1
|
Gable KL, Li Y. Chronic Inflammatory Demyelinating Polyneuropathy: How Pathophysiology Can Guide Treatment. Muscle Nerve 2025. [PMID: 40391517 DOI: 10.1002/mus.28438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/29/2025] [Accepted: 05/04/2025] [Indexed: 05/21/2025]
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is an autoimmune demyelinating neuropathy that is most commonly characterized clinically by progressive proximal and distal weakness affecting the upper and lower extremities, sensory loss, and reduced or absent reflexes. These symptoms evolve over the time course of 8 weeks or more. While the majority of CIDP demonstrates this clinical phenotype, there are CIDP variants as well. The milieu of the underlying pathophysiology and immunologic factors involved is complex and involves components of both the innate and adaptive immune systems. As more is understood about the underlying pathophysiology, novel targets and patterns have emerged guiding further classification and management. This is most notable in the discovery of antibodies targeting paranodal and nodal regions related to anti-neurofascin-155 and anti-contactin-1 antibody-mediated disease resulting in a reclassification as demyelinating nodo-paranodopathies. Triggering antigens and correlative antibodies for CIDP are otherwise undiscovered. While first-line therapies for CIDP currently are broad and non-targeted, a shift in approach has been to develop specific targeted treatments guided by what is understood about the underlying pathophysiology. Some of these targets include specific types of B-cell depletion, complement inhibition, immunoglobulin G (IgG) reduction via inhibition of the neonatal Fc receptor (FcRn) recycling of IgGs, treatments related to T-cell dysfunction, and macrophage inhibition.
Collapse
Affiliation(s)
| | - Yingkai Li
- Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
2
|
Walton BL, Shattuck-Brandt R, Hamann CA, Tung VW, Colazo JM, Brand DD, Hasty KA, Duvall CL, Brunger JM. A programmable arthritis-specific receptor for guided articular cartilage regenerative medicine. Osteoarthritis Cartilage 2025; 33:231-240. [PMID: 39706287 PMCID: PMC12019866 DOI: 10.1016/j.joca.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE Investigational cell therapies have been developed as disease-modifying agents for the treatment of osteoarthritis (OA), including those that inducibly respond to inflammatory factors driving OA progression. However, dysregulated inflammatory cascades do not specifically signify the presence of OA. Here, we deploy a synthetic receptor platform that regulates cell behaviors in an arthritis-specific fashion to confine transgene expression to sites of cartilage degeneration. DESIGN A single-chain variable fragment specific for type II collagen (CII) that is exposed in damaged cartilage was used to produce a synthetic Notch (synNotch) receptor that enables "CII-synNotch" mesenchymal stromal cells (MSCs) to recognize degraded cartilage. Artificial signaling induced by both CII-treated culture surfaces and primary tissues was measured via fluorescence and luminescence assays. Separate studies measured the ability of CII-synNotch to govern cartilage anabolic activity of MSCs. Finally, a co-culture with ATDC5 chondrocytes was used to determine whether CII-synNotch MSCs can protect chondrocytes against deleterious effects of pro-inflammatory interleukin-1 in a CII-dependent manner. RESULTS CII-synNotch MSCs are highly and selectively responsive to CII, but not type I collagen, as measured by luminescence assays, fluorescence microscopy, and concentrations of secreted transgene products in culture media. CII-synNotch cells exhibit the capacity to distinguish between healthy and damaged cartilage tissue and constrain transgene expression to regions of exposed CII fibers. Receptor-regulated production of cartilage anabolic and anti-inflammatory transgenes was effective to mediate cartilage regenerative functions. CONCLUSION This work demonstrates proof-of-concept that the synNotch platform guides MSCs for spatially regulated, disease-dependent delivery of OA-relevant biologic drugs.
Collapse
Affiliation(s)
- Bonnie L Walton
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | | | - Catherine A Hamann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Victoria W Tung
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Juan M Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - David D Brand
- Research Service, Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN 38105, USA
| | - Karen A Hasty
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis VA Medical Center, Memphis, TN 38105, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA; Center for Bone Biology, Vanderbilt University, Nashville, TN 37212, USA
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA; Center for Bone Biology, Vanderbilt University, Nashville, TN 37212, USA; Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37212, USA.
| |
Collapse
|
3
|
Osada Y, Shimizu S, Morita K, Gaballah EM, Wu Z, Maekawa Y. Helminth-induced impairment of humoral immunity differently contribute to their anti-arthritic effects in mice: Comparison of Schistosoma mansoni and Trichinella spiralis. Exp Parasitol 2024; 261:108752. [PMID: 38604301 DOI: 10.1016/j.exppara.2024.108752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
AIMS We have previously reported reduction of anti-type II collagen (IIC) IgG levels in collagen-induced arthritis (CIA) by Schistosoma mansoni (Sm) and Trichinella spiralis (Ts). To clarify the contribution of the impairment of humoral immunity to their anti-arthritic activities, we herein investigated the relationship between anti-IIC IgG levels and arthritic swelling in Sm- or Ts-infected mice. METHODS AND RESULTS Male DBA/1J mice were infected with Sm cercariae or Ts muscle larvae prior to the IIC immunization. In the Sm-infected mice, paw swelling and anti-IIC IgG levels were continuously lower than those of non-infected control group. In contrast, arthritic swelling in the Ts-infected mice only decreased in the early phase of CIA progression, despite the continued impairment of anti-IIC IgG production throughout the experimental period. Correlation coefficients between residual paw swelling and anti-IIC IgG titers were similar or higher in the Sm group than in the control group, but were similar or lower in the Ts group than in the control group. CONCLUSION The down-modulations of anti-IIC IgG levels by the two parasitic infections and the correlation analyses suggest that the anti-arthritic activity of Sm was primarily attributed to the modulation of IgG-independent arthritogenic mechanisms and secondarily to the impairment of anti-IIC IgG production. In contrast, Ts could alleviate CIA mainly via the impairment of antibody production.
Collapse
Affiliation(s)
- Yoshio Osada
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Shoichi Shimizu
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kentaro Morita
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Eman M Gaballah
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan; Department of Medical Parasitology, Faculty of Medicine, Damietta University, Damietta, Egypt
| | - Zhiliang Wu
- Department of Parasitology and Infectious Diseases, Gifu University Graduate School of Medicine, 1-1, Yanagito, Gifu, 501-1194, Japan
| | - Yoichi Maekawa
- Department of Parasitology and Infectious Diseases, Gifu University Graduate School of Medicine, 1-1, Yanagito, Gifu, 501-1194, Japan; Division of Preemptive Food Research, Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study (GUiAS), 1-1 Yanagido, Gifu, 501-1193, Japan; Division of Animal Medical Science, Center for One Medicine Innovative Translational Research (COMIT), Gifu University Institute for Advanced Study (GUiAS), 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
4
|
Chidomere CI, Wahid M, Kemble S, Chadwick C, Thomas R, Hardy RS, McGettrick HM, Naylor AJ. Bench to Bedside: Modelling Inflammatory Arthritis. DISCOVERY IMMUNOLOGY 2022; 2:kyac010. [PMID: 38567064 PMCID: PMC10917191 DOI: 10.1093/discim/kyac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 04/04/2024]
Abstract
Inflammatory arthritides such as rheumatoid arthritis are a major cause of disability. Pre-clinical murine models of inflammatory arthritis continue to be invaluable tools with which to identify and validate therapeutic targets and compounds. The models used are well-characterised and, whilst none truly recapitulates the human disease, they are crucial to researchers seeking to identify novel therapeutic targets and to test efficacy during preclinical trials of novel drug candidates. The arthritis parameters recorded during clinical trials and routine clinical patient care have been carefully standardised, allowing comparison between centres, trials, and treatments. Similar standardisation of scoring across in vivo models has not occurred, which makes interpretation of published results, and comparison between arthritis models, challenging. Here, we include a detailed and readily implementable arthritis scoring system, that increases the breadth of arthritis characteristics captured during experimental arthritis and supports responsive and adaptive monitoring of disease progression in murine models of inflammatory arthritis. In addition, we reference the wider ethical and experimental factors researchers should consider during the experimental design phase, with emphasis on the continued importance of replacement, reduction, and refinement of animal usage in arthritis research.
Collapse
Affiliation(s)
- Chiamaka I Chidomere
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mussarat Wahid
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Samuel Kemble
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Caroline Chadwick
- Biomedical Services Unit, University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard Thomas
- Biomedical Services Unit, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rowan S Hardy
- Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Helen M McGettrick
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Amy J Naylor
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
5
|
Dalakas MC, Latov N, Kuitwaard K. Intravenous immunoglobulin in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP): mechanisms of action and clinical and genetic considerations. Expert Rev Neurother 2022; 22:953-962. [PMID: 36645654 DOI: 10.1080/14737175.2022.2169134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an autoimmune peripheral nerve disorder that is characterized by subacute onset, progressive or relapsing weakness, and sensory deficits. Proven treatments include intravenous immunoglobulin (IVIg), corticosteroids, and plasma exchange. This review focuses on the mechanisms of action, pharmacodynamics, genetic variations, and disease characteristics that can affect the efficacy of IVIg. AREAS COVERED The proposed mechanisms of action of IVIg that can mediate its therapeutic effects are reviewed. These include anti-idiotypic interactions, inhibition of neonatal Fc receptors (FcRn), anti-complement activity, upregulation of inhibitory FcγRIIB receptors, and downregulation of macrophage activation or co-stimulatory and adhesion molecules. Clinical and genetic factors that can affect the therapeutic response include misdiagnosis, degree of axonal damage, pharmacokinetic variability, and genetic variations. EXPERT OPINION The mechanisms of action of IVIg in CIDP and their relative contribution to its efficacy are subject of ongoing investigation. Studies in other autoimmune neurological conditions, in addition, highlight the role of key immunopathological pathways and factors that are likely to be affected. Further investigation into the pathogenesis of CIDP and the mechanisms of action of IVIg may lead to the development of improved diagnostics, better utilization of IVIg, and more targeted and effective therapies.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson Neuroimmunology Unit, Philadelphia, PA and National and Department of Pathophysiology, Kapodistrian University of Athens, Greece
| | - Norman Latov
- Neuroimmunology Unit, Weill Cornell Medical College, New York, NY, USA
| | - Krista Kuitwaard
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Neurology, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| |
Collapse
|
6
|
Sehnert B, Valero-Esquitino V, Schett G, Unger T, Steckelings UM, Voll RE. Angiotensin AT2 Receptor Stimulation Alleviates Collagen-Induced Arthritis by Upregulation of Regulatory T Cell Numbers. Front Immunol 2022; 13:921488. [PMID: 35874732 PMCID: PMC9304956 DOI: 10.3389/fimmu.2022.921488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
The angiotensin AT2 receptor (AT2R) is a main receptor of the protective arm of the renin-angiotensin system and exerts for instance anti-inflammatory effects. The impact of AT2R stimulation on autoimmune diseases such as rheumatoid arthritis (RA) is not yet known. We investigated the therapeutic potential of AT2R-stimulation with the selective non-peptide AT2R agonist Compound 21 (C21) in collagen-induced arthritis (CIA), an animal model for inflammatory arthritis. Arthritis was induced by immunization of DBA/1J mice with collagen type II (CII). Prophylactic and therapeutic C21 treatment alleviates arthritis severity and incidence in CIA. Joint histology revealed significantly less infiltrates of IL-1 beta and IL-17A expressing cells and a well-preserved articular cartilage in C21- treated mice. In CIA, the number of CD4+CD25+FoxP3+ regulatory T (Treg) cells significantly increased upon C21 treatment compared to vehicle. T cell differentiation experiments demonstrated increased expression of FoxP3 mRNA, whereas IL-17A, STAT3 and IFN-gamma mRNA expression were reduced upon C21 treatment. In accordance with the mRNA data, C21 upregulated the percentage of CD4+FoxP3+ cells in Treg polarizing cultures compared to medium-treated controls, whereas the percentage of CD4+IL-17A+ and CD4+IFN-gamma+ T cells was suppressed. To conclude, C21 exerts beneficial effects on T cell-mediated experimental arthritis. We found that C21-induced AT2R-stimulation promotes the expansion of CD4+ regulatory T cells and suppresses IL-17A production. Thus, AT2R-stimulation may represent an attractive treatment strategy for arthritis.
