis showed that SNHG11 with miR-184 and miR-184 with AGO2 were negative correlations, and SNHG11 with AGO2 was a positive correlation. Cell function assay and Western blot showed SNHG4/miR-184/AGO2 regulatory loop was critical for HCC cell proliferation, migration, apoptosis, and autophagy. Conclusion Our study demonstrated that the expression of SNHG11 is higher in HCC; moreover, SNHG11 promotes proliferation, migration, apoptosis, and autophagy by regulating AGO2 via miR-184 in HCC. Our verification of the role of SNHG11 may provide a novel biomarker for the diagnosis, therapy, and prognosis of HCC.
Collapse
Affiliation(s)
- Wei Huang
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, People's Republic of China
| | - Feizhou Huang
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, People's Republic of China
| | - Zhao Lei
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, People's Republic of China
| | - Hongwu Luo
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, People's Republic of China
| |
Collapse
|
23
|
Aboubakar Nana F, Vanderputten M, Ocak S. Role of Focal Adhesion Kinase in Small-Cell Lung Cancer and Its Potential as a Therapeutic Target. Cancers (Basel) 2019; 11:E1683. [PMID: 31671774 PMCID: PMC6895835 DOI: 10.3390/cancers11111683] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Small-cell lung cancer (SCLC) represents 15% of all lung cancers and it is clinically the most aggressive type, being characterized by a tendency for early metastasis, with two-thirds of the patients diagnosed with an extensive stage (ES) disease and a five-year overall survival (OS) as low as 5%. There are still no effective targeted therapies in SCLC despite improved understanding of the molecular steps leading to SCLC development and progression these last years. After four decades, the only modest improvement in OS of patients suffering from ES-SCLC has recently been shown in a trial combining atezolizumab, an anti-PD-L1 immune checkpoint inhibitor, with carboplatin and etoposide, chemotherapy agents. This highlights the need to pursue research efforts in this field. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that is overexpressed and activated in several cancers, including SCLC, and contributing to cancer progression and metastasis through its important role in cell proliferation, survival, adhesion, spreading, migration, and invasion. FAK also plays a role in tumor immune evasion, epithelial-mesenchymal transition, DNA damage repair, radioresistance, and regulation of cancer stem cells. FAK is of particular interest in SCLC, being known for its aggressiveness. The inhibition of FAK in SCLC cell lines demonstrated significative decrease in cell proliferation, invasion, and migration, and induced cell cycle arrest and apoptosis. In this review, we will focus on the role of FAK in cancer cells and their microenvironment, and its potential as a therapeutic target in SCLC.
Collapse
Affiliation(s)
- Frank Aboubakar Nana
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, Cliniques Universitaires St-Luc, UCL, 1200 Brussels, Belgium.
| | - Marie Vanderputten
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| | - Sebahat Ocak
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, CHU UCL Namur (Godinne Site), UCL, 5530 Yvoir, Belgium.
| |
Collapse
|
24
|
Casey MC, Prakash A, Holian E, McGuire A, Kalinina O, Shalaby A, Curran C, Webber M, Callagy G, Bourke E, Kerin MJ, Brown JA. Quantifying Argonaute 2 (Ago2) expression to stratify breast cancer. BMC Cancer 2019; 19:712. [PMID: 31324173 PMCID: PMC6642579 DOI: 10.1186/s12885-019-5884-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 06/26/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Argonaute-2 (Ago2) is an essential component of microRNA biogenesis implicated in tumourigenesis. However Ago2 expression and localisation in breast cancer remains undetermined. The aim was to define Ago2 expression (mRNA and protein) and localisation in breast cancer, and investigate associations with clinicopathological details. METHODS Ago2 protein was stained in breast cancer cell lines and tissue microarrays (TMAs), with intensity and localization assessed. Staining intensity was correlated with clinicopathological details. Using independent databases, Ago2 mRNA expression and gene alterations in breast cancer were investigated. RESULTS In the breast cancer TMAs, 4 distinct staining intensities were observed (Negative, Weak, Moderate, Strong), with 64.2% of samples stained weak or negatively for Ago2 protein. An association was found between strong Ago2 staining and, the Her2 positive or basal subtypes, and between Ago2 intensity and receptor status (Estrogen or Progesterone). In tumours Ago2 mRNA expression correlated with reduced relapse free survival. Conversely, Ago2 mRNA was expressed significantly lower in SK-BR-3 (HER2 positive) and BT-20 (Basal/Triple negative) cell lines. Interestingly, high levels of Ago2 gene amplification (10-27%) were observed in breast cancer across multiple patient datasets. Importantly, knowledge of Ago2 expression improves predictions of breast cancer subtype by 20%, ER status by 15.7% and PR status by 17.5%. CONCLUSIONS Quantification of Ago2 improves the stratification of breast cancer and suggests a differential role for Ago2 in breast cancer subtypes, based on levels and cellular localisation. Further investigation of the mechanisms affecting Ago2 dysregulation will reveal insights into the molecular differences underpinning breast cancer subtypes.
Collapse
Affiliation(s)
- M C Casey
- Discipline of Surgery, School of Medicine, Lambe institute for Translational Research, National University of Ireland, Galway, Ireland
| | - A Prakash
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - E Holian
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - A McGuire
- Discipline of Surgery, School of Medicine, Lambe institute for Translational Research, National University of Ireland, Galway, Ireland
| | - O Kalinina
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - A Shalaby
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - C Curran
- Discipline of Surgery, School of Medicine, Lambe institute for Translational Research, National University of Ireland, Galway, Ireland
| | - M Webber
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - G Callagy
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - E Bourke
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - M J Kerin
- Discipline of Surgery, School of Medicine, Lambe institute for Translational Research, National University of Ireland, Galway, Ireland
| | - J A Brown
- Discipline of Surgery, School of Medicine, Lambe institute for Translational Research, National University of Ireland, Galway, Ireland.
