1
|
Panesso-Gómez S, Cole AJ, Wield A, Anyaeche VI, Shah J, Jiang Q, Ebai T, Sharrow AC, Tseng G, Yoon E, Brown DD, Clark AM, Larsen SD, Eder I, Gau D, Roy P, Dahl KN, Tran L, Jiang H, McAuliffe PF, Lee AV, Buckanovich RJ. Identification of the MRTFA/SRF pathway as a critical regulator of quiescence in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623825. [PMID: 39605642 PMCID: PMC11601311 DOI: 10.1101/2024.11.15.623825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chemoresistance is a major driver of cancer deaths. One understudied mechanism of chemoresistance is quiescence. We used single cell culture to identify, retrieve, and RNA-Seq profile primary quiescent ovarian cancer cells (qOvCa). We found that many qOvCa differentially expressed genes are transcriptional targets of the Myocardin Related Transcription Factor/Serum Response Factor (MRTF/SRF) pathway. We also found that genetic disruption of MRTF-SRF interaction, or an MRTF/SRF inhibitor (CCG257081) impact qOvCa gene expression and induce a quiescent state in cancer cells. Suggesting a broad role for this pathway in quiescence, CCG257081 treatment induced quiescence in breast, lung, colon, pancreatic and ovarian cancer cells. Furthermore, CCG081 (i) maintained a quiescent state in patient derived breast cancer organoids and, (ii) induced tumor growth arrest in ovarian cancer xenografts. Together, these data suggest that MRTF/SRF pathway is a critical regulator of quiescence in cancer and a possible therapeutic target.
Collapse
Affiliation(s)
- Santiago Panesso-Gómez
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander J Cole
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Wield
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vivian I Anyaeche
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jaynish Shah
- Australian Centre for Blood Diseases, Central Clinical School, Monash University and Alfred Health, Melbourne, VIC, Australia
| | - Qi Jiang
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tonge Ebai
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allison C Sharrow
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Euisik Yoon
- Department of Electrical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Daniel D Brown
- Women's Cancer Research Center, Magee-Women's Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amanda M Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott D Larsen
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ian Eder
- Department of Bioengineering, University of Pittsburgh, PA, USA
| | - David Gau
- Department of Bioengineering, University of Pittsburgh, PA, USA
| | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, PA, USA
| | - Kris N Dahl
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lam Tran
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Hui Jiang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | | | - Adrian V Lee
- Women's Cancer Research Center, Magee-Women's Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ronald J Buckanovich
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Montero-Calle A, Garranzo-Asensio M, Poves C, Sanz R, Dziakova J, Peláez-García A, de Los Ríos V, Martinez-Useros J, Fernández-Aceñero MJ, Barderas R. In-Depth Proteomic Analysis of Paraffin-Embedded Tissue Samples from Colorectal Cancer Patients Revealed TXNDC17 and SLC8A1 as Key Proteins Associated with the Disease. J Proteome Res 2024; 23:4802-4820. [PMID: 39441737 DOI: 10.1021/acs.jproteome.3c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A deeper understanding of colorectal cancer (CRC) biology would help to identify specific early diagnostic markers. Here, we conducted quantitative proteomics on FFPE healthy, adenoma, and adenocarcinoma tissue samples from six stage I sporadic CRC patients to identify dysregulated proteins during early CRC development. Two independent quantitative 10-plex TMT experiments were separately performed. After protein extraction, trypsin digestion, and labeling, proteins were identified and quantified by using a Q Exactive mass spectrometer. A total of 2681 proteins were identified and quantified after data analysis and bioinformatics with MaxQuant and the R program. Among them, 284 and 280 proteins showed significant upregulation and downregulation (expression ratio ≥1.5 or ≤0.67, p-value ≤0.05), respectively, in adenoma and/or adenocarcinoma compared to healthy tissue. Ten dysregulated proteins were selected to study their role in CRC by WB, IHC, TMA, and ELISA using tissue and plasma samples from CRC patients, individuals with premalignant colorectal lesions (adenomas), and healthy individuals. In vitro loss-of-function cell-based assays and in vivo experiments using three CRC cell lines with different metastatic properties assessed the important roles of SLC8A1 and TXNDC17 in CRC and liver metastasis. Additionally, SLC8A1 and TXNDC17 protein levels in plasma possessed the diagnostic ability of early CRC stages.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220 Madrid, Spain
- Proteomics Core UCCTs, Instituto de Salud Carlos III, Majadahonda, E-28220 Madrid, Spain
| | - María Garranzo-Asensio
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220 Madrid, Spain
| | - Carmen Poves
- Gastroenterology Unit, Hospital Universitario Clínico San Carlos, E-28040 Madrid, Spain
| | - Rodrigo Sanz
- Surgical Digestive Department, Hospital Universitario Clínico San Carlos, E-28040 Madrid, Spain
| | - Jana Dziakova
- Surgical Digestive Department, Hospital Universitario Clínico San Carlos, E-28040 Madrid, Spain
| | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, Hospital La Paz Institute for Health Research (IdiPAZ), E-28046 Madrid, Spain
| | | | - Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-Fundación Jiménez Díaz, Fundación Jiménez Díaz University Hospital/Universidad Autónoma de Madrid (IIS-FJD/UAM), E-28040 Madrid, Spain
- Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, E-28922 Madrid, Spain
| | | | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220 Madrid, Spain
- Proteomics Core UCCTs, Instituto de Salud Carlos III, Majadahonda, E-28220 Madrid, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), E-28029 Madrid, Spain
| |
Collapse
|
3
|
Marghany F, Ayobahan SU, Salinas G, Schäfers C, Hollert H, Eilebrecht S. Transcriptomic and proteomic fingerprints induced by the fungicides difenoconazole and metalaxyl in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104348. [PMID: 38135202 DOI: 10.1016/j.etap.2023.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
In this study, we applied OMICs analysis to identify substance-specific biomarker candidates, which may act as early indicators for specific ecotoxic modes of actions (MoA). Zebrafish embryos were exposed to two sublethal concentrations of difenoconazole and metalaxyl according to a modified protocol of the OECD test guideline No. 236. At the end of exposure, total RNA and protein were extracted, followed by transcriptomics and proteomics analysis. The analysis of significantly differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) revealed a positive exposure-response correlation in all test concentrations for both fungicides. Similarly, also a positive correlation between the obtained transcriptome and proteome data was observed, highlighting the robustness of our approach. From the detected DEGs, candidate biomarkers specific for difenoconazole (apoa1b, gatm, mylpfb and acta1b) and metalaxyl (lgals2b, abat, fabp1b.1 and myh9a) were selected, and their biological functions were discussed to assess the predictive potential.
Collapse
Affiliation(s)
- Fatma Marghany
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Steve U Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany.
| |
Collapse
|
4
|
Yan K, Bai B, Ren Y, Cheng B, Zhang X, Zhou H, Liang Y, Chen L, Zi J, Yang Q, Zhao Q, Liu S. The Comparable Microenvironment Shared by Colorectal Adenoma and Carcinoma: An Evidence of Stromal Proteomics. Front Oncol 2022; 12:848782. [PMID: 35433435 PMCID: PMC9010820 DOI: 10.3389/fonc.2022.848782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor microenvironment (TME) is a key factor involved in cancer development and metastasis. In the TME of colorectal cancer (CRC), the gene expression status of stromal tissues could influence the CRC process from normal to adenoma then carcinoma; however, the expression status at the protein level has not yet been well evaluated. A total of 22 CRC patients were recruited for this study, and the tissue regions corresponding with adjacent, adenoma, and carcinoma were carefully excised by laser capture microdissection (LCM), including a patient with adenoma and carcinoma. The individual proteomes of this cohort were implemented by high-resolution mass spectrometer under data-independent acquisition (DIA) mode. A series of informatic analysis was employed to statistically seek the proteomic characteristics related with the stroma at different stages of CRC. The identified proteins in the colorectal stromal tissues were much less than and almost overlapped with that in the corresponding epithelial tissues; however, the patterns of protein abundance in the stroma were very distinct from those in the epithelium. Although qualitative and quantitative analysis delineated the epithelial proteins specifically typified in the adjacent, adenoma, and carcinoma, the informatics in the stroma led to another deduction that such proteomes were only divided into two patterns, adjacent- and adenoma/carcinoma-dependent. The comparable proteomes of colorectal adenoma and carcinoma were further confirmed by the bulk preparation- or individual LCM-proteomics. The biochemical features of the tumor stromal proteomes were characterized as enrichment of CD4+ and CD8+ T cells, upregulated pathways of antigen presentation, and enhancement of immune signal interactions. Finally, the features of lymphoid lineages in tumor stroma were verified by tissue microarray (TMA). Based on the proteomic evidence, a hypothesis was raised that in the colorectal tissue, the TME of adenoma and carcinoma were comparable, whereas the key elements driving an epithelium from benign to malignant were likely decided by the changes of genomic mutations or/and expression within it.
Collapse
Affiliation(s)
- Keqiang Yan
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
| | - Bin Bai
- State Key Laboratory of Cancer Biology & Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Yan Ren
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Benliang Cheng
- Department of Quality Testing & Research, Fuzhou Maixin Biotech Inc., Fuzhou, China
| | - Xia Zhang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
| | - Haichao Zhou
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
| | - Yuting Liang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
| | - Lingyun Chen
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
| | - Jin Zi
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
| | - Qinghai Yang
- Department of Quality Testing & Research, Fuzhou Maixin Biotech Inc., Fuzhou, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology & Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Siqi Liu
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
| |
Collapse
|
5
|
HMGA1 stimulates MYH9-dependent ubiquitination of GSK-3β via PI3K/Akt/c-Jun signaling to promote malignant progression and chemoresistance in gliomas. Cell Death Dis 2021; 12:1147. [PMID: 34887392 PMCID: PMC8660812 DOI: 10.1038/s41419-021-04440-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023]
Abstract
Myosin heavy chain 9 (MYH9) plays an essential role in human diseases, including multiple cancers; however, little is known about its role in gliomas. In the present study, we revealed that HMGA1 and MYH9 were upregulated in gliomas and their expression correlated with WHO grade, and HMGA1 promoted the acquisition of malignant phenotypes and chemoresistance of glioma cells by regulating the expression of MYH9 through c-Jun-mediated transcription. Moreover, MYH9 interacted with GSK-3β to inhibit the expression of GSK-3β protein by promoting its ubiquitination; the downregulation of GSK-3β subsequently promoted the nuclear translocation of β-catenin, enhancing growth, invasion, migration, and temozolomide resistance in glioma cells. Expression levels of HMGA1 and MYH9 were significantly correlated with patient survival and should be considered as independent prognostic factors. Our findings provide new insights into the role of HMGA1 and MYH9 in gliomagenesis and suggest the potential application of HMGA1 and MYH9 in cancer therapy in the future.
Collapse
|
6
|
Shao Y, Xu K, Zheng X, Zhou B, Zhang X, Wang L, Sun Y, Li D, Chen T, Wang J, Yu S, Sun L, Xu X, Dai S, Gao H, Ruan G, Liu W, Cai X, Zhu T, Qi L, Chen J, Hu W, Weng X, Zhu Y, Xiang X, Hu Z, Li J, Chen L, Shao J, Zheng S, Guo T. Proteomics profiling of colorectal cancer progression identifies PLOD2 as a potential therapeutic target. Cancer Commun (Lond) 2021; 42:164-169. [PMID: 34862750 PMCID: PMC8822592 DOI: 10.1002/cac2.12240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/17/2021] [Accepted: 11/22/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yingkuan Shao
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Breast Surgery and Oncology, Second Affiliated Hospital, School of Medicine, Cancer Institute, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China.,Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China
| | - Kailun Xu
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Breast Surgery and Oncology, Second Affiliated Hospital, School of Medicine, Cancer Institute, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China.,Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China
| | - Xi Zheng
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Breast Surgery and Oncology, Second Affiliated Hospital, School of Medicine, Cancer Institute, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China.,Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China
| | - Biting Zhou
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Breast Surgery and Oncology, Second Affiliated Hospital, School of Medicine, Cancer Institute, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
| | - Xiuli Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Lin Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | - Yaoting Sun
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China
| | - Dan Li
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Breast Surgery and Oncology, Second Affiliated Hospital, School of Medicine, Cancer Institute, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
| | - Ting Chen
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Breast Surgery and Oncology, Second Affiliated Hospital, School of Medicine, Cancer Institute, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
| | - Jian Wang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, P. R. China
| | - Shaojun Yu
- Department of Colorectal Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, P. R. China
| | - Lifeng Sun
- Department of Colorectal Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, P. R. China
| | - Xiaoming Xu
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, P. R. China
| | - Shaozhi Dai
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China
| | - Huanhuan Gao
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China
| | - Guan Ruan
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China
| | - Wei Liu
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China
| | - Xue Cai
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China
| | - Tiansheng Zhu
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China
| | - Lina Qi
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Breast Surgery and Oncology, Second Affiliated Hospital, School of Medicine, Cancer Institute, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
| | - Jiani Chen
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Breast Surgery and Oncology, Second Affiliated Hospital, School of Medicine, Cancer Institute, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
| | - Wangxiong Hu
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Breast Surgery and Oncology, Second Affiliated Hospital, School of Medicine, Cancer Institute, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
| | - Xingyue Weng
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Breast Surgery and Oncology, Second Affiliated Hospital, School of Medicine, Cancer Institute, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
| | - Yi Zhu
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China
| | - Xueping Xiang
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, P. R. China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China.,School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, P. R. China
| | - Jinfan Li
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, P. R. China
| | - Lirong Chen
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, P. R. China
| | - Jimin Shao
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Breast Surgery and Oncology, Second Affiliated Hospital, School of Medicine, Cancer Institute, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China.,Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China
| | - Shu Zheng
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Breast Surgery and Oncology, Second Affiliated Hospital, School of Medicine, Cancer Institute, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
| | - Tiannan Guo
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, P. R. China
| |
Collapse
|
7
|
Abd Al-Aliem AEEA, Badr EAE, El-Shayeb EI, Taman AMA, Gadallah AENAEA. Association of the myosin heavy chain 9 gene single nucleotide polymorphism with inflammatory bowel disease. Biochem Biophys Rep 2021; 28:101113. [PMID: 34604548 PMCID: PMC8473667 DOI: 10.1016/j.bbrep.2021.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/16/2022] Open
Abstract
Background To date, the cause of inflammatory bowel disease (IBD) remains a mystery. A balance between cell proliferation and apoptosis maintains intestinal tissue homeostasis. Dissociation-induced myosin-actin contraction results in stem cell apoptosis. This study aiming to evaluate the influence of the myosin heavy chain 9 (MYH9) gene single nucleotide polymorphisms (SNPs) on inflammatory bowel disease. Subjects and methods: The study carried on eighty patients with IBD and seventy controls. All participants subjected to history taking, thorough physical examination, colonoscopy and laboratory investigations. Genotyping performed for rs4821480 and rs3752462 by SNP assay real-time PCR methods. Results On analyzing rs3752462 CT and TT genotypes were significantly more frequent in IBD patients as compared to controls with 4.6 fold increase in the risk of IBD. While on analyzing rs4821480, The TG and GG genotypes have significant increased distribution among the IBD patients as compared to the controls with 5.3 fold increase in the risk of IBD and higher prevalence of GG genotype in patients with low hemoglobin level and higher BMI. Conclusion The rs3752462 T allele and rs4821480 G allele of MYH9 are associated with more susceptibility to IBD.
Collapse
Affiliation(s)
| | - Eman A E Badr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Egypt
| | | | | | | |
Collapse
|
8
|
Naydenov NG, Lechuga S, Huang EH, Ivanov AI. Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2021; 13:741. [PMID: 33670106 PMCID: PMC7916823 DOI: 10.3390/cancers13040741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) remains the third most common cause of cancer and the second most common cause of cancer deaths worldwide. Clinicians are largely faced with advanced and metastatic disease for which few interventions are available. One poorly understood aspect of CRC involves altered organization of the actin cytoskeleton, especially at the metastatic stage of the disease. Myosin motors are crucial regulators of actin cytoskeletal architecture and remodeling. They act as mechanosensors of the tumor environments and control key cellular processes linked to oncogenesis, including cell division, extracellular matrix adhesion and tissue invasion. Different myosins play either oncogenic or tumor suppressor roles in breast, lung and prostate cancer; however, little is known about their functions in CRC. This review focuses on the functional roles of myosins in colon cancer development. We discuss the most studied class of myosins, class II (conventional) myosins, as well as several classes (I, V, VI, X and XVIII) of unconventional myosins that have been linked to CRC development. Altered expression and mutations of these motors in clinical tumor samples and their roles in CRC growth and metastasis are described. We also evaluate the potential of using small molecular modulators of myosin activity to develop novel anticancer therapies.