Collapse
Affiliation(s)
- Bettina Sehnert
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- *Correspondence: Bettina Sehnert, ; Reinhard Edmund Voll,
| | | | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Thomas Unger
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Ulrike Muscha Steckelings
- Institute of Molecular Medicine (IMM) – Department of Cardiovascular & Renal Research, University of Southern Denmark, Odense, Denmark
| | - Reinhard Edmund Voll
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI) Freiburg, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- *Correspondence: Bettina Sehnert, ; Reinhard Edmund Voll,
| |
Collapse
|
7
|
Zuo Y, Deng GM. Fc Gamma Receptors as Regulators of Bone Destruction in Inflammatory Arthritis. Front Immunol 2021; 12:688201. [PMID: 34248975 PMCID: PMC8262610 DOI: 10.3389/fimmu.2021.688201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022] Open
Abstract
Bone erosion is one of the primary features of inflammatory arthritis and is caused by excessive differentiation and activation of osteoclasts. Fc gamma receptors (FcγRs) have been implicated in osteoclastogenesis. Our recent studies demonstrate that joint-deposited lupus IgG inhibited RANKL-induced osteoclastogenesis. FcγRI is required for RANKL-induced osteoclastogenesis and lupus IgG-induced signaling transduction. We reviewed the results of studies that analyzed the association between FcγRs and bone erosion in inflammatory arthritis. The analysis revealed the dual roles of FcγRs in bone destruction in inflammatory arthritis. Thus, IgG/FcγR signaling molecules may serve as potential therapeutic targets against bone erosion.
Collapse
Affiliation(s)
- Yuyue Zuo
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Min Deng
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Vaartjes D, Klaczkowska D, Cragg MS, Nandakumar KS, Bäckdahl L, Holmdahl R. Genetic dissection of a major haplotype associated with arthritis reveal FcγR2b and FcγR3 to act additively. Eur J Immunol 2021; 51:682-693. [PMID: 33244759 PMCID: PMC7984332 DOI: 10.1002/eji.202048605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/15/2020] [Accepted: 11/13/2020] [Indexed: 11/26/2022]
Abstract
A haplotype with tightly linked Fc gamma receptor (FcγR) genes is known as a major locus controlling immune responses and autoimmune diseases, including arthritis. Here, we split a congenic fragment derived from the NOD mouse (Cia9) to study its effect on immune response and arthritis in mice. We found that arthritis susceptibility was indeed controlled by the FcγR gene cluster and a recombination between the FcγR2b and FcγR3 loci gave us the opportunity to separately study their impact. We identified the NOD-derived FcγR2b and FcγR3 alleles as disease-promoting for arthritis development without impact on antibody secretion. We further found that macrophage-mediated phagocytosis was directly correlated to FcγR3 expression in the congenic mice. In conclusion, we positioned FcγR2b and FcγR3 alleles as disease regulatory and showed that their genetic polymorphisms independently and additively control innate immune cell activation and arthritis.
Collapse
Affiliation(s)
- Daniëlle Vaartjes
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Dorota Klaczkowska
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Mark S Cragg
- Antibody and Vaccine GroupCentre for Cancer ImmunologyUniversity of Southampton Faculty of MedicineSouthamptonUK
| | - Kutty Selva Nandakumar
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
- SMU‐KI United Medical Inflammation CenterSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Liselotte Bäckdahl
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Rikard Holmdahl
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
- SMU‐KI United Medical Inflammation CenterSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
9
|
Kirpotina LN, Schepetkin IA, Hammaker D, Kuhs A, Khlebnikov AI, Quinn MT. Therapeutic Effects of Tryptanthrin and Tryptanthrin-6-Oxime in Models of Rheumatoid Arthritis. Front Pharmacol 2020; 11:1145. [PMID: 32792961 PMCID: PMC7394103 DOI: 10.3389/fphar.2020.01145] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/13/2020] [Indexed: 01/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease involving joint and bone damage that is mediated in part by proteases and cytokines produced by synovial macrophages and fibroblast-like synoviocytes (FLS). Although current biological therapeutic strategies for RA have been effective in many cases, new classes of therapeutics are needed. We investigated anti-inflammatory properties of the natural alkaloid tryptanthrin (TRYP) and its synthetic derivative tryptanthrin-6-oxime (TRYP-Ox). Both TRYP and TRYP-Ox inhibited matrix metalloproteinase (MMP)-3 gene expression in interleukin (IL)-1β-stimulated primary human FLS, as well as IL-1β–induced secretion of MMP-1/3 by FLS and synovial SW982 cells and IL-6 by FLS, SW982 cells, human umbilical vein endothelial cells (HUVECs), and monocytic THP-1 cells, although TRYP-Ox was generally more effective and had no cytotoxicity in vitro. Evaluation of the therapeutic potential of TRYP and TRYP-Ox in vivo in murine arthritis models showed that both compounds significantly attenuated the development of collagen-induced arthritis (CIA) and collagen-antibody–induced arthritis (CAIA), with comparable efficacy. Collagen II (CII)-specific antibody levels were similarly reduced in TRYP- and TRYP-Ox-treated CIA mice. TRYP and TRYP-Ox also suppressed proinflammatory cytokine production by lymph node cells from CIA mice, with TRYP-Ox being more effective in inhibiting IL-17A, granulocyte-macrophage colony-stimulating factor (GM-CSF), and receptor activator of nuclear factor-κB ligand (RANKL). Thus, even though TRYP-Ox generally had a better in vitro profile, possibly due to its ability to inhibit c-Jun N-terminal kinase (JNK), both TRYP and TRYP-Ox were equally effective in inhibiting the clinical symptoms and damage associated with RA. Overall, TRYP and/or TRYP-Ox may represent potential new directions for the pursuit of novel treatments for RA.
Collapse
Affiliation(s)
- Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Deepa Hammaker
- Division of Rheumatology, Allergy, and Immunology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Amanda Kuhs
- Division of Rheumatology, Allergy, and Immunology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Andrei I Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, Russia.,Research Institute of Biological Medicine, Altai State University, Barnaul, Russia
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
10
|
Palomares B, Garrido-Rodriguez M, Gonzalo-Consuegra C, Gómez-Cañas M, Saen-Oon S, Soliva R, Collado JA, Fernández-Ruiz J, Morello G, Calzado MA, Appendino G, Muñoz E. Δ 9 -Tetrahydrocannabinolic acid alleviates collagen-induced arthritis: Role of PPARγ and CB 1 receptors. Br J Pharmacol 2020; 177:4034-4054. [PMID: 32510591 DOI: 10.1111/bph.15155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Δ9 -Tetrahydrocannabinolic acid (Δ9 -THCA-A), the precursor of Δ9 -THC, is a non-psychotropic phytocannabinoid that shows PPARγ agonist activity. Here, we investigated the ability of Δ9 -THCA-A to modulate the classic cannabinoid CB1 and CB2 receptors and evaluated its anti-arthritis activity in vitro and in vivo. EXPERIMENTAL APPROACH Cannabinoid receptors binding and intrinsic activity, as well as their downstream signalling, were analysed in vitro and in silico. The anti-arthritis properties of Δ9 -THCA-A were studied in human chondrocytes and in the murine model of collagen-induced arthritis (CIA). Plasma disease biomarkers were identified by LC-MS/MS based on proteomic and elisa assays. KEY RESULTS Functional and docking analyses showed that Δ9 -THCA-A can act as an orthosteric CB1 receptor agonist and also as a positive allosteric modulator in the presence of CP-55,940. Also, Δ9 -THCA-A seemed to be an inverse agonist for CB2 receptors. In vivo, Δ9 -THCA-A reduced arthritis in CIA mice, preventing the infiltration of inflammatory cells, synovium hyperplasia, and cartilage damage. Furthermore, Δ9 -THCA-A inhibited expression of inflammatory and catabolic genes on knee joints. The anti-arthritic effect of Δ9 -THCA-A was blocked by either SR141716 or T0070907. Analysis of plasma biomarkers, and determination of cytokines and anti-collagen antibodies confirmed that Δ9 -THCA-A mediated its activity mainly through PPARγ and CB1 receptor pathways. CONCLUSION AND IMPLICATIONS Δ9 -THCA-A modulates CB1 receptors through the orthosteric and allosteric binding sites. In addition, Δ9 -THCA-A exerts anti-arthritis activity through CB1 receptors and PPARγ pathways, highlighting its potential for the treatment of chronic inflammatory diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Belén Palomares
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Córdoba, Spain.,Department of Cellular Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain
| | - Martín Garrido-Rodriguez
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Córdoba, Spain.,Department of Cellular Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain
| | - Claudia Gonzalo-Consuegra
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María Gómez-Cañas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | | | | | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Marco A Calzado
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Córdoba, Spain.,Department of Cellular Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
| | - Eduardo Muñoz
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Córdoba, Spain.,Department of Cellular Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain
| |
Collapse
|
11
|
Di Ceglie I, Kruisbergen NNL, van den Bosch MHJ, van Lent PLEM. Fc-gamma receptors and S100A8/A9 cause bone erosion during rheumatoid arthritis. Do they act as partners in crime? Rheumatology (Oxford) 2020; 58:1331-1343. [PMID: 31180451 DOI: 10.1093/rheumatology/kez218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
Bone erosion is one of the central hallmarks of RA and is caused by excessive differentiation and activation of osteoclasts. Presence of autoantibodies in seropositive arthritis is associated with radiographic disease progression. ICs, formed by autoantibodies and their antigens, activate Fcγ-receptor signalling in immune cells, and as such stimulate inflammation-mediated bone erosion. Interestingly, ICs can also directly activate osteoclasts by binding to FcγRs on their surface. Next to autoantibodies, high levels of alarmins, among which is S100A8/A9, are typical for RA and they can further activate the immune system but also directly promote osteoclast function. Therefore, IC-activated FcγRs and S100A8/A9 might act as partners in crime to stimulate inflammation and osteoclasts differentiation and function, thereby stimulating bone erosion. This review discusses the separate roles of ICs, FcγRs and alarmins in bone erosion and sheds new light on the possible interplay between them, which could fuel bone erosion.
Collapse
Affiliation(s)
- Irene Di Ceglie
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nik N L Kruisbergen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Kwon MS, Shin MY, Lim SK, Lee J, Park HK, Kim N, Yun M, Jo HE, Oh YJ, Choi HJ. Leuconostoc citreum isolated from kimchi suppresses the development of collagen-induced arthritis in DBA/1 mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
13
|
Hayashi H, Kaneko R, Demizu S, Akasaka D, Tayama M, Harada T, Irie H, Ogino Y, Fujino N, Sasaki E. TAS05567, a Novel Potent and Selective Spleen Tyrosine Kinase Inhibitor, Abrogates Immunoglobulin-Mediated Autoimmune and Allergic Reactions in Rodent Models. J Pharmacol Exp Ther 2018; 366:84-95. [PMID: 29728446 DOI: 10.1124/jpet.118.248153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 03/08/2025] Open
Abstract
Spleen tyrosine kinase (Syk) is involved in regulation of B-cell receptor (BCR) and Fc receptor downstream signal pathways. Syk plays an essential role in production of inflammatory mediators and differentiation in various immune cells and is therefore an attractive target for treating inflammatory conditions, such as autoimmune and allergic diseases. We identified TAS05567 as a highly selective Syk inhibitor and evaluated its therapeutic potential in animal models. In vitro biochemical assays were performed with available kinase assay panels. Inhibitory effects of TAS05567 on immune cells were analyzed by assessing the Syk downstream signaling pathway and production of inflammatory factors. In vivo effects of TAS05567 were evaluated in animal models of autoimmune diseases and antigen-specific IgE transgenic mice. TAS05567 inhibited only 4 of 191 kinases tested but inhibited Syk enzymatic activity with high potency. TAS05567 inhibited BCR-dependent signal transduction in Ramos cells, FcγR-mediated tumor necrosis factor-α production in THP-1 cells, and FcεR-mediated histamine release from RBL-2H3 cells. In rheumatoid arthritis models, TAS05567 suppressed hind-paw swelling in a dose-dependent manner compared with vehicle. Moreover, TAS05667 markedly reduced histopathologic scores in an established rat arthritis model. In a mouse immune thrombocytopenic purpura model, platelet counts were reduced with injection of anti-platelet antibody. TAS05567 prevented the platelet count decrease in a dose-dependent manner. Finally, TAS05567 treatment suppressed IgE-mediated ear swelling in vivo. Collectively, our data indicate TAS05567 is a selective Syk inhibitor and potential therapeutic candidate for treating humoral immune-mediated inflammatory conditions such as autoimmune and allergic diseases.
Collapse
Affiliation(s)
- Hiroaki Hayashi
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Ryusuke Kaneko
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Shunsuke Demizu
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Daichi Akasaka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Manabu Tayama
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Takafumi Harada
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Hiroki Irie
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Yoshio Ogino
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Naoko Fujino
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Eiji Sasaki
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| |
Collapse
|
14
|
Hagert C, Sareila O, Kelkka T, Nandakumar KS, Collin M, Xu B, Guérard S, Bäcklund J, Jalkanen S, Holmdahl R. Chronic Active Arthritis Driven by Macrophages Without Involvement of T Cells: A Novel Experimental Model of Rheumatoid Arthritis. Arthritis Rheumatol 2018. [PMID: 29513929 DOI: 10.1002/art.40482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To develop a new chronic rheumatoid arthritis model that is driven by the innate immune system. METHODS Injection of a cocktail of 4 monoclonal antibodies against type II collagen, followed on days 5 and 60 by intraperitoneal injections of mannan (from Saccharomyces cerevisiae), was used to induce development of chronic arthritis in B10.Q mice. The role of the innate immune system as compared to the adaptive immune system in this arthritis model was investigated using genetically modified mouse strains. RESULTS A new model of chronic relapsing arthritis was characterized in B10.Q mice, in which a persistently active, chronic disease was found. This relapsing disease was driven by macrophages lacking the ability to mount a reactive oxygen species response against pathogens, and was associated with the classical/alternative pathway, but not the lectin pathway, of complement activation. The disease was independent of Fcγ receptor type III, and also independent of the activity of adaptive immune cells (B and T cells), indicating that the innate immune system, involving complement activation, could be the sole driver of chronicity. CONCLUSION Chronic active arthritis can be driven innately by macrophages without the involvement of T and B cells in the adaptive immune system.
Collapse
Affiliation(s)
- Cecilia Hagert
- Medicity, University of Turku and the National Doctoral Programme in Informational and Structural Biology, Turku, Finland
| | - Outi Sareila
- Medicity, University of Turku, Turku, Finland.,Karolinska Institute, Stockholm, Sweden
| | - Tiina Kelkka
- Medicity, University of Turku and the Turku Doctoral Programme of Biomedical Sciences, Turku, Finland
| | | | | | - Bingze Xu
- Karolinska Institute, Stockholm, Sweden
| | | | | | | | - Rikard Holmdahl
- Karolinska Institute, Stockholm, Sweden.,Southern Medical University, Guangzhou, China.,Lund University, Lund, Sweden.,Medicity, University of Turku, The National Doctoral Programme in Informational and Structural Biology, and The Turku Doctoral Programme of Biomedical Sciences, Turku, Finland
| |
Collapse
|
15
|
Bartsch YC, Rahmöller J, Mertes MMM, Eiglmeier S, Lorenz FKM, Stoehr AD, Braumann D, Lorenz AK, Winkler A, Lilienthal GM, Petry J, Hobusch J, Steinhaus M, Hess C, Holecska V, Schoen CT, Oefner CM, Leliavski A, Blanchard V, Ehlers M. Sialylated Autoantigen-Reactive IgG Antibodies Attenuate Disease Development in Autoimmune Mouse Models of Lupus Nephritis and Rheumatoid Arthritis. Front Immunol 2018; 9:1183. [PMID: 29928274 PMCID: PMC5997785 DOI: 10.3389/fimmu.2018.01183] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/11/2018] [Indexed: 01/08/2023] Open
Abstract
Pro- and anti-inflammatory effector functions of IgG antibodies (Abs) depend on their subclass and Fc glycosylation pattern. Accumulation of non-galactosylated (agalactosylated; G0) IgG Abs in the serum of rheumatoid arthritis and systemic lupus erythematosus (SLE) patients reflects severity of the diseases. In contrast, sialylated IgG Abs are responsible for anti-inflammatory effects of the intravenous immunoglobulin (pooled human serum IgG from healthy donors), administered in high doses (2 g/kg) to treat autoimmune patients. However, whether low amounts of sialylated autoantigen-reactive IgG Abs can also inhibit autoimmune diseases is hardly investigated. Here, we explore whether sialylated autoantigen-reactive IgG Abs can inhibit autoimmune pathology in different mouse models. We found that sialylated IgG auto-Abs fail to induce inflammation and lupus nephritis in a B cell receptor (BCR) transgenic lupus model, but instead are associated with lower frequencies of pathogenic Th1, Th17 and B cell responses. In accordance, the transfer of small amounts of immune complexes containing sialylated IgG Abs was sufficient to attenuate the development of nephritis. We further showed that administration of sialylated collagen type II (Col II)-specific IgG Abs attenuated the disease symptoms in a model of Col II-induced arthritis and reduced pathogenic Th17 cell and autoantigen-specific IgG Ab responses. We conclude that sialylated autoantigen-specific IgG Abs may represent a promising tool for treating pathogenic T and B cell immune responses in autoimmune diseases.
Collapse
Affiliation(s)
- Yannic C Bartsch
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Johann Rahmöller
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany.,Department of Anesthesiology and Intensive Care, University of Lübeck and University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Maria M M Mertes
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Susanne Eiglmeier
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Felix K M Lorenz
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Alexander D Stoehr
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Dominique Braumann
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany.,Laboratory of Glycodesign and Glycoanalytics, Institute for Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - University Medicine Berlin, Berlin, Germany
| | - Alexandra K Lorenz
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - André Winkler
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Gina-Maria Lilienthal
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Janina Petry
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Juliane Hobusch
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Moritz Steinhaus
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Constanze Hess
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Vivien Holecska
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Carolin T Schoen
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Carolin M Oefner
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Alexei Leliavski
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Véronique Blanchard
- Laboratory of Glycodesign and Glycoanalytics, Institute for Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - University Medicine Berlin, Berlin, Germany
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany.,Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany.,Airway Research Center North (ARCN), University of Lübeck, German Center for Lung Research (DZL), Lübeck, Germany
| |
Collapse
|
16
|
Di Ceglie I, Ascone G, Cremers NAJ, Sloetjes AW, Walgreen B, Vogl T, Roth J, Verbeek JS, van de Loo FAJ, Koenders MI, van der Kraan PM, Blom AB, van den Bosch MHJ, van Lent PLEM. Fcγ receptor-mediated influx of S100A8/A9-producing neutrophils as inducer of bone erosion during antigen-induced arthritis. Arthritis Res Ther 2018; 20:80. [PMID: 29720243 PMCID: PMC5932875 DOI: 10.1186/s13075-018-1584-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/28/2018] [Indexed: 01/01/2023] Open
Abstract
Background Osteoclast-mediated bone erosion is a central feature of rheumatoid arthritis (RA). Immune complexes, present in a large percentage of patients, bind to Fcγ receptors (FcγRs), thereby modulating the activity of immune cells. In this study, we investigated the contribution of FcγRs, and FcγRIV in particular, during antigen-induced arthritis (AIA). Methods AIA was induced in knee joints of wild-type (WT), FcγRI,II,III−/−, and FcγRI,II,III,IV−/− mice. Bone destruction, numbers of tartrate-resistant acid phosphatase-positive (TRAP+) osteoclasts, and inflammation were evaluated using histology; expression of the macrophage marker F4/80, neutrophil marker NIMPR14, and alarmin S100A8 was evaluated using immunohistochemistry. The percentage of osteoclast precursors in the bone marrow was determined using flow cytometry. In vitro osteoclastogenesis was evaluated with TRAP staining, and gene expression was assessed using real-time PCR. Results FcγRI,II,III,IV−/− mice showed decreased bone erosion compared with WT mice during AIA, whereas both the humoral and cellular immune responses against methylated bovine serum albumin were not impaired in FcγRI,II,III,IV−/− mice. The percentage of osteoclast precursors in the bone marrow of arthritic mice and their ability to differentiate into osteoclasts in vitro were comparable between FcγRI,II,III,IV−/− and WT mice. In line with these observations, numbers of TRAP+ osteoclasts on the bone surface during AIA were comparable between the two groups. Inflammation, a process that strongly activates osteoclast activity, was reduced in FcγRI,II,III,IV−/− mice, and of note, mainly decreased numbers of neutrophils were present in the joint. In contrast to FcγRI,II,III,IV−/− mice, AIA induction in knee joints of FcγRI,II,III−/− mice resulted in increased bone erosion, inflammation, and numbers of neutrophils, suggesting a crucial role for FcγRIV in the joint pathology by the recruitment of neutrophils. Finally, significant correlations were found between bone erosion and the number of neutrophils present in the joint as well as between bone erosion and the number of S100A8-positive cells, with S100A8 being an alarmin strongly produced by neutrophils that stimulates osteoclast resorbing activity. Conclusions FcγRs play a crucial role in the development of bone erosion during AIA by inducing inflammation. In particular, FcγRIV mediates bone erosion in AIA by inducing the influx of S100A8/A9-producing neutrophils into the arthritic joint. Electronic supplementary material The online version of this article (10.1186/s13075-018-1584-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene Di Ceglie
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands
| | - Giuliana Ascone
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands
| | - Niels A J Cremers
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands
| | - Annet W Sloetjes
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands
| | - Birgitte Walgreen
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - J Sjef Verbeek
- Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Fons A J van de Loo
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands
| | - Marije I Koenders
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands
| | - Arjen B Blom
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands
| | - Martijn H J van den Bosch
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands
| | - Peter L E M van Lent
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands.
