1
|
Xie Z, Liu C, Sun C, Liu Y, Peng J, Meng L, Deng J, Wang Z, Yang C, Yuan Y, Xie Z. Single-Nucleus RNA Sequencing Unravels Early Mechanisms of Human Becker Muscular Dystrophy. Ann Neurol 2024; 96:1070-1085. [PMID: 39192489 DOI: 10.1002/ana.27070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/04/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE The transcriptional heterogeneity at a single-nucleus level in human Becker muscular dystrophy (BMD) dystrophic muscle has not been explored. Here, we aimed to understand the transcriptional heterogeneity associated with myonuclei, as well as other mononucleated cell types that underly BMD pathogenesis by performing single-nucleus RNA sequencing. METHODS We profiled single-nucleus transcriptional profiles of skeletal muscle samples from 7 BMD patients and 3 normal controls. RESULTS A total of 17,216 nuclei (12,879 from BMD patients and 4,337 from controls) were classified into 13 known cell types, including 9 myogenic lineages and 4 non-myogenic lineages, and 1 unclassified nuclear type according to their cell identities. Among them, type IIx myonuclei were the first to degenerate in response to dystrophin reduction. Differential expression analysis revealed that the fibro-adipogenic progenitors (FAPs) population had the largest transcriptional changes among all cell types. Sub-clustering analysis identified a significantly compositional increase in the activated FAPs (aFAPs) subpopulation in BMD muscles. Pseudotime analysis, regulon inference, and deconvolution analysis of bulk RNA-sequencing data derived from 29 BMD patients revealed that the aFAPs subpopulation, a distinctive and previously unrecognized mononuclear subtype, was profibrogenic and expanded in BMD patients. Muscle quantitative real-time polymerase chain reaction and immunofluorescence analysis confirmed that the mRNA and protein levels of the aFAPs markers including LUM, DCN, and COL1A1 in BMD patients were significantly higher than those in controls, respectively. INTERPRETATION Our results provide insights into the transcriptional diversity of human BMD muscle at a single-nucleus resolution and new potential targets for anti-fibrosis therapies in BMD. ANN NEUROL 2024;96:1070-1085.
Collapse
Affiliation(s)
- Zhihao Xie
- Department of Neurology, Peking University First Hospital, Beijing, China
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Chengyue Sun
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Yilin Liu
- Department of Pathology, Peking Union Medical College Hospital, Beijing, China
| | - Jieru Peng
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Chunxia Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
2
|
Bakiri L, Wagner EF. c-Jun and Fra-2 pair up to Myc-anistically drive HCC. Cell Cycle 2024:1-9. [PMID: 39581891 DOI: 10.1080/15384101.2024.2429968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 11/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a leading cause of cancer-related death with limited therapies, is a complex disease developing in a background of Hepatitis Virus infection or systemic conditions, such as the metabolic syndrome. Investigating HCC pathogenesis in model organisms is therefore crucial for developing novel diagnostic and therapeutic tools. Genetically engineered mouse models (GEMMs) have been instrumental in recapitulating the local and systemic features of HCC. Early studies using GEMMs and patient material implicated members of the dimeric Activator Protein-1 (AP-1) transcription factor family, such as c-Jun and c-Fos, in HCC formation. In a recent report, we described how switchable, hepatocyte-restricted expression of a single-chain c-Jun~Fra-2 protein, functionally mimicking the c-Jun/Fra-2 AP-1 dimer, results in spontaneous and largely reversible liver tumors in GEMMs. Dysregulated cell cycle, inflammation, and dyslipidemia are observed at early stages and tumors display molecular HCC signatures. We demonstrate that increased c-Myc expression is an essential molecular determinant of tumor formation that can be therapeutically targeted using the BET inhibitor JQ1. Here, we discuss these findings with additional results illustrating how AP-1 GEMMs can foster preclinical research on liver diseases with novel perspectives offered by the constantly increasing wealth of HCC-related datasets.
Collapse
Affiliation(s)
- Latifa Bakiri
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria
| | - Erwin F Wagner
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna (MUW), Vienna, Austria
| |
Collapse
|
3
|
Liu Y, Wang X, Wang Z, Gao X, Xu H, Gao Y, Niu J. System analysis based on weighted gene co-expression analysis identifies SOX7 as a novel regulator of hepatic stellate cell activation and liver fibrosis. FASEB J 2024; 38:e23495. [PMID: 39126242 DOI: 10.1096/fj.202302379r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 08/12/2024]
Abstract
Hepatic stellate cell (HSC) activation is the essential pathological process of liver fibrosis (LF). The molecular mechanisms regulating HSC activation and LF are incompletely understood. Here, we explored the effect of transcription factor SRY-related high mobility group box 7 (SOX7) on HSC activation and LF, and the underlying molecular mechanism. We found the expression levels of SOX7 were decreased in human and mouse fibrotic livers, particularly at the fibrotic foci. SOX7 was also downregulated in primary activated HSCs and TGF-β1 stimulated LX-2 cells. SOX7 knockdown promoted activation and proliferation of LX-2 cells while inhibiting their apoptosis. On the other hand, overexpression of SOX7 suppressed the activation and proliferation of HSCs. Mechanistically, SOX7 attenuates HSC activation and LF by decreasing the expression of β-catenin and phosphorylation of Smad2 and Smad3 induced by TGF-β1. Furthermore, overexpression of SOX7 using AAV8-SOX7 mouse models ameliorated the extent of LF in response to CCl4 treatment in vivo. Collectively, SOX7 suppressed HSC activation and LF. Targeting SOX7, therefore, could be a potential novel strategy to protect against LF.
Collapse
Affiliation(s)
- Yuwei Liu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaomei Wang
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongfeng Wang
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiuzhu Gao
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongqin Xu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanhang Gao
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Junqi Niu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Zhou Z, Wu X, Chen T, Zhang B, Li W, Zhou M, Zhao J, Dong E, Li T. Restoration of functional endometrium in an intrauterine adhesion rat model with endometrial stromal cells transplantation. Stem Cell Res Ther 2024; 15:181. [PMID: 38902788 PMCID: PMC11191336 DOI: 10.1186/s13287-024-03788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Intrauterine adhesion (IUA) as a prevalent gynecological disease is developed from infection or trauma. However, therapeutic strategies to repair damaged endometrium are relatively limited. Emerging studies have shed light on the crucial role of endometrial stromal cells (EnSCs) in the process of uterine endometrial regeneration. EnSCs isolated from the uterine endometrium have similar characteristics to mesenchymal stem cells (MSCs). However, it is still unknown whether EnSCs could be used as donor cells to treat IUA. The aim of this study was to evaluate the potential efficacy of EnSCs in treating rat IUA. METHODS Human EnSCs were isolated from the endometrial tissue of healthy female donors and subjected to extensive expansion and culture in vitro. Immunofluorescence, flow cytometry, cell proliferation assay, trilineage differentiation experiment, and decidualization assay were used to characterize the biological properties of EnSCs. We evaluated the immunoregulatory potential of EnSCs by analyzing their secreted cytokines and conducting bulk RNA sequencing after IFN-γ treatment. After EnSCs were transplanted into the uterine muscle layer in IUA rats, their therapeutic effects and underlying mechanisms were analyzed using histological analysis, Q-PCR, fertility and pregnancy outcome assay, and transcriptome analysis. RESULTS We successfully isolated EnSCs from the endometrium of human donors and largely expanded in vitro. EnSCs exhibited characteristics of mesenchymal stem cells and retained responsiveness to sex hormones. Following IFN-γ stimulation, EnSCs upregulated the anti-inflammatory cytokines and activated immunosuppressive molecules. Xenogeneic transplantation of EnSCs successfully repaired injured endometrium and significantly restored the pregnancy rate in IUA rats. Mechanistically, the therapeutic effects of EnSCs on IUA endometrium functioned through anti-inflammation, anti-fibrosis and the secretion of regeneration factor. CONCLUSIONS Due to their large expansion ability, immunoregulatory properties, and great potential in treating IUA, EnSCs, as a valuable source of donor cells, could offer a potential treatment avenue for injury-induced IUA.
Collapse
Affiliation(s)
- Zhengli Zhou
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650500, China
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650031, China
| | - Xiaomei Wu
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650031, China
| | - Tingwei Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650500, China
| | - Bo Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650500, China
| | - Wenxin Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650500, China
| | - Min Zhou
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650500, China
| | - Jingxue Zhao
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650031, China
| | - E Dong
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650500, China.
| | - Tianqing Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650500, China.
| |
Collapse
|
5
|
Bakiri L, Hasenfuss SC, Guío-Carrión A, Thomsen MK, Hasselblatt P, Wagner EF. Liver cancer development driven by the AP-1/c-Jun~Fra-2 dimer through c-Myc. Proc Natl Acad Sci U S A 2024; 121:e2404188121. [PMID: 38657045 PMCID: PMC11067056 DOI: 10.1073/pnas.2404188121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. HCC incidence is on the rise, while treatment options remain limited. Thus, a better understanding of the molecular pathways involved in HCC development has become a priority to guide future therapies. While previous studies implicated the Activator Protein-1 (AP-1) (Fos/Jun) transcription factor family members c-Fos and c-Jun in HCC formation, the contribution of Fos-related antigens (Fra-) 1 and 2 is unknown. Here, we show that hepatocyte-restricted expression of a single chain c-Jun~Fra-2 protein, which functionally mimics the c-Jun/Fra-2 AP-1 dimer, results in spontaneous HCC formation in c-Jun~Fra-2hep mice. Several hallmarks of human HCC, such as cell cycle dysregulation and the expression of HCC markers are observed in liver tumors arising in c-Jun~Fra-2hep mice. Tumorigenesis occurs in the context of mild inflammation, low-grade fibrosis, and Pparγ-driven dyslipidemia. Subsequent analyses revealed increased expression of c-Myc, evidently under direct regulation by AP-1 through a conserved distal 3' enhancer. Importantly, c-Jun~Fra-2-induced tumors revert upon switching off transgene expression, suggesting oncogene addiction to the c-Jun~Fra-2 transgene. Tumors escaping reversion maintained c-Myc and c-Myc target gene expression, likely due to increased c-Fos. Interfering with c-Myc in established tumors using the Bromodomain and Extra-Terminal motif inhibitor JQ-1 diminished liver tumor growth in c-Jun~Fra-2 mutant mice. Thus, our data establish c-Jun~Fra-2hep mice as a model to study liver tumorigenesis and identify the c-Jun/Fra-2-Myc interaction as a potential target to improve HCC patient stratification and/or therapy.
Collapse
Affiliation(s)
- Latifa Bakiri
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
- Genes, Development and Disease Group, National Cancer Research Centre, 28029, Madrid, Spain
| | - Sebastian C. Hasenfuss
- Genes, Development and Disease Group, National Cancer Research Centre, 28029, Madrid, Spain
| | - Ana Guío-Carrión
- Genes, Development and Disease Group, National Cancer Research Centre, 28029, Madrid, Spain
| | - Martin K. Thomsen
- Department of Biomedicine, University of Aarhus, 8000, Aarhus, Denmark
| | - Peter Hasselblatt
- Department of Medicine II, University Hospital and Faculty of Medicine, 79106, Freiburg, Germany
| | - Erwin F. Wagner
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
6
|
Ouni M, Eichelmann F, Jähnert M, Krause C, Saussenthaler S, Ott C, Gottmann P, Speckmann T, Huypens P, Wolter S, Mann O, De Angelis MH, Beckers J, Kirchner H, Schulze MB, Schürmann A. Differences in DNA methylation of HAMP in blood cells predicts the development of type 2 diabetes. Mol Metab 2023; 75:101774. [PMID: 37429525 PMCID: PMC10422014 DOI: 10.1016/j.molmet.2023.101774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023] Open
Abstract
OBJECTIVES Better disease management can be achieved with earlier detection through robust, sensitive, and easily accessible biomarkers. The aim of the current study was to identify novel epigenetic biomarkers determining the risk of type 2 diabetes (T2D). METHODS Livers of 10-week-old female New Zealand Obese (NZO) mice, slightly differing in their degree of hyperglycemia and liver fat content and thereby in their diabetes susceptibility were used for expression and methylation profiling. We screened for differences in hepatic expression and DNA methylation in diabetes-prone and -resistant mice, and verified a candidate (HAMP) in human livers and blood cells. Hamp expression was manipulated in primary hepatocytes and insulin-stimulated pAKT was detected. Luciferase reporter assays were conducted in a murine liver cell line to test the impact of DNA methylation on promoter activity. RESULTS In livers of NZO mice, the overlap of methylome and transcriptome analyses revealed a potential transcriptional dysregulation of 12 hepatokines. The strongest effect with a 52% decreased expression in livers of diabetes-prone mice was detected for the Hamp gene, mediated by elevated DNA methylation of two CpG sites located in the promoter. Hamp encodes the iron-regulatory hormone hepcidin, which had a lower abundance in the livers of mice prone to developing diabetes. Suppression of Hamp reduces the levels of pAKT in insulin-treated hepatocytes. In liver biopsies of obese insulin-resistant women, HAMP expression was significantly downregulated along with increased DNA methylation of a homologous CpG site. In blood cells of incident T2D cases from the prospective EPIC-Potsdam cohort, higher DNA methylation of two CpG sites was related to increased risk of incident diabetes. CONCLUSIONS We identified epigenetic changes in the HAMP gene which may be used as an early marker preceding T2D.
Collapse
Affiliation(s)
- Meriem Ouni
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Fabian Eichelmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; German Institute of Human Nutrition, Department of Molecular Epidemiology, Potsdam-Rehbruecke, Germany
| | - Markus Jähnert
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christin Krause
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute for Human Genetics, Section Epigenetics & Metabolism, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany
| | - Sophie Saussenthaler
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christiane Ott
- German Institute of Human Nutrition, Department of Molecular Toxicology, Potsdam-Rehbruecke, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Pascal Gottmann
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Thilo Speckmann
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Peter Huypens
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Stefan Wolter
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Hrabé De Angelis
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; School of Life Sciences, Chair of Experimental Genetics, Technical University Munich, Freising, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; School of Life Sciences, Chair of Experimental Genetics, Technical University Munich, Freising, Germany
| | - Henriette Kirchner
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute for Human Genetics, Section Epigenetics & Metabolism, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany
| | - Matthias B Schulze
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; German Institute of Human Nutrition, Department of Molecular Epidemiology, Potsdam-Rehbruecke, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Annette Schürmann
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.
| |
Collapse
|
7
|
Xie M, Chia RH, Li D, Teo FX, Krueger C, Sabapathy K. Functional interaction between macrophages and hepatocytes dictate the outcome of liver fibrosis. Life Sci Alliance 2021; 4:4/4/e202000803. [PMID: 33514653 PMCID: PMC7893818 DOI: 10.26508/lsa.202000803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocytes and liver-resident macrophages known as Kupffer cells (KCs) are key cell types involved in liver fibrosis. The transcription factor c-Jun plays a fundamental role in regulating hepatocyte and macrophage functions. We have examined c-Jun's role in the functional interaction of these cells during liver fibrosis induced by carbon tetrachloride. While hepatocyte-specific c-jun deletion led to increased fibrosis, the opposite outcome was observed when c-jun was deleted in both hepatocytes and KCs. Molecular analyses revealed compromised cytokine gene expression as the apical event related to the phenotype. Yet, purified hepatocytes from both mouse cohorts showed similar defects in cytokine gene expression. However, we noted increased macrophage infiltration in the absence of c-Jun in hepatocytes, which when chemically depleted, reversed the phenotype. Consistently, c-jun deletion in KCs alone also led to reduced fibrosis and cytokine gene expression. By contrast, c-jun deletion in hepatocytes and KCs did not affect the resolution phase after fibrotic injury. These data together demonstrate a pro-fibrogenic role for c-Jun in hepatocytes and KCs that functionally interact to regulate liver fibrosis.
Collapse
Affiliation(s)
- Min Xie
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Ren Hui Chia
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dan Li
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Fanny Xueting Teo
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Christian Krueger
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Kanaga Sabapathy
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore .,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cellular Biology, Singapore, Singapore
| |
Collapse
|
8
|
Yang H, Wang J, Zhang Z, Peng R, Lv D, Liu H, Sun Y. Sp1-Induced lncRNA Rmrp Promotes Mesangial Cell Proliferation and Fibrosis in Diabetic Nephropathy by Modulating the miR-1a-3p/JunD Pathway. Front Endocrinol (Lausanne) 2021; 12:690784. [PMID: 34512545 PMCID: PMC8429906 DOI: 10.3389/fendo.2021.690784] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes mellitus. Long non-coding RNAs (lncRNAs) are regulators in DN progression. However, the regulatory mechanisms of multiple lncRNAs in DN remain to be determined. Our aim was to investigate the function and molecular mechanism of lncRNA RNA component of mitochondrial RNAase P (Rmrp) in DN. Here, we observed that the expression of Rmrp was up-regulated in the kidney of db/db DN mice and high glucose induced glomerular mesangial cells (MC). More importantly, the abnormal transcription of Rmrp was induced by nuclear transcription factor Sp1, which promotes the proliferation and production of fibrotic markers in MC. Subsequently, we screened the miRNAs related to Rmrp and found that Rmrp and miR-1a-3p are co-localized at the subcellular level of MC, and Rmrp could directly binds to miR-1a-3p. Further mechanism research demonstrated that the elevated miR-1a-3p significantly attenuated the proliferation and fibrosis-promoting effects induced by up-regulation of Rmrp. At the same time, we also investigated that miR-1a-3p can directly bind to Jun D proto-oncogene (JunD), thereby regulating the protein level of JunD. Rmrp-induced proliferation and fibrogenesis were reversed by co-transfection with JunD siRNA. In summary, Sp1 induced lncRNA Rmrp could drive the expression of JunD via sponging miR-1a-3p in DN progression.
Collapse
Affiliation(s)
- Hansen Yang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Jia Wang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Zheng Zhang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Rui Peng
- Department of Bioinformatics, Chongqing Medical University, Chongqing, China
| | - Dan Lv
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Handeng Liu
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Yan Sun
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
- *Correspondence: Yan Sun,
| |
Collapse
|
9
|
Sun Y, Pan H, Shen S, Xia Z, Yu Z, Li C, Sun P, Xin C. Alisma Shugan Decoction (ASD) Ameliorates Hepatotoxicity and Associated Liver Dysfunction by Inhibiting Oxidative Stress and p65/Nrf2/JunD Signaling Dysregulation In Vivo. Med Sci Monit 2020; 26:e921738. [PMID: 32672153 PMCID: PMC7384331 DOI: 10.12659/msm.921738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Liver fibrosis, defined as the aberrant accumulation of extracellular matrix (ECM) proteins such as collagen in the liver, is a common feature of chronic liver disease, and often culminates in portal hypertension, liver cirrhosis, and hepatic failure. Though therapeutically manageable, fibrosis is not always successfully treated by conventional antifibrotic agents. While the traditional Chinese medicine (TCM) Alisma Shugan Decoction (ASD) has several health benefits, including anti-inflammation, anti-oxidation, and limitation of cardiovascular and respiratory disorders, it remains unclear if it has any hepato-protective potential. Material/Methods The present study examined the therapeutic effect of ASD in thioacetamide (TAA)-induced liver injury and fibrosis rat models. Results We demonstrated that 50 mg/kg ASD significantly reversed TAA-induced elevation of alanine or aspartate transaminase levels, elicited no dyscrasia, and conferred a 40% (p<0.01) or 20% (p<0.05) survival advantage, compared to rats treated with TAA or TAA+ASD, respectively. Treatment with ASD reversed TAA-induced liver injury and fibrogenesis via repression of α-SMA protein and reduction of the collagen area and fibrosis score. Concurrently, ASD markedly suppressed the mRNA expression of fibrogenic procollagen, ICAM-1, MMP2, MMP9, and MMP13, and production of TIMP-1, ICAM-1, CXCL7, or CD62L cytokine in rat liver injury models. Interestingly, ASD-elicited reduction of liver injury and fibrogenesis was mediated by dysregulated p65/NrF-2/JunD signaling, with a resultant 3.18-fold (p<0.05) increase in GSH/GSSH ratio, and a 3.61-fold (p<0.01) or 1.51-fold (p<0.01) reduction in the 4-hydroxynonenal and malondialdehyde (MDA) levels, respectively, indicating reduced oxidative stress in the ASD-treated rats, and suggesting an hepato-protective role for ASD. Conclusions In conclusion, the present study provides supplementary evidence of the therapeutic benefit of ASD as an efficient treatment option in cases of liver injury and fibrosis. Further large-cohort validation of these findings is warranted.