Collapse
Affiliation(s)
- Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| | - Emina H. Huang
- Departments of Cancer Biology and Colorectal Surgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| |
Collapse
|
9
|
Chen Y, Wang W, Jiang B, Yao L, Xia F, Li X. Integrating Tumor Stroma Biomarkers With Clinical Indicators for Colon Cancer Survival Stratification. Front Med (Lausanne) 2020; 7:584747. [PMID: 33365318 PMCID: PMC7750539 DOI: 10.3389/fmed.2020.584747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/12/2020] [Indexed: 01/04/2023] Open
Abstract
The tumor stroma plays an important role in tumor progression and chemotherapeutic resistance; however, its role in colon cancer (CC) survival prognosis remains to be investigated. Here, we identified tumor stroma biomarkers and evaluated their role in CC prognosis stratification. Four independent datasets containing a total of 1,313 patients were included in this study and were divided into training and testing sets. Stromal scores calculated using the estimation of stromal and immune cells in malignant tumors using expression data (ESTIMATE) algorithm were used to assess the tumor stroma level. Kaplan-Meier curves and the log-rank test were used to identify relationships between stromal score and prognosis. Tumor stroma biomarkers were identified by cross-validation of multiple datasets and bioinformatics methods. Cox proportional hazards regression models were constructed using four prognosis factors (age, tumor stage, the ESTIMATE stromal score, and the biomarker stromal score) in different combinations for prognosis prediction and compared. Patients with high stromal scores had a lower overall survival rate (p = 0.00016), higher risk of recurrence (p < 0.0001), and higher probability of chemotherapeutic resistance (p < 0.0001) than those with low scores. We identified 16 tumor stroma biomarkers and generated a new prognosis indicator termed the biomarker stromal score (ranging from 0 to 16) based on their expression levels. Its addition to an age/tumor stage-based model significantly improved prognosis prediction accuracy. In conclusion, the tumor stromal score is significantly negatively associated with CC survival prognosis, and the new tumor stroma indicator can improve CC prognosis stratification.
Collapse
Affiliation(s)
- Yong Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wenlong Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Jiang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Yao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fada Xia
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Han X, Li C, Zhang S, Hou X, Chen Z, Zhang J, Zhang Y, Sun J, Wang Y. Why thromboembolism occurs in some patients with thrombocytopenia and treatment strategies. Thromb Res 2020; 196:500-509. [PMID: 33091704 DOI: 10.1016/j.thromres.2020.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022]
Abstract
Platelets play such an important role in the process of thrombosis that patients with thrombocytopenia generally have an increased risk of bleeding. However, abnormal thrombotic events can sometimes occur in patients with thrombocytopenia, which is unusual and inexplicable. The treatments for thrombocytopenia and thromboembolism are usually contradictory. This review introduces the mechanisms of thromboembolism in patients with different types of thrombocytopenia and outlines treatment recommendations for the prevention and treatment of thrombosis. According to the cause of thrombocytopenia, this article addresses four etiologies, including inherited thrombocytopenia (Myh9-related disease, ANKRD26-associated thrombocytopenia, Glanzmann thrombasthenia, Bernard-Soulier syndrome), thrombotic microangiopathy (thrombotic thrombocytopenic purpura, atypical hemolytic uremic syndrome, hemolytic uremic syndrome, Hemolysis Elevated Liver enzymes and Low Platelets syndrome, disseminated intravascular coagulation), autoimmune-related thrombocytopenia (immune thrombocytopenic purpura, antiphospholipid syndrome, systemic lupus erythematosus), and acquired thrombocytopenia (Infection-induced thrombocytopenia and drug-induced thrombocytopenia, heparin-induced thrombocytopenia). We hope to provide more evidence for clinical applications and future research.
Collapse
Affiliation(s)
- Xiaorong Han
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Cheng Li
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Shuai Zhang
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Xiaojie Hou
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China.
| | - Zhongbo Chen
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Jin Zhang
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Ying Zhang
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Jian Sun
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Yonggang Wang
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| |
Collapse
|
11
|
Huang H, Liu R, Huang Y, Feng Y, Fu Y, Chen L, Chen Z, Cai Y, Zhang Y, Chen Y. Acetylation-mediated degradation of HSD17B4 regulates the progression of prostate cancer. Aging (Albany NY) 2020; 12:14699-14717. [PMID: 32678070 PMCID: PMC7425433 DOI: 10.18632/aging.103530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/27/2020] [Indexed: 01/09/2023]
Abstract
Steroidogenic enzymes are crucial in prostate cancer (PCa) progression. 17β-Hydroxysteroid dehydrogenase type 4 (HSD17B4), encoded by HSD17B4, lacks catalytic capacity in androgen metabolism. Now the detailed role and molecular mechanism of PCa development are largely unknown. Here we showed that the expression of HSD17B4 was increased in PCa tissues compared to paired paratumor tissues. HSD17B4 knockdown in PCa cells significantly suppressed its proliferation, migration and invasion, while overexpressing HSD17B4 had opposite effects. Mechanistically, we found that the protein level of HSD17B4 was regulated by its acetylation at lysine 669(K669). Dihydroxytestosterone (DHT) treatment increased HSD17B4 acetylation and then promoted its degradation via chaperone-mediated autophagy (CMA). SIRT3 directly interacted with HSD17B4 to inhibit its acetylation and enhance its stability. In addition, we identified CREBBP as a regulator of the K669 acetylation and degradation of HSD17B4, affecting PC cell proliferation, migration and invasion. Notably, in PCa tissues and paired paratumor tissues, the level of HSD17B4 was negatively correlated with its K669 acetylation. Taken together, this study identified a novel role of HSD17B4 in PCa progression and suggested that HSD17B4 and its upstream regulators may be potential therapeutic targets for PCa intervention.
Collapse
Affiliation(s)
- Huichao Huang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha 410008, China
| | - Ruijie Liu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha 410008, China.,Department of Pathology, XiangYa Hospital, Central South University, Changsha 410008, China
| | - Yahui Huang
- Department of Pathology, XuChang Central Hospital, XuChang 461670, China
| | - Yilu Feng
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha 410008, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha 410008, China
| | - Lin Chen
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha 410008, China
| | - Yi Cai
- Department of Urology, XiangYa Hospital, Central South University, Changsha 410008, China
| | - Ye Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha 410008, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, XiangYa Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
12
|
A20 targets PFKL and glycolysis to inhibit the progression of hepatocellular carcinoma. Cell Death Dis 2020; 11:89. [PMID: 32015333 PMCID: PMC6997366 DOI: 10.1038/s41419-020-2278-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Abnormal expression of the E3 ubiquitin ligase A20 has been found in some malignant cancers, including hepatocellular carcinoma (HCC). Here, we discovered that A20 is an E3 ubiquitin ligase for phosphofructokinase, liver type (PFKL) in HCC A20 interacts with PFKL and promotes its degradation, therefore inhibiting glycolysis in HCC cell lines. Downregulation of A20 in HCC cells promotes proliferation, migration, and glycolysis, all of which can be inhibited by targeting PFKL with RNA interference. Importantly, A20 is downregulated in advanced HCC tissues and inversely correlated with PFKL expression. Thus, our findings establish A20 as a critical regulator of glycolysis and reveal a novel mechanism for A20 in tumor suppression and PFKL regulation. Given that an increased level of glycolysis is linked with HCC, this study also identifies potential therapeutic targets for HCC treatment.
Collapse
|
13
|
Gan Y, Ye F, He XX. The role of YWHAZ in cancer: A maze of opportunities and challenges. J Cancer 2020; 11:2252-2264. [PMID: 32127952 PMCID: PMC7052942 DOI: 10.7150/jca.41316] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/30/2019] [Indexed: 12/21/2022] Open
Abstract
YWHAZ (also named 14-3-3ζ) is a central hub protein for many signal transduction pathways and plays a significant role in tumor progression. Accumulating evidences have demonstrated that YWHAZ is frequently up-regulated in multiple types of cancers and acts as an oncogene in a wide range of cell activities including cell growth, cell cycle, apoptosis, migration, and invasion. Moreover, YWHAZ was reported to be regulated by microRNAs (miRNAs) or long non-coding RNAs and exerted its malignant functions by targeting downstream molecules like protein kinase, apoptosis proteins, and metastasis-related molecules. Additionally, YWHAZ may be a potential biomarker of diagnosis, prognosis and chemoresistance in several cancers. Targeting YWHAZ by siRNA, shRNA or miRNA was reported to have great help in suppressing malignant properties of cancer cells. In this review, we perform literature and bioinformatics analysis to reveal the oncogenic role and molecular mechanism of YWHAZ in cancer, and discuss the potential clinical applications of YWHAZ concerning diagnosis, prognosis, and therapy in malignant tumors.
Collapse
Affiliation(s)
- Yun Gan
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Ye
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Xing He
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Zhou M, Li M, Liang X, Zhang Y, Huang H, Feng Y, Wang G, Liu T, Chen Z, Pei H, Chen Y. The Significance of Serum S100A9 and TNC Levels as Biomarkers in Colorectal Cancer. J Cancer 2019; 10:5315-5323. [PMID: 31632476 PMCID: PMC6775684 DOI: 10.7150/jca.31267] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/06/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose: The aim of this study was to evaluate the diagnostic value of S100A9 and tenascin-c (TNC) levels as colorectal cancer (CRC) biomarkers in several ways, including through screening tests, differentiation tests, combination with existing biomarkers (CEA and CA19-9), and serum level measurements before and after surgery. Materials and Methods: In this case-control study, S100A9 and TNC serum levels were measured in 460 participants: 258 CRC patients, 99 patients with benign colonic disease (BCD) and 103 healthy donors (HD). Results: The serum levels of S100A9 were 22.32 (14.88-29.55) ng/ml, 10.02 (5.83-14.15) ng/ml and 10.05 (7.68-15.34) ng/ml in the CRC, BCD and HD groups, respectively. The serum levels of TNC were 4.30 (2.12-6.04) ng/ml, 1.60 (1.06-2.30) ng/ml and 2.00 (1.37-3.00) ng/ml in the CRC, BCD and HD groups, respectively. Significantly higher levels of both biomarkers (S100A9 and TNC) were found in CRC patients (both p<0.001). Both S100A9 and TNC levels were superior to CEA and CA19-9 levels as CRC diagnostic biomarkers; the combination of S100A9, TNC and CEA levels was an excellent biomarker with 79.8% sensitivity and 89.6% specificity. The serum levels of S100A9 and TNC in CRC patients were significantly lower after surgery than before surgery (p<0.01). Conclusion: S100A9 and TNC levels could serve as diagnostic biomarkers of colorectal cancer.