| |
Collapse
|
17
|
Fransen MF, Benonisson H, van Maren WW, Sow HS, Breukel C, Linssen MM, Claassens JWC, Brouwers C, van der Kaa J, Camps M, Kleinovink JW, Vonk KK, van Heiningen S, Klar N, van Beek L, van Harmelen V, Daxinger L, Nandakumar KS, Holmdahl R, Coward C, Lin Q, Hirose S, Salvatori D, van Hall T, van Kooten C, Mastroeni P, Ossendorp F, Verbeek JS. A Restricted Role for FcγR in the Regulation of Adaptive Immunity. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29523656 DOI: 10.4049/jimmunol.1700429] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
By their interaction with IgG immune complexes, FcγR and complement link innate and adaptive immunity, showing functional redundancy. In complement-deficient mice, IgG downstream effector functions are often impaired, as well as adaptive immunity. Based on a variety of model systems using FcγR-knockout mice, it has been concluded that FcγRs are also key regulators of innate and adaptive immunity; however, several of the model systems underpinning these conclusions suffer from flawed experimental design. To address this issue, we generated a novel mouse model deficient for all FcγRs (FcγRI/II/III/IV-/- mice). These mice displayed normal development and lymphoid and myeloid ontogeny. Although IgG effector pathways were impaired, adaptive immune responses to a variety of challenges, including bacterial infection and IgG immune complexes, were not. Like FcγRIIb-deficient mice, FcγRI/II/III/IV-/- mice developed higher Ab titers but no autoantibodies. These observations indicate a redundant role for activating FcγRs in the modulation of the adaptive immune response in vivo. We conclude that FcγRs are downstream IgG effector molecules with a restricted role in the ontogeny and maintenance of the immune system, as well as the regulation of adaptive immunity.
Collapse
Affiliation(s)
- Marieke F Fransen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Hreinn Benonisson
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Wendy W van Maren
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Heng Sheng Sow
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Cor Breukel
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Margot M Linssen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jill W C Claassens
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Conny Brouwers
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jos van der Kaa
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Marcel Camps
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jan Willem Kleinovink
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Kelly K Vonk
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Sandra van Heiningen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Ngaisah Klar
- Department of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Lianne van Beek
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Vanessa van Harmelen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Kutty S Nandakumar
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden.,School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Chris Coward
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Qingshun Lin
- Department of Pathology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Sachiko Hirose
- Toin Human Science and Technology Center, Department of Biomedical Engineering, Toin University of Yokohama, Yokohama 225-8502, Japan
| | - Daniela Salvatori
- Department of Anatomy, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Thorbald van Hall
- Department of Clinical Oncology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Piero Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - J Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands;
| |
Collapse
|
18
|
Nandakumar KS. Targeting IgG in Arthritis: Disease Pathways and Therapeutic Avenues. Int J Mol Sci 2018; 19:E677. [PMID: 29495570 PMCID: PMC5877538 DOI: 10.3390/ijms19030677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/25/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a polygenic and multifactorial syndrome. Many complex immunological and genetic interactions are involved in the final outcome of the clinical disease. Autoantibodies (rheumatoid factors, anti-citrullinated peptide/protein antibodies) are present in RA patients' sera for a long time before the onset of clinical disease. Prior to arthritis onset, in the autoantibody response, epitope spreading, avidity maturation, and changes towards a pro-inflammatory Fc glycosylation phenotype occurs. Genetic association of epitope specific autoantibody responses and the induction of inflammation dependent and independent changes in the cartilage by pathogenic autoantibodies emphasize the crucial contribution of antibody-initiated inflammation in RA development. Targeting IgG by glyco-engineering, bacterial enzymes to specifically cleave IgG/alter N-linked Fc-glycans at Asn 297 or blocking the downstream effector pathways offers new avenues to develop novel therapeutics for arthritis treatment.
Collapse
Affiliation(s)
- Kutty Selva Nandakumar
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China.
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
19
|
Dahdah A, Habir K, Nandakumar KS, Saxena A, Xu B, Holmdahl R, Malin S. Germinal Center B Cells Are Essential for Collagen-Induced Arthritis. Arthritis Rheumatol 2018; 70:193-203. [PMID: 29045049 DOI: 10.1002/art.40354] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/12/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is considered to be a prototypical autoimmune disorder. Several mechanisms have been proposed for the known pathologic function of B cells in RA, including antigen presentation, cytokine secretion, and humoral immunity. The aim of this study was to address the function of B lymphocytes in experimental arthritis. METHODS We mapped the adaptive immune response following collagen-induced arthritis (CIA). We subsequently monitored these responses and disease outcomes in genetically modified mouse strains that lack mature B cell or germinal center (GC) functionality in a B cell-intrinsic manner. RESULTS Following primary immunization, the draining lymph nodes broadly reacted against type II collagen (CII) with the formation of GCs and T cell activation. Mice that lacked mature B cell function were fully protected against CIA and had a severely attenuated ability to mount isotype-switched humoral immune responses against CII. Almost identical results were observed in mice that were selectively deficient in GC responses. Importantly, GC-deficient mice were fully susceptible to collagen antibody-induced arthritis. CONCLUSION We identified GC formation and anticollagen antibody production as the key pathogenic functions of B cells in CIA. The role of B cells in RA is likely to be more complex. However, targeting the GC reaction could allow for therapeutic interventions that are more refined than general B cell depletion.
Collapse
Affiliation(s)
- Albert Dahdah
- Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Katrin Habir
- Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Kutty Selva Nandakumar
- Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden, and Southern Medical University, Guangzhou, China
| | - Amit Saxena
- Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Bingze Xu
- Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Rikard Holmdahl
- Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Stephen Malin
- Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Strait RT, Thornton S, Finkelman FD. Cγ1 Deficiency Exacerbates Collagen-Induced Arthritis. Arthritis Rheumatol 2017; 68:1780-7. [PMID: 26815845 DOI: 10.1002/art.39611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 01/21/2016] [Indexed: 01/05/2023]
Abstract
OBJECTIVE IgG antibodies protect by aggregating pathogens and activating complement and stimulatory Fcγ receptors (FcγR). Although IgG1 accounts for a large percentage of murine serum antibodies, it poorly activates complement, binds more avidly to inhibitory FcγRIIb than to stimulatory FcγRIII, and has a relatively low aggregating ability. We previously demonstrated that IgG1 protects against complement- and FcγR-independent renal disease by inhibiting immune complex obstruction of glomerular capillaries. The purpose of this study was to determine whether IgG1 also protects against the complement- and FcγR-dependent disorder, collagen-induced arthritis (CIA). METHODS CIA was induced by injecting mice with type II collagen (CII) (active model) or with IgG2a and IgG2b anti-CII monoclonal antibodies (ArthritoMab) (passive model). Arthritis severity was assessed, and CII-specific IgG was titered. RESULTS Cγ1-deficient C57BL/6 mice lack IgG1 (IgG1(-/-) ); in these mice, arthritis developed at a higher frequency and was more severe compared with IgG1(+/+) mice in the active model. Disease was FcγRIII- and C3-dependent in both the IgG(+/+) and IgG(-/-) mouse strains and was not influenced by interleukin-4 receptor α in either strain. CII-specific IgG2a/c titers were considerably higher in IgG1(-/-) than in IgG1(+/+) mice and correlated with CIA incidence and severity. IgG1(+/+) mice that developed CIA had higher CII-specific IgG1 and IgG2a/c levels than did those without CIA. CII-inoculated BALB/c IgG1(+/+) and IgG1(-/-) mice had much lower CII-specific IgG2a/c titers than did C57BL/6 mice and failed to develop CIA but developed passive CIA when given ArthritoMab. CONCLUSION The absence of a functional Cγ1 gene indirectly promotes the development of CIA, likely through increased production of IgG2a/c, an isotype that strongly activates complement and stimulatory FcγR.
Collapse
Affiliation(s)
- Richard T Strait
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sherry Thornton
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Fred D Finkelman
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, and Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio
| |
Collapse
|
21
|
Yamashita M, Matsumoto K, Endo T, Ukibe K, Hosoya T, Matsubara Y, Nakagawa H, Sakai F, Miyazaki T. Preventive Effect of Lactobacillus helveticus SBT2171 on Collagen-Induced Arthritis in Mice. Front Microbiol 2017; 8:1159. [PMID: 28680422 PMCID: PMC5478730 DOI: 10.3389/fmicb.2017.01159] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/07/2017] [Indexed: 12/18/2022] Open
Abstract
We recently reported that the intraperitoneal inoculation of Lactobacillus helveticus SBT2171 inhibited the development of collagen-induced arthritis (CIA), a murine model of rheumatoid arthritis (RA). In the present study, we evaluated the effect of the oral administration of L. helveticus SBT2171 on CIA development and on the regulation of antigen-specific antibody production and inflammatory immune cells, which have been implicated in the development of RA. Both oral administration and intraperitoneal inoculation of L. helveticus SBT2171 reduced joint swelling, body weight loss, and the serum level of bovine type II collagen (CII)-specific antibodies in the CIA mouse model. The intraperitoneal inoculation also decreased the arthritis incidence, joint damage, and serum level of interleukin (IL)-6. In addition, the numbers of total immune cells, total B cells, germinal center B cells, and CD4+ T cells in the draining lymph nodes were decreased following intraperitoneal inoculation of L. helveticus SBT2171. These findings demonstrate the ability of L. helveticus SBT2171 to downregulate the abundance of immune cells and the subsequent production of CII-specific antibodies and IL-6, thereby suppressing the CIA symptoms, indicating its potential for use in the prevention of RA.
Collapse
Affiliation(s)
- Maya Yamashita
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd.Saitama, Japan
| | - Kurumi Matsumoto
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd.Saitama, Japan
| | - Tsutomu Endo
- Department of Orthopedic Surgery, Graduate School of Medicine, Hokkaido UniversitySapporo, Japan
| | - Ken Ukibe
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd.Saitama, Japan
| | - Tomohiro Hosoya
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd.Saitama, Japan
| | - Yumi Matsubara
- Department of Probiotics Immunology, Institute for Genetic Medicine, Hokkaido UniversitySapporo, Japan
| | - Hisako Nakagawa
- Department of Probiotics Immunology, Institute for Genetic Medicine, Hokkaido UniversitySapporo, Japan
| | - Fumihiko Sakai
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd.Saitama, Japan
| | - Tadaaki Miyazaki
- Department of Probiotics Immunology, Institute for Genetic Medicine, Hokkaido UniversitySapporo, Japan
| |
Collapse
|
22
|
Park JE, Rotondo JA, Cullins DL, Brand DD, Yi AK, Stuart JM, Kang AH, Myers LK. Characterization of the Syk-Dependent T Cell Signaling Response to an Altered Peptide. THE JOURNAL OF IMMUNOLOGY 2016; 197:4569-4575. [PMID: 27837109 DOI: 10.4049/jimmunol.1600771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/12/2016] [Indexed: 11/19/2022]
Abstract
Rheumatoid arthritis is an autoimmune disorder characterized by T cell dysregulation. We have shown that an altered peptide ligand (A9) activates T cells to use an alternate signaling pathway that is dependent on FcRγ and spleen tyrosine kinase, resulting in downregulation of inflammation. In the experiments described in this study, we have attempted to determine the molecular basis of this paradox. Three major Src family kinases found in T cells (Lck, Fyn, and Lyn) were tested for activation following stimulation by A9/I-Aq Unexpectedly we found they are not required for T cell functions induced by A9/I-Aq, nor are they required for APL stimulation of cytokines. On the other hand, the induction of the second messenger inositol trisphosphate and the mobilization of calcium are clearly triggered by the APL A9/I-Aq stimulation and are required for cytokine production, albeit the cytokines induced are different from those produced after activation of the canonical pathway. DBA/1 mice doubly deficient in IL-4 and IL-10 were used to confirm that these two cytokines are important for the APL-induced attenuation of arthritis. These studies provide a basis for exploring the effectiveness of analog peptides and the inhibitory T cells they induce as therapeutic tools for autoimmune arthritis.
Collapse
Affiliation(s)
- Jeoung-Eun Park
- Department of Medicine, University of Tennessee Health Science Center, Memphis TN 38163
| | - Jeffrey A Rotondo
- Department of Medicine, University of Tennessee Health Science Center, Memphis TN 38163
| | - David L Cullins
- Department of Medicine, University of Tennessee Health Science Center, Memphis TN 38163
| | - David D Brand
- Department of Medicine, University of Tennessee Health Science Center, Memphis TN 38163.,Research Service, Veterans Affairs Medical Center, Memphis TN 38104
| | - Ae-Kyung Yi
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis TN 38163; and
| | - John M Stuart
- Department of Medicine, University of Tennessee Health Science Center, Memphis TN 38163.,Research Service, Veterans Affairs Medical Center, Memphis TN 38104
| | - Andrew H Kang
- Department of Medicine, University of Tennessee Health Science Center, Memphis TN 38163.,Research Service, Veterans Affairs Medical Center, Memphis TN 38104
| | - Linda K Myers
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis TN 38163
| |
Collapse
|
23
|
Abstract
Basement membrane components are targets of autoimmune attack in diverse diseases that destroy kidneys, lungs, skin, mucous membranes, joints, and other organs in man. Epitopes on collagen and laminin, in particular, are targeted by autoantibodies and T cells in anti-glomerular basement membrane glomerulonephritis, Goodpasture's disease, rheumatoid arthritis, post-lung transplant bronchiolitis obliterans syndrome, and multiple autoimmune dermatoses. This review examines major diseases linked to basement membrane autoreactivity, with a focus on investigations in patients and animal models that advance our understanding of disease pathogenesis. Autoimmunity to glomerular basement membrane type IV is discussed in depth as a prototypic organ-specific autoimmune disease yielding novel insights into the complexity of anti-basement membrane immunity and the roles of genetic and environmental susceptibility.
Collapse
|
24
|
The relative merits of therapies being developed to tackle inappropriate ('self'-directed) complement activation. AUTOIMMUNITY HIGHLIGHTS 2016; 7:6. [PMID: 26935316 PMCID: PMC4775539 DOI: 10.1007/s13317-016-0078-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/03/2016] [Indexed: 12/11/2022]
Abstract
The complement system is an enzyme cascade that helps defend against infection. Many complement proteins occur in serum as inactive enzyme precursors or reside on cell surfaces. Complement components have many biologic functions and their activation can eventually damage the plasma membranes of cells and some bacteria. Although a direct link between complement activation and autoimmune diseases has not been found, there is increasing evidence that complement activation significantly contributes to the pathogenesis of a large number of inflammatory diseases that may have autoimmune linkage. The inhibition of complement may therefore be very important in a variety of autoimmune diseases since their activation may be detrimental to the individual involved. However, a complete and long-term inhibition of complement may have some contra side effects such as increased susceptibility to infection. The site of complement activation will, however, determine the type of inhibitor to be used, its route of application and dosage level. Compared with conventional drugs, complement inhibitors may be the best option for treatment of autoimmune diseases. The review takes a critical look at the relative merits of therapies being developed to tackle inappropriate complement activation that are likely to result in sporadic autoimmune diseases or worsen already existing one. It covers the complement system, general aspects of complement inhibition therapy, therapeutic strategies and examples of complement inhibitors. It concludes by highlighting on the possibility that a better inhibitor of complement activation when found will help provide a formidable treatment for autoimmune diseases as well as preventing one.
Collapse
|
25
|
Rosillo MA, Sánchez-Hidalgo M, González-Benjumea A, Fernández-Bolaños JG, Lubberts E, Alarcón-de-la-Lastra C. Preventive effects of dietary hydroxytyrosol acetate, an extra virgin olive oil polyphenol in murine collagen-induced arthritis. Mol Nutr Food Res 2015; 59:2537-46. [DOI: 10.1002/mnfr.201500304] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/08/2015] [Accepted: 09/11/2015] [Indexed: 12/22/2022]
Affiliation(s)
| | | | | | | | - Erik Lubberts
- Department of Rheumatology; Erasmus MC; University Medical Center; Rotterdam The Netherlands
| | | |
Collapse
|
26
|
Guillou C, Derambure C, Fréret M, Verdet M, Avenel G, Golinski ML, Sabourin JC, Loarer FL, Adriouch S, Boyer O, Lequerré T, Vittecoq O. Prophylactic Injection of Recombinant Alpha-Enolase Reduces Arthritis Severity in the Collagen-Induced Arthritis Mice Model. PLoS One 2015; 10:e0136359. [PMID: 26302382 PMCID: PMC4547710 DOI: 10.1371/journal.pone.0136359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/31/2015] [Indexed: 01/13/2023] Open
Abstract
Objective To evaluate the ability of the glycolytic enzyme alpha-enolase (ENO1) or its immunodominant peptide (pEP1) to reduce the severity of CIA in DBA/1 mice when injected in a prophylactic way. Methods Mice were treated with mouse ENO1 or pEP1 one day prior to collagen II immunization. Clinical assessment was evaluated using 4 parameters (global and articular scores, ankle thickness and weight). Titers of serum anti-ENO1, anti-cyclic citrullinated peptides (anti-CCP) and anti-CII (total IgG and IgG1/IgG2a isotypes) antibodies were measured by ELISA at different time-points. Disease activity was assessed by histological analysis of both anterior and hind paws at the end of experimentation. Results Prophylactic injection of 100 μg of ENO1 reduced severity of CIA. Serum levels of anti-CII antibodies were reduced in ENO1-treated mice. Concordantly, ENO1-treated mice joints presented less severe histological signs of arthritis. ENO1 did not induce a shift toward a Th2 response since IgG1/IgG2a ratio of anti-CII antibodies remained unchanged and IL-4 serum levels were similar to those measured in the control group. Conclusions Pre-immunization with ENO1 or its immunodominant peptide pEP1 reduces CIA severity at the clinical, immunological and histological levels. Effects of pEP1 were less pronounced. This immunomodulatory effect is associated with a reduction in anti-CII antibodies production but is not due to a Th1/Th2 shift.
Collapse
Affiliation(s)
- Clément Guillou
- INSERM, U905, Rouen, France
- Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Céline Derambure
- INSERM, U905, Rouen, France
- Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Manuel Fréret
- INSERM, U905, Rouen, France
- Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Mathieu Verdet
- Rouen University Hospital, Department of Rheumatology, Rouen, France
| | - Gilles Avenel
- Rouen University Hospital, Department of Rheumatology, Rouen, France
| | - Marie-Laure Golinski
- INSERM, U905, Rouen, France
- Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Jean-Christophe Sabourin
- Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
- Rouen University Hospital, Department of Pathology, Rouen, France
| | | | - Sahil Adriouch
- INSERM, U905, Rouen, France
- Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Olivier Boyer
- INSERM, U905, Rouen, France
- Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
- Rouen University Hospital, Department of Immunology, Rouen, France
| | - Thierry Lequerré
- INSERM, U905, Rouen, France
- Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
- Rouen University Hospital, Department of Rheumatology, Rouen, France
| | - Olivier Vittecoq
- INSERM, U905, Rouen, France
- Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
- Rouen University Hospital, Department of Rheumatology, Rouen, France
- * E-mail:
| |
Collapse
|
27
|
Human adipose-derived mesenchymal stem cells attenuate collagen antibody-induced autoimmune arthritis by inducing expression of FCGIIB receptors. BMC Musculoskelet Disord 2015. [PMID: 26210906 PMCID: PMC4515315 DOI: 10.1186/s12891-015-0634-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Adipose-derived stem cells (ASCs) are mesenchymal stem cells (MSCs) derived from adipose tissue. MSCs have multiple properties including anti-inflammatory and immunomodulatory effects in various disease models and human diseases. However, the mechanisms underlying this wide range of effects need to be explored. Methods Collagen antibody-induced arthritis (CAIA) is a unique model in which arthritis is rapidly and strongly induced. ASCs were intraperitoneally infused into CAIA mice before or after arthritis induction. The serum levels of various cytokines, adipokines, and chemokines were measured. The expression of FC gamma receptors (FCGRs) was investigated in peritoneal macrophages ex vivo. RAW264.7 cells and ASCs were co-cultured to elucidate the direct and indirect role of ASCs on FCGR expression. Results ASCs attenuated arthritis in CAIA mice. Serum levels of tumor necrosis factor α, interleukin (IL)-15, resistin, and leptin were reduced in ASC-treated CAIA mice, whereas serum levels of IL-6 and adiponectin were not affected. In peritoneal macrophages isolated from ASC-treated mice, expression of FCGRIIB, which is immunoinhibitory, was higher than that of FCGRI. Co-culture of ASCs with RAW264.7 cells modulated the expression of FCGRs. The expression patterns and timings of peak expression differed among FCGRs. Expression of FCGRIIB was higher and peaked earlier than that of FCGRI. FCGRIII expression was not affected by this co-culture. Conclusions This is a study to show that ASCs have anti-arthritic effects in CAIA mice. Modulation of FCGRs by ASCs might be a therapeutic mechanism in this antibody-associated arthritis model.
Collapse
|
28
|
Matt P, Lindqvist U, Kleinau S. Up-regulation of CD64-expressing monocytes with impaired FcγR function reflects disease activity in polyarticular psoriatic arthritis. Scand J Rheumatol 2015; 44:464-73. [PMID: 26084203 DOI: 10.3109/03009742.2015.1020864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The aim of this study was to assess monocyte Fc receptor (FcR) status and function in patients with active psoriatic arthritis (PsA) in relation to healthy controls (HC) and to disease activity. METHOD The study population comprised 23 patients with active polyarticular PsA and 33 age- and gender-matched HC. Immunoglobulin (Ig) levels, inflammatory laboratory parameters, patient-reported outcomes of joint disease activity, skin scoring (Psoriasis Area and Severity Index, PASI), and joint status were determined in the patients. Monocytes were analysed for the expression of FcRs for IgG (FcγR) class I (CD64), IIa (CD32a), IIb (CD32b), and III (CD16), the FcR for IgA (FcαR) (CD89), and surface-bound IgG. The monocytic FcγR function was assessed by evaluating IgG immune complex (IC) binding and tumour necrosis factor (TNF)-α production following IgG-IC stimulation. The monocytes were further subdivided and analysed according to their CD14 and CD16 expression. RESULTS The PsA patients presented elevated serum levels of IgG1, 2, and 3 and increased numbers of CD64(+) monocytes. Furthermore, the PsA monocytes exhibited increased cell-bound IgG, and the FcγR function was affected in terms of reduced IgG-IC-mediated TNF-α release. These findings correlated significantly with different markers of joint disease activity. PsA was also accompanied by an increase in the CD16 low-expressing monocyte subset. CONCLUSIONS An intensified humoral immune response affects monocytes and their FcR status in active polyarticular PsA. The up-regulated CD64(+) monocytes seem to be have an important role in psoriatic joint inflammation. These cells may prove to be a useful target in future PsA therapeutic interventions.
Collapse
Affiliation(s)
- P Matt
- a Department of Medical Sciences, Rheumatology , Uppsala University , Sweden.,b Department of Cellular and Molecular Biology , Uppsala University , Sweden
| | - U Lindqvist
- a Department of Medical Sciences, Rheumatology , Uppsala University , Sweden
| | - S Kleinau
- b Department of Cellular and Molecular Biology , Uppsala University , Sweden
| |
Collapse
|
29
|
Schepetkin IA, Kirpotina LN, Hammaker D, Kochetkova I, Khlebnikov AI, Lyakhov SA, Firestein GS, Quinn MT. Anti-Inflammatory Effects and Joint Protection in Collagen-Induced Arthritis after Treatment with IQ-1S, a Selective c-Jun N-Terminal Kinase Inhibitor. J Pharmacol Exp Ther 2015; 353:505-16. [PMID: 25784649 PMCID: PMC4429673 DOI: 10.1124/jpet.114.220251] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/17/2015] [Indexed: 12/16/2022] Open
Abstract
c-Jun N-terminal kinases (JNKs) participate in many physiologic and pathologic processes, including inflammatory diseases. We recently synthesized the sodium salt of IQ-1S (11H-indeno[1,2-b]quinoxalin-11-one oxime) and demonstrated that it is a high-affinity JNK inhibitor and inhibits murine delayed-type hypersensitivity. Here we show that IQ-1S is highly specific for JNK and that its neutral form is the most abundant species at physiologic pH. Molecular docking of the IQ-1S syn isomer into the JNK1 binding site gave the best pose, which corresponded to the position of cocrystallized JNK inhibitor SP600125 (1,9-pyrazoloanthrone). Evaluation of the therapeutic potential of IQ-1S showed that it inhibited matrix metalloproteinase 1 and 3 gene expression induced by interleukin-1β in human fibroblast-like synoviocytes and significantly attenuated development of murine collagen-induced arthritis (CIA). Treatment with IQ-1S either before or after induction of CIA resulted in decreased clinical scores, and joint sections from IQ-1S-treated CIA mice exhibited only mild signs of inflammation and minimal cartilage loss compared with those from control mice. Collagen II-specific antibody responses were also reduced by IQ-1S treatment. By contrast, the inactive ketone derivative 11H-indeno[1,2-b]quinoxalin-11-one had no effect on CIA clinical scores or collagen II-specific antibody titers. IQ-1S treatment also suppressed proinflammatory cytokine and chemokine levels in joints and lymph node cells. Finally, treatment with IQ-1S increased the number of Foxp3(+)CD4(+)CD25(+) regulatory T cells in lymph nodes. Thus, IQ-1S can reduce inflammation and cartilage loss associated with CIA and can serve as a small-molecule modulator for mechanistic studies of JNK function in rheumatoid arthritis.
Collapse
Affiliation(s)
- Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| | - Deepa Hammaker
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| | - Irina Kochetkova
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| | - Andrei I Khlebnikov
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| | - Sergey A Lyakhov
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| | - Gary S Firestein
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| |
Collapse
|
30
|
Myers LK, Cullins DL, Park JE, Yi AK, Brand DD, Rosloniec EF, Stuart JM, Kang AH. Peptide ligand structure and I-Aq binding avidity influence T cell signaling pathway utilization. Clin Immunol 2015; 160:188-97. [PMID: 25982319 DOI: 10.1016/j.clim.2015.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 11/29/2022]
Abstract
Factors that drive T cells to signal through differing pathways remain unclear. We have shown that an altered peptide ligand (A9) activates T cells to utilize an alternate signaling pathway which is dependent upon FcRγ and Syk. However, it remains unknown whether the affinity of peptide binding to MHC drives this selection. To answer this question we developed a panel of peptides designed so that amino acids interacting with the p6 and p9 predicted MHC binding pockets were altered. Analogs were tested for binding to I-A(q) using a competitive binding assay and selected analogs were administered to arthritic mice. Using the collagen-induced arthritis (CIA) model, arthritis severity was correlated with T cell cytokine production and molecular T cell signaling responses. We establish that reduced affinity of interaction with the MHC correlates with T cell signaling through the alternative pathway, leading ultimately to secretion of suppressive cytokines and attenuation of arthritis.
Collapse
Affiliation(s)
- Linda K Myers
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| | - David L Cullins
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Jeoung-Eun Park
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Ae-Kyung Yi
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - David D Brand
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Research Service, Veterans Affairs Medical Center, Memphis, TN 38104, United States
| | - Edward F Rosloniec
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Research Service, Veterans Affairs Medical Center, Memphis, TN 38104, United States
| | - John M Stuart
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Research Service, Veterans Affairs Medical Center, Memphis, TN 38104, United States
| | - Andrew H Kang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Research Service, Veterans Affairs Medical Center, Memphis, TN 38104, United States
| |
Collapse
|
31
|
Perilli E, Cantley M, Marino V, Crotti TN, Smith MD, Haynes DR, Dharmapatni AASSK. Quantifying not only bone loss, but also soft tissue swelling, in a murine inflammatory arthritis model using micro-computed tomography. Scand J Immunol 2015; 81:142-50. [PMID: 25424522 PMCID: PMC4329396 DOI: 10.1111/sji.12259] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/12/2014] [Indexed: 01/22/2023]
Abstract
In rodent models of inflammatory arthritis, bone erosion has been non-invasively assessed by micro-computed tomography (micro-CT). However, non-invasive assessments of paw swelling (oedema) are still based on clinical grading by visual evaluation, or measurements by callipers, not always reliable for the tiny mouse paws. The aim of this work was to demonstrate a novel straightforward 3D micro-CT analysis protocol capable of quantifying not only joint bone erosion, but also soft tissue swelling, from the same scans, in a rodent inflammatory arthritis model. Balb/c mice were divided into two groups: collagen antibody-induced arthritis (CAIA) and CAIA treated with prednisolone, the latter reflecting an established treatment in human rheumatoid arthritis. Clinical paw scores were recorded. On day 10, front paws were assessed by micro-CT and histology. Micro-CT measurements included paw volume (bone and soft tissue together) and bone volume at the radiocarpal joint, and bone volume from the radiocarpal to the metacarpophalangeal joint. Micro-CT analysis revealed significantly lower paw volume (−36%, P < 0.01) and higher bone volume (+17%, P < 0.05) in prednisolone-treated CAIA mice compared with untreated CAIA mice. Paw volume and bone volume assessed by micro-CT correlated significantly with clinical and histological scores (|r| > 0.5, P < 0.01). Untreated CAIA mice showed significantly higher clinical scores, higher inflammation levels histologically, cartilage and bone degradation, and pannus formation, compared with treated mice (P < 0.01). The presented novel micro-CT analysis protocol enables 3D-quantification of paw swelling at the micrometre level, along with the typically assessed bone erosion, using the same images/scans, without altering the scanning procedure or using contrast agents.
Collapse
Affiliation(s)
- E Perilli
- Medical Device Research Institute, School of Computer Science, Engineering & Mathematics, Flinders University, Bedford Park, SA, Australia
| | | | | | | | | | | | | |
Collapse
|
32
|
Kim JE, Chae CS, Kim GC, Hwang W, Hwang JS, Hwang SM, Kim Y, Ahn YT, Park SG, Jun CD, Rudra D, Im SH. Lactobacillus helveticus suppresses experimental rheumatoid arthritis by reducing inflammatory T cell responses. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
33
|
Activation of cannabinoid receptor 2 attenuates synovitis and joint distruction in collagen-induced arthritis. Immunobiology 2014; 220:817-22. [PMID: 25601571 DOI: 10.1016/j.imbio.2014.12.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/24/2014] [Accepted: 12/22/2014] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Recent studies have suggested immunomodulatory and anti-inflammatory effects of cannabinoid receptor 2 (CB2R) activation, which is devoid of psychoactivity. We have demonstrated the expression of CB2R in synovial tissue from patients with rheumatoid arthritis (RA), and its specific activation shows inhibitory effects on fibroblast-like synoviocytes. However, it is still unclear whether selective activation of CB2R inhibits joint inflammation or protects joint damage in RA. METHODS A murine model of collagen-induced arthritis (CIA) was used to evaluate the therapeutic efficacy of HU-308, a selective CB2R agonist. The disease severity was evaluated by semi-quantitative scoring of joint swelling, histological assessment of joint inflammation and structure, and radiographic assessment of joint destruction by using digital plain radiographs and micro-CT scans. The concentrations of various isotypes of anti-collagen II antibodies in sera and the levels of cytokines in culture supernatants were determined by ELISA. RESULTS Compared with vehicle treatment, protective treatment with intraperitoneal injection of HU-308 (0.3-1.0 mg/kg) failed to decrease the incidence of the development of CIA, but it effectively suppressed the severity of the disease. In CIA mice, treatment with HU-308 significantly decreased joint swelling, synovial inflammation, and joint destruction, as well as serum levels of anti-collagen II antibodies. In vitro, HU-308 (1-10 μM) significantly suppressed the production of proinflammatory cytokines IL-6 and TNF-α from lipopolysaccharide-stimulated murine peritoneal macrophages with intact CB2R in dose-dependent manners. HU-308 failed to elicit any inhibitory effect of on lipopolysaccharide-stimulated macrophages from CB2R-knockout mice. CONCLUSIONS Activation of CB2R by HU-308 has therapeutic potential for RA to suppress synovitis and alleviate joint destruction by inhibiting the production of autoantibodies and proinflammatory cytokines.
Collapse
|
34
|
el Bannoudi H, Ioan-Facsinay A, Toes REM. Bridging autoantibodies and arthritis: the role of Fc receptors. Curr Top Microbiol Immunol 2014; 382:303-19. [PMID: 25116106 DOI: 10.1007/978-3-319-07911-0_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Autoantibodies represent a hallmark of Rheumatoid arthritis (RA), which is a chronic inflammatory autoimmune disease characterized by inflammation and damage in the joints. Anti-Citrullinated Protein Antibodies (ACPA) are the most prominent autoantibodies present in RA patients. These autoantibodies have been intensively investigated during the last 20 years due to their diagnostic and predictive value. Furthermore, they are believed to be involved in mediating the damage associated with RA. Antibodies of the IgG isotype interact with the immune system via Fcγ receptors expressed on immune cells as well as nonimmune cells. These receptors, therefore, form the bridge between Fcγ receptor-positive cells and antibodies complexed to antigen allowing the modulation and activation of cellular immune responses that are involved in immune defense against invading microorganisms. However, in case triggered by antibodies against self-antigens, they can also play a pivotal role in the induction and perpetuation of autoimmune diseases such as RA. Mouse models have been indispensably important for understanding the role of Fcγ receptors in the development of arthritis. Here we discuss the contribution of autoantibodies to the pathogenesis of arthritis in preclinical animal models, as well as RA, in relation to their interaction with the different (immune inhibitory and activating) Fcγ receptors.
Collapse
Affiliation(s)
- Hanane el Bannoudi
- Department of Rheumatology, Leiden University Medical Center, C1-R, Albinusdreef 2, 2333, Leiden, ZA, The Netherlands
| | | | | |
Collapse
|
35
|
Li WW, Guo TZ, Shi X, Czirr E, Stan T, Sahbaie P, Wyss-Coray T, Kingery WS, Clark JD. Autoimmunity contributes to nociceptive sensitization in a mouse model of complex regional pain syndrome. Pain 2014; 155:2377-89. [PMID: 25218828 DOI: 10.1016/j.pain.2014.09.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/20/2014] [Accepted: 09/03/2014] [Indexed: 12/11/2022]
Abstract
Complex regional pain syndrome (CRPS) is a painful, disabling, chronic condition whose etiology remains poorly understood. The recent suggestion that immunological mechanisms may underlie CRPS provides an entirely novel framework in which to study the condition and consider new approaches to treatment. Using a murine fracture/cast model of CRPS, we studied the effects of B-cell depletion using anti-CD20 antibodies or by performing experiments in genetically B-cell-deficient (μMT) mice. We observed that mice treated with anti-CD20 developed attenuated vascular and nociceptive CRPS-like changes after tibial fracture and 3 weeks of cast immobilization. In mice with established CRPS-like changes, the depletion of CD-20+ cells slowly reversed nociceptive sensitization. Correspondingly, μMT mice, deficient in producing immunoglobulin M (IgM), failed to fully develop CRPS-like changes after fracture and casting. Depletion of CD20+ cells had no detectable effects on nociceptive sensitization in a model of postoperative incisional pain, however. Immunohistochemical experiments showed that CD20+ cells accumulate near the healing fracture but few such cells collect in skin or sciatic nerves. On the other hand, IgM-containing immune complexes were deposited in skin and sciatic nerve after fracture in wild-type, but not in μMT fracture/cast, mice. Additional experiments demonstrated that complement system activation and deposition of membrane attack complexes were partially blocked by anti-CD20+ treatment. Collectively, our results suggest that CD20-positive B cells produce antibodies that ultimately support the CRPS-like changes in the murine fracture/cast model. Therapies directed at reducing B-cell activity may be of use in treating patients with CRPS.
Collapse
Affiliation(s)
- Wen-Wu Li
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA
| | - Tian-Zhi Guo
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Xiaoyou Shi
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA
| | - Eva Czirr
- Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Trisha Stan
- Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Peyman Sahbaie
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA
| | - Tony Wyss-Coray
- Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Wade S Kingery
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - J David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
36
|
Gully N, Bright R, Marino V, Marchant C, Cantley M, Haynes D, Butler C, Dashper S, Reynolds E, Bartold M. Porphyromonas gingivalis peptidylarginine deiminase, a key contributor in the pathogenesis of experimental periodontal disease and experimental arthritis. PLoS One 2014; 9:e100838. [PMID: 24959715 PMCID: PMC4069180 DOI: 10.1371/journal.pone.0100838] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/21/2014] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES To investigate the suggested role of Porphyromonas gingivalis peptidylarginine deiminase (PAD) in the relationship between the aetiology of periodontal disease and experimentally induced arthritis and the possible association between these two conditions. METHODS A genetically modified PAD-deficient strain of P. gingivalis W50 was produced. The effect of this strain, compared to the wild type, in an established murine model for experimental periodontitis and experimental arthritis was assessed. Experimental periodontitis was induced following oral inoculation with the PAD-deficient and wild type strains of P. gingivalis. Experimental arthritis was induced via the collagen antibody induction process and was monitored by assessment of paw swelling and micro-CT analysis of the radio-carpal joints. Experimental periodontitis was monitored by micro CT scans of the mandible and histological assessment of the periodontal tissues around the mandibular molars. Serum levels of anti-citrullinated protein antibodies (ACPA) and P. gingivalis were assessed by ELISA. RESULTS The development of experimental periodontitis was significantly reduced in the presence of the PAD-deficient P. gingivalis strain. When experimental arthritis was induced in the presence of the PAD-deficient strain there was less paw swelling, less erosive bone damage to the joints and reduced serum ACPA levels when compared to the wild type P. gingivalis inoculated group. CONCLUSION This study has demonstrated that a PAD-deficient strain of P. gingivalis was associated with significantly reduced periodontal inflammation. In addition the extent of experimental arthritis was significantly reduced in animals exposed to prior induction of periodontal disease through oral inoculation of the PAD-deficient strain versus the wild type. This adds further evidence to the potential role for P. gingivalis and its PAD in the pathogenesis of periodontitis and exacerbation of arthritis. Further studies are now needed to elucidate the mechanisms which drive these processes.
Collapse
Affiliation(s)
- Neville Gully
- Colgate Australian Clinical Dental Research, School of Dentistry, University of Adelaide, Adelaide, South Australia, Australia
| | - Richard Bright
- Colgate Australian Clinical Dental Research, School of Dentistry, University of Adelaide, Adelaide, South Australia, Australia
| | - Victor Marino
- Colgate Australian Clinical Dental Research, School of Dentistry, University of Adelaide, Adelaide, South Australia, Australia
| | - Ceilidh Marchant
- Colgate Australian Clinical Dental Research, School of Dentistry, University of Adelaide, Adelaide, South Australia, Australia
| | - Melissa Cantley
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - David Haynes
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Catherine Butler
- Oral Health Collaborative Research Centre, Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stuart Dashper
- Oral Health Collaborative Research Centre, Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Eric Reynolds
- Oral Health Collaborative Research Centre, Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mark Bartold
- Colgate Australian Clinical Dental Research, School of Dentistry, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
37
|
Autoantibodies to posttranslational modifications in rheumatoid arthritis. Mediators Inflamm 2014; 2014:492873. [PMID: 24782594 PMCID: PMC3981057 DOI: 10.1155/2014/492873] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/10/2014] [Indexed: 12/11/2022] Open
Abstract
Autoantibodies have been associated with human pathologies for a long time, particularly with autoimmune diseases (AIDs). Rheumatoid factor (RF) is known since the late 1930s to be associated with rheumatoid arthritis (RA). The discovery of anticitrullinated protein antibodies in the last century has changed this and other posttranslational modifications (PTM) relevant to RA have since been described. Such PTM introduce neoepitopes in proteins that can generate novel autoantibody specificities. The recent recognition of these novel specificities in RA provides a unique opportunity to understand human B-cell development in vivo. In this paper, we will review the three of the main classes of PTMs already associated with RA: citrullination, carbamylation, and oxidation. With the advancement of research methodologies it should be expected that other autoantibodies against PTM proteins could be discovered in patients with autoimmune diseases. Many of such autoantibodies may provide significant biomarker potential.
Collapse
|
38
|
Jacques P, Lambrecht S, Verheugen E, Pauwels E, Kollias G, Armaka M, Verhoye M, Van der Linden A, Achten R, Lories RJ, Elewaut D. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann Rheum Dis 2014; 73:437-45. [PMID: 23921997 DOI: 10.1136/annrheumdis-2013-203643] [Citation(s) in RCA: 316] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Spondyloarthritides (SpA) are characterised by both peripheral and axial arthritis. The hallmarks of peripheral SpA are the development of enthesitis, most typically of the Achilles tendon and plantar fascia, and new bone formation. This study was undertaken to unravel the mechanisms leading towards enthesitis and new bone formation in preclinical models of SpA. RESULTS First, we demonstrated that TNF(ΔARE) mice show typical inflammatory features highly reminiscent of SpA. The first signs of inflammation were found at the entheses. Importantly, enthesitis occurred equally in the presence or absence of mature T and B cells, underscoring the importance of stromal cells. Hind limb unloading in TNF(ΔARE) mice significantly suppressed inflammation of the Achilles tendon compared with weight bearing controls. Erk1/2 signalling plays a crucial role in mechanotransduction-associated inflammation. Furthermore, new bone formation is strongly promoted at entheseal sites by biomechanical stress and correlates with the degree of inflammation. CONCLUSIONS These findings provide a formal proof of the concept that mechanical strain drives both entheseal inflammation and new bone formation in SpA.
Collapse
Affiliation(s)
- Peggy Jacques
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, University Hospital, , Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rowley MJ, Nandakumar KS, Holmdahl R. The role of collagen antibodies in mediating arthritis. Mod Rheumatol 2014. [DOI: 10.3109/s10165-008-0080-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Jain E, Kumar A. Disposable polymeric cryogel bioreactor matrix for therapeutic protein production. Nat Protoc 2013; 8:821-35. [PMID: 23558783 DOI: 10.1038/nprot.2013.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Low cost and high efficiency make disposable bioreactors feasible for small-scale therapeutic development and initial clinical trials. We have developed a cryogel-based disposable bioreactor matrix, which has been used for production of protein therapeutics such as urokinase and monoclonal antibodies (mAbs). The protocol discusses the application of a cryogel bioreactor for mAb production. Cryogels composed of either polyacrylamide (PAAm) coupled to gelatin or semi-interpenetrating PAAm-chitosan are synthesized by free-radical polymerization at -12 °C. Hybridoma cells are immobilized over the cryogel bioreactor and incubated for 48 h. Medium is circulated thereafter at 0.2 ml min(-1) and bioreactors can be run continuously for 60 d. The cryogel-based packed-bed bioreactor can be formulated as a monolith or as beads; it also has an efficiency four times what can be obtained using a tissue-culture flask, a high surface-to-volume ratio and effective nutrient transport. After incubation, the bioreactor setup will take about 60 min using a pre-prepared sterilized cryogel.
Collapse
Affiliation(s)
- Era Jain
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | | |
Collapse
|
41
|
Olaru F, Wang XP, Luo W, Ge L, Miner JH, Kleinau S, Geiger XJ, Wasiluk A, Heidet L, Kitching AR, Borza DB. Proteolysis breaks tolerance toward intact α345(IV) collagen, eliciting novel anti-glomerular basement membrane autoantibodies specific for α345NC1 hexamers. THE JOURNAL OF IMMUNOLOGY 2013; 190:1424-32. [PMID: 23303673 DOI: 10.4049/jimmunol.1202204] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Goodpasture disease is an autoimmune kidney disease mediated by autoantibodies against noncollagenous domain 1 (NC1) monomers of α3(IV) collagen that bind to the glomerular basement membrane (GBM), usually causing rapidly progressive glomerulonephritis (GN). We identified a novel type of human IgG4-restricted anti-GBM autoantibodies associated with mild nonprogressive GN, which specifically targeted α345NC1 hexamers but not α3NC1 monomers. The mechanisms eliciting these anti-GBM autoantibodies were investigated in mouse models recapitulating this phenotype. Wild-type and FcγRIIB(-/-) mice immunized with autologous murine GBM NC1 hexamers produced mouse IgG1-restricted autoantibodies specific for α345NC1 hexamers, which bound to the GBM in vivo but did not cause GN. In these mice, intact collagen IV from murine GBM was not immunogenic. However, in Col4a3(-/-) Alport mice, both intact collagen IV and NC1 hexamers from murine GBM elicited IgG Abs specific for α345NC1 hexamers, which were not subclass restricted. As heterologous Ag in COL4A3-humanized mice, murine GBM NC1 hexamers elicited mouse IgG1, IgG2a, and IgG2b autoantibodies specific for α345NC1 hexamers and induced anti-GBM Ab GN. These findings indicate that tolerance toward autologous intact α345(IV) collagen is established in hosts expressing this Ag, even though autoreactive B cells specific for α345NC1 hexamers are not purged from their repertoire. Proteolysis selectively breaches this tolerance by generating autoimmunogenic α345NC1 hexamers. This provides a mechanism eliciting autoantibodies specific for α345NC1 hexamers, which are restricted to noninflammatory IgG subclasses and are nonnephritogenic. In Alport syndrome, lack of tolerance toward α345(IV) collagen promotes production of alloantibodies to α345NC1 hexamers, including proinflammatory IgG subclasses that mediate posttransplant anti-GBM nephritis.
Collapse
Affiliation(s)
- Florina Olaru
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Williams JW, Tjota MY, Sperling AI. The contribution of allergen-specific IgG to the development of th2-mediated airway inflammation. J Allergy (Cairo) 2012; 2012:236075. [PMID: 23150737 PMCID: PMC3485540 DOI: 10.1155/2012/236075] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/18/2012] [Indexed: 01/01/2023] Open
Abstract
In both human asthmatics and animal models of allergy, allergen-specific IgG can contribute to Th2-mediated allergic inflammation. Mouse models have elucidated an important role for IgG and Fc-gamma receptor (FcγR) signaling on antigen presenting cells (APC) for the induction of airway inflammation. These studies suggest a positive feedback loop between IgG produced by the adaptive B cell response and FcγR signaling on innate immune cells. Studies of IgG and FcγRs in humans with asthma or allergic lung disease have been more controversial. Some reports have identified associations between allergen-specific IgG and severity of allergic responses, while other studies have found associations of IgG subclass IgG4 with allergic tolerance. In this paper, we review the literature to help define the nature of IgG and FcγR signaling on innate immune cells and how it contributes to the development of allergic immune responses.
Collapse
Affiliation(s)
- Jesse W. Williams
- Committee on Molecular Pathology and Molecular Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Melissa Y. Tjota
- Interdisciplinary Scientist Training Program and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Anne I. Sperling
- Committee on Molecular Pathology and Molecular Medicine, University of Chicago, Chicago, IL 60637, USA
- Interdisciplinary Scientist Training Program and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
43
|
Abstract
Treatment of rheumatoid arthritis (RA) has dramatically changed during the last 15 years. A limited number of conventional disease-modifying antirheumatic drugs (DMARD) in combination with non-steroid anti-inflammatory drugs (NSAID) and corticosteroids are facing a variety of biologics that are increasingly being used. Because of the high costs of biologics as well as the necessity for subcutaneous or intravenous administration, there is currently a growing interest in new and potent oral compounds such as the small molecules. Inflammatory pathways and mechanisms in signal transduction have been characterized in detail. Instead of neutralizing the action of a proinflammatory cytokine by antagonizing its biologic effect by an antibody, these small molecules interfere with the intracellular pathways of the inflammatory cascade. Intracellular kinases are among these enzymes which are crucially involved in intracellular signal transduction. Kinase inhibitors have been successfully used within the last few years in the treatment of various hematological malignancies, such as imatinib in patients with chronic myeloid leukemia. More recently, the Janus kinase (JAK) inhibitor tofacitinib has been evaluated as a potential new treatment option in RA and is awaiting approval. While an overview about JAK inhibition will be given elsewhere, other inhibitors such as spleen tyrosine kinase (Syk) inhibitor, mitogen-activated protein kinase (MAPK) inhibitor and Bruton's tyrosine kinase (Btk) inhibitor are currently in preclinical and clinical development.
Collapse
Affiliation(s)
- A Rubbert-Roth
- Med. Klinik I, Universität zu Köln, Joseph-Stelzmann Str. 9, 50924, Köln, Deutschland.
| |
Collapse
|
44
|
Park JE, Cullins D, Zalduondo L, Barnett SL, Yi AK, Kleinau S, Stuart JM, Kang AH, Myers LK. Molecular basis for T cell response induced by altered peptide ligand of type II collagen. J Biol Chem 2012; 287:19765-74. [PMID: 22511761 PMCID: PMC3366009 DOI: 10.1074/jbc.m112.349688] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/10/2012] [Indexed: 11/06/2022] Open
Abstract
Mounting evidence from animal models has demonstrated that alterations in peptide-MHC interactions with the T cell receptor (TCR) can lead to dramatically different T cell outcomes. We have developed an altered peptide ligand of type II collagen, referred to as A9, which differentially regulates TCR signaling in murine T cells leading to suppression of arthritis in the experimental model of collagen-induced arthritis. This study delineates the T cell signaling pathway used by T cells stimulated by the A9·I-A(q) complex. We have found that T cells activated by A9 bypass the requirement for Zap-70 and CD3-ζ and signal via FcRγ and Syk. Using collagen-specific T cell hybridomas engineered to overexpress either Syk, Zap-70, TCR-FcRγ, or CD3-ζ, we demonstrate that A9·I-A(q) preferentially activates FcRγ/Syk but not CD3-ζ/Zap-70. Moreover, a genetic absence of Syk or FcRγ significantly reduces the altered peptide ligand induction of the nuclear factor GATA3. By dissecting the molecular mechanism of A9-induced T cell signaling we have defined a new alternate pathway that is dependent upon FcRγ and Syk to secrete immunoregulatory cytokines. Given the interest in using Syk inhibitors to treat patients with rheumatoid arthritis, understanding this pathway may be critical for the proper application of this therapy.
Collapse
Affiliation(s)
| | | | - Lillian Zalduondo
- Comparative Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Stacey L. Barnett
- Comparative Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | | | - Sandra Kleinau
- the Department of Cell and Molecular Biology, Uppsala University, Box 256, 751 05 Uppsala, Sweden
| | - John M. Stuart
- Departments of Medicine
- Research Service, Veterans Affairs Medical Center, Memphis, Tennessee 38104, and
| | - Andrew H. Kang
- Departments of Medicine
- Research Service, Veterans Affairs Medical Center, Memphis, Tennessee 38104, and
| | | |
Collapse
|
45
|
Szarka E, Neer Z, Balogh P, Adori M, Angyal A, Prechl J, Kiss E, Kövesdi D, Sármay G. Exacerbation of collagen induced arthritis by Fcγ receptor targeted collagen peptide due to enhanced inflammatory chemokine and cytokine production. Biologics 2012; 6:101-15. [PMID: 22532778 PMCID: PMC3333823 DOI: 10.2147/btt.s29749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Antibodies specific for bovine type II collagen (CII) and Fcγ receptors play a major role in collagen-induced arthritis (CIA), a mouse model of rheumatoid arthritis (RA). Our aim was to clarify the mechanism of immune complex-mediated inflammation and modulation of the disease. CII pre-immunized DBA/1 mice were intravenously boosted with extravidin coupled biotinylated monomeric CII-peptide epitope (ARGLTGRPGDA) and its complexes with biotinylated FcγRII/III specific single chain Fv (scFv) fragment. Disease scores were monitored, antibody titers and cytokines were determined by ELISA, and binding of complexes was detected by flow cytometry and immune histochemistry. Cytokine and chemokine secretion was monitored by protein profiler microarray. When intravenously administered into collagen-primed DBA/1 mice, both CII-peptide and its complex with 2.4G2 scFv significantly accelerated CIA and increased the severity of the disease, whereas the monomeric peptide and monomeric 2.4G2 scFv had no effect. FcγRII/III targeted CII-peptide complexes bound to marginal zone macrophages and dendritic cells, and significantly elevated the synthesis of peptide-specific IgG2a. Furthermore, CII-peptide containing complexes augmented the in vivo secretion of cytokines, including IL-10, IL-12, IL-17, IL-23, and chemokines (CXCL13, MIP-1, MIP-2). These data indicate that complexes formed by the CII-peptide epitope aggravate CIA by inducing the secretion of chemokines and the IL-12/23 family of pro-inflammatory cytokines. Taken together, these results suggest that the in vivo emerging immune complexes formed with autoantigen(s) may trigger the IL-12/23 dependent pathways, escalating the inflammation in RA. Thus blockade of these cytokines may be beneficial to downregulate immune complex-induced inflammation in autoimmune arthritis.
Collapse
Affiliation(s)
- Eszter Szarka
- Department of Immunology, Eötvös Loránd University, 1117 Budapest
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
El-Malky M, Nabih N, Heder M, Saudy N, El-Mahdy M. Helminth infections: therapeutic potential in autoimmune disorders. