1
|
Baig S, Berikkara A, Khalid R, Subhan SA, Abbas T, Abidi SH. In silico analysis of the effect of HCV genotype-specific polymorphisms in Core, NS3, NS5A, and NS5B proteins on T-cell epitope processing and presentation. Front Microbiol 2025; 15:1498069. [PMID: 39881992 PMCID: PMC11774985 DOI: 10.3389/fmicb.2024.1498069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/20/2024] [Indexed: 01/31/2025] Open
Abstract
Background HCV genotypes are 30-35% polymorphic at the nucleotide level, while subtypes within the same genotype differ by nearly 20%. Although previous studies have shown the immune escape potential of several mutations within the HCV proteins, little is known about the effect of genotype/subtype-specific gene polymorphism on T-cell immunity. Therefore, this study employed several in silico methods to examine the impact of genotype/subtype-specific polymorphisms in Core, NS3, NS5A, and NS5B sequences on T cell epitope processing and HLA-epitope interactions. Methods For this study, 8,942, 17,700, 14,645, and 3,277 HCV Core, NS3, NS5A, and NS5B sequences, respectively, from eight genotypes and 21 subtypes were retrieved from the Los Alamos HCV Database. Next, the NetCTL tool was employed to predict Cytotoxic T Lymphocyte (CTL) epitopes based on combined proteasomal cleavage, TAP efficacy, and HLA class I receptor binding scores. PEP-FOLD was used to model selected epitopes, followed by peptide-HLA docking using HPEPDOCK. Finally, molecular dynamics simulations were conducted for 200 ns using Desmond software to analyze differences in HLA-epitope (from different HCV genotypes) interaction kinetics and dynamics. Results A total of 3,410, 8,054, 6,532, and 14,015 CTL epitopes were observed in the HCV Core, NS3, NS5A, and NS5B sequences, respectively. Significant genotype/subtype-specific variations in CTL values and docking scores were observed among NS3, NS5A, and NS5B proteins. In silico results reveal that epitopes from genotype 6b (NS3), 6d/r (NS5B), 6o and 6 k (NS5A) exhibit higher immunogenicity than other genotypes, forming more energetically stable complexes with host receptors. These epitopes, compared to those from the same positions but different genotypes, showed binding energies of -144.24 kcal/mol, -85.30 kcal/mol, and - 43 kcal/mol, respectively. Over a 200 ns MD simulation, GT 6b and 6d/r epitopes displayed up to a 40% stronger binding energy with the HLA receptor. These findings suggest that patients infected with GT 6 may experience enhanced T cell responsiveness and broader immunogenicity. Conclusion Our study suggests that genotype/subtype-specific polymorphism in HCV may result in altered immune responses by modulating T-cell epitope processing and interaction with HLA receptors. Further experimental studies can be performed to confirm the effect of genotype/subtype-specific polymorphisms on T cell-mediated immune response.
Collapse
Affiliation(s)
- Samina Baig
- Department of Microbiology, University of Karachi, Karachi, Pakistan
- Dow Institute of Medical Technology, Dow University of Health Sciences, Karachi, Pakistan
| | - Assel Berikkara
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Ramsha Khalid
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Syed A. Subhan
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Tanveer Abbas
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Syed Hani Abidi
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| |
Collapse
|
2
|
Märkle H, John S, Metzger L, Ansari MA, Pedergnana V, Tellier A. Inference of Host-Pathogen Interaction Matrices from Genome-Wide Polymorphism Data. Mol Biol Evol 2024; 41:msae176. [PMID: 39172738 DOI: 10.1093/molbev/msae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024] Open
Abstract
Host-pathogen coevolution is defined as the reciprocal evolutionary changes in both species due to genotype × genotype (G×G) interactions at the genetic level determining the outcome and severity of infection. While co-analyses of hosts and pathogen genomes (co-genome-wide association studies) allow us to pinpoint the interacting genes, these do not reveal which host genotype(s) is/are resistant to which pathogen genotype(s). The knowledge of this so-called infection matrix is important for agriculture and medicine. Building on established theories of host-pathogen interactions, we here derive four novel indices capturing the characteristics of the infection matrix. These indices can be computed from full genome polymorphism data of randomly sampled uninfected hosts, as well as infected hosts and their pathogen strains. We use these indices in an approximate Bayesian computation method to pinpoint loci with relevant G×G interactions and to infer their underlying interaction matrix. In a combined single nucleotide polymorphism dataset of 451 European humans and their infecting hepatitis C virus (HCV) strains and 503 uninfected individuals, we reveal a new human candidate gene for resistance to HCV and new virus mutations matching human genes. For two groups of significant human-HCV (G×G) associations, we infer a gene-for-gene infection matrix, which is commonly assumed to be typical of plant-pathogen interactions. Our model-based inference framework bridges theoretical models of G×G interactions with host and pathogen genomic data. It, therefore, paves the way for understanding the evolution of key G×G interactions underpinning HCV adaptation to the European human population after a recent expansion.
Collapse
Affiliation(s)
- Hanna Märkle
- Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising 85354Germany
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sona John
- Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising 85354Germany
| | - Lukas Metzger
- Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising 85354Germany
| | - M Azim Ansari
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Vincent Pedergnana
- Laboratoire MIVEGEC (UMR CNRS 5290, UR IRD 224, UM), Montpellier, France
| | - Aurélien Tellier
- Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising 85354Germany
| |
Collapse
|
3
|
Chumbe A, Grobben M, Capella-Pujol J, Koekkoek SM, Zon I, Slamanig S, Merat SJ, Beaumont T, Sliepen K, Schinkel J, van Gils MJ. A panel of hepatitis C virus glycoproteins for the characterization of antibody responses using antibodies with diverse recognition and neutralization patterns. Virus Res 2024; 341:199308. [PMID: 38171391 PMCID: PMC10821612 DOI: 10.1016/j.virusres.2024.199308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 01/05/2024]
Abstract
A vaccine against Hepatitis C virus (HCV) is urgently needed to limit the spread of HCV. The large antigenic diversity of the HCV glycoprotein E1E2 makes it difficult to design a vaccine but also to fully understand the antibody response after infection or vaccination. Here we designed a panel of HCV pseudoparticles (HCVpps) that cover a wide range of genetically and antigenically diverse E1E2s. We validate our panel using neutralization and a binding antibody multiplex assay (BAMA). The panel of HCVpps includes E1E2 glycoproteins from acute and chronically infected cases in the Netherlands, as well as E1E2 glycoproteins from previously reported HCVs. Using eight monoclonal antibodies targeting multiple antigenic regions on E1E2, we could categorize four groups of neutralization sensitive viruses with viruses showing neutralization titers over a 100-fold range. One HCVpp (AMS0230) was extremely neutralization resistant and only neutralized by AR4-targeting antibodies. In addition, using binding antibody multiplex competition assay, we delineated mAb epitopes and their interactions. The binding and neutralization sensitivity of the HCVpps were confirmed using patient sera. At the end, eleven HCVpps with unique antibody binding and neutralization profiles were selected as the final panel for standardized HCV antibody assessments. In conclusion, this HCVpp panel can be used to evaluate antibody binding and neutralization breadth and potency as well as delineate the epitopes targeted in sera from patients or candidate vaccine trials. The HCVpp panel in combination with the established antibody competition assay present highly valuable tools for HCV vaccine development and evaluation.
Collapse
Affiliation(s)
- Ana Chumbe
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Marloes Grobben
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Joan Capella-Pujol
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Sylvie M Koekkoek
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Ian Zon
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Stefan Slamanig
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | | | - Tim Beaumont
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands; AIMM Therapeutics, Amsterdam, the Netherlands
| | - Kwinten Sliepen
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Janke Schinkel
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| | - Marit J van Gils
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Chen Q, Qin S, Zhou HY, Deng YQ, Shi PD, Zhao H, Li XF, Huang XY, Wu YR, Guo Y, Pei GQ, Wang YF, Sun SQ, Du ZM, Cui YJ, Fan H, Qin CF. Competitive fitness and homologous recombination of SARS-CoV-2 variants of concern. J Med Virol 2023; 95:e29278. [PMID: 38088537 DOI: 10.1002/jmv.29278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 12/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge and cocirculate in humans and wild animals. The factors driving the emergence and replacement of novel variants and recombinants remain incompletely understood. Herein, we comprehensively characterized the competitive fitness of SARS-CoV-2 wild type (WT) and three variants of concern (VOCs), Alpha, Beta and Delta, by coinfection and serial passaging assays in different susceptible cells. Deep sequencing analyses revealed cell-specific competitive fitness: the Beta variant showed enhanced replication fitness during serial passage in Caco-2 cells, whereas the WT and Alpha variant showed elevated fitness in Vero E6 cells. Interestingly, a high level of neutralizing antibody sped up competition and completely reshaped the fitness advantages of different variants. More importantly, single clone purification identified a significant proportion of homologous recombinants that emerged during the passage history, and immune pressure reduced the frequency of recombination. Interestingly, a recombination hot region located between nucleotide sites 22,995 and 28,866 of the viral genomes could be identified in most of the detected recombinants. Our study not only profiled the variable competitive fitness of SARS-CoV-2 under different conditions, but also provided direct experimental evidence of homologous recombination between SARS-CoV-2 viruses, as well as a model for investigating SARS-CoV-2 recombination.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Si Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Hang-Yu Zhou
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Pan-Deng Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Hui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Xing-Yao Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Ya-Rong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Guang-Qian Pei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yun-Fei Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Si-Qi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Zong-Min Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yu-Jun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Rajput M, Thakur N. Editorial: Advances in host-pathogen interactions for diseases in animals and birds. Front Vet Sci 2023; 10:1282110. [PMID: 37766859 PMCID: PMC10520279 DOI: 10.3389/fvets.2023.1282110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Affiliation(s)
- Mrigendra Rajput
- Department of Biology, University of Dayton, Dayton, OH, United States
| | | |
Collapse
|
6
|
Identification of human progenitors of exhausted CD8 + T cells associated with elevated IFN-γ response in early phase of viral infection. Nat Commun 2022; 13:7543. [PMID: 36477661 PMCID: PMC9729230 DOI: 10.1038/s41467-022-35281-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
T cell exhaustion is a hallmark of hepatitis C virus (HCV) infection and limits protective immunity in chronic viral infections and cancer. Limited knowledge exists of the initial viral and immune dynamics that characterise exhaustion in humans. We studied longitudinal blood samples from a unique cohort of individuals with primary infection using single-cell multi-omics to identify the functions and phenotypes of HCV-specific CD8+ T cells. Early elevated IFN-γ response against the transmitted virus is associated with the rate of immune escape, larger clonal expansion, and early onset of exhaustion. Irrespective of disease outcome, we find heterogeneous subsets of progenitors of exhaustion, based on the level of PD-1 expression and loss of AP-1 transcription factors. Intra-clonal analysis shows distinct trajectories with multiple fates and evolutionary plasticity of precursor cells. These findings challenge the current paradigm on the contribution of CD8+ T cells to HCV disease outcome and provide data for future studies on T cell differentiation in human infections.
Collapse
|
7
|
Osuch S, Laskus T, Perlejewski K, Berak H, Bukowska-Ośko I, Pollak A, Zielenkiewicz M, Radkowski M, Caraballo Cortés K. CD8 + T-Cell Exhaustion Phenotype in Chronic Hepatitis C Virus Infection Is Associated With Epitope Sequence Variation. Front Immunol 2022; 13:832206. [PMID: 35386708 PMCID: PMC8977521 DOI: 10.3389/fimmu.2022.832206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Background and Aims During chronic hepatitis C virus (HCV) infection, CD8+ T-cells become functionally exhausted, undergoing progressive phenotypic changes, i.e., overexpression of “inhibitory” molecules such as PD-1 (programmed cell death protein 1) and/or Tim-3 (T-cell immunoglobulin and mucin domain-containing molecule-3). The extreme intrahost genetic diversity of HCV is a major mechanism of immune system evasion, facilitating epitope escape. The aim of the present study was to determine whether T-cell exhaustion phenotype in chronic HCV infection is related to the sequence repertoire of NS3 viral immunodominant epitopes. Methods The study population was ninety prospective patients with chronic HCV genotype 1b infection. Populations of peripheral blood CD8+ T-cells expressing PD-1/Tim-3 were assessed by multiparametric flow cytometry, including HCV-specific T-cells after magnetic-based enrichment using MHC-pentamer. Autologous epitope sequences were inferred from next-generation sequencing. The correction of sequencing errors and genetic variants reconstruction was performed using Quasirecomb. Results There was an interplay between the analyzed epitopes sequences and exhaustion phenotype of CD8+ T-cells. A predominance of NS31406 epitope sequence, representing neither prototype KLSGLGLNAV nor cross-reactive variants (KLSSLGLNAV, KLSGLGINAV or KLSALGLNAV), was associated with higher percentage of HCV-specific CD8+PD-1+Tim-3+ T-cells, P=0.0102. Variability (at least two variants) of NS31406 epitope sequence was associated with increased frequencies of global CD8+PD-1+Tim-3+ T-cells (P=0.0197) and lower frequencies of CD8+PD-1−Tim-3− T-cells (P=0.0079). In contrast, infection with NS31073 dominant variant epitope (other than prototype CVNGVCWTV) was associated with lower frequency of global CD8+PD-1+Tim-3+ T-cells (P=0.0054). Conclusions Our results indicate that PD-1/Tim-3 receptor expression is largely determined by viral epitope sequence and is evident for both HCV-specific and global CD8+ T-cells, pointing to the importance of evaluating autologous viral epitope sequences in the investigation of CD8+ T-cell exhaustion in HCV infection.
Collapse
Affiliation(s)
- Sylwia Osuch
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Laskus
- Department of Adult Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Karol Perlejewski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Hanna Berak
- Outpatient Clinic, Warsaw Hospital for Infectious Diseases, Warsaw, Poland
| | - Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Human Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Kamila Caraballo Cortés
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Sugrue JA, O’Farrelly C. Uncovering Resistance to Hepatitis C Virus Infection: Scientific Contributions and Unanswered Questions in the Irish Anti-D Cohort. Pathogens 2022; 11:pathogens11030306. [PMID: 35335630 PMCID: PMC8953313 DOI: 10.3390/pathogens11030306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Infections caused inadvertently during clinical intervention provide valuable insight into the spectrum of human responses to viruses. Delivery of hepatitis C virus (HCV)-contaminated blood products in the 70s (before HCV was identified) have dramatically increased our understanding of the natural history of HCV infection and the role that host immunity plays in the outcome to viral infection. In Ireland, HCV-contaminated anti-D immunoglobulin (Ig) preparations were administered to approximately 1700 pregnant Irish rhesus-negative women in 1977–1979. Though tragic in nature, this outbreak (alongside a smaller episode in 1993) has provided unique insight into the host factors that influence outcomes after HCV exposure and the subsequent development of disease in an otherwise healthy female population. Despite exposure to highly infectious batches of anti-D, almost 600 of the HCV-exposed women have never shown any evidence of infection (remaining negative for both viral RNA and anti-HCV antibodies). Detailed analysis of these individuals may shed light on innate immune pathways that effectively block HCV infection and potentially inform us more generally about the mechanisms that contribute to viral resistance in human populations.
Collapse
Affiliation(s)
- Jamie A. Sugrue
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02R590 Dublin, Ireland
- Correspondence: (J.A.S.); (C.O.)
| | - Cliona O’Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02R590 Dublin, Ireland
- School of Medicine, Trinity College Dublin, D02R590 Dublin, Ireland
- Correspondence: (J.A.S.); (C.O.)
| |
Collapse
|
9
|
Mansy SS, AbouSamra MM. Electron microscopy overview of SARS-COV2 and its clinical impact. Ultrastruct Pathol 2022; 46:1-17. [PMID: 35139747 DOI: 10.1080/01913123.2022.2035475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Research centers around the world are competing to develop therapeutic and prophylactic agents to provide new intervention strategies that could halt or even help slow the progression of the COVID19 pandemic. This requires a deep understanding of the biology and cytopathology of the interaction of SARS-CoV-2 with the cell. This review highlights the importance of electron microscopy (EM) in better understanding the morphology, the subcellular morphogenesis, and pathogenesis of SARS-CoV-2, given its nanometric dimensions. The study also underscores the value of cryo-electron microscopy for analyzing the structure of viral protein complex at atomic resolution in its native state and the development of novel antibodies, vaccines, and therapies targeting the trimeric S spike proteins and the viral replication organelles. This review highlighted the emergence in a short period of time of several viral variants of concern with enhanced transmissibility and increased infectivity. This is due to the elevated affinity of the host receptor with acquired adaptive mutations in the spike protein gene of the virus.Subsequently, to the technical improvement of EM resolutions and the recent promising results with SARS-CoV2 variant structure determination, antibodies production, and vaccine development, it is necessary to maximize our investigations regarding the potential occurrence of immune pressure and viral adaptation secondary to repeated infection and vaccination.
Collapse
Affiliation(s)
- Soheir Saiid Mansy
- Electron Microscopy Research Department, Theodor Bilharz Research Institute, Egypt
| | - Mona Mahmoud AbouSamra
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
10
|
Smith S, Honegger JR, Walker C. T-Cell Immunity against the Hepatitis C Virus: A Persistent Research Priority in an Era of Highly Effective Therapy. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a036954. [PMID: 32205413 PMCID: PMC7778213 DOI: 10.1101/cshperspect.a036954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Approximately 70% of acute hepatitis C virus (HCV) infections become chronic, indicating that the virus is exceptionally well adapted to persist in humans with otherwise normal immune function. Robust, lifelong replication of this small RNA virus does not require a generalized failure of immunity. HCV effectively subverts innate and adaptive host defenses while leaving immunity against other viruses intact. Here, the role of CD4+ and CD8+ T-cell responses in control of HCV infection and their failure to prevent virus persistence in most individuals are reviewed. Two issues of practical importance remain priorities in an era of highly effective antiviral therapy for chronic hepatitis C. First, the characteristics of successful T-cell responses that promote resolution of HCV infection are considered, as they will underpin development of vaccines that prevent HCV persistence. Second, defects in T-cell immunity that facilitate HCV persistence and whether they are reversed after antiviral cure to provide protection from reinfection are also addressed.
Collapse
Affiliation(s)
- Stephanie Smith
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| | - Jonathan R. Honegger
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| | - Christopher Walker
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| |
Collapse
|
11
|
Kemming J, Thimme R, Neumann-Haefelin C. Adaptive Immune Response against Hepatitis C Virus. Int J Mol Sci 2020; 21:ijms21165644. [PMID: 32781731 PMCID: PMC7460648 DOI: 10.3390/ijms21165644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
A functional adaptive immune response is the major determinant for clearance of hepatitis C virus (HCV) infection. However, in the majority of patients, this response fails and persistent infection evolves. Here, we dissect the HCV-specific key players of adaptive immunity, namely B cells and T cells, and describe factors that affect infection outcome. Once chronic infection is established, continuous exposure to HCV antigens affects functionality, phenotype, transcriptional program, metabolism, and the epigenetics of the adaptive immune cells. In addition, viral escape mutations contribute to the failure of adaptive antiviral immunity. Direct-acting antivirals (DAA) can mediate HCV clearance in almost all patients with chronic HCV infection, however, defects in adaptive immune cell populations remain, only limited functional memory is obtained and reinfection of cured individuals is possible. Thus, to avoid potential reinfection and achieve global elimination of HCV infections, a prophylactic vaccine is needed. Recent vaccine trials could induce HCV-specific immunity but failed to protect from persistent infection. Thus, lessons from natural protection from persistent infection, DAA-mediated cure, and non-protective vaccination trials might lead the way to successful vaccination strategies in the future.
Collapse
Affiliation(s)
- Janine Kemming
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg im Breisgau, Germany
| | - Robert Thimme
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Correspondence: ; Tel.: +49-761-270-32800
| |
Collapse
|
12
|
Factors Influencing the Prevalence of Resistance-Associated Substitutions in NS5A Protein in Treatment-Naive Patients with Chronic Hepatitis C. Biomedicines 2020; 8:biomedicines8040080. [PMID: 32272736 PMCID: PMC7235841 DOI: 10.3390/biomedicines8040080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/24/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022] Open
Abstract
Direct-acting antivirals (DAAs) revolutionized treatment of hepatitis C virus (HCV) infection. Resistance-associated substitutions (RASs) present at the baseline impair response to DAA due to rapid selection of resistant HCV strains. NS5A is indispensable target of the current DAA treatment regimens. We evaluated prevalence of RASs in NS5A in DAA-naïve patients infected with HCV 1a (n = 19), 1b (n = 93), and 3a (n = 90) before systematic DAA application in the territory of the Russian Federation. Total proportion of strains carrying at least one RAS constituted 35.1% (71/202). In HCV 1a we detected only M28V (57.9%) attributed to a founder effect. Common RASs in HCV 1b were R30Q (7.5%), L31M (5.4%), P58S (4.4%), and Y93H (5.4%); in HCV 3a, A30S (31.0%), A30K (5.7%), S62L (8.9%), and Y93H (2.2%). Prevalence of RASs in NS5A of HCV 1b and 3a was similar to that worldwide, including countries practicing massive DAA application, i.e., it was not related to treatment. NS5A with and without RASs exhibited different co-variance networks, which could be attributed to the necessity to preserve viral fitness. Majority of RASs were localized in polymorphic regions subjected to immune pressure, with selected substitutions allowing immune escape. Altogether, this explains high prevalence of RAS in NS5A and low barrier for their appearance in DAA-inexperienced population.
Collapse
|
13
|
Can Direct-Acting Antiviral Treatment Change the Immunologic Risk Profile in Patients Infected with Hepatitis C Virus Who Are on the Cadaveric Waiting List? Transplant Proc 2020; 52:97-101. [PMID: 31901328 DOI: 10.1016/j.transproceed.2019.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/11/2019] [Accepted: 10/06/2019] [Indexed: 12/09/2022]
Abstract
BACKGROUND In patients with hepatitis C virus (HCV) infection, the activation of the immune system by the virus or viral proteins leads to the production of numerous autoantibodies and clinical manifestations. The objectives of this study were to investigate the relationship between HCV and anti-HLA antibodies, as well as the effect of viremia on the antibody response and of direct-acting antivirals (DAAs) on anti-HLA antibody persistence in patients on the waiting list for a cadaveric kidney transplant. METHODS A total of 395 patients from the cadaveric renal transplant waiting list were included in the study. The patients were grouped according to the presence of HCV infection, and patients with HCV positivity were further divided into a spontaneous clearance group and a persistent group. Anti-HLA antibodies were examined before and after treatment of the patients in the persistent group. The One Lambda Luminex method (Thermo Fisher Scientific, Waltham, MA, United States) was used to assess both HLA class I and II alleles and the anti-HLA antibody profile. RESULTS Anti-HLA class I and II antibodies were detected in 48.2% and 55.1%, respectively, of the patients infected with HCV and in 21.8% and 20.4%, respectively, of the patients who were not infected. The level of anti-HLA A3, A11, B72, B52, Cw6, Cw16, DR3, and DQ4 antibodies was significantly higher in the patients infected with HCV. There was no statistically significant difference in class I and II antibody titration between the HCV-infected spontaneous clearance group and the persistent group (class I mean fluorescence intensity [MFI] ± SD: 13,583 ± 6224, 13,450 ± 9540, P = .808; Class II MFI ± SD: 13,000 ± 8673, 8440 ± 8302, P = .317, respectively). There was no significant difference in the class I and class II anti-HLA antibody profile and titration in the persistent group after treatment with DAAs (P > .05). CONCLUSIONS The results of this study demonstrated that hepatitis C DAA treatment did not change the anti-HLA antibody profile and titration.
Collapse
|
14
|
Chaturvedi N, Svarovskaia ES, Mo H, Osinusi AO, Brainard DM, Subramanian GM, McHutchison JG, Zeuzem S, Fellay J. Adaptation of hepatitis C virus to interferon lambda polymorphism across multiple viral genotypes. eLife 2019; 8:e42542. [PMID: 31478832 PMCID: PMC6721370 DOI: 10.7554/elife.42542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/31/2019] [Indexed: 12/21/2022] Open
Abstract
Genetic polymorphism in the interferon lambda (IFN-λ) region is associated with spontaneous clearance of hepatitis C virus (HCV) infection and response to interferon-based treatment. Here, we evaluate associations between IFN-λ polymorphism and HCV variation in 8729 patients (Europeans 77%, Asians 13%, Africans 8%) infected with various viral genotypes, predominantly 1a (41%), 1b (22%) and 3a (21%). We searched for associations between rs12979860 genotype and variants in the NS3, NS4A, NS5A and NS5B HCV proteins. We report multiple associations in all tested proteins, including in the interferon-sensitivity determining region of NS5A. We also assessed the combined impact of human and HCV variation on pretreatment viral load and report amino acids associated with both IFN-λ polymorphism and HCV load across multiple viral genotypes. By demonstrating that IFN-λ variation leaves a large footprint on the viral proteome, we provide evidence of pervasive viral adaptation to innate immune pressure during chronic HCV infection.
Collapse
Affiliation(s)
- Nimisha Chaturvedi
- School of Life SciencesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | | | - Hongmei Mo
- Gilead Sciences IncFoster CityUnited States
| | | | | | | | | | | | - Jacques Fellay
- School of Life SciencesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
- Precision Medicine UnitLausanne University HospitalLausanneSwitzerland
| |
Collapse
|
15
|
Cuypers L, Thijssen M, Shakibzadeh A, Sabahi F, Ravanshad M, Pourkarim MR. Next-generation sequencing for the clinical management of hepatitis C virus infections: does one test fits all purposes? Crit Rev Clin Lab Sci 2019; 56:420-434. [PMID: 31317801 DOI: 10.1080/10408363.2019.1637394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
While the prospect of viral cure is higher than ever for individuals infected with the hepatitis C virus (HCV) due to ground-breaking progress in antiviral treatment, success rates are still negatively influenced by HCV's high genetic variability. This genetic diversity is represented in the circulation of various genotypes and subtypes, mixed infections, recombinant forms and the presence of numerous drug resistant variants among infected individuals. Common misclassifications by commercial genotyping assays in combination with the limitations of currently used targeted population sequencing approaches have encouraged researchers to exploit alternative methods for the clinical management of HCV infections. Next-generation sequencing (NGS), a revolutionary and powerful tool with a variety of applications in clinical virology, can characterize viral diversity and depict viral dynamics in an ultra-wide and ultra-deep manner. The level of detail it provides makes it the method of choice for the diagnosis and clinical assessment of HCV infections. The sequence library provided by NGS is of a higher magnitude and sensitivity than data generated by conventional methods. Therefore, these technologies are helpful to guide clinical practice and at the same time highly valuable for epidemiological studies. The decreasing costs of NGS to determine genotypes, mixed infections, recombinant strains and drug resistant variants will soon make it feasible to employ NGS in clinical laboratories, to assist in the daily care of patients with HCV.
Collapse
Affiliation(s)
- Lize Cuypers
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven , Leuven , Belgium
| | - Marijn Thijssen
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven , Leuven , Belgium
| | - Arash Shakibzadeh
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran , Iran
| | - Farzaneh Sabahi
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran , Iran
| | - Mehrdad Ravanshad
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran , Iran
| | - Mahmoud Reza Pourkarim
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven , Leuven , Belgium.,Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences , Shiraz , Iran.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran , Iran
| |
Collapse
|
16
|
Shadabi E, Liang B, Plummer F, Luo M. Identification and Characterization of Positively Selected Mutations in Nef of Four HIV-1 Major Subtypes from Los Alamos National Laboratory. Curr HIV Res 2019; 16:130-142. [PMID: 29600767 DOI: 10.2174/1570162x16666180330140807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/07/2018] [Accepted: 03/20/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human immunodeficiency virus-1 (HIV-1) mutates rapidly to escape host immune pressure. This results in the generation of positively selected mutations (PSM) throughout the viral genome. Escape mutations in Nef, one of the accessory proteins of HIV-1, which plays an important role in viral pathogenicity have previously been identified in several large cohort studies, but the evolution of PSMs overtime in various HIV-1 subtypes remains unknown. METHODS 161 clade A1, 3093 clade B, 647 clade C and 115 clade D HIV-1 nef sequences were obtained from the HIV Database of Los Alamos National Laboratory and aligned using MEGA 6.0. The sequences from each clade were grouped based on the year of collection. Quasi analysis was used to identify PSMs and the number and locations of PSMs were compared among different subtypes. RESULTS PSMs for all four subtypes were distributed across the sequence of Nef, and conserved residues F90, W113, PxxPxR (a.a 72-77) remain unaltered overtime. The frequency of PSMs was stable among subtype B sequences but increased overtime for other subtypes. Phylogenetic analysis shows that sequences containing PSMs tend to cluster together at both inter and intra- subtype levels. CONCLUSION Identification of PSMs and their changes overtime within various subtypes of HIV-1 is important in defining global viral evolutionary patterns that can provide insights for designing therapeutic strategies.
Collapse
Affiliation(s)
- Elnaz Shadabi
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Binhua Liang
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Frank Plummer
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ma Luo
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.,JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
Xia Y, Pan W, Ke X, Skibbe K, Walker A, Hoffmann D, Lu Y, Yang X, Feng X, Tong Q, Timm J, Yang D. Differential escape of HCV from CD8 + T cell selection pressure between China and Germany depends on the presenting HLA class I molecule. J Viral Hepat 2019; 26:73-82. [PMID: 30260541 PMCID: PMC7379502 DOI: 10.1111/jvh.13011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 09/07/2018] [Indexed: 12/16/2022]
Abstract
Adaptation of hepatitis C virus (HCV) to CD8+ T cell selection pressure is well described; however, it is unclear if HCV differentially adapts in different populations. Here, we studied HLA class I-associated viral sequence polymorphisms in HCV 1b isolates in a Chinese population and compared viral substitution patterns between Chinese and German populations. We identified three HLA class I-restricted epitopes in HCV NS3 with statistical support for selection pressure and found evidence for differential escape pathways between isolates from China and Germany depending on the HLA class I molecule. The substitution patterns particularly differed in the epitope VTLTHPITK1635-1643 , which was presented by HLA-A*03 as well as HLA-A*11, two alleles with highly different frequencies in the two populations. In Germany, a substitution in position seven of the epitope was the most frequent substitution in the presence of HLA-A*03, functionally associated with immune escape and nearly absent in Chinese isolates. In contrast, the most frequent substitution in China was located at position two of the epitope and became the predominant consensus residue. Moreover, substitutions in position one of the epitope were significantly enriched in HLA-A*11-positive individuals in China and associated with different patterns of CD8+ T cell reactivity. Our study confirms the differential escape pathways selected by HCV that depended on different HLA class I alleles in Chinese and German populations, indicating that HCV differentially adapts to distinct HLA class I alleles in these populations. This result has important implications for vaccine design against highly variable and globally distributed pathogens, which may require matching antigen sequences to geographic regions for T cell-based vaccine strategies.
Collapse
Affiliation(s)
- Youchen Xia
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of Gastroenterology and HepatologyShanghai General HospitalShanghai Jiao Tong University School of Medicine (originally named “Shanghai First People's Hospital”)ShanghaiChina
| | - Wen Pan
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoyu Ke
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of EmergencyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kathrin Skibbe
- Institute of VirologyUniversity Hospital DüsseldorfHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Andreas Walker
- Institute of VirologyUniversity Hospital DüsseldorfHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Daniel Hoffmann
- Bioinformatics and Computational BiophysicsFaculty of BiologyUniversity of Duisburg‐EssenEssenGermany
| | - Yinping Lu
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuecheng Yang
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuemei Feng
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qiaoxia Tong
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jörg Timm
- Institute of VirologyUniversity Hospital DüsseldorfHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Dongliang Yang
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
18
|
Rodrigo C, Luciani F. Dynamic interactions between RNA viruses and human hosts unravelled by a decade of next generation sequencing. Biochim Biophys Acta Gen Subj 2018; 1863:511-519. [PMID: 30528489 DOI: 10.1016/j.bbagen.2018.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Next generation sequencing (NGS) methods have significantly contributed to a paradigm shift in genomic research for nearly a decade now. These methods have been useful in studying the dynamic interactions between RNA viruses and human hosts. SCOPE OF THE REVIEW In this review, we summarise and discuss key applications of NGS in studying the host - pathogen interactions in RNA viral infections of humans with examples. MAJOR CONCLUSIONS Use of NGS to study globally relevant RNA viral infections have revolutionized our understanding of the within host and between host evolution of these viruses. These methods have also been useful in clinical decision-making and in guiding biomedical research on vaccine design. GENERAL SIGNIFICANCE NGS has been instrumental in viral genomic studies in resolving within-host viral genomic variants and the distribution of nucleotide polymorphisms along the full-length of viral genomes in a high throughput, cost effective manner. In the future, novel advances such as long read, single molecule sequencing of viral genomes and simultaneous sequencing of host and pathogens may become the standard of practice in research and clinical settings. This will also bring on new challenges in big data analysis.
Collapse
Affiliation(s)
- Chaturaka Rodrigo
- School of Medical Sciences and Kirby Institute for Infection and Immunity, UNSW Australia, 2052, NSW, Australia
| | - Fabio Luciani
- School of Medical Sciences and Kirby Institute for Infection and Immunity, UNSW Australia, 2052, NSW, Australia.
| |
Collapse
|
19
|
Lucas M, Deshpande P, James I, Rauch A, Pfafferott K, Gaylard E, Merani S, Plauzolles A, Lucas A, McDonnell W, Kalams S, Pilkinton M, Chastain C, Barnett L, Prosser A, Mallal S, Fitzmaurice K, Drummer H, Ansari MA, Pedergnana V, Barnes E, John M, Kelleher D, Klenerman P, Gaudieri S. Evidence of CD4 + T cell-mediated immune pressure on the Hepatitis C virus genome. Sci Rep 2018; 8:7224. [PMID: 29740042 PMCID: PMC5940905 DOI: 10.1038/s41598-018-25559-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/19/2018] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV)-specific T cell responses are critical for immune control of infection. Viral adaptation to these responses, via mutations within regions of the virus targeted by CD8+ T cells, is associated with viral persistence. However, identifying viral adaptation to HCV-specific CD4+ T cell responses has been difficult although key to understanding anti-HCV immunity. In this context, HCV sequence and host genotype from a single source HCV genotype 1B cohort (n = 63) were analyzed to identify viral changes associated with specific human leucocyte antigen (HLA) class II alleles, as these variable host molecules determine the set of viral peptides presented to CD4+ T cells. Eight sites across the HCV genome were associated with HLA class II alleles implicated in infection outcome in this cohort (p ≤ 0.01; Fisher’s exact test). We extended this analysis to chronic HCV infection (n = 351) for the common genotypes 1A and 3A. Variation at 38 sites across the HCV genome were associated with specific HLA class II alleles with no overlap between genotypes, suggestive of genotype-specific T cell targets, which has important implications for vaccine design. Here we show evidence of HCV adaptation to HLA class II-restricted CD4+ T cell pressure across the HCV genome in chronic HCV infection without a priori knowledge of CD4+ T cell epitopes.
Collapse
Affiliation(s)
- Michaela Lucas
- School of Medicine and Pharmacology, Harry Perkins Institute and School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia.,Department of Immunology, Sir Charles Gairdner Hospital and Pathwest, Crawley, Western Australia, Australia.,Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Pooja Deshpande
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Ian James
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Andri Rauch
- Division of Infectious Diseases, University Hospital Bern and University of Bern, Bern, Switzerland
| | - Katja Pfafferott
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia.,Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Elouise Gaylard
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Shahzma Merani
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia.,Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Alberta, Canada
| | - Anne Plauzolles
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Andrew Lucas
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia.,Harry Perkins Institute, University of Western Australia, Crawley, Western Australia, Australia
| | - Wyatt McDonnell
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Spyros Kalams
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark Pilkinton
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cody Chastain
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Louise Barnett
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Amy Prosser
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia.,Harry Perkins Institute, University of Western Australia, Crawley, Western Australia, Australia
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia.,Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Karen Fitzmaurice
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Heidi Drummer
- Department of Immunology and Department of Microbiology, Monash University, Victoria, Australia.,Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| | - M Azim Ansari
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | | | - Ellie Barnes
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Mina John
- Department of Immunology, Sir Charles Gairdner Hospital and Pathwest, Crawley, Western Australia, Australia.,Department of Clinical Immunology, Royal Perth Hospital and Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Dermot Kelleher
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Silvana Gaudieri
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia. .,School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia. .,Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
20
|
Dustin LB. Innate and Adaptive Immune Responses in Chronic HCV Infection. Curr Drug Targets 2018; 18:826-843. [PMID: 26302811 DOI: 10.2174/1389450116666150825110532] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) remains a public health problem of global importance, even in the era of potent directly-acting antiviral drugs. In this chapter, I discuss immune responses to acute and chronic HCV infection. The outcome of HCV infection is influenced by viral strategies that limit or delay the initiation of innate antiviral responses. This delay may enable HCV to establish widespread infection long before the host mounts effective T and B cell responses. HCV's genetic agility, resulting from its high rate of replication and its error prone replication mechanism, enables it to evade immune recognition. Adaptive immune responses fail to keep up with changing viral epitopes. Neutralizing antibody epitopes may be hidden by decoy structures, glycans, and lipoproteins. T cell responses fail due to changing epitope sequences and due to exhaustion, a phenomenon that may have evolved to limit immune-mediated pathology. Despite these difficulties, innate and adaptive immune mechanisms do impact HCV replication. Immune-mediated clearance of infection is possible, occurring in 20-50% of people who contract the disease. New developments raise hopes for effective immunological interventions to prevent or treat HCV infection.
Collapse
Affiliation(s)
- Lynn B Dustin
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, United Kingdom
| |
Collapse
|
21
|
Crux NB, Elahi S. Human Leukocyte Antigen (HLA) and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis C Virus Infections? Front Immunol 2017; 8:832. [PMID: 28769934 PMCID: PMC5513977 DOI: 10.3389/fimmu.2017.00832] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
The genetic factors associated with susceptibility or resistance to viral infections are likely to involve a sophisticated array of immune response. These genetic elements may modulate other biological factors that account for significant influence on the gene expression and/or protein function in the host. Among them, the role of the major histocompatibility complex in viral pathogenesis in particular human immunodeficiency virus (HIV) and hepatitis C virus (HCV), is very well documented. We, recently, added a novel insight into the field by identifying the molecular mechanism associated with the protective role of human leukocyte antigen (HLA)-B27/B57 CD8+ T cells in the context of HIV-1 infection and why these alleles act as a double-edged sword protecting against viral infections but predisposing the host to autoimmune diseases. The focus of this review will be reexamining the role of classical and non-classical HLA alleles, including class Ia (HLA-A, -B, -C), class Ib (HLA-E, -F, -G, -H), and class II (HLA-DR, -DQ, -DM, and -DP) in immune regulation and viral pathogenesis (e.g., HIV and HCV). To our knowledge, this is the very first review of its kind to comprehensively analyze the role of these molecules in immune regulation associated with chronic viral infections.
Collapse
Affiliation(s)
- Nicole B. Crux
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Merani S, Lucas M, Deshpande P, Pfafferott K, Chopra A, Cooper D, Leary S, Luciani F, Gaudieri S. Influence of Transmitted Virus on the Host's Immune Response: A Case Study. Viral Immunol 2017; 30:533-541. [PMID: 28530508 DOI: 10.1089/vim.2017.0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Host hepatitis C virus (HCV)-specific T cell responses and the ability of the virus to escape this response are important correlates of infection outcome. Understanding this host-viral interplay has been difficult given the often asymptomatic nature of acute HCV infection. We studied a recent transmission case to determine whether adapted viral strains can be transmitted and influence the recipient's anti-HCV T cell response. The diversity of viral populations was examined using next-generation sequencing, and HCV-specific T cell interferon (IFN)-γ responses were assessed using a peptide panel representing the autologous viruses. HCV-specific T cell responses in the source were directed against peptides that did not match the dominant autologous virus but rather low-frequency variants, implying existing viral adaptation in the source strain. Most HCV T cell epitopes that elicited an IFN-γ response in the source did not in the recipient, despite the pair sharing human leukocyte antigen alleles that govern antigen presentation and similar autologous viruses. Intrahost HCV variation in the recipient fell within predicted T cell epitopes, suggesting alternative targets of the immune response. These data suggest that transmission of adapted viral species can direct the host's HCV-specific immune response profile during acute infection.
Collapse
Affiliation(s)
- Shahzma Merani
- 1 School of Human Sciences, University of Western Australia , Crawley, Australia
| | - Michaela Lucas
- 2 Institute of Immunology and Infectious Diseases, Murdoch University , Murdoch, Australia .,3 School of Medicine and Pharmacology, Harry Perkins Institute, University of Western Australia , Crawley, Australia .,4 School of Pathology and Laboratory Medicine, University of Western Australia , Crawley, Australia
| | - Pooja Deshpande
- 1 School of Human Sciences, University of Western Australia , Crawley, Australia
| | - Katja Pfafferott
- 2 Institute of Immunology and Infectious Diseases, Murdoch University , Murdoch, Australia
| | - Abha Chopra
- 2 Institute of Immunology and Infectious Diseases, Murdoch University , Murdoch, Australia
| | - Don Cooper
- 2 Institute of Immunology and Infectious Diseases, Murdoch University , Murdoch, Australia
| | - Shay Leary
- 2 Institute of Immunology and Infectious Diseases, Murdoch University , Murdoch, Australia
| | - Fabio Luciani
- 5 Systems Immunology, School of Medical Sciences, University of New South Wales , Sydney, Australia
| | - Silvana Gaudieri
- 1 School of Human Sciences, University of Western Australia , Crawley, Australia .,2 Institute of Immunology and Infectious Diseases, Murdoch University , Murdoch, Australia .,6 Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Centre , Nashville, Tennessee
| |
Collapse
|
23
|
Ansari MA, Pedergnana V, L C Ip C, Magri A, Von Delft A, Bonsall D, Chaturvedi N, Bartha I, Smith D, Nicholson G, McVean G, Trebes A, Piazza P, Fellay J, Cooke G, Foster GR, Hudson E, McLauchlan J, Simmonds P, Bowden R, Klenerman P, Barnes E, Spencer CCA. Genome-to-genome analysis highlights the effect of the human innate and adaptive immune systems on the hepatitis C virus. Nat Genet 2017; 49:666-673. [PMID: 28394351 PMCID: PMC5873514 DOI: 10.1038/ng.3835] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 03/10/2017] [Indexed: 12/11/2022]
Abstract
Outcomes of hepatitis C virus (HCV) infection and treatment depend on viral and host genetic factors. We use human genome-wide genotyping arrays and new whole-genome HCV viral sequencing technologies to perform a systematic genome-to-genome study of 542 individuals chronically infected with HCV, predominately genotype 3. We show that both HLA alleles and interferon lambda innate immune system genes drive viral genome polymorphism, and that IFNL4 genotypes determine HCV viral load through a mechanism that is dependent on a specific polymorphism in the HCV polyprotein. We highlight the interplay between innate immune responses and the viral genome in HCV control.
Collapse
Affiliation(s)
- M Azim Ansari
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.,Oxford Martin School, University of Oxford, Oxford, UK.,Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the NIHR Oxford BRC, University of Oxford, Oxford, UK
| | - Vincent Pedergnana
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Camilla L C Ip
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.,Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the NIHR Oxford BRC, University of Oxford, Oxford, UK
| | - Andrea Magri
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the NIHR Oxford BRC, University of Oxford, Oxford, UK
| | - Annette Von Delft
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the NIHR Oxford BRC, University of Oxford, Oxford, UK
| | - David Bonsall
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the NIHR Oxford BRC, University of Oxford, Oxford, UK
| | - Nimisha Chaturvedi
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Istvan Bartha
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - David Smith
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the NIHR Oxford BRC, University of Oxford, Oxford, UK
| | | | - Gilean McVean
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.,Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Amy Trebes
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Paolo Piazza
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Graham Cooke
- Wright-Fleming Institute, Imperial College London, London, UK
| | | | | | - Emma Hudson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the NIHR Oxford BRC, University of Oxford, Oxford, UK
| | - John McLauchlan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Peter Simmonds
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the NIHR Oxford BRC, University of Oxford, Oxford, UK
| | - Rory Bowden
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the NIHR Oxford BRC, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the NIHR Oxford BRC, University of Oxford, Oxford, UK
| | - Chris C A Spencer
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Zhang H, Zhang J, Chen L, Weng Z, Tian Y, Zhao H, Li Y, Chen L, Liang Z, Zheng H, Zhao W, Zhong S, Li Y. Targeting naturally occurring epitope variants of hepatitis C virus with high-affinity T-cell receptors. J Gen Virol 2017; 98:374-384. [PMID: 27902325 PMCID: PMC5797947 DOI: 10.1099/jgv.0.000656] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) readily establishes chronic infection, which is characterized by failure of virus-specific CD8+ T cells. HCV uses epitope mutation and T-cell exhaustion to escape from the host immune response. Previously, we engineered high-affinity T-cell receptors (HATs) targeting human immunodeficiency virus escape mutants. In this study, the affinity of a T-cell receptor specific for the HLA-A2-restricted HCV immunodominant epitope NS3 1406–1415 (KLVALGINAV) was improved from a KD of 6.6 µM to 40 pM. These HATs could also target HCV NS3 naturally occurring variants, including an escape variant vrt1 (KLVVLGINAV), with high affinities. The HATs can be used as high-affinity targeting molecules at the centre of the immune synapse for the HLA-restricted NS3 antigen. By fusing the HAT with a T-cell activation molecule, an anti-CD3 single-chain variable fragment, we constructed a molecule called high-affinity T-cell activation core (HATac), which can redirect functional CTLs possessing any specificity to recognize and kill cells presenting HCV NS3 antigens. This capability was verified with T2 cells loaded with prototype or variant peptides and HepG2 cells expressing the truncated NS3 prototype or variant proteins. The results indicate that HATac targeting the HLA-restricted NS3 antigen may provide a useful tool for circumventing immune escape mutants and T-cell exhaustion caused by HCV infection.
Collapse
Affiliation(s)
- Huajun Zhang
- State Key Lab of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China.,Present address: Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Jianbing Zhang
- XiangXue Life Sciences Research Center, XiangXue Pharmaceutical Co. Ltd, Guangzhou, PR China
| | - Lei Chen
- XiangXue Life Sciences Research Center, XiangXue Pharmaceutical Co. Ltd, Guangzhou, PR China
| | - Zhiming Weng
- XiangXue Life Sciences Research Center, XiangXue Pharmaceutical Co. Ltd, Guangzhou, PR China
| | - Ye Tian
- State Key Lab of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China
| | - Haifeng Zhao
- XiangXue Life Sciences Research Center, XiangXue Pharmaceutical Co. Ltd, Guangzhou, PR China
| | - Youjia Li
- State Key Lab of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China
| | - Lin Chen
- State Key Lab of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China
| | - Zhaoduan Liang
- State Key Lab of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China
| | - Hongjun Zheng
- XiangXue Life Sciences Research Center, XiangXue Pharmaceutical Co. Ltd, Guangzhou, PR China
| | - Wenzhuo Zhao
- XiangXue Life Sciences Research Center, XiangXue Pharmaceutical Co. Ltd, Guangzhou, PR China
| | - Shi Zhong
- XiangXue Life Sciences Research Center, XiangXue Pharmaceutical Co. Ltd, Guangzhou, PR China
| | - Yi Li
- State Key Lab of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China.,XiangXue Life Sciences Research Center, XiangXue Pharmaceutical Co. Ltd, Guangzhou, PR China
| |
Collapse
|
25
|
Khan AW, Nasim Z, Zahir F, Ali S, Ali A, Iqbal A, Munir I. Untypeable hepatitis C virus subtypes in Pakistan: A neglected section. Acta Microbiol Immunol Hung 2016; 63:427-431. [PMID: 28033725 DOI: 10.1556/030.63.2016.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Diagnostically untypeable subtypes contribute a considerable percent of hepatitis C virus (HCV) subtypes in Pakistan. In the present study, chronically infected HCV patients with known viremia were subjected to HCV genotyping. Among the total retrieved samples, 92.7% (64/69) were found typeable while 7.24% (5/69) were diagnostically untypeable. In conclusion, the presence of large number of untypeable HCV subtypes emphasizes the need of an updated type-specific genotyping assay and consideration of primers for proportionally rare subtypes to minimize the number of untypeable HCV subtypes.
Collapse
Affiliation(s)
- Abdul Waheed Khan
- 1 Institute of Biotechnology and Genetic Engineering, The University of Agriculture , Peshawar, Pakistan
- 2 Center for Biotechnology and Microbiology, University of Swat , Odigram, Pakistan
| | - Zeeshan Nasim
- 1 Institute of Biotechnology and Genetic Engineering, The University of Agriculture , Peshawar, Pakistan
| | - Fazli Zahir
- 1 Institute of Biotechnology and Genetic Engineering, The University of Agriculture , Peshawar, Pakistan
| | - Shahid Ali
- 2 Center for Biotechnology and Microbiology, University of Swat , Odigram, Pakistan
| | - Abid Ali
- 1 Institute of Biotechnology and Genetic Engineering, The University of Agriculture , Peshawar, Pakistan
| | - Aqib Iqbal
- 1 Institute of Biotechnology and Genetic Engineering, The University of Agriculture , Peshawar, Pakistan
| | - Iqbal Munir
- 1 Institute of Biotechnology and Genetic Engineering, The University of Agriculture , Peshawar, Pakistan
| |
Collapse
|
26
|
|
27
|
Gonçalves Rossi LM, Escobar-Gutierrez A, Rahal P. Multiregion deep sequencing of hepatitis C virus: An improved approach for genetic relatedness studies. INFECTION GENETICS AND EVOLUTION 2015; 38:138-145. [PMID: 26733442 DOI: 10.1016/j.meegid.2015.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 12/19/2022]
Abstract
Hepatitis C virus (HCV) is a major public health problem that affects more than 180 million people worldwide. Identification of HCV transmission networks is of critical importance for disease control. HCV related cases are often difficult to identify due to the characteristic long incubation period and lack of symptoms during the acute phase of the disease, making it challenging to link related cases to a common source of infection. Additionally, HCV transmission chains are difficult to trace back since viral variants from epidemiologically linked cases are genetically related but rarely identical. Genetic relatedness studies primarily rely on information obtained from the rapidly evolving HCV hypervariable region 1 (HVR1). However, in some instances, the rapid divergence of this region can lead to loss of genetic links between related isolates, which represents an important challenge for outbreak investigations and genetic relatedness studies. Sequencing of multiple and longer sub-genomic regions has been proposed as an alternative to overcome the limitations imposed by the rapid molecular evolution of the HCV HVR1. Additionally, conventional molecular approaches required to characterize the HCV intra-host genetic variation are laborious, time-consuming, and expensive while providing limited information about the composition of the viral population. Next generation sequencing (NGS) approaches enormously facilitate the characterization of the HCV intra-host population by detecting rare variants at much lower frequencies. Thus, NGS approaches using multiple sub-genomic regions should improve the characterization of the HCV intra-host population. Here, we explore the usefulness of multiregion sequencing using a NGS platform for genetic relatedness studies among HCV cases.
Collapse
Affiliation(s)
- Livia Maria Gonçalves Rossi
- Department of Biology, Institute of Bioscience, Language and Exact Science, São Paulo State University, São José do Rio Preto, Sao Paulo, Brazil; Instituto de Diagnóstico y Referencia Epidemiológicos, Mexico City, Mexico.
| | | | - Paula Rahal
- Department of Biology, Institute of Bioscience, Language and Exact Science, São Paulo State University, São José do Rio Preto, Sao Paulo, Brazil
| |
Collapse
|
28
|
Abstract
UNLABELLED Hepatitis C virus (HCV) afflicts 170 million people worldwide, 2%-3% of the global population, and kills 350 000 each year. Prophylactic vaccination offers the most realistic and cost effective hope of controlling this epidemic in the developing world where expensive drug therapies are not available. Despite 20 years of research, the high mutability of the virus and lack of knowledge of what constitutes effective immune responses have impeded development of an effective vaccine. Coupling data mining of sequence databases with spin glass models from statistical physics, we have developed a computational approach to translate clinical sequence databases into empirical fitness landscapes quantifying the replicative capacity of the virus as a function of its amino acid sequence. These landscapes explicitly connect viral genotype to phenotypic fitness, and reveal vulnerable immunological targets within the viral proteome that can be exploited to rationally design vaccine immunogens. We have recovered the empirical fitness landscape for the HCV RNA-dependent RNA polymerase (protein NS5B) responsible for viral genome replication, and validated the predictions of our model by demonstrating excellent accord with experimental measurements and clinical observations. We have used our landscapes to perform exhaustive in silico screening of 16.8 million T-cell immunogen candidates to identify 86 optimal formulations. By reducing the search space of immunogen candidates by over five orders of magnitude, our approach can offer valuable savings in time, expense, and labor for experimental vaccine development and accelerate the search for a HCV vaccine. ABBREVIATIONS HCV-hepatitis C virus, HLA-human leukocyte antigen, CTL-cytotoxic T lymphocyte, NS5B-nonstructural protein 5B, MSA-multiple sequence alignment, PEG-IFN-pegylated interferon.
Collapse
Affiliation(s)
- Gregory R Hart
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
29
|
Pfafferott K, Deshpande P, McKinnon E, Merani S, Lucas A, Heckerman D, Mallal S, John M, Gaudieri S, Lucas M. Anti-hepatitis C virus T-cell immunity in the context of multiple exposures to the virus. PLoS One 2015; 10:e0130420. [PMID: 26107956 PMCID: PMC4480353 DOI: 10.1371/journal.pone.0130420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/20/2015] [Indexed: 01/08/2023] Open
Abstract
Characterisation of Hepatitis C virus (HCV)-specific CD8+ T-cell responses in the context of multiple HCV exposures is critical to identify broadly protective immune responses necessary for an effective HCV vaccine against the different HCV genotypes. However, host and viral genetic diversity complicates vaccine development. To compensate for the observed variation in circulating autologous viruses and host molecules that restrict antigen presentation (human leucocyte antigens; HLA), this study used a reverse genomics approach that identified sites of viral adaptation to HLA-restricted T-cell immune pressure to predict genotype-specific HCV CD8+ T-cell targets. Peptides representing these putative HCV CD8+ T-cell targets, and their adapted form, were used in individualised IFN-γ ELISpot assays to screen for HCV-specific T-cell responses in 133 HCV-seropositive subjects with high-risk of multiple HCV exposures. The data obtained from this study i) confirmed that genetic studies of viral evolution is an effective approach to detect novel in vivo HCV T-cell targets, ii) showed that HCV-specific T-cell epitopes can be recognised in their adapted form and would not have been detected using wild-type peptides and iii) showed that HCV-specific T-cell (but not antibody) responses against alternate genotypes in chronic HCV-infected subjects are readily found, implying clearance of previous alternate genotype infection. In summary, HCV adaptation to HLA Class I-restricted T-cell responses plays a central role in anti-HCV immunity and multiple HCV genotype exposure is highly prevalent in at-risk exposure populations, which are important considerations for future vaccine design.
Collapse
Affiliation(s)
- Katja Pfafferott
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Pooja Deshpande
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia, Australia
| | - Elizabeth McKinnon
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Shahzma Merani
- Centre for Forensic Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Andrew Lucas
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - David Heckerman
- Microsoft Research, Microsoft, Redmond, Washington, United States of America
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Mina John
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Silvana Gaudieri
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia, Australia
- * E-mail:
| | - Michaela Lucas
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- School of Medicine and Pharmacology, Harry Perkins Institute, University of Western Australia, Crawley, Western Australia, Australia
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
30
|
Montoya V, Olmstead AD, Janjua NZ, Tang P, Grebely J, Cook D, Richard Harrigan P, Krajden M. Differentiation of acute from chronic hepatitis C virus infection by nonstructural 5B deep sequencing: a population-level tool for incidence estimation. Hepatology 2015; 61:1842-50. [PMID: 25645961 DOI: 10.1002/hep.27734] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/28/2015] [Indexed: 01/19/2023]
Abstract
UNLABELLED The ability to classify acute versus chronic hepatitis C virus (HCV) infections at the time of diagnosis is desirable to improve the quality of surveillance information. The aim of this study was to differentiate acute from chronic HCV infections utilizing deep sequencing. HCV nonstructural 5B (NS5B) amplicons (n = 94) were generated from 77 individuals (13 acute and 64 chronic HCV infections) in British Columbia, Canada, with documented seroconversion time frames. Amplicons were deep sequenced and HCV genomic diversity was measured by Shannon entropy (SE) and a single nucleotide variant (SNV) analysis. The relationship between each diversity measure and the estimated days since infection was assessed using linear mixed models, and the ability of each diversity measure to differentiate acute from chronic infections was assessed using generalized estimating equations. Both SE and the SNV diversity measures were significantly different for acute versus chronic infections (P < 0.009). NS5B nucleotide diversity continued to increase for at least 3 years postinfection. Among individuals with the least uncertainty with regard to duration of infection (n = 39), the area under the receiver operating characteristic curve (AUROC) was high (0.96 for SE; 0.98 for SNV). Although the AUROCs were lower (0.86 for SE; 0.80 for SNV) when data for all individuals were included, they remain sufficiently high for epidemiological purposes. Synonymous mutations were the primary discriminatory variable accounting for over 78% of the measured genetic diversity. CONCLUSIONS NS5B sequence diversity assessed by deep sequencing can differentiate acute from chronic HCV infections and, with further validation, could become a powerful population-level surveillance tool for incidence estimation.
Collapse
Affiliation(s)
- Vincent Montoya
- BC Center for Disease Control, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea D Olmstead
- BC Center for Disease Control, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Naveed Z Janjua
- BC Center for Disease Control, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick Tang
- BC Center for Disease Control, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason Grebely
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Darrel Cook
- BC Center for Disease Control, Vancouver, British Columbia, Canada
| | - P Richard Harrigan
- BC Center for Excellence in HIV/AIDS, St Paul's Hospital, Vancouver, British Columbia, Canada
| | - Mel Krajden
- BC Center for Disease Control, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Olmstead AD, Joy JB, Montoya V, Luo I, Poon AFY, Jacka B, Lamoury F, Applegate T, Montaner J, Khudyakov Y, Grebely J, Cook D, Harrigan PR, Krajden M. A molecular phylogenetics-based approach for identifying recent hepatitis C virus transmission events. INFECTION GENETICS AND EVOLUTION 2015; 33:101-9. [PMID: 25917496 DOI: 10.1016/j.meegid.2015.04.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 04/09/2015] [Accepted: 04/17/2015] [Indexed: 01/11/2023]
Abstract
UNLABELLED Improved surveillance methods are needed to better understand the current hepatitis C virus (HCV) disease burden and to monitor the impact of prevention and treatment interventions on HCV transmission dynamics. Sanger sequencing (HCV NS5B, HVR1 and Core-E1-HVR1) and phylogenetics were applied to samples from individuals diagnosed with HCV in British Columbia, Canada in 2011. This included individuals with two or three sequential samples collected <1 year apart. Patristic distances between sequential samples were used to set cutoffs to identify recent transmission clusters. Factors associated with transmission clustering were analyzed using logistic regression. From 618 individuals, 646 sequences were obtained. Depending on the cutoff used, 63 (10%) to 92 (15%) unique individuals were identified within transmission clusters of predicted recent origin. Clustered individuals were more likely to be <40 years old (Adjusted Odds Ratio (AOR) 2.12, 95% CI 1.21-3.73), infected with genotype 1a (AOR 6.60, 95% CI 1.98-41.0), and to be seroconverters with estimated infection duration of <1 year (AOR 3.13, 95% CI 1.29-7.36) or >1 year (AOR 2.19, 95% CI 1.22-3.97). CONCLUSION Systematic application of molecular phylogenetics may be used to enhance traditional surveillance methods through identification of recent transmission clusters.
Collapse
Affiliation(s)
- Andrea D Olmstead
- BC Centre for Disease Control, Vancouver, BC, Canada; University of British Columbia, Vancouver, BC, Canada.
| | - Jeffrey B Joy
- BC Centre for Excellence in HIV/AIDS, St Paul's Hospital, Vancouver, BC, Canada
| | - Vincent Montoya
- BC Centre for Disease Control, Vancouver, BC, Canada; University of British Columbia, Vancouver, BC, Canada
| | - Iris Luo
- University of British Columbia, Vancouver, BC, Canada
| | - Art F Y Poon
- BC Centre for Excellence in HIV/AIDS, St Paul's Hospital, Vancouver, BC, Canada
| | - Brendan Jacka
- The Kirby Institute, UNSW Australia, Sydney, NSW, Australia
| | | | | | - Julio Montaner
- University of British Columbia, Vancouver, BC, Canada; BC Centre for Excellence in HIV/AIDS, St Paul's Hospital, Vancouver, BC, Canada
| | - Yury Khudyakov
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jason Grebely
- The Kirby Institute, UNSW Australia, Sydney, NSW, Australia
| | - Darrel Cook
- BC Centre for Disease Control, Vancouver, BC, Canada
| | - P Richard Harrigan
- BC Centre for Excellence in HIV/AIDS, St Paul's Hospital, Vancouver, BC, Canada
| | - Mel Krajden
- BC Centre for Disease Control, Vancouver, BC, Canada; University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
32
|
Plauzolles A, Lucas M, Gaudieri S. Influence of host resistance on viral adaptation: hepatitis C virus as a case study. Infect Drug Resist 2015; 8:63-74. [PMID: 25897250 PMCID: PMC4396509 DOI: 10.2147/idr.s49891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic and cellular studies have shown that the host’s innate and adaptive immune responses are an important correlate of viral infection outcome. The features of the host’s immune response (host resistance) reflect the coevolution between hosts and pathogens that has occurred over millennia, and that has also resulted in a number of strategies developed by viruses to improve fitness and survival within the host (viral adaptation). In this review, we discuss viral adaptation to host immune pressure via protein–protein interactions and sequence-specific mutations. Specifically, we will present the “state of play” on viral escape mutations to host T-cell responses in the context of the hepatitis C virus, and their influence on infection outcome.
Collapse
Affiliation(s)
- Anne Plauzolles
- Centre for Forensic Science, University of Western Australia, Perth, WA, Australia
| | - Michaela Lucas
- School of Medicine and Pharmacology, Harry Perkins Institute, University of Western Australia, Perth, WA, Australia ; School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, Australia
| | - Silvana Gaudieri
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
33
|
Transmitted/Founder Viruses Rapidly Escape from CD8+ T Cell Responses in Acute Hepatitis C Virus Infection. J Virol 2015; 89:5478-90. [PMID: 25740982 DOI: 10.1128/jvi.03717-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/25/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The interaction between hepatitis C virus (HCV) and cellular immune responses during very early infection is critical for disease outcome. To date, the impact of antigen-specific cellular immune responses on the evolution of the viral population establishing infection and on potential escape has not been studied. Understanding these early host-virus dynamics is important for the development of a preventative vaccine. Three subjects who were followed longitudinally from the detection of viremia preseroconversion until disease outcome were analyzed. The evolution of transmitted/founder (T/F) viruses was undertaken using deep sequencing. CD8(+) T cell responses were measured via enzyme-linked immunosorbent spot (ELISpot) assay using HLA class I-restricted T/F epitopes. T/F viruses were rapidly extinguished in all subjects associated with either viral clearance (n = 1) or replacement with viral variants leading to establishment of chronic infection (n = 2). CD8(+) T cell responses against 11 T/F epitopes were detectable by 33 to 44 days postinfection, and 5 of these epitopes had not previously been reported. These responses declined rapidly in those who became chronically infected and were maintained in the subject who cleared infection. Higher-magnitude CD8(+) T cell responses were associated with rapid development of immune escape variants at a rate of up to 0.1 per day. Rapid escape from CD8(+) T cell responses has been quantified for the first time in the early phase of primary HCV infection. These rapid escape dynamics were associated with higher-magnitude CD8(+) T cell responses. These findings raise questions regarding optimal selection of immunogens for HCV vaccine development and suggest that detailed analysis of individual epitopes may be required. IMPORTANCE A major limitation in our detailed understanding of the role of immune response in HCV clearance has been the lack of data on very early primary infection when the transmitted viral variants successfully establish the acute infection. This study was made possible through the availability of specimens from a unique cohort of asymptomatic primary infection cases in whom the first available viremic samples were collected approximately 3 weeks postinfection and at regular intervals thereafter. The study included detailed examination of both the evolution of the viral population and the host cellular immune responses against the T/F viruses. The findings here provide the first evidence of host cellular responses targeting T/F variants and imposing a strong selective force toward viral escape. The results of this study provide useful insight on how virus escapes the host response and consequently on future analysis of vaccine-induced immunity.
Collapse
|
34
|
Mutational escape of CD8+ T cell epitopes: implications for prevention and therapy of persistent hepatitis virus infections. Med Microbiol Immunol 2014; 204:29-38. [PMID: 25537849 PMCID: PMC4305108 DOI: 10.1007/s00430-014-0372-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 09/01/2014] [Indexed: 12/16/2022]
Abstract
Over the past two decades, much has been learned about how human viruses evade T cell immunity to establish persistent infection. The lessons are particularly relevant to two hepatotropic viruses, HBV and HCV, that are very significant global public health problems. Although HCV and HBV are very different, the natural history of persistent infections with these viruses in humans shares some common features including failure of T cell immunity. During recent years, large sequence studies of HCV have characterized intra-host evolution as well as sequence diversity between hosts in great detail. Combined with studies of CD8+ T cell phenotype and function, it is now apparent that the T cell response shapes viral evolution. In turn, HCV sequence diversity influences the quality of the CD8+ T cell response and thus infection outcome. Here, we review published studies of CD8+ T cell selection pressure and mutational escape of the virus. Potential consequences for therapeutic strategies to restore T cell immunity against persistent human viruses, most notably HBV, are discussed.
Collapse
|
35
|
Afzal MS, Khan MY, Ammar M, Anjum S, Zaidi NUSS. Diagnostically untypable hepatitis C virus variants: it is time to resolve the problem. World J Gastroenterol 2014; 20:17690-17692. [PMID: 25516688 PMCID: PMC4265635 DOI: 10.3748/wjg.v20.i46.17690] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 08/10/2014] [Accepted: 09/12/2014] [Indexed: 02/06/2023] Open
Abstract
Pakistan is a low income country with more than 10 million hepatitis C virus (HCV) infections and the burden is on continuous raise. Accurate viral genotyping is very critical for proper treatment of the infected individuals as the sustained virological response of the standard antiviral interferon therapy is genotype dependent. We observed at our diagnostic center that 15.6% of HCV patient's samples were not genotype-able by using Ohno et al method. The genotyped samples showed that 3a (68.3%) is the major prevalent genotype in Pakistan followed by 2a (10.3%), 3b (2.6%), 1b (1.5%), 2b (1.2%) and 1a (0.5%). Presence of large number of untypable HCV variants in the current study highlights an important issue of health care setup in Pakistan. Untypable HCV cases create difficulties in treatment of these patients. The problem of routine diagnostics setup of Pakistan should be addressed on priority basis to facilitate the medical professionals in patient's treatment and to help in achieving the maximum sustained virological response.
Collapse
|
36
|
Linking pig-tailed macaque major histocompatibility complex class I haplotypes and cytotoxic T lymphocyte escape mutations in simian immunodeficiency virus infection. J Virol 2014; 88:14310-25. [PMID: 25275134 DOI: 10.1128/jvi.02428-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The influence of major histocompatibility complex class I (MHC-I) alleles on human immunodeficiency virus (HIV) diversity in humans has been well characterized at the population level. MHC-I alleles likely affect viral diversity in the simian immunodeficiency virus (SIV)-infected pig-tailed macaque (Macaca nemestrina) model, but this is poorly characterized. We studied the evolution of SIV in pig-tailed macaques with a range of MHC-I haplotypes. SIV(mac251) genomes were amplified from the plasma of 44 pig-tailed macaques infected with SIV(mac251) at 4 to 10 months after infection and characterized by Illumina deep sequencing. MHC-I typing was performed on cellular RNA using Roche/454 pyrosequencing. MHC-I haplotypes and viral sequence polymorphisms at both individual mutations and groups of mutations spanning 10-amino-acid segments were linked using in-house bioinformatics pipelines, since cytotoxic T lymphocyte (CTL) escape can occur at different amino acids within the same epitope in different animals. The approach successfully identified 6 known CTL escape mutations within 3 Mane-A1*084-restricted epitopes. The approach also identified over 70 new SIV polymorphisms linked to a variety of MHC-I haplotypes. Using functional CD8 T cell assays, we confirmed that one of these associations, a Mane-B028 haplotype-linked mutation in Nef, corresponded to a CTL epitope. We also identified mutations associated with the Mane-B017 haplotype that were previously described to be CTL epitopes restricted by Mamu-B*017:01 in rhesus macaques. This detailed study of pig-tailed macaque MHC-I genetics and SIV polymorphisms will enable a refined level of analysis for future vaccine design and strategies for treatment of HIV infection. IMPORTANCE Cytotoxic T lymphocytes select for virus escape mutants of HIV and SIV, and this limits the effectiveness of vaccines and immunotherapies against these viruses. Patterns of immune escape variants are similar in HIV type 1-infected human subjects that share the same MHC-I genes, but this has not been studied for SIV infection of macaques. By studying SIV sequence diversity in 44 MHC-typed SIV-infected pigtail macaques, we defined over 70 sites within SIV where mutations were common in macaques sharing particular MHC-I genes. Further, pigtail macaques sharing nearly identical MHC-I genes with rhesus macaques responded to the same CTL epitope and forced immune escape. This allows many reagents developed to study rhesus macaques to also be used to study pigtail macaques. Overall, our study defines sites of immune escape in SIV in pigtailed macaques, and this enables a more refined level of analysis of future vaccine design and strategies for treatment of HIV infection.
Collapse
|
37
|
Shoman S, Nabil M, Tabl A, Ghanem H, kafrawy SE. Assessment of immunological changes in Epstein-Barr virus co-infection in Egyptian chronic HCV patients. Mem Inst Oswaldo Cruz 2014; 109:722-727. [PMID: 25317700 PMCID: PMC4238763 DOI: 10.1590/0074-0276140049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/02/2014] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) plays a major role in liver pathology. Similar to other members of the herpesvirus family, EBV establishes a persistent infection in more than 90% of adults. The aim of this study was to evaluate the impact of EBV and chronic hepatitis C co-infection (HCV) on biochemical and immunological responses in patients. The study was conducted in 62 patients and 33 apparently healthy controls. Patients were divided into three groups: group I, consisting of 31 patients with chronic hepatitis C infection (CHC), group II, consisting of eight patients with EBV infection and without HCV infection and group III, consisting of 23 patients with EBV and chronic HCV. The percentage of CD3⁺ cells, helper CD4⁺ cells and CD19⁺ B-cells was measured by flow cytometry. Human interferon-γ (IFN-γ) and interleukin (IL)-15 levels were measured by an ELISA. The levels of liver alanine aminotransferase and aspartate aminotransferase enzymes were higher in EBV/HCV patients compared to that in EBV and HCV mono-infected patients. EBV/HCV patients had significantly reduced percentages of CD3⁺ and CD4⁺ cells compared to EBV patients. Serum IFN-γ levels were significantly reduced in EBV/HCV patients (3.86 pg/mL) compared to CHC patients (6.76 pg/mL) and normal controls (4.69 pg/mL). A significant increase in serum IL-15 levels was observed in EBV/HCV patients (67.7 pg/mL) compared to EBV patients (29.3 pg/mL). Taken together, these observations suggest that HCV and EBV co-infection can potentiate immune response dampening in patients.
Collapse
Affiliation(s)
- Sahar Shoman
- Department of Microbiology, Faculty of Science, Ain Shams University,
Cairo, Egypt
| | - Mohamed Nabil
- Department of Microbiology, Faculty of Science, Ain Shams University,
Cairo, Egypt
| | - Ashraf Tabl
- Department of Microbial Biotechnology, National Research Centre, Giza,
Egypt
| | - Hussam Ghanem
- Department of Microbiology, Faculty of Science, Ain Shams University,
Cairo, Egypt
| | - Sherif El kafrawy
- National Liver Institute, Menufia, Egypt
- King Fahd Medical Research Canter-King Abdulaziz University, Jada,
Kingdom of Saudi Arabia
| |
Collapse
|
38
|
Common polymorphic effectors of immunity against hepatitis B and C modulate susceptibility to infection and spontaneous clearance in a Moroccan population. INFECTION GENETICS AND EVOLUTION 2014; 26:1-7. [DOI: 10.1016/j.meegid.2014.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/14/2014] [Accepted: 04/25/2014] [Indexed: 12/30/2022]
|
39
|
Dustin LB, Cashman SB, Laidlaw SM. Immune control and failure in HCV infection--tipping the balance. J Leukoc Biol 2014; 96:535-48. [PMID: 25015956 DOI: 10.1189/jlb.4ri0214-126r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite the development of potent antiviral drugs, HCV remains a global health problem; global eradication is a long way off. In this review, we discuss the immune response to HCV infection and particularly, the interplay between viral strategies that delay the onset of antiviral responses and host strategies that limit or even eradicate infected cells but also contribute to pathogenesis. Although HCV can disable some cellular virus-sensing machinery, IFN-stimulated antiviral genes are induced in the infected liver. Whereas epitope evolution contributes to escape from T cell-mediated immunity, chronic high antigen load may also blunt the T cell response by activating exhaustion or tolerance mechanisms. The evasive maneuvers of HCV limit sterilizing humoral immunity through rapid evolution of decoy epitopes, epitope masking, stimulation of interfering antibodies, lipid shielding, and cell-to-cell spread. Whereas the majority of HCV infections progress to chronic hepatitis with persistent viremia, at least 20% of patients spontaneously clear the infection. Most of these are protected from reinfection, suggesting that protective immunity to HCV exists and that a prophylactic vaccine may be an achievable goal. It is therefore important that we understand the correlates of protective immunity and mechanisms of viral persistence.
Collapse
Affiliation(s)
- Lynn B Dustin
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Siobhán B Cashman
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Stephen M Laidlaw
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| |
Collapse
|
40
|
Ninomiya M, Ueno Y, Shimosegawa T. Application of deep sequence technology in hepatology. Hepatol Res 2014; 44:141-8. [PMID: 23905712 DOI: 10.1111/hepr.12214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/02/2013] [Accepted: 07/25/2013] [Indexed: 02/08/2023]
Abstract
Deep sequencing technologies are currently cutting edge, and are opening fascinating opportunities in biomedicine, producing over 100-times more data compared to the conventional capillary sequencers based on the Sanger method. Next-generation sequencing (NGS) is now generally defined as the sequencing technology that, by employing parallel sequencing processes, producing thousands or millions of sequence reads simultaneously. Since the GS20 was released as the first NGS sequencer on the market by 454 Life Sciences, the competition in the development of the new sequencers has become intense. In this review, we describe the current deep sequencing systems and discuss the application of advanced technologies in the field of hepatology.
Collapse
Affiliation(s)
- Masashi Ninomiya
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai
| | | | | |
Collapse
|
41
|
Capobianchi MR, Giombini E, Rozera G. Next-generation sequencing technology in clinical virology. Clin Microbiol Infect 2013; 19:15-22. [PMID: 23279287 DOI: 10.1111/1469-0691.12056] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/17/2012] [Accepted: 09/22/2012] [Indexed: 12/18/2022]
Abstract
Recent advances in nucleic acid sequencing technologies, referred to as 'next-generation' sequencing (NGS), have produced a true revolution and opened new perspectives for research and diagnostic applications, owing to the high speed and throughput of data generation. So far, NGS has been applied to metagenomics-based strategies for the discovery of novel viruses and the characterization of viral communities. Additional applications include whole viral genome sequencing, detection of viral genome variability, and the study of viral dynamics. These applications are particularly suitable for viruses such as human immunodeficiency virus, hepatitis B virus, and hepatitis C virus, whose error-prone replication machinery, combined with the high replication rate, results, in each infected individual, in the formation of many genetically related viral variants referred to as quasi-species. The viral quasi-species, in turn, represents the substrate for the selective pressure exerted by the immune system or by antiviral drugs. With traditional approaches, it is difficult to detect and quantify minority genomes present in viral quasi-species that, in fact, may have biological and clinical relevance. NGS provides, for each patient, a dataset of clonal sequences that is some order of magnitude higher than those obtained with conventional approaches. Hence, NGS is an extremely powerful tool with which to investigate previously inaccessible aspects of viral dynamics, such as the contribution of different viral reservoirs to replicating virus in the course of the natural history of the infection, co-receptor usage in minority viral populations harboured by different cell lineages, the dynamics of development of drug resistance, and the re-emergence of hidden genomes after treatment interruptions. The diagnostic application of NGS is just around the corner.
Collapse
Affiliation(s)
- M R Capobianchi
- National Institute for Infectious Diseases 'L. Spallanzani', Rome, Italy.
| | - E Giombini
- National Institute for Infectious Diseases 'L. Spallanzani', Rome, Italy
| | - G Rozera
- National Institute for Infectious Diseases 'L. Spallanzani', Rome, Italy
| |
Collapse
|
42
|
Impact of genetic heterogeneity in polymerase of hepatitis B virus on dynamics of viral load and hepatitis B progression. PLoS One 2013; 8:e70169. [PMID: 23936156 PMCID: PMC3728348 DOI: 10.1371/journal.pone.0070169] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/17/2013] [Indexed: 12/14/2022] Open
Abstract
Objective The hepatitis B virus (HBV)-polymerase region overlaps pre-S/S genes with high epitope density and plays an essential role in viral replication. We investigated whether genetic variation in the polymerase region determined long-term dynamics of viral load and the risk of hepatitis B progression in a population-based cohort study. Methods We sequenced the HBV-polymerase region using baseline plasma from treatment-naïve individuals with HBV-DNA levels≥1000 copies/mL in a longitudinal viral-load study of participants with chronic HBV infection followed-up for 17 years, and obtained sequences from 575 participants (80% with HBV genotype Ba and 17% with Ce). Results Patterns of viral sequence diversity across phases (i.e., immune-tolerant, immune-clearance, non/low replicative, and hepatitis B e antigen (HBeAg)-negative hepatitis phases) of HBV-infection, which were associated with viral and clinical features at baseline and during follow-up, were similar between HBV genotypes, despite greater diversity for genotype Ce vs. Ba. Irrespective of genotypes, however, HBeAg-negative participants had 1.5-to-2-fold higher levels of sequence diversity than HBeAg-positive participants (P<0.0001). Furthermore, levels of viral genetic divergence from the population consensus sequence, estimated by numbers of nucleotide substitutions, were inversely associated with long-term viral load even in HBeAg-negative participants. A mixed model developed through analysis of the entire HBV-polymerase region identified 153 viral load-associated single nucleotide polymorphisms in overall and 136 in HBeAg-negative participants, with distinct profiles between HBV genotypes. These polymorphisms were most evident at sites within or flanking T-cell epitopes. Seven polymorphisms revealed associations with both enhanced viral load and a more than 4-fold increased risk of hepatocellular carcinoma and/or liver cirrhosis. Conclusions The data highlight a role of viral genetic divergence in the natural course of HBV-infection. Interindividual differences in the long-term dynamics of viral load is not only associated with accumulation of mutations in HBV-polymerase region, but differences in specific viral polymorphisms which differ between genotypes.
Collapse
|
43
|
Sanjuán R, Nebot MR, Peris JB, Alcamí J. Immune activation promotes evolutionary conservation of T-cell epitopes in HIV-1. PLoS Biol 2013; 11:e1001523. [PMID: 23565057 PMCID: PMC3614509 DOI: 10.1371/journal.pbio.1001523] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/14/2013] [Indexed: 01/06/2023] Open
Abstract
HIV, unlike other viruses, may benefit from immune recognition by preserving the sequence of its T cell epitopes, thereby enhancing transmission between cells. The immune system should constitute a strong selective pressure promoting viral genetic diversity and evolution. However, HIV shows lower sequence variability at T-cell epitopes than elsewhere in the genome, in contrast with other human RNA viruses. Here, we propose that epitope conservation is a consequence of the particular interactions established between HIV and the immune system. On one hand, epitope recognition triggers an anti-HIV response mediated by cytotoxic T-lymphocytes (CTLs), but on the other hand, activation of CD4+ helper T lymphocytes (TH cells) promotes HIV replication. Mathematical modeling of these opposite selective forces revealed that selection at the intrapatient level can promote either T-cell epitope conservation or escape. We predict greater conservation for epitopes contributing significantly to total immune activation levels (immunodominance), and when TH cell infection is concomitant to epitope recognition (trans-infection). We suggest that HIV-driven immune activation in the lymph nodes during the chronic stage of the disease may offer a favorable scenario for epitope conservation. Our results also support the view that some pathogens draw benefits from the immune response and suggest that vaccination strategies based on conserved TH epitopes may be counterproductive. A key component of the immune response against viruses and other pathogens is the recognition of short foreign protein sequences called epitopes. However, viruses can escape the immune system by mutating, so epitopes should accumulate high levels of genetic variability. This has been documented in several human viruses, but in HIV, unexpectedly, epitopes tend to be relatively conserved. Here, we propose that this is a consequence of the peculiar interactions that occur between HIV and the immune system. As with other viruses, recognition of HIV epitopes promotes the activation of cytotoxic and helper T lymphocytes, which then orchestrate a cellular immune response. However, HIV infects helper T lymphocytes as their target cell in the body and does so more efficiently when these cells have been activated to participate in an immune response. Mathematical modeling showed that, in some cases, HIV may take advantage of immune activation, thus favoring epitope conservation. This should be more likely to occur with epitopes that trigger more vigorous T-cell responses, and during the process known as “trans-infection,” in which helper T lymphocytes are infected while being activated. Our results highlight the potential advantages of an HIV vaccination strategy based on epitopes that stimulate cytotoxic T lymphocytes without specifically stimulating helper T lymphocytes.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain.
| | | | | | | |
Collapse
|
44
|
Hepatitis C virus adaptation to T-cell immune pressure. ScientificWorldJournal 2013; 2013:673240. [PMID: 23554569 PMCID: PMC3608127 DOI: 10.1155/2013/673240] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/17/2013] [Indexed: 01/07/2023] Open
Abstract
Replication of the hepatitis C virus (HCV) is an error-prone process. This high error rate results in the emergence of viral populations (quasispecies) within hosts and contributes to interhost variability. Numerous studies have demonstrated that both viral and host factors contribute to this viral diversity, which can ultimately affect disease outcome. As the host's immune response is an important correlate of infection outcome for HCV, many of these viral variations are strongly influenced by T-cell immune pressure and accordingly constitute an efficient strategy to subvert such pressures (viral adaptations). This paper will review the data on viral diversity observed between and within hosts infected with HCV from the acute to the chronic stage of infection and will focus on viral adaptation to the host's T-cell immune response.
Collapse
|
45
|
Cruz-Rivera M, Carpio-Pedroza JC, Escobar-Gutiérrez A, Lozano D, Vergara-Castaneda A, Rivera-Osorio P, Martinez-Guarneros A, Chacon CAV, Fonseca-Coronado S, Vaughan G. Rapid hepatitis C virus divergence among chronically infected individuals. J Clin Microbiol 2013; 51:629-632. [PMID: 23224093 PMCID: PMC3553878 DOI: 10.1128/jcm.03042-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 11/26/2012] [Indexed: 12/17/2022] Open
Abstract
Here, we analyze the viral divergence among hepatitis C virus (HCV) chronic cases infected with genotype 1. The intrahost viral evolution was assessed by deep sequencing using the 454 Genome Sequencer platform. The results showed a rapid nucleotide sequence divergence. This notorious short-term viral evolution is of the utmost importance for the study of HCV transmission, because direct links between related samples were virtually lost. Thus, rapid divergence of HCV significantly affects genetic relatedness studies and outbreak investigations.
Collapse
Affiliation(s)
- Mayra Cruz-Rivera
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Daniela Lozano
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | | | | | - Salvador Fonseca-Coronado
- Laboratorio de Inmunobiología de Enfermedades Infecciosas, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Gilberto Vaughan
- Instituto de Diagnóstico y Referencia Epidemiológicos, Mexico City, Mexico
| |
Collapse
|
46
|
Kchouk FH, Gorgi Y, Bouslama L, Sfar I, Ayari R, Khiri H, Halfon P, Aouadi H, Jendoubi Ayed S, Ayed K, Ben Abdallah T. Phylogenetic analysis of isolated HCV strains from tunisian hemodialysis patients. Viral Immunol 2013; 26:40-8. [PMID: 23374151 DOI: 10.1089/vim.2012.0043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The present study describes the strains of hepatitis C virus (HCV) isolated from Tunisian hemodialysis patients. Thirty-three HCV strains isolated from different dialysis centers in Tunis City were amplified by RT-PCR in a region of the NS5b gene, genotyped by sequencing, and compared to international sequences by phylogenetic analysis. The phylogenetic tree showed that 16 HCV isolates have been identified as subtype 4k (48.5%), 7 as unspecified HCV-4 subtype (21.2%), 5 as subtype 4a et 1b (each 15.2%). The analysis of this tree revealed that the HCV-1b strains were closely related to Anglo-Saxon and European isolates, while the HCV-4 isolates are genetically similar to Egyptian and African strains. Phylogenic analysis of 33 Tunisian isolates with international HCV strains on a region of the NS5b gene demonstrated that the subtype 4k submerged the Tunis city and a new subtype of HCV4 seems to be suspect in this area.
Collapse
Affiliation(s)
- Fatma Houissa Kchouk
- Immunology Research Laboratory of Kidney Transplantation and Immunopathology, Charles Nicolle Hospital, Tunis El Manar University, Boulevard 9 Avril, Tunis, Tunisia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ziegler S, Ruhl M, Tenckhoff H, Wiese M, Heinemann FM, Horn PA, Spengler U, Neumann-Haefelin C, Nattermann J, Timm J. Susceptibility to chronic hepatitis C virus infection is influenced by sequence differences in immunodominant CD8+ T cell epitopes. J Hepatol 2013; 58:24-30. [PMID: 22925811 DOI: 10.1016/j.jhep.2012.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 08/16/2012] [Accepted: 08/20/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS The antiviral immune response against HCV by CD8+ T cells plays a central role in viral containment. In a large HCV genotype 1b outbreak in Ireland, HLA-B(∗)08 was identified as a risk allele for chronic infection and HLA-A(∗)03 and HLA-B(∗)27 were associated with higher clearance rates. Here we took advantage of a similar large common source HCV genotype 1b outbreak (East-German cohort) to determine the role of HLA class I alleles and the sequence of the infection source, in immunodominant CD8+ T cell epitopes for disease outcome. METHODS HLA-type and IL28B genotype were determined in 216 patients with chronic and 95 with spontaneously resolved HCV infection. The viral sequence in immunodominant epitopes was determined in the infection source and in patients with chronic infection. RESULTS In contrast to the Irish cohort, HLA-B(∗)08, HLA-A(∗)03 and HLA-B(∗)27 were neutral for disease outcome even when the cohort was stratified for the IL28B genotype. Sequence analysis of the immunodominant epitopes revealed that pre-existing substitutions in the infection source of both cohorts influenced the impact of the corresponding HLA-allele. The immunodominant epitopes presented by the "protective" alleles HLA-A(∗)03 and -B(∗)27 in the Irish cohort contained substitutions in the source virus of the East-German outbreak. Importantly, the pre-existing substitutions altered subsequent selection pressure and viral evolution in the East-German cohort. CONCLUSIONS This study highlights that subtle sequence differences in the infection source may have profound effects on the ability to clear HCV infection in the presence of particular HLA class I alleles.
Collapse
Affiliation(s)
- Susanne Ziegler
- Institute of Virology, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Thimme R, Binder M, Bartenschlager R. Failure of innate and adaptive immune responses in controlling hepatitis C virus infection. FEMS Microbiol Rev 2012; 36:663-83. [PMID: 22142141 DOI: 10.1111/j.1574-6976.2011.00319.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/07/2011] [Accepted: 11/25/2011] [Indexed: 12/24/2022] Open
Affiliation(s)
- Robert Thimme
- Department of Medicine II, University Medical Center Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
49
|
Fonseca-Coronado S, Escobar-Gutiérrez A, Ruiz-Tovar K, Cruz-Rivera MY, Rivera-Osorio P, Vazquez-Pichardo M, Carpio-Pedroza JC, Ruíz-Pacheco JA, Cazares F, Vaughan G. Specific detection of naturally occurring hepatitis C virus mutants with resistance to telaprevir and boceprevir (protease inhibitors) among treatment-naïve infected individuals. J Clin Microbiol 2012; 50:281-287. [PMID: 22116161 PMCID: PMC3264164 DOI: 10.1128/jcm.05842-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/11/2011] [Indexed: 12/17/2022] Open
Abstract
The use of telaprevir and boceprevir, both protease inhibitors (PI), as part of the specifically targeted antiviral therapy for hepatitis C (STAT-C) has significantly improved sustained virologic response (SVR) rates. However, different clinical studies have also identified several mutations associated with viral resistance to both PIs. In the absence of selective pressure, drug-resistant hepatitis C virus (HCV) mutants are generally present at low frequency, making mutation detection challenging. Here, we describe a mismatch amplification mutation assay (MAMA) PCR method for the specific detection of naturally occurring drug-resistant HCV mutants. MAMA PCR successfully identified the corresponding HCV variants, while conventional methods such as direct sequencing, endpoint limiting dilution (EPLD), and bacterial cloning were not sensitive enough to detect circulating drug-resistant mutants in clinical specimens. Ultradeep pyrosequencing was used to confirm the presence of the corresponding HCV mutants. In treatment-naïve patients, the frequency of all resistant variants was below 1%. Deep amplicon sequencing allowed a detailed analysis of the structure of the viral population among these patients, showing that the evolution of the NS3 is limited to a rather small sequence space. Monitoring of HCV drug resistance before and during treatment is likely to provide important information for management of patients undergoing anti-HCV therapy.
Collapse
Affiliation(s)
| | | | - Karina Ruiz-Tovar
- Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico
| | | | - Pilar Rivera-Osorio
- Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico
| | | | | | | | - Fernando Cazares
- Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico
| | - Gilberto Vaughan
- Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
50
|
Escape from a dominant HLA-B*15-restricted CD8+ T cell response against hepatitis C virus requires compensatory mutations outside the epitope. J Virol 2011; 86:991-1000. [PMID: 22072759 DOI: 10.1128/jvi.05603-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antiviral CD8(+) T cells are a key component of the adaptive immune system against hepatitis C virus (HCV). For the development of immune therapies, it is essential to understand how CD8(+) T cells contribute to clearance of infection and why they fail so often. A mechanism for secondary failure is mutational escape of the virus. However, some substitutions in viral epitopes are associated with fitness costs and often require compensatory mutations. We hypothesized that compensatory mutations may point toward epitopes under particularly strong selection pressure that may be beneficial for vaccine design because of a higher genetic barrier to escape. We previously identified two HLA-B*15-restricted CD8(+) epitopes in NS5B (LLRHHNMVY(2450-2458) and SQRQKKVTF(2466-2474)), based on sequence analysis of a large HCV genotype 1b outbreak. Both epitopes are targeted in about 70% of HLA-B*15-positive individuals exposed to HCV. Reproducible selection of escape mutations was confirmed in an independent multicenter cohort in the present study. Interestingly, mutations were also selected in the epitope flanking region, suggesting that compensatory evolution may play a role. Covariation analysis of sequences from the database confirmed a significant association between escape mutations inside one of the epitopes (H2454R and M2456L) and substitutions in the epitope flanking region (S2439T and K2440Q). Functional analysis with the subgenomic replicon Con1 confirmed that the primary escape mutations impaired viral replication, while fitness was restored by the additional substitutions in the epitope flanking region. We concluded that selection of escape mutations inside an HLA-B*15 epitope requires secondary substitutions in the epitope flanking region that compensate for fitness costs.
Collapse
|