Collapse
Affiliation(s)
- Yunfeng Sun
- Department of Pharmacy, Tongde Hospital Zhejiang Province, Hangzhou, Zhejiang, China (mainland).,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Honghua Pan
- Department of Pharmacy, Tongde Hospital Zhejiang Province, Hangzhou, Zhejiang, China (mainland).,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Shenghui Shen
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland).,Department of Cardiology, Tongde Hospital Zhejiang Province, Hangzhou, Zhejiang, China (mainland)
| | - Zhongni Xia
- Department of Pharmacy, Tongde Hospital Zhejiang Province, Hangzhou, Zhejiang, China (mainland).,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Zhongmin Yu
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| | - ChengLe Li
- Department of Pharmacy, Tongde Hospital Zhejiang Province, Hangzhou, Zhejiang, China (mainland).,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Pingping Sun
- Department of Pharmacy, Tongde Hospital Zhejiang Province, Hangzhou, Zhejiang, China (mainland).,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Chuanwei Xin
- Department of Pharmacy, Tongde Hospital Zhejiang Province, Hangzhou, Zhejiang, China (mainland).,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
10
|
Liang XQ, Liang J, Zhao XF, Wang XY, Deng X. Integrated network analysis of transcriptomic and protein-protein interaction data in taurine-treated hepatic stellate cells. World J Gastroenterol 2019; 25:1067-1079. [PMID: 30862995 PMCID: PMC6406182 DOI: 10.3748/wjg.v25.i9.1067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Studies show that the antifibrotic mechanism of taurine may involve its inhibition of the activation and proliferation of hepatic stellate cells (HSCs). Since the molecular mechanism of taurine-mediated antifibrotic activity has not been fully unveiled and is little studied, it is imperative to use “omics” methods to systematically investigate the molecular mechanism by which taurine inhibits liver fibrosis.
AIM To establish a network including transcriptomic and protein-protein interaction data to elucidate the molecular mechanism of taurine-induced HSC apoptosis.
METHODS We used microarrays, bioinformatics, protein-protein interaction (PPI) network, and sub-modules to investigate taurine-induced changes in gene expression in human HSCs (LX-2). Subsequently, all of the differentially expressed genes (DEGs) were subjected to gene ontology function and Kyoto encyclopedia of genes and genomes pathway enrichment analysis. Furthermore, the interactions of DEGs were explored in a human PPI network, and sub-modules of the DEGs interaction network were analyzed using Cytoscape software.
RESULTS A total of 635 DEGs were identified in taurine-treated HSCs when compared with the controls. Of these, 304 genes were statistically significantly up-regulated, and 331 down-regulated. Most of these DEGs were mainly located on the membrane and extracellular region, and are involved in the biological processes of signal transduction, cell proliferation, positive regulation of extracellular regulated protein kinases 1 (ERK1) and ERK2 cascade, extrinsic apoptotic signaling pathway and so on. Fifteen significantly enriched pathways with DEGs were identified, including mitogen-activated protein kinase (MAPK) signaling pathway, peroxisome proliferators-activated receptor signaling pathway, estrogen signaling pathway, Th1 and Th2 cell differentiation, cyclic adenosine monophosphate signaling pathway and so on. By integrating the transcriptomics and human PPI data, nine critical genes, including MMP2, MMP9, MMP21, TIMP3, KLF10, CX3CR1, TGFB1, VEGFB, and EGF, were identified in the PPI network analysis.
CONCLUSION Taurine promotes the apoptosis of HSCs via up-regulating TGFB1 and then activating the p38 MAPK-JNK-Caspase9/8/3 pathway. These findings enhance the understanding of the molecular mechanism of taurine-induced HSC apoptosis and provide references for liver disorder therapy.
Collapse
Affiliation(s)
- Xing-Qiu Liang
- Department of Science and Technology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Jian Liang
- College of Medical, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Fang Zhao
- Department of Science and Technology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Xin-Yuan Wang
- School of Basic Sciences, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi Zhuang Autonomous Region, China
| | - Xin Deng
- School of Basic Sciences, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
11
|
Ehrlich L, Hall C, Meng F, Lairmore T, Alpini G, Glaser S. A Review of the Scaffold Protein Menin and its Role in Hepatobiliary Pathology. Gene Expr 2017; 17:251-263. [PMID: 28485270 PMCID: PMC5765438 DOI: 10.3727/105221617x695744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a familial cancer syndrome with neuroendocrine tumorigenesis of the parathyroid glands, pituitary gland, and pancreatic islet cells. The MEN1 gene codes for the canonical tumor suppressor protein, menin. Its protein structure has recently been crystallized, and it has been investigated in a multitude of other tissues. In this review, we summarize recent advancements in understanding the structure of the menin protein and its function as a scaffold protein in histone modification and epigenetic gene regulation. Furthermore, we explore its role in hepatobiliary autoimmune diseases, cancers, and metabolic diseases. In particular, we discuss how menin expression and function are regulated by extracellular signaling factors and nuclear receptor activation in various hepatic cell types. How the many signaling pathways and tissue types affect menin's diverse functions is not fully understood. We show that small-molecule inhibitors affecting menin function can shed light on menin's broad role in pathophysiology and elucidate distinct menin-dependent processes. This review reveals menin's often dichotomous function through analysis of its role in multiple disease processes and could potentially lead to novel small-molecule therapies in the treatment of cholangiocarcinoma or biliary autoimmune diseases.
Collapse
Affiliation(s)
- Laurent Ehrlich
- *Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Chad Hall
- †Department of Surgery, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Fanyin Meng
- *Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
- ‡Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, USA
| | - Terry Lairmore
- †Department of Surgery, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Gianfranco Alpini
- *Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
- ‡Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, USA
| | - Shannon Glaser
- *Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
- ‡Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, USA
| |
Collapse
|
12
|
Vatakuti S, Schoonen WGEJ, Elferink MLG, Groothuis GMM, Olinga P. Acute toxicity of CCl4 but not of paracetamol induces a transcriptomic signature of fibrosis in precision-cut liver slices. Toxicol In Vitro 2015; 29:1012-20. [PMID: 25858767 DOI: 10.1016/j.tiv.2015.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/10/2015] [Accepted: 03/18/2015] [Indexed: 12/20/2022]
Abstract
In rat in vivo, both paracetamol (APAP) and carbon tetrachloride (CCl4) induce liver necrosis, but long-term treatment with CCl4, in contrast to paracetamol, causes liver fibrosis. The aim of this study was to perform transcriptomic analysis to compare the early changes in mRNA expression profiles induced by APAP and CCl4 in the rat precision-cut liver slice model (PCLS) and to identify early markers that could predict fibrosis-inducing potential. Microarray data of rat PCLS exposed to APAP andCCl4was generated using a toxic dose based on decrease in ATP levels. Toxicity pathway analysis using a custom made fibrosis-related gene list showed fibrosis as one of the predominant toxic endpoints in CCl4-treated, but not in APAP-treated PCLS. Moreover, genes which have a role in fibrosis such as alpha-B crystallin, jun proto-oncogene, mitogen-activated protein kinase 6, serpin peptidase inhibitor and also the transcription factor Kruppel-like-factor-6 were up-regulated by CCl4, but not by APAP. Predicted activation or inhibition of several upstream regulators due to CCl4 is in accordance with their role in fibrosis. In conclusion, transcriptomic analysis of PCLS successfully identified the fibrotic potential of CCl4 as opposed to APAP. The application of PCLS as an ex vivo model to identify early biomarkers to predict the fibrogenic potential of toxic compounds should be further explored.
Collapse
Affiliation(s)
- Suresh Vatakuti
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | | | - Marieke L G Elferink
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Geny M M Groothuis
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
13
|
Moon S, Keam B, Hwang MY, Lee Y, Park S, Oh JH, Kim YJ, Lee HS, Kim NH, Kim YJ, Kim DH, Han BG, Kim BJ, Lee J. A genome-wide association study of copy-number variation identifies putative loci associated with osteoarthritis in Koreans. BMC Musculoskelet Disord 2015; 16:76. [PMID: 25880085 PMCID: PMC4395893 DOI: 10.1186/s12891-015-0531-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 03/17/2015] [Indexed: 12/31/2022] Open
Abstract
Background OA is a complex disease caused by environmental and genetic risk factors. The purpose of this study is to identify candidate copy number variations (CNVs) associated with OA. Methods We performed a genome-wide association study of CNV to identify potential loci that confer susceptibility to or protection from OA. CNV genotyping was conducted using NimbleGen HD2 3 × 720K comparative hybridization array and included samples from 371 OA patients and 467 healthy controls. The putative CNV regions identified were confirmed with a TaqMan assay. Results We identified six genomic regions associated with OA encompassing CNV loci. None of six loci had previously been reported in genome-wide association studies with OA, although a genetic analysis suggested that they have functional effects. The protein product of a candidate risk gene for obesity, TNKS, targets Wnt inhibition, and this gene was significantly associated with hand and knee OA. Copy number deletion on TNKS was associated with a 1.37-fold decreased risk for OA. In addition, CA10, which shows a strong association with osteoporosis, was also significant in our study. Copy number deletion on this gene was associated with a 1.69-fold decreased risk for OA. Conclusion We identified several CNV loci that may contribute to OA susceptibility in Koreans. Further functional investigations of these genes are warranted to fully characterize their putative association. Electronic supplementary material The online version of this article (doi:10.1186/s12891-015-0531-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sanghoon Moon
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, 363-951, Chungchengbuk-Do, Republic of Korea.
| | - Bhumsuk Keam
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, 363-951, Chungchengbuk-Do, Republic of Korea. .,Department of Internal Medicine, Seoul National University Hospital, 110-744, Seoul, Republic of Korea.
| | - Mi Yeong Hwang
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, 363-951, Chungchengbuk-Do, Republic of Korea.
| | - Young Lee
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, 363-951, Chungchengbuk-Do, Republic of Korea.
| | - Suyeon Park
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, 363-951, Chungchengbuk-Do, Republic of Korea. .,Department of Biostatistics, Soonchunhyang University, College of Medicine, 140-743, Seoul, Republic of Korea.
| | - Ji Hee Oh
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, 363-951, Chungchengbuk-Do, Republic of Korea.
| | - Yeon-Jung Kim
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, 363-951, Chungchengbuk-Do, Republic of Korea.
| | - Heun-Sik Lee
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, 363-951, Chungchengbuk-Do, Republic of Korea.
| | - Nam Hee Kim
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, 363-951, Chungchengbuk-Do, Republic of Korea.
| | - Young Jin Kim
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, 363-951, Chungchengbuk-Do, Republic of Korea.
| | - Dong-Hyun Kim
- Department of Social and Preventive Medicine, Hallym University College of Medicine, 200-702, Chunchun, Republic of Korea.
| | - Bok-Ghee Han
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, 363-951, Chungchengbuk-Do, Republic of Korea.
| | - Bong-Jo Kim
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, 363-951, Chungchengbuk-Do, Republic of Korea.
| | - Juyoung Lee
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, 363-951, Chungchengbuk-Do, Republic of Korea.
| |
Collapse
|
14
|
Epimorphin alters the inhibitory effects of SOX9 on Mmp13 in activated hepatic stellate cells. PLoS One 2014; 9:e100091. [PMID: 24971829 PMCID: PMC4074045 DOI: 10.1371/journal.pone.0100091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 05/22/2014] [Indexed: 01/09/2023] Open
Abstract
Background and Aims Liver fibrosis is a major cause of morbidity and mortality. It is characterised by excessive extracellular matrix (ECM) deposition from activated hepatic stellate cells (HSCs). Although potentially reversible, treatment remains limited. Understanding how ECM influences the pathogenesis of the disease may provide insight into novel therapeutic targets for the disease. The extracellular protein Epimorphin (EPIM) has been implicated in tissue repair mechanisms in several tissues, partially, through its ability to manipulate proteases. In this study, we have identified that EPIM modulates the ECM environment produced by activated hepatic stellate cells (HSCs), in part, through down-regulation of pro-fibrotic Sex-determining region Y-box 9 (SOX9). Methods Influence of EPIM on ECM was investigated in cultured primary rat HSCs. Activated HSCs were treated with recombinant EPIM or SOX9 siRNA. Core fibrotic factors were evaluated by immunoblotting, qPCR and chromatin immunoprecipitation (ChIP). Results During HSC activation EPIM became significantly decreased in contrast to pro-fibrotic markers SOX9, Collagen type 1 (COL1), and α- Smooth muscle actin (α-SMA). Treatment of activated HSCs with recombinant EPIM caused a reduction in α-SMA, SOX9, COL1 and Osteopontin (OPN), while increasing expression of the collagenase matrix metalloproteinase 13 (MMP13). Sox9 abrogation in activated HSCs increased EPIM and MMP13 expression. Conclusion These data provide evidence for EPIM and SOX9 functioning by mutual negative feedback to regulate attributes of the quiescent or activated state of HSCs. Further understanding of EPIM's role may lead to opportunities to modulate SOX9 as a therapeutic avenue for liver fibrosis.
Collapse
|
15
|
Hasenfuss SC, Bakiri L, Thomsen MK, Hamacher R, Wagner EF. Activator Protein 1 transcription factor Fos-related antigen 1 (Fra-1) is dispensable for murine liver fibrosis, but modulates xenobiotic metabolism. Hepatology 2014; 59:261-73. [PMID: 23703832 DOI: 10.1002/hep.26518] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 04/05/2013] [Accepted: 05/07/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED The Activator Protein 1 (AP-1) transcription factor subunit Fos-related antigen 1 (Fra-1) has been implicated in liver fibrosis. Here we used loss-of-function as well as switchable, cell type-specific, gain-of-function alleles for Fra-1 to investigate the relevance of Fra-1 expression in cholestatic liver injury and fibrosis. Our results indicate that Fra-1 is dispensable in three well-established, complementary models of liver fibrosis. However, broad Fra-1 expression in adult mice results in liver fibrosis, which is reversible, when ectopic Fra-1 is switched off. Interestingly, hepatocyte-specific Fra-1 expression is not sufficient to trigger the disease, although Fra-1 expression leads to dysregulation of fibrosis-associated genes. Both opn and cxcl9 are controlled by Fra-1 in gain-of-function and loss-of-function experiments. Importantly, Fra-1 attenuates liver damage in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine-feeding cholestatic liver injury model. Strikingly, manipulating Fra-1 expression affects genes involved in hepatic transport and detoxification, in particular glutathione S-transferases. Molecular analyses indicate that Fra-1 binds to the promoters of cxcl9 and gstp1 in vivo. Furthermore, loss of Fra-1 sensitizes, while hepatic Fra-1 expression protects from acetaminophen-induced liver damage, a paradigm for glutathione-mediated acute liver failure. CONCLUSION These data define a novel function of Fra-1/AP-1 in modulating the expression of detoxification genes and the adaptive response of the liver to bile acids/xenobiotic overload.
Collapse
Affiliation(s)
- Sebastian C Hasenfuss
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology Programme, National Cancer Research Centre (CNIO), Madrid, Spain; University of Freiburg, Faculty of Biology, Freiburg, Germany
| | | | | | | | | |
Collapse
|
16
|
Fan TT, Hu PF, Wang J, Wei J, Zhang Q, Ning BF, Yin C, Zhang X, Xie WF, Chen YX, Shi B. Regression effect of hepatocyte nuclear factor 4α on liver cirrhosis in rats. J Dig Dis 2013; 14:318-27. [PMID: 23374293 DOI: 10.1111/1751-2980.12042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study was to determine whether cirrhosis could be reversed after treated with hepatocyte nuclear factor 4α (HNF4α), a key transcriptional regulator of hepatocyte differentiation and function. METHODS Early and advanced stages of liver cirrhosis were induced by thioacetamide (TAA) administration. The adenovirus carrying HNF4α gene was injected into cirrhotic rats via the tail vein. The effect of HNF4α on cirrhosis was evaluated by histological and immunohistochemical examination. RESULTS Early stage of cirrhosis was remarkably resolved by HNF4α to a nearly-normal extent and advanced cirrhosis was partially ameliorated in vivo. The enforced expression of HNF4α downregulated profibrogenic factors remarkably including α-smooth muscle actin (α-SMA), transforming growth factor (TGF)-β1, fibroblast-specific protein (FSP)-1, collagen I and III. In vivo and in vitro studies revealed that HNF4α administration inhibited extracellular signal-regulated kinase (ERK) signaling pathway through the downregulation of phosphorated ERK and phosphorated JunD. In addition, HNF4α readjusted the balance between extracellular matrix deposition and degradation through the upregulation of matrix metalloproteinase and downregulation of its inhibitors. Moreover, HNF4α treatment inhibited angiogenesis as determined by CD31 and CD34 immunostaining. CONCLUSIONS Our findings broaden the knowledge on the reversibility of different stages of cirrhosis as HNF4α could present a promising alternative for the treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Ting Ting Fan
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Perugorria MJ, Murphy LB, Fullard N, Chakraborty JB, Vyrla D, Wilson CL, Oakley F, Mann J, Mann DA. Tumor progression locus 2/Cot is required for activation of extracellular regulated kinase in liver injury and toll-like receptor-induced TIMP-1 gene transcription in hepatic stellate cells in mice. Hepatology 2013; 57:1238-49. [PMID: 23080298 DOI: 10.1002/hep.26108] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 10/09/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED Toll-like receptors (TLRs) function as key regulators of liver fibrosis and are able to modulate the fibrogenic actions of nonparenchymal liver cells. The fibrogenic signaling events downstream of TLRs on Kupffer cells (KCs) and hepatic stellate cells (HSCs) are poorly defined. Here, we describe the MAP3K tumor progression locus 2 (Tpl2) as being important for the activation of extracellular regulated kinase (ERK) signaling in KCs and HSCs responding to stimulation of TLR4 and TLR9. KCs lacking Tpl2 display defects with TLR induction of cytokines interleukin (IL)-1β, IL-10, and IL-23. tpl2(-/-) HSCs were unable to increase expression of fibrogenic genes IL-1β and tissue inhibitor of metalloproteinase 1 (TIMP-1), with the latter being the result of defective stimulation of TIMP-1 promoter activity by TLRs. To determine the in vivo relevance of Tpl2 signaling in liver fibrosis, we compared the fibrogenic responses of wild-type (WT) and tpl2(-/-) mice in three distinct models of chronic liver injury. In the carbon tetrachloride and methionine-choline-deficient diet models, we observed a significant reduction in fibrosis in mice lacking Tpl2, compared to WT controls. However, in the bile duct ligation model, there was no effect of tpl2 deletion, which may reflect a lesser role for HSCs in wounding response to biliary injury. CONCLUSION We conclude that Tpl2 is an important signal transducer for TLR activation of gene expression in KCs and HSCs by the ERK pathway and that suppression of its catalytic activity may be a route toward suppressing fibrosis caused by hepatocellular injuries. (HEPATOLOGY 2013).
Collapse
Affiliation(s)
- Maria J Perugorria
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen YH, Lan T, Li J, Qiu CH, Wu T, Gou HJ, Lu MQ. Gardenia jasminoides attenuates hepatocellular injury and fibrosis in bile duct-ligated rats and human hepatic stellate cells. World J Gastroenterol 2012; 18:7158-65. [PMID: 23326120 PMCID: PMC3544017 DOI: 10.3748/wjg.v18.i48.7158] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 10/10/2012] [Accepted: 10/16/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the anti-hepatofibrotic effects of Gardenia jasminoides in liver fibrosis.
METHODS: Male Sprague-Dawley rats underwent common bile duct ligation (BDL) for 14 d and were treated with Gardenia jasminoides by gavage. The effects of Gardenia jasminoides on liver fibrosis and the detailed molecular mechanisms were also assessed in human hepatic stellate cells (LX-2) in vitro.
RESULTS: Treatment with Gardenia jasminoides decreased serum alanine aminotransferase (BDL vs BDL + 100 mg/kg Gardenia jasminoides, 146.6 ± 15 U/L vs 77 ± 6.5 U/L, P = 0.0007) and aspartate aminotransferase (BDL vs BDL + 100 mg/kg Gardenia jasminoides, 188 ± 35.2 U/L vs 128 ± 19 U/L, P = 0.005) as well as hydroxyproline (BDL vs BDL + 100 mg/kg Gardenia jasminoides, 438 ± 40.2 μg/g vs 228 ± 10.3 μg/g liver tissue, P = 0.004) after BDL. Furthermore, Gardenia jasminoides significantly reduced liver mRNA and/or protein expression of transforming growth factor β1 (TGF-β1), collagen type I (Col I) and α-smooth muscle actin (α-SMA). Gardenia jasminoides significantly suppressed the upregulation of TGF-β1, Col I and α-SMA in LX-2 exposed to recombinant TGF-β1. Moreover, Gardenia jasminoides inhibited TGF-β1-induced Smad2 phosphorylation in LX-2 cells.
CONCLUSION: Gardenia jasminoides exerts antifibrotic effects in the liver fibrosis and may represent a novel antifibrotic agent.
Collapse
|
19
|
Liu L, Wei J, Huo X, Fang S, Yao D, Gao J, Jiang H, Zhang X. The Salvia miltiorrhiza monomer IH764-3 induces apoptosis of hepatic stellate cells in vivo in a bile duct ligation-induced model of liver fibrosis. Mol Med Rep 2012; 6:1231-8. [PMID: 22971838 DOI: 10.3892/mmr.2012.1076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 08/06/2012] [Indexed: 11/06/2022] Open
Abstract
During the process of liver fibrosis, hepatic stellate cells (HSCs) play a critical role in the excessive production of extracellular matrix (ECM). Previous studies have indicated that the monomer IH764-3, one of the major bioactive components of Salvia miltiorrhiza, is able to inhibit HSC proliferation and induce the apoptosis of activated HSCs in vitro. In the current study, we used a rat model of liver fibrosis induced by bile duct ligation (BDL) to investigate the effect of the monomer IH764-3 on the induction of apoptosis in HSCs in vivo. The rat model of liver fibrosis was established by BDL. Immunohistochemical staining of α-smooth muscle actin (α-SMA) was performed to detect HSC activation and proliferation and HSC apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and α-SMA immunohistochemical double staining. In addition, the protein expression levels of focal adhesion kinase (FAK), p-FAK (Tyr397), extracellular signal-regulated kinase (ERK) and p-ERK and the mRNA expression levels of FAK and ERK were measured by western blotting and reverse transcription-polymerase chain reaction (RT-PCR), respectively. The monomer IH764-3 was associated with a significant decrease in intrahepatic fibrogenesis and collagen deposition and attenuated the liver fibrosis induced by BDL. Immunohistochemical staining revealed that the expression of α-SMA in the IH764-3 group was significantly decreased compared with that in the model group (12.92±2.45 vs. 22.65±2.16%, P<0.01). TUNEL and α-SMA immunohistochemical double staining also confirmed that IH764-3 increased the apoptotic rate of the activated HSCs (34.8±4.5 vs. 4.72±0.37%, P<0.01). Moreover, the results revealed that IH764-3 downregulated the expression levels of FAK, p-FAK (Tyr397), ERK and p-ERK in the liver tissue of rats with liver fibrosis. The monomer IH764-3 ameliorates experimental liver fibrosis by inhibiting HSC proliferation and inducing HSC apoptosis, warranting its use as a potential therapeutic agent in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Lei Liu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei 050000, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Pritchett J, Harvey E, Athwal V, Berry A, Rowe C, Oakley F, Moles A, Mann DA, Bobola N, Sharrocks AD, Thomson BJ, Zaitoun AM, Irving WL, Guha IN, Hanley NA, Hanley KP. Osteopontin is a novel downstream target of SOX9 with diagnostic implications for progression of liver fibrosis in humans. Hepatology 2012; 56:1108-16. [PMID: 22488688 PMCID: PMC3638324 DOI: 10.1002/hep.25758] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED Osteopontin (OPN) is an important component of the extracellular matrix (ECM), which promotes liver fibrosis and has been described as a biomarker for its severity. Previously, we have demonstrated that Sex-determining region Y-box 9 (SOX9) is ectopically expressed during activation of hepatic stellate cells (HSC) when it is responsible for the production of type 1 collagen, which causes scar formation in liver fibrosis. Here, we demonstrate that SOX9 regulates OPN. During normal development and in the mature liver, SOX9 and OPN are coexpressed in the biliary duct. In rodent and human models of fibrosis, both proteins were increased and colocalized to fibrotic regions in vivo and in culture-activated HSCs. SOX9 bound a conserved upstream region of the OPN gene, and abrogation of Sox9 in HSCs significantly decreased OPN production. Hedgehog (Hh) signaling has previously been shown to regulate OPN expression directly by glioblastoma (GLI) 1. Our data indicate that in models of liver fibrosis, Hh signaling more likely acts through SOX9 to modulate OPN. In contrast to Gli2 and Gli3, Gli1 is sparse in HSCs and is not increased upon activation. Furthermore, reduction of GLI2, but not GLI3, decreased the expression of both SOX9 and OPN, whereas overexpressing SOX9 or constitutively active GLI2 could rescue the antagonistic effects of cyclopamine on OPN expression. CONCLUSION These data reinforce SOX9, downstream of Hh signaling, as a core factor mediating the expression of ECM components involved in liver fibrosis. Understanding the role and regulation of SOX9 during liver fibrosis will provide insight into its potential modulation as an antifibrotic therapy or as a means of identifying potential ECM targets, similar to OPN, as biomarkers of fibrosis.
Collapse
Affiliation(s)
- James Pritchett
- Endocrinology and Diabetes Group, School of Biomedicine, University of ManchesterManchester, United Kingdom
| | - Emma Harvey
- Endocrinology and Diabetes Group, School of Biomedicine, University of ManchesterManchester, United Kingdom
| | - Varinder Athwal
- Endocrinology and Diabetes Group, School of Biomedicine, University of ManchesterManchester, United Kingdom
| | - Andrew Berry
- Endocrinology and Diabetes Group, School of Biomedicine, University of ManchesterManchester, United Kingdom
| | - Cliff Rowe
- Endocrinology and Diabetes Group, School of Biomedicine, University of ManchesterManchester, United Kingdom
| | - Fiona Oakley
- Liver Research Group, Institute of Cellular Medicine, University of NewcastleNewcastle-upon-Tyne, United Kingdom
| | - Anna Moles
- Liver Research Group, Institute of Cellular Medicine, University of NewcastleNewcastle-upon-Tyne, United Kingdom
| | - Derek A Mann
- Liver Research Group, Institute of Cellular Medicine, University of NewcastleNewcastle-upon-Tyne, United Kingdom
| | - Nicoletta Bobola
- School of Dentistry, University of ManchesterManchester, United Kingdom
| | - Andrew D Sharrocks
- Faculty of Life Sciences, University of ManchesterManchester, United Kingdom
| | - Brian J Thomson
- School of Molecular Medical Sciences, Nottingham Digestive Diseases Center, Biomedical Research Unit in Gastroenterology and Liver Disease, University of Nottingham and Nottingham University Hospitals, Queens Medical Center CampusNottingham United Kingdom
| | - Abed M Zaitoun
- Department of Cellular Pathology, Nottingham Digestive Diseases Center, Biomedical Research Unit in Gastroenterology and Liver Disease, University of Nottingham and Nottingham University Hospitals, Queens Medical Center CampusNottingham United Kingdom
| | - William L Irving
- School of Molecular Medical Sciences, Nottingham Digestive Diseases Center, Biomedical Research Unit in Gastroenterology and Liver Disease, University of Nottingham and Nottingham University Hospitals, Queens Medical Center CampusNottingham United Kingdom
| | - Indra N Guha
- Liver Unit, National Institute of Health Research, Nottingham Digestive Diseases Center, Biomedical Research Unit in Gastroenterology and Liver Disease, University of Nottingham and Nottingham University Hospitals, Queens Medical Center CampusNottingham United Kingdom
| | - Neil A Hanley
- Endocrinology and Diabetes Group, School of Biomedicine, University of ManchesterManchester, United Kingdom
| | - Karen Piper Hanley
- Endocrinology and Diabetes Group, School of Biomedicine, University of ManchesterManchester, United Kingdom
| |
Collapse
|
21
|
Seki E, Brenner DA, Karin M. A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches. Gastroenterology 2012; 143:307-20. [PMID: 22705006 PMCID: PMC3523093 DOI: 10.1053/j.gastro.2012.06.004] [Citation(s) in RCA: 389] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/05/2012] [Accepted: 06/11/2012] [Indexed: 02/08/2023]
Abstract
c-Jun-N-terminal kinase (JNK) is a mitogen-activated protein kinase family member that is activated by diverse stimuli, including cytokines (such as tumor necrosis factor and interleukin-1), reactive oxygen species (ROS), pathogens, toxins, drugs, endoplasmic reticulum stress, free fatty acids, and metabolic changes. Upon activation, JNK induces multiple biologic events through the transcription factor activator protein-1 and transcription-independent control of effector molecules. JNK isozymes regulate cell death and survival, differentiation, proliferation, ROS accumulation, metabolism, insulin signaling, and carcinogenesis in the liver. The biologic functions of JNK are isoform, cell type, and context dependent. Recent studies using genetically engineered mice showed that loss or hyperactivation of the JNK pathway contributes to the development of inflammation, fibrosis, cancer growth, and metabolic diseases that include obesity, hepatic steatosis, and insulin resistance. We review the functions and pathways of JNK in liver physiology and pathology and discuss findings from preclinical studies with JNK inhibitors.
Collapse
Affiliation(s)
- Ekihiro Seki
- Department of Medicine, University of California, La Jolla, CA, USA.
| | - David A. Brenner
- Department of Medicine, Division of Gastroenterology, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| |
Collapse
|
22
|
Fra-1/AP-1 transcription factor negatively regulates pulmonary fibrosis in vivo. PLoS One 2012; 7:e41611. [PMID: 22911824 PMCID: PMC3404039 DOI: 10.1371/journal.pone.0041611] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/22/2012] [Indexed: 11/23/2022] Open
Abstract
The Fra-1/AP-1 transcription factor plays a key role in tumor epithelial cell progression; however, its role in pathogenic lung fibrosis remains unclear. In the present study, using a genetic approach (Fra-1 deficient mice), we have demonstrated a novel regulatory (protective) role for Fra-1 in lung fibrosis. We found greater levels of progressive interstitial fibrosis, characterized by increased levels of inflammation, collagen accumulation, and profibrotic and fibrotic gene expression in the lungs of Fra-1Δ/Δ mice than in those of Fra-1+/+ mice following bleomycin treatment. Fra-1 knockdown in human lung epithelial cells caused the upregulation of mesenchymal marker N-cadherin, concomitant with a downregulation of the epithelial phenotype marker E-cadherin, under basal conditions and in response to bleomycin and TGF-β1. Furthermore, Fra-1 knockdown caused an enhanced expression of type 1 collagen and the downregulation of collagenase (MMP-1 and MMP-13) gene expression in human lung epithelial cells. Collectively, our findings demonstrate that Fra-1 mediates anti-fibrotic effects in the lung through the modulation of proinflammatory, profibrotic and fibrotic gene expression, and suggests that the Fra-1 transcription factor may be a potential target for pulmonary fibrosis, a progressive disorder with poor prognosis and treatment.
Collapse
|
23
|
Lee SY, Yoon J, Lee MH, Jung SK, Kim DJ, Bode AM, Kim J, Dong Z. The role of heterodimeric AP-1 protein comprised of JunD and c-Fos proteins in hematopoiesis. J Biol Chem 2012; 287:31342-8. [PMID: 22822070 DOI: 10.1074/jbc.m112.387266] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Activator protein-1 (AP-1) regulates a wide range of cellular processes including proliferation, differentiation, and apoptosis. As a transcription factor, AP-1 is commonly found as a heterodimer comprised of c-Jun and c-Fos proteins. However, other heterodimers may also be formed. The function of these dimers, specifically the heterodimeric AP-1 comprised of JunD and c-Fos (AP-1(JunD/c-Fos)), has not been elucidated. Here, we identified a function of AP-1(JunD/c-Fos) in Xenopus hematopoiesis. A gain-of-function study performed by overexpressing junD and c-fos and a loss-of-function study using morpholino junD demonstrate a critical role for AP-1(JunD/c-Fos) in hematopoiesis during Xenopus embryogenesis. Additionally, we confirmed that JunD of AP-1(JunD/c-Fos) is required for BMP-4-induced hematopoiesis. We also demonstrated that BMP-4 regulated JunD activity at the transcriptional regulation and post-translational modification levels. Collectively, our findings identify AP-1(JunD/c-Fos) as a novel hematopoietic transcription factor and the requirement of AP-1(JunD/c-Fos) in BMP-4-induced hematopoiesis during Xenopus hematopoiesis.
Collapse
Affiliation(s)
- Sung-Young Lee
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Interleukin-6, its role in fibrosing conditions. Cytokine Growth Factor Rev 2012; 23:99-107. [DOI: 10.1016/j.cytogfr.2012.04.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/10/2012] [Indexed: 12/21/2022]
|
25
|
Stimulating healthy tissue regeneration by targeting the 5-HT₂B receptor in chronic liver disease. Nat Med 2011; 17:1668-73. [PMID: 22120177 DOI: 10.1038/nm.2490] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/22/2011] [Indexed: 01/14/2023]
Abstract
Tissue homeostasis requires an effective, limited wound-healing response to injury. In chronic disease, failure to regenerate parenchymal tissue leads to the replacement of lost cellular mass with a fibrotic matrix. The mechanisms that dictate the balance of cell regeneration and fibrogenesis are not well understood. Here we report that fibrogenic hepatic stellate cells (HSCs) in the liver are negative regulators of hepatocyte regeneration. This negative regulatory function requires stimulation of the 5-hydroxytryptamine 2B receptor (5-HT(2B)) on HSCs by serotonin, which activates expression of transforming growth factor β1 (TGF-β1), a powerful suppressor of hepatocyte proliferation, through signaling by mitogen-activated protein kinase 1 (ERK) and the transcription factor JunD. Selective antagonism of 5-HT(2B) enhanced hepatocyte growth in models of acute and chronic liver injury. We also observed similar effects in mice lacking 5-HT(2B) or JunD or upon selective depletion of HSCs in wild-type mice. Antagonism of 5-HT(2B) attenuated fibrogenesis and improved liver function in disease models in which fibrosis was pre-established and progressive. Pharmacological targeting of 5-HT(2B) is clinically safe in humans and may be therapeutic in chronic liver disease.
Collapse
|
26
|
Palumbo K, Zerr P, Tomcik M, Vollath S, Dees C, Akhmetshina A, Avouac J, Yaniv M, Distler O, Schett G, Distler JHW. The transcription factor JunD mediates transforming growth factor {beta}-induced fibroblast activation and fibrosis in systemic sclerosis. Ann Rheum Dis 2011; 70:1320-6. [PMID: 21515915 DOI: 10.1136/ard.2010.148296] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Transforming growth factor β (TGFβ) has been identified as a key player in fibrotic diseases. However, the molecular mechanisms by which TGFβ activates fibroblasts are incompletely understood. Here, the role of JunD, a member of the activator protein 1 (AP-1) family of transcription factors, as a downstream mediator of TGFβ signalling in systemic sclerosis (SSc), was investigated. METHODS The expression of JunD was analysed by real-time PCR, immunofluorescence, western blotting and immunohistochemistry. The canonical Smad pathway was specifically targeted by small interfering (si)RNA. The expression of extracellular matrix proteins in JunD deficient (JunD(-/-)) fibroblasts was analysed by real-time PCR and hydroxyproline assays. The mouse model of bleomycin-induced dermal fibrosis was used to assess the role of JunD in experimental fibrosis. RESULTS JunD was overexpressed in SSc skin and in cultured fibroblasts in a TGFβ dependent manner. The expression of JunD colocalised with pSmad 3 in fibrotic skin and silencing of Smad 3 or Smad 4 by siRNA prevented the induction of JunD by TGFβ. JunD(-/-) fibroblasts were less responsive to TGFβ and released less collagen upon stimulation with TGFβ. Moreover, JunD(-/-) mice were protected from bleomycin-induced fibrosis with reduced dermal thickening, decreased myofibroblast counts and lower collagen content of lesional skin. CONCLUSIONS These data demonstrate that JunD is overexpressed in SSc and that JunD is a mediator of the profibrotic effects of TGFβ. Considering that inhibitors of AP-1 signalling have recently been developed and are available for clinical trials in SSc, these findings may have translational implications.
Collapse
Affiliation(s)
- Katrin Palumbo
- Department of Internal Medicine, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Latasa MU, Gil-Puig C, Fernández-Barrena MG, Rodríguez-Ortigosa CM, Banales JM, Urtasun R, Goñi S, Méndez M, Arcelus S, Juanarena N, Recio JA, Lotersztajn S, Prieto J, Berasain C, Corrales FJ, Lecanda J, Ávila MA. Oral methylthioadenosine administration attenuates fibrosis and chronic liver disease progression in Mdr2-/- mice. PLoS One 2010; 5:e15690. [PMID: 21209952 PMCID: PMC3012093 DOI: 10.1371/journal.pone.0015690] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 11/21/2010] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Inflammation and fibrogenesis are directly related to chronic liver disease progression, including hepatocellular carcinoma (HCC) development. Currently there are few therapeutic options available to inhibit liver fibrosis. We have evaluated the hepatoprotective and anti-fibrotic potential of orally-administered 5'-methylthioadenosine (MTA) in Mdr2(-/-) mice, a clinically relevant model of sclerosing cholangitis and spontaneous biliary fibrosis, followed at later stages by HCC development. METHODOLOGY MTA was administered daily by gavage to wild type and Mdr2(-/-) mice for three weeks. MTA anti-inflammatory and anti-fibrotic effects and potential mechanisms of action were examined in the liver of Mdr2(-/-) mice with ongoing fibrogenesis and in cultured liver fibrogenic cells (myofibroblasts). PRINCIPAL FINDINGS MTA treatment reduced hepatomegaly and liver injury. α-Smooth muscle actin immunoreactivity and collagen deposition were also significantly decreased. Inflammatory infiltrate, the expression of the cytokines IL6 and Mcp-1, pro-fibrogenic factors like TGFβ2 and tenascin-C, as well as pro-fibrogenic intracellular signalling pathways were reduced by MTA in vivo. MTA inhibited the activation and proliferation of isolated myofibroblasts and down-regulated cyclin D1 gene expression at the transcriptional level. The expression of JunD, a key transcription factor in liver fibrogenesis, was also reduced by MTA in activated myofibroblasts. CONCLUSIONS/SIGNIFICANCE Oral MTA administration was well tolerated and proved its efficacy in reducing liver inflammation and fibrosis. MTA may have multiple molecular and cellular targets. These include the inhibition of inflammatory and pro-fibrogenic cytokines, as well as the attenuation of myofibroblast activation and proliferation. Downregulation of JunD and cyclin D1 expression in myofibroblasts may be important regarding the mechanism of action of MTA. This compound could be a good candidate to be tested for the treatment of (biliary) liver fibrosis.
Collapse
Affiliation(s)
- M. Ujue Latasa
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Carmen Gil-Puig
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- Digna Biotech, Madrid, Spain
| | - Maite G. Fernández-Barrena
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, University Clinic, University of Navarra, Pamplona, Spain
| | - Carlos M. Rodríguez-Ortigosa
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, University Clinic, University of Navarra, Pamplona, Spain
| | - Jesús M. Banales
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, University Clinic, University of Navarra, Pamplona, Spain
| | - Raquel Urtasun
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Saioa Goñi
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Miriam Méndez
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Sara Arcelus
- CIBERehd, University Clinic, University of Navarra, Pamplona, Spain
| | - Nerea Juanarena
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Juan A. Recio
- Vall d'Hebron Research Institute, Institute of Oncology and Hospital, Barcelona, Spain
| | - Sophie Lotersztajn
- Inserm, U955, Créteil, France
- Université Paris-Est, Faculté de Médecine, UMR-S955, Créteil, France
| | - Jesús Prieto
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, University Clinic, University of Navarra, Pamplona, Spain
| | - Carmen Berasain
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Fernando J. Corrales
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Jon Lecanda
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- Digna Biotech, Madrid, Spain
| | - Matías A. Ávila
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| |
Collapse
|
28
|
Ho TC, Chen SL, Shih SC, Wu JY, Han WH, Cheng HC, Yang SL, Tsao YP. Pigment epithelium-derived factor is an intrinsic antifibrosis factor targeting hepatic stellate cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1798-811. [PMID: 20709803 DOI: 10.2353/ajpath.2010.091085] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The liver is the major site of pigment epithelium-derived factor (PEDF) synthesis. Recent evidence suggests a protective role of PEDF in liver cirrhosis. In the present study, immunohistochemical analyses revealed lower PEDF levels in liver tissues of patients with cirrhosis and in animals with chemically induced liver fibrosis. Delivery of the PEDF gene into liver cells produced local PEDF synthesis and ameliorated liver fibrosis in animals treated with either carbon tetrachloride or thioacetamide. In addition, suppression of peroxisome proliferator-activated receptor gamma expression, as well as nuclear translocation of nuclear factor-kappa B was found in hepatic stellate cells (HSCs) from fibrotic livers, and both changes were reversed by PEDF gene delivery. In culture-activated HSCs, PEDF, through the induction of peroxisome proliferator-activated receptor gamma, reduced the activity of nuclear factor-kappa B and prevented the nuclear localization of JunD. In conclusion, our observations that PEDF levels are reduced during liver cirrhosis and that PEDF gene delivery ameliorates cirrhosis suggest that PEDF is an intrinsic protector against liver cirrhosis. Direct inactivation of HSCs and the induction of apoptosis of activated HSCs may be two of the mechanisms by which PEDF suppresses liver cirrhosis.
Collapse
Affiliation(s)
- Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital, School of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kluwe J, Pradere JP, Gwak GY, Mencin A, Minicis SD, Osterreicher CH, Colmenero J, Bataller R, Schwabe RF. Modulation of hepatic fibrosis by c-Jun-N-terminal kinase inhibition. Gastroenterology 2010; 138:347-59. [PMID: 19782079 PMCID: PMC2988578 DOI: 10.1053/j.gastro.2009.09.015] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 09/08/2009] [Accepted: 09/14/2009] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS c-Jun N-terminal kinase (JNK) is activated by multiple profibrogenic mediators; JNK activation occurs during toxic, metabolic, and autoimmune liver injury. However, its role in hepatic fibrogenesis is unknown. METHODS JNK phosphorylation was detected by immunoblot analysis and confocal immunofluorescent microscopy in fibrotic livers from mice after bile duct ligation (BDL) or CCl(4) administration and in liver samples from patients with chronic hepatitis C and non-alcoholic steatohepatitis. Fibrogenesis was investigated in mice given the JNK inhibitor SP600125 and in JNK1- and JNK2-deficient mice following BDL or CCl(4) administration. Hepatic stellate cell (HSC) activation was determined in primary mouse HSCs incubated with pan-JNK inhibitors SP600125 and VIII. RESULTS JNK phosphorylation was strongly increased in livers of mice following BDL or CCl(4) administration as well as in human fibrotic livers, occurring predominantly in myofibroblasts. In vitro, pan-JNK inhibitors prevented transforming growth factor (TGF) beta-, platelet-derived growth factor-, and angiotensin II-induced murine HSC activation and decreased platelet-derived growth factor and TGF-beta signaling in human HSCs. In vivo, pan-JNK inhibition did not affect liver injury but significantly reduced fibrosis after BDL or CCl(4). JNK1-deficient mice had decreased fibrosis after BDL or CCl(4), whereas JNK2-deficient mice displayed increased fibrosis after BDL but fibrosis was not changed after CCl(4). Moreover, patients with chronic hepatitis C who displayed decreased fibrosis in response to the angiotensin receptor type 1 blocker losartan showed decreased JNK phosphorylation. CONCLUSIONS JNK is involved in HSC activation and fibrogenesis and represents a potential target for antifibrotic treatment approaches.
Collapse
Affiliation(s)
- Johannes Kluwe
- Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Jean-Philippe Pradere
- Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Geum-Youn Gwak
- Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Ali Mencin
- Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Samuele De Minicis
- Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY
| | | | - Jordi Colmenero
- Liver Unit, Hospital Clinic, Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)
| | - Ramon Bataller
- Liver Unit, Hospital Clinic, Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)
| | - Robert F. Schwabe
- Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY
| |
Collapse
|
30
|
Zhong W, Shen WF, Ning BF, Hu PF, Lin Y, Yue HY, Yin C, Hou JL, Chen YX, Zhang JP, Zhang X, Xie WF. Inhibition of extracellular signal-regulated kinase 1 by adenovirus mediated small interfering RNA attenuates hepatic fibrosis in rats. Hepatology 2009; 50:1524-36. [PMID: 19787807 DOI: 10.1002/hep.23189] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Extracellular signal-regulated kinase 1 (ERK1) is a critical part of the mitogen-activated protein kinase signal transduction pathway, which is involved in hepatic fibrosis. However, the effect of down-regulation of ERK1 on hepatic fibrosis has not been reported. Here, we induced hepatic fibrosis in rats with dimethylnitrosamine administration or bile duct ligation. An adenovirus carrying small interfering RNA targeting ERK1 (AdshERK1) was constructed to determine its effect on hepatic fibrosis, as evaluated by histological and immunohistochemical examination. Our results demonstrated that AdshERK1 significantly reduced the expression of ERK1 and suppressed proliferation and levels of fibrosis-related genes in hepatic stellate cells in vitro. More importantly, selective inhibition of ERK1 remarkably attenuated the deposition of the extracellular matrix in fibrotic liver in both fibrosis models. In addition, both hepatocytes and biliary epithelial cells were proven to exert the ability to generate the myofibroblasts depending on the insults of the liver, which were remarkably reduced by AdshERK1. Furthermore, up-regulation of ERK1 paralleled the increased expression of transforming growth factor beta1 (TGF-beta1), vimentin, snail, platelet-derived growth factor-BB (PDGF-BB), bone morphogenetic protein 4 (BMP4), and small mothers against decapentaplegic-1 (p-Smad1), and was in reverse correlation with E-cadherin in the fibrotic liver. Nevertheless, inhibition of ERK1 resulted in the increased level of E-cadherin in parallel with suppression of TGF-beta1, vimentin, snail, PDGF-BB, BMP4, and p-Smad1. Interestingly, AdshERK1 treatment promoted hepatocellular proliferation. CONCLUSION Our study provides the first evidence for AdshERK1 suppression of hepatic fibrosis through the reversal of epithelial-mesenchymal transition of both hepatocytes and biliary epithelial cells without interference of hepatocellular proliferation. This suggests that ERK1 is implicated in hepatic fibrogenesis and selective inhibition of ERK1 by small interfering RNA may present a novel option for hepatic fibrosis treatment.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mann J, Mann DA. Transcriptional regulation of hepatic stellate cells. Adv Drug Deliv Rev 2009; 61:497-512. [PMID: 19393271 DOI: 10.1016/j.addr.2009.03.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 03/10/2009] [Indexed: 02/08/2023]
Abstract
Hepatic stellate cell (HSC) activation is a process of cellular transdifferentiation in which, upon liver injury, the quiescent vitamin A storing perisinusoidal HSC is converted into a wound-healing myofibroblast and acquires potent pro-inflammatory and pro-fibrogenic activities. This remarkable phenotypic transformation is underpinned by changes in the expression of a vast number of genes. In this review we survey current knowledge of the transcription factors that either control HSC activation or which regulate specific fibrogenic functions of the activated HSC such as collagen expression, proliferation and resistance to apoptosis.
Collapse
|
32
|
Lee SJ, Yang JW, Cho IJ, Kim WD, Cho MK, Lee CH, Kim SG. The gep oncogenes, Galpha(12) and Galpha(13), upregulate the transforming growth factor-beta1 gene. Oncogene 2009; 28:1230-40. [PMID: 19151758 DOI: 10.1038/onc.2008.488] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transforming growth factor-beta1 (TGFbeta1) plays a role in neoplastic transformation and transdifferentiation. Galpha(12) and Galpha(13), referred to as the gep oncogenes, stimulate mitogenic pathways. Nonetheless, no information is available regarding their roles in the regulation of the TGFbeta1 gene and the molecules linking them to gene transcription. Knockdown or knockout experiments using murine embryonic fibroblasts and hepatic stellate cells indicated that a Galpha(12) and Galpha(13) deficiency reduced constitutive, auto-stimulatory or thrombin-inducible TGFbeta1 gene expression. In contrast, transfection of activated mutants of Galpha(12) and Galpha(13) enabled the knockout cells to promote TGFbeta1 induction. A promoter deletion analysis suggested that activating protein 1 (AP-1) plays a role in TGFbeta1 gene transactivation, which was corroborated by the observation that a deficiency of the G-proteins decreased the AP-1 activity, whereas their activation enhanced it. Moreover, mutation of the AP-1-binding site abrogated the ability of Galpha(12) and Galpha(13) to induce the TGFbeta1 gene. Transfection of a dominant-negative mutant of Rho or Rac, but not Cdc42, prevented gene transactivation and decreased AP-1 activity downstream of Galpha(12) and Galpha(13). In summary, Galpha(12) and Galpha(13) regulate the expression of the TGFbeta1 gene through an increase in Rho/Rac-dependent AP-1 activity, implying that the G-protein-coupled receptor (GPCR)-Galpha(12) pathway is involved in the TGFbeta1-mediated transdifferentiation process.
Collapse
Affiliation(s)
- S J Lee
- Innovative Drug Research Center for Metabolic and Inflammatory Disease, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Kwanak-Gu, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
Gieling RG, Burt AD, Mann DA. Fibrosis and cirrhosis reversibility - molecular mechanisms. Clin Liver Dis 2008; 12:915-37, xi. [PMID: 18984474 DOI: 10.1016/j.cld.2008.07.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The concept that liver fibrosis is a dynamic process with potential for regression as well as progression has emerged in parallel with clinical evidence for remodeling of fibrotic extracellular matrix in patients who can be effectively treated for their underlying cause of liver disease. This article reviews recent discoveries relating to the cellular and molecular mechanisms that regulate fibrosis regression, with emphasis on studies that have used experimental in vivo models of liver disease. Apoptosis of hepatic myofibroblasts is discussed. The functions played by transcription factors, receptor-ligand interactions, and cell-matrix interactions as regulators of the lifespan of hepatic myofibroblasts are considered, as are the therapeutic opportunities for modulating these functions. Growth factors, proteolytic enzymes, and their inhibitors are discussed in detail.
Collapse
Affiliation(s)
- Roben G Gieling
- Liver Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
34
|
Fineschi S, Bongiovanni M, Donati Y, Djaafar S, Naso F, Goffin L, Argiroffo CB, Pache JC, Dayer JM, Ferrari-Lacraz S, Chizzolini C. In vivo investigations on anti-fibrotic potential of proteasome inhibition in lung and skin fibrosis. Am J Respir Cell Mol Biol 2008; 39:458-65. [PMID: 18458239 DOI: 10.1165/rcmb.2007-0320oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In systemic sclerosis (SSc), a disease characterized by fibrosis of the skin and internal organs, the occurrence of interstitial lung disease is responsible for high morbidity and mortality. We previously demonstrated that proteasome inhibitors (PI) show anti-fibrotic properties in vitro by reducing collagen production and favoring collagen degradation in a c-jun N-terminal kinase (JNK)-dependent manner in human fibroblasts. Therefore, we tested whether PI could control fibrosis development in bleomycin-induced lung injury, which is preceded by massive inflammation. We extended the study to test PI in TSK-1/+ mice, where skin fibrosis develops in the absence of overt inflammation. C57Bl/6 mice received bleomycin intratracheally and were treated or not with PI. Lung inflammation and fibrosis were assessed by histology and quantification of hydroxyproline content, type I collagen mRNA, and TGF-beta at Days 7, 15, and 21, respectively. Histology was used to detect skin fibrosis in TSK-1/+mice. The chymotryptic activity of 20S proteasome was assessed in mice blood. JNK and Smad2 phosphorylation were evaluated by Western blot on lung protein extracts. PI reduced collagen mRNA levels in murine lung fibroblasts, without affecting their viability in vitro. In addition, PI inhibited the chymotryptic activity of proteasome and enhanced JNK and TGF-beta signaling in vivo. PI failed to prevent bleomycin-induced lung inflammation and fibrosis and to attenuate skin fibrosis in TSK-1/+mice. In conclusion, our results provide direct evidence that, despite promising in vitro results, proteasome blockade may not be a strategy easily applicable to control fibrosis development in diseases such as lung fibrosis and scleroderma.
Collapse
Affiliation(s)
- Serena Fineschi
- Immunology and Allergy, Department of Internal Medicine, School of Medicine and University Hospital, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Substantial improvements in the treatment of chronic liver disease have accelerated interest in uncovering the mechanisms underlying hepatic fibrosis and its resolution. Activation of resident hepatic stellate cells into proliferative, contractile, and fibrogenic cells in liver injury remains a dominant theme driving the field. However, several new areas of rapid progress in the past 5-10 years also have taken root, including: (1) identification of different fibrogenic populations apart from resident stellate cells, for example, portal fibroblasts, fibrocytes, and bone-marrow-derived cells, as well as cells derived from epithelial mesenchymal transition; (2) emergence of stellate cells as finely regulated determinants of hepatic inflammation and immunity; (3) elucidation of multiple pathways controlling gene expression during stellate cell activation including transcriptional, post-transcriptional, and epigenetic mechanisms; (4) recognition of disease-specific pathways of fibrogenesis; (5) re-emergence of hepatic macrophages as determinants of matrix degradation in fibrosis resolution and the importance of matrix cross-linking and scar maturation in determining reversibility; and (6) hints that hepatic stellate cells may contribute to hepatic stem cell behavior, cancer, and regeneration. Clinical and translational implications of these advances have become clear, and have begun to impact significantly on the management and outlook of patients with chronic liver disease.
Collapse
|
36
|
Hanley KP, Oakley F, Sugden S, Wilson DI, Mann DA, Hanley NA. Ectopic SOX9 mediates extracellular matrix deposition characteristic of organ fibrosis. J Biol Chem 2008; 283:14063-71. [PMID: 18296708 DOI: 10.1074/jbc.m707390200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Appropriate temporospatial expression of the transcription factor SOX9 is important for normal development of a wide range of organs. Here, we show that when SOX9 is expressed ectopically, target genes become expressed that are associated with disease. Histone deacetylase inhibitors in clinical trials for cancer therapy induced SOX9 expression via enhanced recruitment of nuclear factor Y (NF-Y) to CCAAT elements in the SOX9 proximal promoter. The effect of histone deacetylase inhibitors could be elicited in cells that normally lack SOX9, such as hepatocytes. In human fetal hepatocytes, this aberrant induction of SOX9 protein caused ectopic expression of COL2A1 and COMP1 that encode extracellular matrix (ECM) components normally associated with chondrogenesis. Previously, ectopic expression of this "chondrogenic" profile has been implicated in vascular calcification. More broadly, inappropriate ECM deposition is a hallmark of fibrosis. We demonstrated that induction of SOX9 expression also occurred during activation of fibrogenic cells from the adult liver when the transcription factor was responsible for expression of the major component of fibrotic ECM, type 1 collagen. These combined data identify new aspects in the regulation of SOX9 expression. They support a role for SOX9 beyond normal development as a transcriptional regulator in the pathology of fibrosis.
Collapse
|
37
|
Abstract
The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization. The paradigm in liver injury of activation of quiescent vitamin A-rich stellate cells into proliferative, contractile, and fibrogenic myofibroblasts has launched an era of astonishing progress in understanding the mechanistic basis of hepatic fibrosis progression and regression. But this simple paradigm has now yielded to a remarkably broad appreciation of the cell's functions not only in liver injury, but also in hepatic development, regeneration, xenobiotic responses, intermediary metabolism, and immunoregulation. Among the most exciting prospects is that stellate cells are essential for hepatic progenitor cell amplification and differentiation. Equally intriguing is the remarkable plasticity of stellate cells, not only in their variable intermediate filament phenotype, but also in their functions. Stellate cells can be viewed as the nexus in a complex sinusoidal milieu that requires tightly regulated autocrine and paracrine cross-talk, rapid responses to evolving extracellular matrix content, and exquisite responsiveness to the metabolic needs imposed by liver growth and repair. Moreover, roles vital to systemic homeostasis include their storage and mobilization of retinoids, their emerging capacity for antigen presentation and induction of tolerance, as well as their emerging relationship to bone marrow-derived cells. As interest in this cell type intensifies, more surprises and mysteries are sure to unfold that will ultimately benefit our understanding of liver physiology and the diagnosis and treatment of liver disease.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| |
Collapse
|
38
|
Jafri M, Donnelly B, McNeal M, Ward R, Tiao G. MAPK signaling contributes to rotaviral-induced cholangiocyte injury and viral replication. Surgery 2007; 142:192-201. [PMID: 17689685 DOI: 10.1016/j.surg.2007.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 02/28/2007] [Accepted: 03/02/2007] [Indexed: 01/11/2023]
Abstract
BACKGROUND Biliary atresia is a disease of newborns that results in obliteration of the biliary tree. Infection of mice with rhesus rotavirus (RRV) results in a cholangiopathy mirroring human disease. The Mitogen Associated Protein Kinase (MAPK) signaling pathway can be activated by viral binding to cell-surface receptors. We hypothesized that RRV infection of cholangiocytes results in activation of MAPK signaling. METHODS Extrahepatic bile ducts from BALB/c pups or immortalized cholangiocytes subjected to RRV infection or control were analyzed, using Western blots, for phosphorylated members of the MAPK family: p38, ERK 1/2, JNK 1/2, and downstream transcription factors. Inhibitors of the MAPK were used to downregulate activity. Viral replication and cytolysis in cholangiocytes were evaluated post-MAPK inhibition. RESULTS Phosphorylation of all MAPK increased in RRV-infected mice and cholangiocytes. Several downstream transcription factors had increased activity in vitro. Inhibition of p38 and ERK 1/2 resulted in decreased viral replication. ERK 1/2 inhibition decreased cytolysis without affecting viral entry or binding. CONCLUSIONS RRV infection of cholangiocytes resulted in increased MAPK signaling. Inhibition of p38 and ERK 1/2 influenced the ability of rotavirus to replicate. These novel findings provide insight into the signaling cascade involved in RRV-induced cholangiocyte injury.
Collapse
Affiliation(s)
- Mubeen Jafri
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
39
|
Kim JY, Yoon SJ, Park HJ, Kim YB, Cho JW, Koh WS, Lee M. Gene Expression Profiling in Diethylnitrosamine Treated Mouse Liver: From Pathological Data to Microarray Analysis. Toxicol Res 2007. [DOI: 10.5487/tr.2007.23.1.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
40
|
Muddu AK, Guha IN, Elsharkawy AM, Mann DA. Resolving fibrosis in the diseased liver: translating the scientific promise to the clinic. Int J Biochem Cell Biol 2006; 39:695-714. [PMID: 17110155 DOI: 10.1016/j.biocel.2006.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 10/03/2006] [Accepted: 10/04/2006] [Indexed: 01/18/2023]
Abstract
Liver fibrosis and its end-stage disease cirrhosis are a major cause of mortality and morbidity throughout the world. Fibrosis is a response to chronic liver injury or infection that if unabated leads to the replacement of normal functional liver tissue with scar tissue. Basic research over the past decade has generated a vastly improved knowledge of the cell and molecular biology of liver fibrosis that provides a framework on which to design and develop therapeutics. The field has also witnessed a genuine paradigm shift from the original dogma that liver fibrosis is only ever a progressive process, to the new understanding that liver fibrosis even in an advanced stage can be reversible. There is therefore renewed optimism that liver fibrosis may be cured providing that we develop therapies that halt the fibrogenic process and encourage the natural regenerative properties of the liver. The key to the design of effective therapeutics will be to exploit the ongoing discoveries pertaining to the biology and function of fibrogenic hepatic myofibroblasts and their interplay with other liver cells and with the hepatic extracellular matrix. This review provides a critique of those discoveries in basic research that provide the most promise for translation to the clinic. In addition, we review the latest developments in the search for minimal invasive diagnostic tests for fibrosis that will be essential for determining the efficacy of anti-fibrotic drugs.
Collapse
Affiliation(s)
- Ajay K Muddu
- Liver Group, Division of Infection, Inflammation & Repair, University of Southampton, Southampton SO16 6YD, United Kingdom
| | | | | | | |
Collapse
|