Collapse
Affiliation(s)
- Minze Zhou
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Maoyu Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xujun Liang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ye Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huichao Huang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yilu Feng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Guoqiang Wang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ting Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhuchu Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Haiping Pei
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yongheng Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
15
|
Abstract
MYH9 was first discovered due to thrombocytopenia caused by MYH9 mutation-related abnormalities. In recent years, researchers have increasingly found that MYH9 plays an important role in cancer as a cytokine involved in cytoskeletal reorganization, cellular pseudopodia formation, and migration. MYH9 is closely related to the progress and poor prognosis of most solid tumors, and it is now accepted that MYH9 is a suppressor gene and plays an important role on the re-Rho pathway. Recent research has been limited to the study of tissues. However, it would be more direct and informative to be able to use hematology to assess tumor prognosis and changes in MYH9 levels and NMMHC-IIA. This article summarizes recent research on MYH9 and provides a reference for future clinical research.
Collapse
Affiliation(s)
- Yunmei Wang
- Shaanxi Provincial Cancer Hospital Affiliated to Medical School, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Shuguang Liu
- Hong Hui Hospital, The Affiliated Hospital, School of Medicine, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Yanjun Zhang
- Shaanxi Provincial Cancer Hospital Affiliated to Medical School, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Jin Yang
- First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
16
|
Deng Y, Zheng J, Ma J. The clinical and prognostic significance of YWHAZ in non‐small–cell lung cancer patients: Immunohistochemical analysis. J Cell Biochem 2018; 120:6290-6298. [PMID: 30378158 DOI: 10.1002/jcb.27915] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Yong Deng
- Department of Thoracic Surgery Sheyang County People’s Hospital Yancheng China
| | - Jianyun Zheng
- Department of Pathology The First Affiliated Hospital of Xi’an Medical University, General Medicine School of Xi’an Medical University Xi’an China
| | - Jiangang Ma
- Department of Respiratory Medicine The Second Affiliated Hospital of Shaanxi University of Chinese Medicine Xianyang China
| |
Collapse
|
17
|
Güzel C, Govorukhina NI, Wisman GBA, Stingl C, Dekker LJM, Klip HG, Hollema H, Guryev V, Horvatovich PL, van der Zee AGJ, Bischoff R, Luider TM. Proteomic alterations in early stage cervical cancer. Oncotarget 2018; 9:18128-18147. [PMID: 29719595 PMCID: PMC5915062 DOI: 10.18632/oncotarget.24773] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/25/2018] [Indexed: 01/20/2023] Open
Abstract
Laser capture microdissection (LCM) allows the capture of cell types or well-defined structures in tissue. We compared in a semi-quantitative way the proteomes from an equivalent of 8,000 tumor cells from patients with squamous cell cervical cancer (SCC, n = 22) with healthy epithelial and stromal cells obtained from normal cervical tissue (n = 13). Proteins were enzymatically digested into peptides which were measured by high-resolution mass spectrometry and analyzed by “all-or-nothing” analysis, Bonferroni, and Benjamini-Hochberg correction for multiple testing. By comparing LCM cell type preparations, 31 proteins were exclusively found in early stage cervical cancer (n = 11) when compared with healthy epithelium and stroma, based on criteria that address specificity in a restrictive “all-or-nothing” way. By Bonferroni correction for multiple testing, 30 proteins were significantly up-regulated between early stage cervical cancer and healthy control, including six members of the MCM protein family. MCM proteins are involved in DNA repair and expected to be participating in the early stage of cancer. After a less stringent Benjamini-Hochberg correction for multiple testing, we found that the abundances of 319 proteins were significantly different between early stage cervical cancer and healthy controls. Four proteins were confirmed in digests of whole tissue lysates by Parallel Reaction Monitoring (PRM). Ingenuity Pathway Analysis using correction for multiple testing by permutation resulted in two networks that were differentially regulated in early stage cervical cancer compared with healthy tissue. From these networks, we learned that specific tumor mechanisms become effective during the early stage of cervical cancer.
Collapse
Affiliation(s)
- Coşkun Güzel
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam 3015 CN, The Netherlands
| | - Natalia I Govorukhina
- Department of Analytical Biochemistry, Center for Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - G Bea A Wisman
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Christoph Stingl
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam 3015 CN, The Netherlands
| | - Lennard J M Dekker
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam 3015 CN, The Netherlands
| | - Harry G Klip
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Harry Hollema
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Victor Guryev
- Department of Analytical Biochemistry, Center for Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Peter L Horvatovich
- Department of Analytical Biochemistry, Center for Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Ate G J van der Zee
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Center for Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Theo M Luider
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam 3015 CN, The Netherlands
| |
Collapse
|
18
|
Ma Y, Zhou G, Li Y, Zhu Y, Yu X, Zhao F, Li H, Xu X, Li C. Intake of Fish Oil Specifically Modulates Colonic Muc2 Expression in Middle-Aged Rats by Suppressing the Glycosylation Process. Mol Nutr Food Res 2018; 62:1700661. [PMID: 29277971 PMCID: PMC6120138 DOI: 10.1002/mnfr.201700661] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/02/2017] [Indexed: 12/11/2022]
Abstract
SCOPE Dietary fats have been shown to affect gut microbiota composition and aging gene expression of middle-aged rats at a normal dose, but little is known about such an effect on gut barrier. In this study, the changes in colonic Muc2 expression are investigated and the underlying mechanism is also proposed. METHODS AND RESULTS 36 middle-aged Sprague-Dawley rats are assigned to one of the diets containing soybean oil, lard, or fish oil (4%). The rats are fed for 5 weeks and then goblet cells, Muc2 expression, and inflammatory cytokines in the colon are measured. Proteome analysis is performed. Compared with the lard and soybean oil diet groups, intake of fish oil decreases the number of goblet cells, and inhibits Muc2 and TLRs expression in the colon of middle-aged rats, which would impair mucus barrier. Several key enzymes involved in glycosylation process, including Agr2, Gale, Gne, Pmm2, Pdxdc1, Plch1, Pfkp, Cmpk1, and Rexo2, show the lowest abundance in the fish oil diet group. CONCLUSION Intake of fish oil at a normal dose downregulates colonic Muc2 expression. This negative effect of fish oil may involve the suppression of mucin glycosylation process.
Collapse
Affiliation(s)
- Yafang Ma
- Key Laboratory of Meat Processing and Quality Control, MOEKey Laboratory of Meat Processing, MOAJiangsu Synergetic Innovation Center of Meat Processing and Quality ControlNanjing Agricultural UniversityNanjingP.R. China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOEKey Laboratory of Meat Processing, MOAJiangsu Synergetic Innovation Center of Meat Processing and Quality ControlNanjing Agricultural UniversityNanjingP.R. China
| | - Yingqiu Li
- Guangxi Vocational College of Technology and BusinessNanningGuangxiP.R. China
| | - Yingying Zhu
- Key Laboratory of Meat Processing and Quality Control, MOEKey Laboratory of Meat Processing, MOAJiangsu Synergetic Innovation Center of Meat Processing and Quality ControlNanjing Agricultural UniversityNanjingP.R. China
| | - Xiaobo Yu
- Key Laboratory of Meat Processing and Quality Control, MOEKey Laboratory of Meat Processing, MOAJiangsu Synergetic Innovation Center of Meat Processing and Quality ControlNanjing Agricultural UniversityNanjingP.R. China
| | - Fan Zhao
- Key Laboratory of Meat Processing and Quality Control, MOEKey Laboratory of Meat Processing, MOAJiangsu Synergetic Innovation Center of Meat Processing and Quality ControlNanjing Agricultural UniversityNanjingP.R. China
| | - He Li
- Key Laboratory of Meat Processing and Quality Control, MOEKey Laboratory of Meat Processing, MOAJiangsu Synergetic Innovation Center of Meat Processing and Quality ControlNanjing Agricultural UniversityNanjingP.R. China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, MOEKey Laboratory of Meat Processing, MOAJiangsu Synergetic Innovation Center of Meat Processing and Quality ControlNanjing Agricultural UniversityNanjingP.R. China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOEKey Laboratory of Meat Processing, MOAJiangsu Synergetic Innovation Center of Meat Processing and Quality ControlNanjing Agricultural UniversityNanjingP.R. China
| |
Collapse
|
19
|
Li M, Peng F, Li G, Fu Y, Huang Y, Chen Z, Chen Y. Proteomic analysis of stromal proteins in different stages of colorectal cancer establishes Tenascin-C as a stromal biomarker for colorectal cancer metastasis. Oncotarget 2018; 7:37226-37237. [PMID: 27191989 PMCID: PMC5095071 DOI: 10.18632/oncotarget.9362] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/26/2016] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment is crucial to tumor development and metastasis. Little is known about the roles of stromal proteins in colorectal carcinogenesis. In this study, we used a combination of laser capture microdissection (LCM), iTRAQ labeling and two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) to compare stromal proteomes in different stages of colorectal cancer. A total of 1966 proteins were identified, and 222 proteins presenting a significant fold change were quantified in different stages. Differentially expressed proteins (DEPs) were subjected to cluster and pathway analyses. We confirmed the differential expression of Tenascin-C and S100A9 using immunohistochemical analysis, and found that the expression levels of S100A9 and Tenascin-C were correlated with TNM stages and metastasis. In addition, our results showed that Tenascin-C was abundantly secreted by the colon cancer cells with high metastatic potential, and highly expressed in lymph nodes with metastasis. Our studies not only shed light on the mechanism by which stromal proteins contributed to colorectal carcinogenesis, but also identified Tenascin-C as a potential stromal biomarker for colorectal cancer metastasis.
Collapse
Affiliation(s)
- Maoyu Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Fang Peng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Guoqing Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Yang Fu
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ying Huang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.,Maternal and Child Health Hospital of Hunan Province, Changsha, 410008, Hunan Province, China
| | - Zhuchu Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Yongheng Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| |
Collapse
|
20
|
Ceciliani F, Roccabianca P, Giudice C, Lecchi C. Application of post-genomic techniques in dog cancer research. MOLECULAR BIOSYSTEMS 2017; 12:2665-79. [PMID: 27345606 DOI: 10.1039/c6mb00227g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Omics techniques have been widely applied to veterinary science, although mostly on farm animal productions and infectious diseases. In canine oncology, on the contrary, the use of omics methodologies is still far behind. This review presents the most recent achievement in the application of postgenomic techniques, such as transcriptomics, proteomics, and metabolomics, to canine cancer research. The protocols to recover material suitable for omics analyses from formalin-fixed, paraffin-embedded tissues are presented, and omics applications for biomarker discovery and their potential for cancer diagnostics in veterinary medicine are highlighted.
Collapse
Affiliation(s)
- F Ceciliani
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - P Roccabianca
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - C Giudice
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - C Lecchi
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| |
Collapse
|
21
|
Dick JM. Chemical composition and the potential for proteomic transformation in cancer, hypoxia, and hyperosmotic stress. PeerJ 2017; 5:e3421. [PMID: 28603672 PMCID: PMC5463988 DOI: 10.7717/peerj.3421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022] Open
Abstract
The changes of protein expression that are monitored in proteomic experiments are a type of biological transformation that also involves changes in chemical composition. Accompanying the myriad molecular-level interactions that underlie any proteomic transformation, there is an overall thermodynamic potential that is sensitive to microenvironmental conditions, including local oxidation and hydration potential. Here, up- and down-expressed proteins identified in 71 comparative proteomics studies were analyzed using the average oxidation state of carbon (ZC) and water demand per residue (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\overline{n}}_{{\mathrm{H}}_{2}\mathrm{O}}$\end{document}n¯H2O), calculated using elemental abundances and stoichiometric reactions to form proteins from basis species. Experimental lowering of oxygen availability (hypoxia) or water activity (hyperosmotic stress) generally results in decreased ZC or \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\overline{n}}_{{\mathrm{H}}_{2}\mathrm{O}}$\end{document}n¯H2O of up-expressed compared to down-expressed proteins. This correspondence of chemical composition with experimental conditions provides evidence for attraction of the proteomes to a low-energy state. An opposite compositional change, toward higher average oxidation or hydration state, is found for proteomic transformations in colorectal and pancreatic cancer, and in two experiments for adipose-derived stem cells. Calculations of chemical affinity were used to estimate the thermodynamic potentials for proteomic transformations as a function of fugacity of O2 and activity of H2O, which serve as scales of oxidation and hydration potential. Diagrams summarizing the relative potential for formation of up- and down-expressed proteins have predicted equipotential lines that cluster around particular values of oxygen fugacity and water activity for similar datasets. The changes in chemical composition of proteomes are likely linked with reactions among other cellular molecules. A redox balance calculation indicates that an increase in the lipid to protein ratio in cancer cells by 20% over hypoxic cells would generate a large enough electron sink for oxidation of the cancer proteomes. The datasets and computer code used here are made available in a new R package, canprot.
Collapse
|
22
|
Jin P, Wang K, Huang C, Nice EC. Mining the fecal proteome: from biomarkers to personalised medicine. Expert Rev Proteomics 2017; 14:445-459. [PMID: 28361558 DOI: 10.1080/14789450.2017.1314786] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Fecal proteomics has gained increased prominence in recent years. It can provide insights into the diagnosis and surveillance of many bowel diseases by both identifying potential biomarkers in stool samples and helping identify disease-related pathways. Fecal proteomics has already shown its potential for the discovery and validation of biomarkers for colorectal cancer screening, and the analysis of fecal microbiota by MALDI-MS for the diagnosis of a range of bowel diseases is gaining clinical acceptance. Areas covered: Based on a comprehensive analysis of the current literature, we introduce the range of sensitive and specific proteomics methods which comprise the current 'Proteomics Toolbox', explain how the integration of fecal proteomics with data processing/bioinformatics has been used for the identification of potential biomarkers for both CRC and other gut-related pathologies and analysis of the fecal microbiome, outline some of the current fecal assays in current clinical practice and introduce the concept of personalised medicine which these technologies will help inform. Expert commentary: Integration of fecal proteomics with other proteomics and genomics strategies as well as bioinformatics is paving the way towards personalised medicine, which will bring with it improved global healthcare.
Collapse
Affiliation(s)
- Ping Jin
- a Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology , the Affiliated Hospital of Hainan Medical College , Haikou , China.,b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Kui Wang
- b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Canhua Huang
- a Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology , the Affiliated Hospital of Hainan Medical College , Haikou , China.,b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Edouard C Nice
- b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China.,c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Australia
| |
Collapse
|
23
|
Quesada-Calvo F, Massot C, Bertrand V, Longuespée R, Blétard N, Somja J, Mazzucchelli G, Smargiasso N, Baiwir D, De Pauw-Gillet MC, Delvenne P, Malaise M, Coimbra Marques C, Polus M, De Pauw E, Meuwis MA, Louis E. OLFM4, KNG1 and Sec24C identified by proteomics and immunohistochemistry as potential markers of early colorectal cancer stages. Clin Proteomics 2017; 14:9. [PMID: 28344541 PMCID: PMC5364649 DOI: 10.1186/s12014-017-9143-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/21/2017] [Indexed: 12/17/2022] Open
Abstract
Background Despite recent advances in colorectal cancer (CRC) diagnosis and population screening programs, the identification of patients with preneoplastic lesions or with early CRC stages remains challenging and is important for reducing CRC incidence and increasing patient’s survival.
Methods We analysed 76 colorectal tissue samples originated from early CRC stages, normal or inflamed mucosa by label-free proteomics. The characterisation of three selected biomarker candidates was performed by immunohistochemistry on an independent set of precancerous and cancerous lesions harbouring increasing CRC stages. Results Out of 5258 proteins identified, we obtained 561 proteins with a significant differential distribution among groups of patients and controls. KNG1, OLFM4 and Sec24C distributions were validated in tissues and showed different expression levels especially in the two early CRC stages compared to normal and preneoplastic tissues. Conclusion We highlighted three proteins that require further investigations to better characterise their role in early CRC carcinogenesis and their potential as early CRC markers. Electronic supplementary material The online version of this article (doi:10.1186/s12014-017-9143-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florence Quesada-Calvo
- Gastroenterology Department, GIGA-R, Liège University Hospital CHU, ULg, GIGA CHU-B34 Avenue de l'Hôpital 11, 4000 Liège, Belgium
| | - Charlotte Massot
- Gastroenterology Department, GIGA-R, Liège University Hospital CHU, ULg, GIGA CHU-B34 Avenue de l'Hôpital 11, 4000 Liège, Belgium
| | - Virginie Bertrand
- Laboratory of Mass Spectrometry, Chemistry Department, GIGA-R, CART, ULg, 4000 Liège, Belgium
| | - Rémi Longuespée
- Laboratory of Mass Spectrometry, Chemistry Department, GIGA-R, CART, ULg, 4000 Liège, Belgium
| | - Noëlla Blétard
- Department of Anatomy and Pathology, GIGA-R, Liège University Hospital CHU, ULg, 4000 Liège, Belgium
| | - Joan Somja
- Department of Anatomy and Pathology, GIGA-R, Liège University Hospital CHU, ULg, 4000 Liège, Belgium
| | - Gabriel Mazzucchelli
- Laboratory of Mass Spectrometry, Chemistry Department, GIGA-R, CART, ULg, 4000 Liège, Belgium
| | - Nicolas Smargiasso
- Laboratory of Mass Spectrometry, Chemistry Department, GIGA-R, CART, ULg, 4000 Liège, Belgium
| | | | - Marie-Claire De Pauw-Gillet
- Mammalian Cell Culture Laboratory, Department of Preclinical and Biomedical Sciences, GIGA-R, ULg, 4000 Liège, Belgium
| | - Philippe Delvenne
- Department of Anatomy and Pathology, GIGA-R, Liège University Hospital CHU, ULg, 4000 Liège, Belgium
| | - Michel Malaise
- Department of Clinical Sciences, Rheumatology, Liège University Hospital CHU, 4000 Liège, Belgium
| | | | - Marc Polus
- Gastroenterology Department, GIGA-R, Liège University Hospital CHU, ULg, GIGA CHU-B34 Avenue de l'Hôpital 11, 4000 Liège, Belgium
| | - Edwin De Pauw
- Laboratory of Mass Spectrometry, Chemistry Department, GIGA-R, CART, ULg, 4000 Liège, Belgium
| | - Marie-Alice Meuwis
- Gastroenterology Department, GIGA-R, Liège University Hospital CHU, ULg, GIGA CHU-B34 Avenue de l'Hôpital 11, 4000 Liège, Belgium
| | - Edouard Louis
- Gastroenterology Department, GIGA-R, Liège University Hospital CHU, ULg, GIGA CHU-B34 Avenue de l'Hôpital 11, 4000 Liège, Belgium
| |
Collapse
|
24
|
Li G, Li M, Liang X, Xiao Z, Zhang P, Shao M, Peng F, Chen Y, Li Y, Chen Z. Identifying DCN and HSPD1 as Potential Biomarkers in Colon Cancer Using 2D-LC-MS/MS Combined with iTRAQ Technology. J Cancer 2017; 8:479-489. [PMID: 28261350 PMCID: PMC5332900 DOI: 10.7150/jca.17192] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/29/2016] [Indexed: 12/31/2022] Open
Abstract
Colon cancer is one of the most common types of gastrointestinal cancers and the fourth cause of cancer death worldwide. To discover novel diagnostic biomarkers for colon cancer and investigate potential mechanisms of oncogenesis, quantitative proteomic approach using iTRAQ-tagging and 2D-LC-MS/MS was performed to characterize proteins alterations in colon cancer and non-neoplastic colonic mucosa (NNCM) using laser capture microdissection-harvested from the two types of tissues, respectively. As a result, 188 DEPs were identified, and the differential expression of two DEPs (DCN and HSPD1) was further verified by Western blotting and immunohistochemistry. KEGG pathway analysis disclosed that the DEPs were related to signaling pathways associated with cancer; furthermore, DCN and HSPD1 are in the relative central hub position among protein-protein interaction subnetwork of the DEPs. The results not only shed light on the mechanism by the DEPs contributed to colonic carcinogenesis, but also showed that DCN and HSPD1 are novel potential biomarkers for the diagnosis of colon cancer.
Collapse
Affiliation(s)
- Guoqing Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacy and Life Science, University of South China, Hengyang 421001, Hunan, China
| | - Maoyu Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xujun Liang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhefeng Xiao
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Pengfei Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Meiying Shao
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Fang Peng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yongheng Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanyuan Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.; Medical College, Guangxi University of Science and Technology, Liuzhou 545005, Guangxi, China
| | - Zhuchu Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
25
|
Corbo C, Cevenini A, Salvatore F. Biomarker discovery by proteomics-based approaches for early detection and personalized medicine in colorectal cancer. Proteomics Clin Appl 2017; 11. [PMID: 28019089 DOI: 10.1002/prca.201600072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/29/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022]
Abstract
About one million people per year develop colorectal cancer (CRC) and approximately half of them die. The extent of the disease (i.e. local invasion at the time of diagnosis) is a key prognostic factor. The 5-year survival rate is almost 90% in the case of delimited CRC and 10% in the case of metastasized CRC. Hence, one of the great challenges in the battle against CRC is to improve early diagnosis strategies. Large-scale proteomic approaches are widely used in cancer research to search for novel biomarkers. Such biomarkers can help in improving the accuracy of the diagnosis and in the optimization of personalized therapy. Herein, we provide an overview of studies published in the last 5 years on CRC that led to the identification of protein biomarkers suitable for clinical application by using proteomic approaches. We discussed these findings according to biomarker application, including also the role of protein phosphorylation and cancer stem cells in biomarker discovery. Our review provides a cross section of scientific approaches and can furnish suggestions for future experimental strategies to be used as reference by scientists, clinicians and researchers interested in proteomics for biomarker discovery.
Collapse
Affiliation(s)
- Claudia Corbo
- CEINGE, Advanced Biotechnology s.c.a.r.l., Via G. Salvatore 486, Naples, Italy.,Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Armando Cevenini
- CEINGE, Advanced Biotechnology s.c.a.r.l., Via G. Salvatore 486, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Francesco Salvatore
- CEINGE, Advanced Biotechnology s.c.a.r.l., Via G. Salvatore 486, Naples, Italy
| |
Collapse
|
26
|
Huang HC, Yan L, Shao MY, Chen ZC. Advances in proteomic study of colorectal cancer. Shijie Huaren Xiaohua Zazhi 2016; 24:3870-3876. [DOI: 10.11569/wcjd.v24.i27.3870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common malignant tumors and the fourth cause of cancer-related mortality. It is not easy to be found at the early stage and therefore has a poor prognosis. Thus, new molecular biomarkers are required to improve early diagnosis and discover new effective therapeutic targets. Advances in proteomic technologies have greatly enhanced our understanding of the pathogenesis of colorectal cancer at the protein level, and improved our ability of early diagnosis and treatment. Proteomic studies of colorectal tissues, serum and cell lines have identified differentially expressed proteins, new potential diagnostic biomarkers and clinical drug targets. This article reviews the advances in proteomic study of colorectal cancer in recent years.
Collapse
|
27
|
Dick JM. Proteomic indicators of oxidation and hydration state in colorectal cancer. PeerJ 2016; 4:e2238. [PMID: 27547546 PMCID: PMC4958012 DOI: 10.7717/peerj.2238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022] Open
Abstract
New integrative approaches are needed to harness the potential of rapidly growing datasets of protein expression and microbial community composition in colorectal cancer. Chemical and thermodynamic models offer theoretical tools to describe populations of biomacromolecules and their relative potential for formation in different microenvironmental conditions. The average oxidation state of carbon (ZC) can be calculated as an elemental ratio from the chemical formulas of proteins, and water demand per residue (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\overline{n}}_{{\mathrm{H}}_{2}\mathrm{O}}$\end{document}n¯H2O) is computed by writing the overall formation reactions of proteins from basis species. Using results reported in proteomic studies of clinical samples, many datasets exhibit higher mean ZC or \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\overline{n}}_{{\mathrm{H}}_{2}\mathrm{O}}$\end{document}n¯H2O of proteins in carcinoma or adenoma compared to normal tissue. In contrast, average protein compositions in bacterial genomes often have lower ZC for bacteria enriched in fecal samples from cancer patients compared to healthy donors. In thermodynamic calculations, the potential for formation of the cancer-related proteins is energetically favored by changes in the chemical activity of H2O and fugacity of O2 that reflect the compositional differences. The compositional analysis suggests that a systematic change in chemical composition is an essential feature of cancer proteomes, and the thermodynamic descriptions show that the observed proteomic transformations in host tissue could be promoted by relatively high microenvironmental oxidation and hydration states.
Collapse
|
28
|
Liu X, Xu Y, Meng Q, Zheng Q, Wu J, Wang C, Jia W, Figeys D, Chang Y, Zhou H. Proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling. Biochem Biophys Res Commun 2016; 476:286-292. [PMID: 27230957 DOI: 10.1016/j.bbrc.2016.05.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/22/2016] [Indexed: 11/26/2022]
Abstract
Colorectal cancer (CRC) is one of the most common types of malignant tumor worldwide. Currently, although many researchers have been devoting themselves in CRC studies, the process of locating biomarkers for CRC early diagnosis and prognostic is still very slow. Using a centrifugal proteomic reactor-based proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling, 2620 protein groups were quantified between cancer mucosa and adjacent normal colorectal mucosa. Of which, 403 protein groups were differentially expressed with statistic significance between cancer and normal tissues, including 195 up-regulated and 208 down-regulated proteins in cancer tissues. Three proteins (SOD3, PRELP and NGAL) were selected for further Western blot validation. And the resulting Western blot experimental results were consistent with the quantitative proteomic data. SOD3 and PRELP are down-regulated in CRC mucosa comparing to adjacent normal tissue, while NGAL is up-regulated in CRC mucosa. In conclusion, the centrifugal proteomic reactor-based label-free quantitative proteomic approach provides a highly sensitive and powerful tool for analyzing minute protein sample from tiny colorectal biopsies, which may facilitate CRC biomarkers discovery for diagnoses and prognoses.
Collapse
Affiliation(s)
- Xing Liu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | | | - Qian Meng
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Qingqing Zheng
- Digestive Endoscopic Center, Shanghai Jiaotong University Affiliated Sixth People's Hospital, China
| | - Jianhong Wu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Chen Wang
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - Ying Chang
- Digestive Endoscopic Center, Shanghai Jiaotong University Affiliated Sixth People's Hospital, China.
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China.
| |
Collapse
|
29
|
Peng F, Huang Y, Li MY, Li GQ, Huang HC, Guan R, Chen ZC, Liang SP, Chen YH. Dissecting characteristics and dynamics of differentially expressed proteins during multistage carcinogenesis of human colorectal cancer. World J Gastroenterol 2016; 22:4515-4528. [PMID: 27182161 PMCID: PMC4858633 DOI: 10.3748/wjg.v22.i18.4515] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/13/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To discover novel biomarkers for early diagnosis, prognosis or treatment of human colorectal cancer.
METHODS: iTRAQ 2D LC-MS/MS analysis was used to identify differentially expressed proteins (DEPs) in the human colonic epithelial carcinogenic process using laser capture microdissection-purified colonic epithelial cells from normal colon, adenoma, carcinoma in situ and invasive carcinoma tissues.
RESULTS: A total of 326 DEPs were identified, and four DEPs (DMBT1, S100A9, Galectin-10, and S100A8) with progressive alteration in the carcinogenic process were further validated by immunohistochemistry. The DEPs were involved in multiple biological processes including cell cycle, cell adhesion, translation, mRNA processing, and protein synthesis. Some of the DEPs involved in cellular process such as “translation” and “mRNA splicing” were progressively up-regulated, while some DEPs involved in other processes such as “metabolism” and “cell response to stress” was progressively down-regulated. Other proteins with up- or down-regulation at certain stages of carcinogenesis may play various roles at different stages of the colorectal carcinogenic process.
CONCLUSION: These findings give insights into our understanding of the mechanisms of colorectal carcinogenesis and provide clues for further investigation of carcinogenesis and identification of biomarkers.
Collapse
|
30
|
Staunton L, Tonry C, Lis R, Finn S, O Leary J, Loda M, Bowden M, Pennington SR. Profiling the tumor microenvironment proteome in prostate cancer using laser capture microdissection coupled to LCMSA technical report. EUPA OPEN PROTEOMICS 2015; 10:19-23. [PMID: 29900095 PMCID: PMC5988569 DOI: 10.1016/j.euprot.2015.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 10/27/2022]
Abstract
Laser capture microdissection (LCM) allows microscopic procurement of specific cell types from tissue sections. Here, we present an optimized workflow for coupling LCM to LCMS/MS including: sectioning of tissue, a standard LCM workflow, protein digestion and advanced LCMS/MS. Soluble proteins extracted from benign epithelial cells, their associated stroma, tumor epithelial cells and their associated stromal cells from a single patient tissue sample were digested and profiled using advanced LCMS/MS. The correlation between technical replicates was R2 = 0.99 with a mean % CV of 9.55% ± 8.73. The correlation between sample replicates was R2 = 0.97 with a mean % CV of 13.83% ± 10.17. This represents a robust, systematic approach for profiling of the tumor microenvironment using LCM coupled to label-free LCMS/MS.
Collapse
Affiliation(s)
- L Staunton
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - C Tonry
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - R Lis
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, USA
| | - S Finn
- St Jamess Hospital, Jamess St., Dublin 8, Ireland
| | - J O Leary
- St Jamess Hospital, Jamess St., Dublin 8, Ireland
| | - M Loda
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, USA
| | - M Bowden
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, USA
| | - S R Pennington
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
31
|
Sun ZL, Xu X, Zhou DP, Wang L, Wang FQ, Xu ZY, Ji W. Serum proteomic-based analysis by iTRAQ of damp-heat impeding syndrome of rheumatoid arthritis. Eur J Integr Med 2015; 7:479-484. [DOI: 10.1016/j.eujim.2015.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Ngounou Wetie AG, Wormwood KL, Charette L, Ryan JP, Woods AG, Darie CC. Comparative two-dimensional polyacrylamide gel electrophoresis of the salivary proteome of children with autism spectrum disorder. J Cell Mol Med 2015; 19:2664-78. [PMID: 26290361 PMCID: PMC4627571 DOI: 10.1111/jcmm.12658] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/23/2015] [Indexed: 01/03/2023] Open
Abstract
In the last decades, prevalence of autism spectrum disorder (ASD) has been on the rise. However, clear aetiology is still elusive and improvements in early diagnosis are needed. To uncover possible biomarkers present in ASD, we used two-dimensional polyacrylamide gel electrophoresis and nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS), to compare salivary proteome profiling of children with ASD and controls. A total of 889 spots were compared and only those spots with a fold change ≥1.7 and a P-value <0.05 or a fold change of ≥3.0 between ASD cases and controls were analysed by nanoLC-MS/MS. Alpha-amylase, CREB-binding protein, p532, Transferrin, Zn alpha2 glycoprotein, Zymogen granule protein 16, cystatin D and plasminogen were down-regulated in ASD. Increased expression of proto-oncogene Frequently rearranged in advanced T-cell lymphomas 1 (FRAT1), Kinesin family member 14, Integrin alpha6 subunit, growth hormone regulated TBC protein 1, parotid secretory protein, Prolactin-inducible protein precursor, Mucin-16, Ca binding protein migration inhibitory factor-related protein 14 (MRP14) was observed in individuals with ASD. Many of the identified proteins have previously been linked to ASD or were proposed as risk factors of ASD at the genetic level. Some others are involved in pathological pathways implicated in ASD causality such as oxidative stress, lipid and cholesterol metabolism, immune system disturbances and inflammation. These data could contribute to protein signatures for ASD presence, risk and subtypes, and advance understanding of ASD cause as well as provide novel treatment targets for ASD.
Collapse
Affiliation(s)
- Armand G Ngounou Wetie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Kelly L Wormwood
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Laci Charette
- SUNY Plattsburgh Neuropsychology Clinic and Psychoeducation Services, Plattsburgh, NY, USA.,Department of Psychology, SUNY Plattsburgh, Plattsburgh, NY, USA
| | - Jeanne P Ryan
- Department of Psychology, SUNY Plattsburgh, Plattsburgh, NY, USA
| | - Alisa G Woods
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA.,SUNY Plattsburgh Neuropsychology Clinic and Psychoeducation Services, Plattsburgh, NY, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
33
|
Ngounou Wetie AG, Wormwood KL, Russell S, Ryan JP, Darie CC, Woods AG. A Pilot Proteomic Analysis of Salivary Biomarkers in Autism Spectrum Disorder. Autism Res 2015; 8:338-50. [DOI: 10.1002/aur.1450] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/25/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Armand G. Ngounou Wetie
- Department of Chemistry and Biomolecular Science; Biochemistry and Proteomics Group; Clarkson University; 8 Clarkson Avenue Potsdam New York 13699-5810
| | - Kelly L. Wormwood
- Department of Chemistry and Biomolecular Science; Biochemistry and Proteomics Group; Clarkson University; 8 Clarkson Avenue Potsdam New York 13699-5810
| | - Stefanie Russell
- SUNY Plattsburgh Neuropsychology Clinic and Psychoeducation Services; 101 Broad Street Plattsburgh New York 12901
| | - Jeanne P. Ryan
- SUNY Plattsburgh Neuropsychology Clinic and Psychoeducation Services; 101 Broad Street Plattsburgh New York 12901
| | - Costel C. Darie
- Department of Chemistry and Biomolecular Science; Biochemistry and Proteomics Group; Clarkson University; 8 Clarkson Avenue Potsdam New York 13699-5810
| | - Alisa G. Woods
- Department of Chemistry and Biomolecular Science; Biochemistry and Proteomics Group; Clarkson University; 8 Clarkson Avenue Potsdam New York 13699-5810
| |
Collapse
|
34
|
Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep 2014. [PMID: 25242334 DOI: 10.1016/j.celrep.2014.08.029.single-cell] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Circulating tumor cells (CTCs) are shed from primary tumors into the bloodstream, mediating the hematogenous spread of cancer to distant organs. To define their composition, we compared genome-wide expression profiles of CTCs with matched primary tumors in a mouse model of pancreatic cancer, isolating individual CTCs using epitope-independent microfluidic capture, followed by single-cell RNA sequencing. CTCs clustered separately from primary tumors and tumor-derived cell lines, showing low-proliferative signatures, enrichment for the stem-cell-associated gene Aldh1a2, biphenotypic expression of epithelial and mesenchymal markers, and expression of Igfbp5, a gene transcript enriched at the epithelial-stromal interface. Mouse as well as human pancreatic CTCs exhibit a very high expression of stromal-derived extracellular matrix (ECM) proteins, including SPARC, whose knockdown in cancer cells suppresses cell migration and invasiveness. The aberrant expression by CTCs of stromal ECM genes points to their contribution of microenvironmental signals for the spread of cancer to distant organs.
Collapse
|
35
|
Ting DT, Wittner BS, Ligorio M, Vincent Jordan N, Shah AM, Miyamoto DT, Aceto N, Bersani F, Brannigan BW, Xega K, Ciciliano JC, Zhu H, MacKenzie OC, Trautwein J, Arora KS, Shahid M, Ellis HL, Qu N, Bardeesy N, Rivera MN, Deshpande V, Ferrone CR, Kapur R, Ramaswamy S, Shioda T, Toner M, Maheswaran S, Haber DA. Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep 2014; 8:1905-1918. [PMID: 25242334 PMCID: PMC4230325 DOI: 10.1016/j.celrep.2014.08.029] [Citation(s) in RCA: 387] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/16/2014] [Accepted: 08/13/2014] [Indexed: 12/27/2022] Open
Abstract
Circulating tumor cells (CTCs) are shed from primary tumors into the bloodstream, mediating the hematogenous spread of cancer to distant organs. To define their composition, we compared genome-wide expression profiles of CTCs with matched primary tumors in a mouse model of pancreatic cancer, isolating individual CTCs using epitope-independent microfluidic capture, followed by single-cell RNA sequencing. CTCs clustered separately from primary tumors and tumor-derived cell lines, showing low-proliferative signatures, enrichment for the stem-cell-associated gene Aldh1a2, biphenotypic expression of epithelial and mesenchymal markers, and expression of Igfbp5, a gene transcript enriched at the epithelial-stromal interface. Mouse as well as human pancreatic CTCs exhibit a very high expression of stromal-derived extracellular matrix (ECM) proteins, including SPARC, whose knockdown in cancer cells suppresses cell migration and invasiveness. The aberrant expression by CTCs of stromal ECM genes points to their contribution of microenvironmental signals for the spread of cancer to distant organs.
Collapse
Affiliation(s)
- David T Ting
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Ben S Wittner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Matteo Ligorio
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Surgery, Harvard Medical School, Boston, MA 02114, USA; Department of Health Sciences, University of Genoa, 16126 Genoa, Italy
| | - Nicole Vincent Jordan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Ajay M Shah
- Center for Engineering in Medicine, Harvard Medical School, Boston, MA 02114, USA; Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - David T Miyamoto
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Radiation Oncology, Harvard Medical School, Boston, MA 02114, USA
| | - Nicola Aceto
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Francesca Bersani
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Brian W Brannigan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Kristina Xega
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Jordan C Ciciliano
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Huili Zhu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Olivia C MacKenzie
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Julie Trautwein
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Kshitij S Arora
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Surgery, Harvard Medical School, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Mohammad Shahid
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Surgery, Harvard Medical School, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Haley L Ellis
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Na Qu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Miguel N Rivera
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Vikram Deshpande
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Cristina R Ferrone
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Ravi Kapur
- Center for Engineering in Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Toshi Shioda
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Mehmet Toner
- Center for Engineering in Medicine, Harvard Medical School, Boston, MA 02114, USA; Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Surgery, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
36
|
Wang K, Huang C, Nice EC. Proteomics, genomics and transcriptomics: their emerging roles in the discovery and validation of colorectal cancer biomarkers. Expert Rev Proteomics 2014; 11:179-205. [PMID: 24611605 DOI: 10.1586/14789450.2014.894466] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) is the second most common cancer in females and the third in males. Since CRC is often diagnosed at an advanced stage when prognosis is poor, identification of biomarkers for early diagnosis is urgently required. Recent advances in proteomics, genomics and transcriptomics have facilitated high-throughput profiling of data generated from CRC-related genes and proteins, providing a window of information for biomarker discovery and validation. However, transfer of candidate biomarkers from bench to bedside remains a dilemma. In this review, we will discuss emerging proteomic technologies and highlight various sample types utilized for proteomics-based identification of CRC biomarkers. Moreover, recent breakthroughs in genomics and transcriptomics for the identification of CRC biomarkers, with particular emphasis on the merits of emerging methylomic and miRNAomic strategies, will be discussed. Integration of proteomics, genomics and transcriptomics will facilitate the discovery and validation of CRC biomarkers leading to the emergence of personalized medicine.
Collapse
Affiliation(s)
- Kui Wang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu, 610041 , P.R. China
| | | | | |
Collapse
|
37
|
Priolli DG, Abrantes AM, Neves S, Gonçalves AC, Lopes CO, Martinez NP, Cardinalli IA, Ribeiro ABS, Botelho MF. Microenvironment influence on human colon adenocarcinoma phenotypes and matrix metalloproteinase-2, p53 and β-catenin tumor expressions from identical monoclonal cell tumor in the orthotopic model in athymic nude rats. Scand J Gastroenterol 2014; 49:309-16. [PMID: 24325610 DOI: 10.3109/00365521.2013.869350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study aims to identify differences between left and right colon adenocarcinoma arising from identical clonal cell and to find out if microenvironment has any influence on matrix metalloproteinase-2 (MMP2), p53 and β-catenin tumor expressions. MATERIAL AND METHODS. Rats (RNU) were submitted to cecostomy to obtain the orthotopic model of right colon tumor (n = 10), while for the left colon model (n = 10), a colon diversion and distal mucous fistula in the descending colon was used. Cultivated human colon adenocarcinoma cells (WiDr) were inoculated in stomas submucosa. Histopathological analysis, real-time reverse transcription-PCR for β-catenin, p53 and MMP2, as well as immunohistochemical analysis for p53 and β-catenin expression were conducted. Central tendency, variance analysis and the Livak delta-delta-CT method were used for statistical analysis, adopting a 5% significance level. RESULTS. All tumors from the left colon exhibited infiltrative ulceration, while in the right colon tumor growth was predominantly exophytic (67%). In the left colon, tumor growth was undifferentiated (100%), while it was moderately differentiated in the right colon (83%). In right colon tumors, MMP2, p53, and β-catenin gene expressions were higher than compared to left colon (p = 4.59354E-05, p = 0.0035179, p = 0.00093798, respectively, for MMP2, p53 and β-catenin). β-catenin and p53 results obtained by real-time polymerase chain reaction were confirmed by immunohistochemistry assay (p = 0.01 and p = 0.001, respectively, for β-catenin and p53). CONCLUSION. Left and right human colon adenocarcinomas developed in animal models have distinct phenotypes even when they have the same clonal origin. Microenvironment has influenced p53, β-catenin, and MMP2 expression in animal models of colon cancer.
Collapse
|
38
|
Lennon R, Byron A, Humphries JD, Randles MJ, Carisey A, Murphy S, Knight D, Brenchley PE, Zent R, Humphries MJ. Global analysis reveals the complexity of the human glomerular extracellular matrix. J Am Soc Nephrol 2014; 25:939-51. [PMID: 24436468 DOI: 10.1681/asn.2013030233] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The glomerulus contains unique cellular and extracellular matrix (ECM) components, which are required for intact barrier function. Studies of the cellular components have helped to build understanding of glomerular disease; however, the full composition and regulation of glomerular ECM remains poorly understood. We used mass spectrometry-based proteomics of enriched ECM extracts for a global analysis of human glomerular ECM in vivo and identified a tissue-specific proteome of 144 structural and regulatory ECM proteins. This catalog includes all previously identified glomerular components plus many new and abundant components. Relative protein quantification showed a dominance of collagen IV, collagen I, and laminin isoforms in the glomerular ECM together with abundant collagen VI and TINAGL1. Protein network analysis enabled the creation of a glomerular ECM interactome, which revealed a core of highly connected structural components. More than one half of the glomerular ECM proteome was validated using colocalization studies and data from the Human Protein Atlas. This study yields the greatest number of ECM proteins relative to previous investigations of whole glomerular extracts, highlighting the importance of sample enrichment. It also shows that the composition of glomerular ECM is far more complex than previously appreciated and suggests that many more ECM components may contribute to glomerular development and disease processes. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000456.
Collapse
Affiliation(s)
- Rachel Lennon
- Wellcome Trust Centre for Cell-Matrix Research and Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom;
| | - Adam Byron
- Wellcome Trust Centre for Cell-Matrix Research and
| | | | - Michael J Randles
- Wellcome Trust Centre for Cell-Matrix Research and Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Alex Carisey
- Wellcome Trust Centre for Cell-Matrix Research and
| | - Stephanie Murphy
- Wellcome Trust Centre for Cell-Matrix Research and Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - David Knight
- Biological Mass Spectrometry Core Facility, Faculty of Life Sciences, and
| | - Paul E Brenchley
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Roy Zent
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Medicine, Veterans Affairs Hospital, Nashville, Tennessee
| | | |
Collapse
|