| |
Collapse
|
25
|
IRTKS Promotes Insulin Signaling Transduction through Inhibiting SHIP2 Phosphatase Activity. Int J Mol Sci 2019; 20:ijms20112834. [PMID: 31212584 PMCID: PMC6600216 DOI: 10.3390/ijms20112834] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/01/2019] [Accepted: 06/06/2019] [Indexed: 12/27/2022] Open
Abstract
Insulin signaling is mediated by a highly integrated network that controls glucose metabolism, protein synthesis, cell growth, and differentiation. Our previous work indicates that the insulin receptor tyrosine kinase substrate (IRTKS), also known as BAI1-associated protein 2-like 1 (BAIAP2L1), is a novel regulator of insulin network, but the mechanism has not been fully studied. In this work we reveal that IRTKS co-localizes with Src homology (SH2) containing inositol polyphosphate 5-phosphatase-2 (SHIP2), and the SH3 domain of IRTKS directly binds to SHIP2’s catalytic domain INPP5c. IRTKS suppresses SHIP2 phosphatase to convert phosphatidylinositol 3,4,5-triphosphate (PI(3,4,5)P3, PIP3) to phosphatidylinositol (3,4) bisphosphate (PI(3,4)P2). IRTKS-knockout significantly increases PI(3,4)P2 level and decreases cellular PI(3,4,5)P3 content. Interestingly, the interaction between IRTKS and SHIP2 is dynamically regulated by insulin, which feeds back and affects the tyrosine phosphorylation of IRTKS. Furthermore, IRTKS overexpression elevates PIP3, activates the AKT–mTOR signaling pathway, and increases cell proliferation. Thereby, IRTKS not only associates with insulin receptors to activate PI3K but also interacts with SHIP2 to suppress its activity, leading to PIP3 accumulation and the activation of the AKT–mTOR signaling pathway to modulate cell proliferation.
Collapse
|
26
|
Piroozian F, Bagheri Varkiyani H, Koolivand M, Ansari M, Afsa M, AtashAbParvar A, MalekZadeh K. The impact of variations in transcription of DICER and AGO2 on exacerbation of childhood B-cell lineage acute lymphoblastic leukaemia. Int J Exp Pathol 2019; 100:184-191. [PMID: 31090156 DOI: 10.1111/iep.12316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/02/2019] [Accepted: 04/02/2019] [Indexed: 12/18/2022] Open
Abstract
The expression of microRNA in eukaryotic cells is subject to tightly regulated processing. The altered expression of microRNAs in a number of cancers suggests their contribution to disease pathogenesis, where processing pathways may be involved in disease pathogenesis. In the present study, we evaluated changes in the profile of two main components of microRNA biogenesis, AGO2 and DICER, and assessed their correlation with disease progression in childhood acute lymphoblastic leukaemia (ALL). To achieve this aim, 25 patients afflicted with ALL were included in the study along with 25 healthy subjects as control. The expression level of AGO2 and DICER was evaluated by real-time PCR. The results revealed an increase in the expression of DICER and a decrease in AGO2 in patients. The correlation between the alteration levels of these genes with pathologic events was also studied. This increase or decrease proved to be directly correlated with the progression of the disease particularly in L1 to L2. According to the obtained results, it can be deduced that dysregulation in transcription of DICER and AGO2, involved in the formation of mature microRNAs in cytoplasm of ALL cancer cells, is a part of the pathological molecular mechanism implicated in the exacerbation of this malignancy. Therefore, the genes involved in microRNAs biogenesis that have been studied here could be considered as candidate prognostic markers especially in childhood ALL which will help towards a better understanding of the molecular basis of ALL.
Collapse
Affiliation(s)
- Fatemeh Piroozian
- Department of Medical Genetic, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hoda Bagheri Varkiyani
- Department of Pathology, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohsen Koolivand
- Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Ansari
- Department of Pathology, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Masoomeh Afsa
- Hormozgan Institute of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ali AtashAbParvar
- Department of Pathology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kianoosh MalekZadeh
- Department of Medical Genetic, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Hormozgan Institute of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
27
|
PTK2 promotes cancer stem cell traits in hepatocellular carcinoma by activating Wnt/β-catenin signaling. Cancer Lett 2019; 450:132-143. [DOI: 10.1016/j.canlet.2019.02.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 01/12/2023]
|
28
|
Naser R, Aldehaiman A, Díaz-Galicia E, Arold ST. Endogenous Control Mechanisms of FAK and PYK2 and Their Relevance to Cancer Development. Cancers (Basel) 2018; 10:E196. [PMID: 29891810 PMCID: PMC6025627 DOI: 10.3390/cancers10060196] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023] Open
Abstract
Focal adhesion kinase (FAK) and its close paralogue, proline-rich tyrosine kinase 2 (PYK2), are key regulators of aggressive spreading and metastasis of cancer cells. While targeted small-molecule inhibitors of FAK and PYK2 have been found to have promising antitumor activity, their clinical long-term efficacy may be undermined by the strong capacity of cancer cells to evade anti-kinase drugs. In healthy cells, the expression and/or function of FAK and PYK2 is tightly controlled via modulation of gene expression, competing alternatively spliced forms, non-coding RNAs, and proteins that directly or indirectly affect kinase activation or protein stability. The molecular factors involved in this control are frequently deregulated in cancer cells. Here, we review the endogenous mechanisms controlling FAK and PYK2, and with particular focus on how these mechanisms could inspire or improve anticancer therapies.
Collapse
Affiliation(s)
- Rayan Naser
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Abdullah Aldehaiman
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Escarlet Díaz-Galicia
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
29
|
Sun W, He B, Yang B, Hu W, Cheng S, Xiao H, Yang Z, Wen X, Zhou L, Xie H, Shen X, Wu J, Zheng S. Genome-wide CRISPR screen reveals SGOL1 as a druggable target of sorafenib-treated hepatocellular carcinoma. J Transl Med 2018; 98:734-744. [PMID: 29467456 DOI: 10.1038/s41374-018-0027-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/28/2017] [Accepted: 01/06/2018] [Indexed: 02/08/2023] Open
Abstract
The genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screen is a powerful tool used to identify therapeutic targets that can be harnessed for cancer treatment. This study aimed to assess the efficacy of genome-wide CRISPR screening to identify druggable genes associated with sorafenib-treated hepatocellular carcinoma (HCC). A genome-scale CRISPR knockout (GeCKO v2) library containing 123,411 single guide RNAs (sgRNAs) was used to identify loss-of-function mutations conferring sorafenib resistance upon HCC cells. Resistance gene screens identified SGOL1 as an indicator of prognosis of patients treated with sorafenib. Of the 19,050 genes tested, the knockout screen identified inhibition of SGOL1 expression as the most-effective genetic suppressor of sorafenib activity. Analysis of the survival of 210 patients with HCC after hepatic resection revealed that high SGOL1 expression shortened overall survival (P = 0.021). Further, matched pairs analysis of the TCGA database revealed that SGOL1 is differentially expressed. When we used a lentivirus Cas9 vector to determine the effect of targeting SGOL1 with a specific sgRNA in HCC cells, we found that SGOL1 expression was efficiently inhibited and that loss of SGOL1 was associated with sorafenib resistance. Further, loss of SGOL1 from HCC cell decreased the cytotoxicity of sorafenib in vivo. We conclude that the CRISPR screen is a powerful tool for therapeutic target analysis of sorafenib treatment and that SGOL1 serves as a druggable target for HCC treated with sorafenib and an indicator of prognosis.
Collapse
Affiliation(s)
- Weijian Sun
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Bin He
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Beng Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Wendi Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shaobing Cheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Heng Xiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Zhengjie Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Xiaoyu Wen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Xian Shen
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China. .,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, 310003, China. .,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China.
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China. .,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, 310003, China. .,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China.
| |
Collapse
|
30
|
Wang F, Li L, Piontek K, Sakaguchi M, Selaru FM. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology 2018; 67:940-954. [PMID: 29023935 PMCID: PMC5826829 DOI: 10.1002/hep.29586] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 09/02/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common and deadly cancer. Most cases of HCC arise in a cirrhotic/fibrotic liver, indicating that environment may play a paramount role in cancer genesis. Previous studies from our group and others have shown that, in desmoplastic cancers, there is a rich intercellular communication between activated, cancer-associated fibroblasts and cancer cells. Moreover, extracellular vesicles (EVs), or exosomes, have been identified as an important arm of this intercellular communication platform. Finally, these studies have shown that EVs can carry microRNA (miR) species in vivo and deliver them to desmoplastic cancers. The precise role played by activated liver fibroblasts/stellate cells in HCC development is insufficiently known. Based on previous studies, it appears plausible that activated fibroblasts produce signals carried by EVs that promote HCC genesis. In the current study, we first hypothesized and then demonstrated that stellate cell-derived EVs 1) can be loaded with an miR species of choice (miR-335-5p); 2) are taken up by HCC cells in vitro and more importantly in vivo; 3) can supply the miR-335-5p cargo to recipient HCC cells in vitro as well as in vivo; and 4) inhibit HCC cell proliferation and invasion in vitro as well as induce HCC tumor shrinkage in vivo. Finally, we identified messenger RNA targets for miR-335 that are down-regulated after treatment with EV-miR-335-5p. This study informs potential therapeutic strategies in HCC, whereby stellate cell-derived EVs are loaded with therapeutic nucleic acids and delivered in vivo. (Hepatology 2018;67:940-954).
Collapse
Affiliation(s)
- Fang Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Division of Gastroenterology and Hepatology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Ling Li
- Division of Gastroenterology and Hepatology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Klaus Piontek
- Division of Gastroenterology and Hepatology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Masazumi Sakaguchi
- Division of Gastroenterology and Hepatology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Florin M. Selaru
- Division of Gastroenterology and Hepatology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
- Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, Maryland, USA
- The Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Zhang C, Seo J, Nakamura T. Cellular Approaches in Investigating Argonaute2-Dependent RNA Silencing. Methods Mol Biol 2018; 1680:205-215. [PMID: 29030851 DOI: 10.1007/978-1-4939-7339-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In mammals, there are four Argonaute (Ago) family proteins that play crucial roles in RNA silencing, a process wherein microRNA (miRNA) mediates inhibition of target mRNA translation. Among the Ago proteins, Argonaute2 (Ago2) uniquely possesses an endoribonuclease (slicer) activity that is critical for the biogenesis of specific miRNAs and mRNA cleavage. This Ago2 slicer activity is required for postnatal development. Despite its important roles, there are still gaps in our understanding of the mechanistic basis of Ago2's unique functions in vivo due to a limited availability of experimental tools. In order to investigate Ago2's functions, we generated a new cellular model of Ago2-deficiency in 3T3 mouse embryonic fibroblasts (MEFs). This cell line can be used for investigating general Ago2 functions, but also for further understanding of Ago2's unique characteristics including the slicer activity, specific amino acid residues, and domains in Ago2 by reconstitution of Ago2 mutants. Here, we describe the methods for establishing Ago2-deficient MEFs and for reconstituting the MEFs with an Ago2 mutant lacking its slicer activity by means of a retrovirus-mediated gene transfer.
Collapse
Affiliation(s)
- Cai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Joonbae Seo
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Takahisa Nakamura
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA. .,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
32
|
Amin EM, Liu Y, Deng S, Tan KS, Chudgar N, Mayo MW, Sanchez-Vega F, Adusumilli PS, Schultz N, Jones DR. The RNA-editing enzyme ADAR promotes lung adenocarcinoma migration and invasion by stabilizing FAK. Sci Signal 2017; 10:eaah3941. [PMID: 28928239 PMCID: PMC5771642 DOI: 10.1126/scisignal.aah3941] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Large-scale, genome-wide studies report that RNA binding proteins are altered in cancers, but it is unclear how these proteins control tumor progression. We found that the RNA-editing protein ADAR (adenosine deaminase acting on double-stranded RNA) acted as a facilitator of lung adenocarcinoma (LUAD) progression through its ability to stabilize transcripts encoding focal adhesion kinase (FAK). In samples from 802 stage I LUAD patients, increased abundance of ADAR at both the mRNA and protein level correlated with tumor recurrence. Knocking down ADAR in LUAD cells suppressed their mesenchymal properties, migration, and invasion in culture. Analysis of gene expression patterns in LUAD cells identified ADAR-associated enrichment of a subset of genes involved in cell migration pathways; among these, FAK is the most notable gene whose expression was increased in the presence of ADAR. Molecular analyses revealed that ADAR posttranscriptionally increased FAK protein abundance by binding to the FAK transcript and editing a specific intronic site that resulted in the increased stabilization of FAK mRNA. Pharmacological inhibition of FAK blocked ADAR-induced invasiveness of LUAD cells, suggesting a potential therapeutic application for LUAD that has a high abundance of ADAR.
Collapse
Affiliation(s)
- Elianna M Amin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yuan Liu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Su Deng
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kay See Tan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Neel Chudgar
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marty W Mayo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Francisco Sanchez-Vega
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Prasad S Adusumilli
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David R Jones
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
33
|
An alternative microRNA-mediated post-transcriptional regulation of GADD45A by p53 in human non-small-cell lung cancer cells. Sci Rep 2017; 7:7153. [PMID: 28769054 PMCID: PMC5541050 DOI: 10.1038/s41598-017-07332-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/28/2017] [Indexed: 01/30/2023] Open
Abstract
GADD45A (growth arrest and DNA damage inducible alpha), a stress response gene induced by genotoxic and nongenotoxic stresses, is implicated in various key processes, including the control of cell cycle checkpoints and DNA repair. The expression of GADD45A is directly regulated by numerous transcription factors, with p53 being the most representative. Moreover, post-transcriptional regulation also plays a role in GADD45A expression. However, little is known about the regulatory effects of microRNAs (miRNAs) on GADD45A expression. As a potential tumour suppressor, miR-138 has pleiotropic biological functions in various cancers. We have previously reported p53-mediated activation of miR-138 in human non-small-cell lung cancer (NSCLC) cells. In this study, we found that miR-138 specifically targeted AGO2, which affects the stability and maturation of miR-130b. Decreased expression of miR-130b promoted the expression of GADD45A and resulted in the G2/M phase arrest and proliferation inhibition in human NSCLC cells. Our results suggested that p53 could alternatively upregulate GADD45A in human NSCLC cells through a post-transcriptional pathway in which miR-138 is involved.
Collapse
|
34
|
Zhang Y, Wang B, Chen X, Li W, Dong P. AGO2 involves the malignant phenotypes and FAK/PI3K/AKT signaling pathway in hypopharyngeal-derived FaDu cells. Oncotarget 2017; 8:54735-54746. [PMID: 28903378 PMCID: PMC5589617 DOI: 10.18632/oncotarget.18047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/03/2017] [Indexed: 12/22/2022] Open
Abstract
Argonaute 2 (AGO2) protein is usually overexpressed in various head and neck squamous cell carcinoma. However, the precise molecular mechanisms of AGO2 in hypopharyngeal cancer have not yet been clearly understood. Here we found the AGO2 expression in hypopharyngeal cancer tissues were generally higher comparing with that of the corresponding adjacent noncancerous epithelium tissues, and these were associated with the more aggressive clinicopathologic features and the poor clinical outcomes. Stable knockdown of AGO2 protein retarded cell proliferation, migration, invasion, arrested cell cycle and induced apoptosis. Meanwhile the knockdown also inhibited the FAK/PI3K/AKT signaling pathway in hypopharyngeal-derived FaDu cells. These findings suggested that AGO2 gene might act as an oncogene which contributed to the tumorigenesis and progression, and has potential values for molecular diagnosis, clinical therapies and prognosis evaluation in hypopharyngeal cancer.
Collapse
Affiliation(s)
- Yanhui Zhang
- Department of Otolaryngology Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baoxin Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai General Hospital, Shanghai, China
| | - Xinwei Chen
- Department of Otolaryngology Head and Neck Surgery, Shanghai General Hospital, Shanghai, China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for The Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Pin Dong
- Department of Otolaryngology Head and Neck Surgery, Shanghai General Hospital, Shanghai, China
| |
Collapse
|
35
|
Wang S, Sun X, Yi C, Zhang D, Lin X, Sun X, Chen H, Jin M. AGO2 Negatively Regulates Type I Interferon Signaling Pathway by Competition Binding IRF3 with CBP/p300. Front Cell Infect Microbiol 2017; 7:195. [PMID: 28589097 PMCID: PMC5438986 DOI: 10.3389/fcimb.2017.00195] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/03/2017] [Indexed: 01/02/2023] Open
Abstract
Viral infection triggers a series of signaling cascades and host innate immune responses, including interferon (IFN) production, which depends on coordinated activity of multiple transcription factors. IFN regulatory factor 3 (IRF3) and transcriptional coactivator CREB binding protein (CBP) and/or p300 are core factors that participate in transcriptional complex formation in the nucleus. In general, cells balance the production of IFNs through suppressive and stimulative mechanisms, but viral infections can disrupt such equilibrium. This study determined that H5N1 viral infection reduced the distribution of human argonaute 2 (AGO2) in A549 cell nucleus. AGO2 did not block phosphorylation, nuclear translocation, and DNA binding ability of IRF3 but inhibited its association with CBP. Therefore, this newly revealed mechanism shows that cellular response leads to transfer of AGO2 from cell nucleus and promotes IFN-β expression to increase host survival during viral infection.
Collapse
Affiliation(s)
- Shengyu Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xin Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Chenyang Yi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Dan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xian Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xiaomei Sun
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig ProductionWuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig ProductionWuhan, China
| |
Collapse
|
36
|
Panera N, Crudele A, Romito I, Gnani D, Alisi A. Focal Adhesion Kinase: Insight into Molecular Roles and Functions in Hepatocellular Carcinoma. Int J Mol Sci 2017; 18:ijms18010099. [PMID: 28067792 PMCID: PMC5297733 DOI: 10.3390/ijms18010099] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Due to the high incidence of post-operative recurrence after current treatments, the identification of new and more effective drugs is required. In previous years, new targetable genes/pathways involved in HCC pathogenesis have been discovered through the help of high-throughput sequencing technologies. Mutations in TP53 and β-catenin genes are the most frequent aberrations in HCC. However, approaches able to reverse the effect of these mutations might be unpredictable. In fact, if the reactivation of proteins, such as p53 in tumours, holds great promise as anticancer therapy, there are studies arguing that chronic activation of these types of molecules may be deleterious. Thus, recently the efforts on potential targets have focused on actionable mutations, such as those occurring in the gene encoding for focal adhesion kinase (FAK). This tyrosine kinase, localized to cellular focal contacts, is over-expressed in a variety of human tumours, including HCC. Moreover, several lines of evidence demonstrated that FAK depletion or inhibition impair in vitro and in vivo HCC growth and metastasis. Here, we provide an overview of FAK expression and activity in the context of tumour biology, discussing the current evidence of its connection with HCC development and progression.
Collapse
Affiliation(s)
- Nadia Panera
- Liver Research Unit, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146 Rome, Italy.
| | - Annalisa Crudele
- Liver Research Unit, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146 Rome, Italy.
| | - Ilaria Romito
- Liver Research Unit, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146 Rome, Italy.
| | - Daniela Gnani
- Liver Research Unit, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146 Rome, Italy.
| | - Anna Alisi
- Liver Research Unit, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146 Rome, Italy.
| |
Collapse
|
37
|
Li WX, Chen LP, Sun MY, Li JT, Liu HZ, Zhu W. 3'3-Diindolylmethane inhibits migration, invasion and metastasis of hepatocellular carcinoma by suppressing FAK signaling. Oncotarget 2016; 6:23776-92. [PMID: 26068982 PMCID: PMC4695151 DOI: 10.18632/oncotarget.4196] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 05/21/2015] [Indexed: 01/28/2023] Open
Abstract
Late stage hepatocellular carcinoma (HCC) usually has a low survival rate because it has high potential of metastases and there is no effective cure. 3'3-Diindolylmethane (DIM) is the major product of the acid-catalyzed oligomerization of indole-3-carbinol present in cruciferous vegetables. DIM has been proved to exhibit anticancer properties. In this study, we explored the effects and molecular mechanisms of anti-metastasis of DIM on HCC cells both in vitro and in vivo. We chose two HCC cell lines SMMC-7721 and MHCC-97H that have high potential of invasion. The results showed that DIM inhibited the proliferation, migration and invasion of these two cell lines in vitro. In addition, in vivo study demonstrated that DIM significantly decreased the volumes of SMMC-7721 orthotopic liver tumor and suppressed lung metastasis in nude mice. Focal Adhesion Kinase (FAK) is found over activated in HCC cells. We found that DIM decreased the level of phospho-FAK (Tyr397) both in vitro and in vivo. DIM inhibition of phospho-FAK (Tyr397) led to down-regulation of MMP2/9 and decreased potential of metastasis. DIM also repressed the migration and invasion induced by vitronectin through inactivation of FAK pathway and down-regulation of MMP2/9 in vitro. We also found that pTEN plays a role in down-regulation of FAK by DIM. These results demonstrated that DIM blocks HCC cell metastasis by suppressing tumor cell migration and invasion. The anti-metastasis effect of DIM could be explained to be its down-regulated expression and activation of MMP2/9 partly induced by up-regulation of pTEN and inhibition of phospho-FAK (Tyr397).
Collapse
Affiliation(s)
- Wen-Xue Li
- Dearpartmant of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Li-Ping Chen
- Faculty of Toxicology, School of Public Health, Sun Yet-sen University, Guangzhou, China
| | - Min-Ying Sun
- Dearpartmant of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Jun-Tao Li
- Dearpartmant of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Hua-Zhang Liu
- Dearpartmant of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Wei Zhu
- Dearpartmant of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| |
Collapse
|
38
|
The modulation of Dicer regulates tumor immunogenicity in melanoma. Oncotarget 2016; 7:47663-47673. [PMID: 27356752 PMCID: PMC5216969 DOI: 10.18632/oncotarget.10273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/12/2016] [Indexed: 01/31/2023] Open
Abstract
MicroRNAs (miRs) are small non-coding RNAs that regulate most cellular protein networks by targeting mRNAs for translational inhibition or degradation. Dicer, a type III endoribonuclease, is a critical component in microRNA biogenesis and is required for mature microRNA production. Abnormal Dicer expression occurs in numerous cancer types and correlates with poor patient prognosis. For example, increased Dicer expression in melanoma is associated with more aggressive tumors (higher tumor mitotic index and depth of invasion) and poor patient prognosis. However, the role that Dicer plays in melanoma development and immune evasion remains unclear. Here, we report on a newly discovered relationship between Dicer expression and tumor immunogenicity. To investigate Dicer's role in regulating melanoma immunogenicity, Dicer knockdown studies were performed. We found that B16F0-Dicer deficient cells exhibited decreased tumor growth compared to control cells and were capable of inducing anti-tumor immunity. The decrease in tumor growth was abrogated in immunodeficient NSG mice and was shown to be dependent upon CD8+ T cells. Dicer knockdown also induced a more responsive immune gene profile in melanoma cells. Further studies demonstrated that CD8+ T cells preferentially killed Dicer knockdown tumor cells compared to control cells. Taken together, we present evidence which links Dicer expression to tumor immunogenicity in melanoma.
Collapse
|
39
|
Feng B, Hu P, Lu SJ, Chen JB, Ge RL. Increased argonaute 2 expression in gliomas and its association with tumor progression and poor prognosis. Asian Pac J Cancer Prev 2016; 15:4079-83. [PMID: 24935600 DOI: 10.7314/apjcp.2014.15.9.4079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies have showed that argonaute 2 is a potential factor related to genesis of several cancers, however, there have been no reports concerning gliomas. METHODS Paraffin specimens of 129 brain glioma cases were collected from a hospital affiliated to Binzhou Medical University from January 2008 to July 2013. We examined both argonaute 2 mRNA and protein expression by real-time quantitative PCR (qRT-PCR), Western blot analysis, and immunohistochemistry (IHC). The survival curves of the patients were determined using the Kaplan-Meier method and Cox regression, and the log-rank test was used for statistical evaluations. RESULTS Both argonaute 2 mRNA and protein were upregulated in high-grade when compared to low-grade tumor tissues. Multivariate analysis revealed that argonaute 2 protein expression was independently associated with the overall survival (HR=4.587, 95% CI: 3.001-6.993; P=0.002), and that argonaute 2 protein expression and WHO grading were independent prognostic factors for progression-free survival (HR=4.792, 95% CI: 3.993-5.672; P<0.001, and HR=2.109, 95% CI: 1.278-8.229; P=0.039, respectively). Kaplan-Meier analysis with the log-rank test indicated that high argonaute 2 protein expression had a significant impact on overall survival (P=0.0169) and progression-free survival (P=0.0324). CONCLUSIONS The present study showed that argonaute 2 expression is up-regulated in gliomas. Argonaute 2 might also serve as a novel prognostic marker.
Collapse
Affiliation(s)
- Bo Feng
- Department of Neurology, Hospital Affiliated to Binzhou medical University, Binzhou, China E-mail :
| | | | | | | | | |
Collapse
|
40
|
Li Y, Wang X, He B, Cai H, Gao Y. Downregulation and tumor-suppressive role of XPO5 in hepatocellular carcinoma. Mol Cell Biochem 2016. [PMID: 27000860 DOI: 10.1007/s1100-016-2692-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
XPO5 (Exp5, Exportin-5) is a transporter protein mainly mediating pre-microRNAs' nuclear export. Recent studies have demonstrated that XPO5 may play crucial roles in a few of cancers. However, little is known about XPO5 in hepatocellular carcinoma (HCC). In the present study, we elucidated the expression of XPO5 by quantitative real-time PCR (qRT-PCR) and immunohistochemical staining in HCC samples and conducted several functional analyses to address its effects on HCC development. The results demonstrated that both mRNA and protein levels of XPO5 were downregulated in HCC tissues compared to adjacent non-cancerous livers. Ectopic expression of XPO5 significantly suppressed cell proliferation, colony formation, growth in soft agar, and tumorigenicity in nude mice, whereas knockdown of XPO5 by RNA inference showed opposite phenotypes. Moreover, XPO5 knockdown promoted HCC cell migration and decreased the expression of E-cadherin and p53. Additionally, after treatment with DAC and TSA, the mRNA level of XPO5 was upregulated in HCC cells tested, implicating that epigenetic modulation may be involved in the transcription of XPO5. Collectively, our findings suggest that XPO5 functions as a potential tumor suppressor in the development and progression of HCC as well as a promising molecular target for HCC therapy.
Collapse
Affiliation(s)
- Yandong Li
- Department of Oncology and Hematology, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji-Mo Road, Shanghai, 200120, China.
| | - Xiao Wang
- Department of Oncology, East Hospital, Dalian Medical University, Shanghai, 200120, China
| | - Bin He
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hui Cai
- Department of Oncology and Hematology, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji-Mo Road, Shanghai, 200120, China
| | - Yong Gao
- Department of Oncology and Hematology, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji-Mo Road, Shanghai, 200120, China
| |
Collapse
|
41
|
Li Y, Wang X, He B, Cai H, Gao Y. Downregulation and tumor-suppressive role of XPO5 in hepatocellular carcinoma. Mol Cell Biochem 2016; 415:197-205. [PMID: 27000860 DOI: 10.1007/s11010-016-2692-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/17/2016] [Indexed: 01/07/2023]
Abstract
XPO5 (Exp5, Exportin-5) is a transporter protein mainly mediating pre-microRNAs' nuclear export. Recent studies have demonstrated that XPO5 may play crucial roles in a few of cancers. However, little is known about XPO5 in hepatocellular carcinoma (HCC). In the present study, we elucidated the expression of XPO5 by quantitative real-time PCR (qRT-PCR) and immunohistochemical staining in HCC samples and conducted several functional analyses to address its effects on HCC development. The results demonstrated that both mRNA and protein levels of XPO5 were downregulated in HCC tissues compared to adjacent non-cancerous livers. Ectopic expression of XPO5 significantly suppressed cell proliferation, colony formation, growth in soft agar, and tumorigenicity in nude mice, whereas knockdown of XPO5 by RNA inference showed opposite phenotypes. Moreover, XPO5 knockdown promoted HCC cell migration and decreased the expression of E-cadherin and p53. Additionally, after treatment with DAC and TSA, the mRNA level of XPO5 was upregulated in HCC cells tested, implicating that epigenetic modulation may be involved in the transcription of XPO5. Collectively, our findings suggest that XPO5 functions as a potential tumor suppressor in the development and progression of HCC as well as a promising molecular target for HCC therapy.
Collapse
Affiliation(s)
- Yandong Li
- Department of Oncology and Hematology, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji-Mo Road, Shanghai, 200120, China.
| | - Xiao Wang
- Department of Oncology, East Hospital, Dalian Medical University, Shanghai, 200120, China
| | - Bin He
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hui Cai
- Department of Oncology and Hematology, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji-Mo Road, Shanghai, 200120, China
| | - Yong Gao
- Department of Oncology and Hematology, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji-Mo Road, Shanghai, 200120, China
| |
Collapse
|
42
|
Li P, Meng J, Zhai Y, Zhang H, Yu L, Wang Z, Zhang X, Cao P, Chen X, Han Y, Zhang Y, Chen H, Ling Y, Li Y, Cui Y, Bei JX, Zeng YX, He F, Zhou G. Argonaute 2 and nasopharyngeal carcinoma: a genetic association study and functional analysis. BMC Cancer 2015; 15:862. [PMID: 26545861 PMCID: PMC4636795 DOI: 10.1186/s12885-015-1895-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023] Open
Abstract
Background Argonaute 2 (AGO2), a central component of RNA-induced silencing complex, plays critical roles in cancer. We examined whether the single nucleotide polymorphisms (SNPs) of AGO2 were related to the risk of nasopharyngeal carcinoma (NPC). Methods Twenty-five tag SNPs within AGO2 were genotyped in Guangxi population consisting of 855 NPC patients and 1036 controls. The SNPs significantly associated with NPC were further replicated in Guangdong population consisting of 996 NPC patients and 972 controls. Functional experiments were conducted to examine the biologic roles of AGO2 in NPC. Results A significantly increased risk of advanced lymph node metastasis of NPC was identified for the AGO2 rs3928672 GA + AA genotype compared with GG genotype in both the Guangxi and Guangdong populations (combined odd ratio = 2.08, 95 % confidence interval = 1.44-3.01, P = 8.60 × 10−5). Moreover, the AGO2 protein expression levels of rs3928672 GA + AA genotype carriers were higher than the GG genotype carriers in the NPC tissues (P = 0.041), and AGO2 was significantly over-expressed in NPC tissues compared with non-cancerous nasopharyngeal tissues (P = 0.011). In addition, AGO2 knockdown reduced cell proliferation, induced apoptosis, and inhibited migration of NPC cells. Furthermore, gene expression microarray showed that genes altered following AGO2 knockdown were clustered in tumorigenesis and metastasis relevant pathways. Conclusions Our findings suggest that the genetic polymorphism in AGO2 may be a risk factor for the advanced lymph node metastasis of NPC in Chinese populations, and AGO2 acts as an oncogene in the development of NPC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1895-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peiyao Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Jinfeng Meng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China. .,Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Basic Medical Sciences, Beijing, P.R. China.
| | - Yun Zhai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Hongxing Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Lixia Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Zhifu Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Xiaoai Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Pengbo Cao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Xi Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Yuqing Han
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Yang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Huipeng Chen
- Laboratory of Microbial Genomics, Beijing Institute of Biotechnology, Beijing, P.R. China.
| | - Yan Ling
- Laboratory of Microbial Genomics, Beijing Institute of Biotechnology, Beijing, P.R. China.
| | - Yuxia Li
- Laboratory of Microbial Genomics, Beijing Institute of Biotechnology, Beijing, P.R. China.
| | - Ying Cui
- Affiliated Cancer Hospital of Guangxi Medical University, Nanning, P.R. China.
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| |
Collapse
|
43
|
Hu T, Yang H, Han ZG. PDZRN4 acts as a suppressor of cell proliferation in human liver cancer cell lines. Cell Biochem Funct 2015; 33:443-9. [PMID: 26486104 DOI: 10.1002/cbf.3130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/12/2015] [Accepted: 08/03/2015] [Indexed: 11/11/2022]
Abstract
Recently, some reports show that Ligand of Numb Protein-X 1 (LNX1) could be a suppressor gene in gliomas, while our current research has firstly shown that PDZ domain containing ring finger 4 (PDZRN4), another member of LNX family, could also be a potential suppressor in hepatocellular carcinoma (HCC). PDZRN4, also named LNX4 (Ligand of Numb Protein-X 4), is a member of the LNX family. We recently found that PDZRN4, but not LNX1, was down-regulated in HCC samples, and the role of PDZRN4 in the progression of HCC had not been studied before. To address this question, firstly, we evaluated the expression of PDZRN4 in HCC samples and adjacent non-cancerous tissues. Semi-quantitative polymerase chain reaction showed that PDZRN4 was down-regulated in 24/36 (66.7%) HCC samples separately. In addition, our research shows that PDZRN4 is silenced in all of the 12 HCC cell lines tested. Subsequently, cell-based functional assay exhibited that ectopic expression of PDZRN4 inhibits the proliferation, plate colony formation and anchorage-independent colony formation of HCC cells. Collectively, our results showed that PDZRN4 might be a potential tumour suppressor gene and had anti-proliferative effect on HCC cell proliferation, which would be of great significance to the researches on HCC.
Collapse
Affiliation(s)
- Taotao Hu
- Key Laboratory of Systems Biomedicine (Ministry of Education) of Rui-Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center, Shanghai, Shanghai, China
| | - Hong Yang
- Key Laboratory of Systems Biomedicine (Ministry of Education) of Rui-Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education) of Rui-Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center, Shanghai, Shanghai, China
| |
Collapse
|
44
|
Ye ZL, Huang Y, Li LF, Zhu HL, Gao HX, Liu H, Lv SQ, Xu ZH, Zheng LN, Liu T, Zhang JL, Jin HJ, Qian QJ. Argonaute 2 promotes angiogenesis via the PTEN/VEGF signaling pathway in human hepatocellular carcinoma. Acta Pharmacol Sin 2015; 36:1237-45. [PMID: 25937637 DOI: 10.1038/aps.2015.18] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 03/06/2015] [Indexed: 12/14/2022]
Abstract
AIM Argonaute2 (AGO2) protein is the active part of RNA-induced silencing complex, cleaving the target mRNA strand complementary to their bound siRNA. An increasing number of miRNAs has been identified as essential to angiogenesis of hepatocellular carcinoma (HCC). In this study we investigated how AGO2 affected HCC angiogenesis. METHODS Human HCC cell lines HepG2, Hep3B, Huh7, SMMC-7721, Bel-7404, MHCC97-H and LM-3, and human umbilical vein endothelial cells (HUVEC) were tested. The expression of AGO2 in HCC cells was knocked down with siRNA and restored using recombinant adenovirus expressing Ago2. The levels of relevant mRNAs and proteins were examined using RT-PCR, Western blot and EILSA. Nude mice were implanted with Huh7 or SMMC-7721 cells, and tumor volumes were measured. After the mice were euthanized, the xenograft tumors were used for immunohistological analysis. RESULTS In 6 HCC cell lines, AGO2 protein expression was significantly correlated with VEGF expression (r=+0.79), and with VEGF secretion (r=+0.852). Knockdown of Ago2 in Huh7 cells and SMMC-7721 cells substantially decreased VEGF expression, whereas the restoration of AGO2 reversed both VEGF expression and secretion. Furthermore, knockdown of Ago2 significantly up-regulated the expression of PTEN (a tumor suppressor involved in the inhibition of HCC angiogenesis), and vice versa. Moreover, the specific PTEN inhibitor bisperoxovanadate (7, 14, 28 nmol/L) dose-dependently restored the expression of VEGF and the capacity of HCC cells to induce HUVECs to form capillary tubule structures. In the xenograft nude mice, knockdown of Ago2 markedly suppressed the tumor growth and decreased PTEN expression and CD31-positive microvascular in the xenograft tumors. CONCLUSION A direct relationship exists between the miRNA processing machinery AGO2 and HCC angiogenesis that is mediated by the AGO2/PTEN/VEGF signaling pathway. The results suggest the high value of Ago2 knockdown in anti-angiogenesis therapy for HCC.
Collapse
|
45
|
Ye Z, Jin H, Qian Q. Argonaute 2: A Novel Rising Star in Cancer Research. J Cancer 2015; 6:877-82. [PMID: 26284139 PMCID: PMC4532985 DOI: 10.7150/jca.11735] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/15/2015] [Indexed: 12/18/2022] Open
Abstract
AGO2 (Argonaute 2, EIF2C2) is the only member in AGO family with catalytic activity and of extreme importance during small RNAs guided gene silencing processes. The structural investigations have provided insights into details and functional mechanisms of the four major domains within AGO2. As a multifunction player, AGO2 has been revealed involved in tumorgenesis through miRNAs-dependent or independent ways. And nowadays, AGO2 has also been more importantly found ectopically over-expressed in carcinomas and closely associated with aspects of cancers in means of interacting with well-known tumor factors. Here, we provide a review on structural insights, functional mechanisms, novel roles and relationship with carcinomas of AGO2.
Collapse
Affiliation(s)
- ZhenLong Ye
- Laboratory of Viral and Gene Therapy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - HuaJun Jin
- Laboratory of Viral and Gene Therapy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - QiJun Qian
- Laboratory of Viral and Gene Therapy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| |
Collapse
|
46
|
Zhang Z, Zhang G, Kong C, Bi J, Gong D, Yu X, Shi D, Zhan B, Ye P. EIF2C, Dicer, and Drosha are up-regulated along tumor progression and associated with poor prognosis in bladder carcinoma. Tumour Biol 2015; 36:5071-9. [PMID: 25656609 DOI: 10.1007/s13277-015-3158-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/26/2015] [Indexed: 12/13/2022] Open
Abstract
EIF2C, Dicer, and Drosha are microRNA-regulating machinery components, which participate in microRNA intracellular process and transfer. Our research demonstrated the expression and clinical role of the microRNA-regulating machinery in bladder cancer. EIF2C1, EIF2C2, Dicer, and Drosha mRNA and protein levels were analyzed in 100 bladder carcinomas and 50 normal bladder tissues using quantitative polymerase chain reaction and Western blotting. EIF2C2, Dicer, and Drosha mRNAs and proteins were overexpressed in carcinoma compared with normal tissues, whereas EIF2C1 mRNA and protein were not obviously different. Moreover, immunohistochemistry was used to detect the expressions of EIF2C2, Dicer, and Drosha in 100 bladder carcinomas. There were higher EIF2C2, Dicer, and Drosha expressions in carcinomas than in the adjacent normal tissues, positive correlations being noted with clinical stage, histopathologic grade, and recurrence. Higher EIF2C2, Dicer, and Drosha expressions were related to shorter cancer-specific survival and shorter recurrence-free survival. Multivariate Cox analysis showed that EIF2C2 was an important risk factor in bladder cancer. In conclusion, EIF2C2, Dicer, and Drosha are more highly expressed in bladder carcinoma, promote the development of bladder cancer, and suggested a poor prognosis. Their clinical role in bladder carcinoma merits further research.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang City, Liaoning Province, 110001, People's Republic of China,
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chakraborty S, Lakshmanan M, Swa HLF, Chen J, Zhang X, Ong YS, Loo LS, Akıncılar SC, Gunaratne J, Tergaonkar V, Hui KM, Hong W. An oncogenic role of Agrin in regulating focal adhesion integrity in hepatocellular carcinoma. Nat Commun 2015; 6:6184. [PMID: 25630468 PMCID: PMC4317502 DOI: 10.1038/ncomms7184] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 12/30/2014] [Indexed: 01/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths globally. The identity and role of cell surface molecules driving complex biological events leading to HCC progression are poorly understood, hence representing major lacunae in HCC therapies. Here, combining SILAC quantitative proteomics and biochemical approaches, we uncover a critical oncogenic role of Agrin, which is overexpressed and secreted in HCC. Agrin enhances cellular proliferation, migration and oncogenic signalling. Mechanistically, Agrin’s extracellular matrix sensor activity provides oncogenic cues to regulate Arp2/3-dependent ruffling, invadopodia formation and epithelial–mesenchymal transition through sustained focal adhesion integrity that drives liver tumorigenesis. Furthermore, Agrin signalling through Lrp4-muscle-specific tyrosine kinase (MuSK) forms a critical oncogenic axis. Importantly, antibodies targeting Agrin reduced oncogenic signalling and tumour growth in vivo. Together, we demonstrate that Agrin is frequently upregulated and important for oncogenic property of HCC, and is an attractive target for antibody therapy. The proteoglycan Agrin is known to be expressed in neurons and muscle and to bind ECM protein laminin. Here the authors report that Agrin promotes hepatocellular carcinoma by stimulating proliferation, decreasing focal adhesion, increasing invasiveness and promoting an epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Hannah L F Swa
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jianxiang Chen
- 1] Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore [2] Laboratory of Cancer Genomics, Cellular and Molecular Research Division, National Cancer Center Singapore, 11, Hospital drive, Singapore 169610, Singapore
| | - Xiaoqian Zhang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Yan Shan Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Li Shen Loo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Semih Can Akıncılar
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Kam M Hui
- 1] Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore [2] Laboratory of Cancer Genomics, Cellular and Molecular Research Division, National Cancer Center Singapore, 11, Hospital drive, Singapore 169610, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
48
|
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic protein tyrosine kinase that is overexpressed and activated in several advanced-stage solid cancers. FAK promotes tumour progression and metastasis through effects on cancer cells, as well as stromal cells of the tumour microenvironment. The kinase-dependent and kinase-independent functions of FAK control cell movement, invasion, survival, gene expression and cancer stem cell self-renewal. Small molecule FAK inhibitors decrease tumour growth and metastasis in several preclinical models and have initial clinical activity in patients with limited adverse events. In this Review, we discuss FAK signalling effects on both tumour and stromal cell biology that provide rationale and support for future therapeutic opportunities.
Collapse
Affiliation(s)
- Florian J. Sulzmaier
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093
| | - Christine Jean
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093
| | - David D. Schlaepfer
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093
- Address correspondence to: David D. Schlaepfer, Ph.D., University of California San Diego, Moores Cancer Center, Department of Reproductive Medicine, 3855 Health Sciences Dr., MC0803, La Jolla, CA 92093,
| |
Collapse
|
49
|
Dai Z, Zhou SL, Zhou ZJ, Bai DS, Xu XY, Fu XT, Chen Q, Zhao YM, Zhu K, Yu L, Yang GH, Wang Z, Wu WZ, Zhou J, Fan J. Capn4 contributes to tumour growth and metastasis of hepatocellular carcinoma by activation of the FAK-Src signalling pathways. J Pathol 2014; 234:316-28. [PMID: 24962955 DOI: 10.1002/path.4395] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 01/04/2023]
Abstract
Calpain small subunit 1 (Capn4) has been identified as a major gene that promotes metastasis of hepatocellular carcinoma (HCC). However, the mechanism by which Capn4 promotes progression of HCC is not understood. In this study, we found that Capn4 expression was increased in highly metastatic HCC cell lines and in tumour tissue from HCC patients compared to healthy patient tissue. Over-expression of Capn4 in HCC cells enhanced tumour cell growth in vitro and increased invasiveness, tumourigenicity and lung metastasis in vivo. Protein microarray analyses showed that expression of multiple proteins was regulated by Capn4. Interestingly, Capn4 was found to physically associate with FAK and promoted hyperactivity of the FAK-Src signalling pathway via increased phosphorylation of specific tyrosine residues of FAK, Src and p130Cas. Knock-down of Capn4 expression suppressed the malignant behaviour of HCC cells and inhibited the FAK-Src signalling pathway. Furthermore, Capn4-mediated invasion and metastasis of HCC cells required up-regulation of matrix metalloproteinase-2 (MMP2) through activation of this signalling pathway. Our clinical data revealed that Capn4 expression correlated well with the levels of phospho-FAK, and over-expression of both Capn4 and phospho-FAK correlates with the poorest survival outcomes in HCC. In conclusion, our data showed that Capn4 can contribute to HCC growth and metastasis via activation of the FAK-Src signalling pathway and MMP2.
Collapse
Affiliation(s)
- Zhi Dai
- Liver Cancer Institute and Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Poly(ADP-ribose) polymerases (PARPs) modify target proteins post-translationally with poly(ADP-ribose) (PAR) or mono(ADP-ribose) (MAR) using NAD(+) as substrate. The best-studied PARPs generate PAR modifications and include PARP1 and the tankyrase PARP5A, both of which are targets for cancer therapy with inhibitors in either clinical trials or preclinical development. There are 15 additional PARPs, most of which modify proteins with MAR, and their biology is less well understood. Recent data identify potentially cancer-relevant functions for these PARPs, which indicates that we need to understand more about these PARPs to effectively target them.
Collapse
Affiliation(s)
- Sejal Vyas
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Paul Chang
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|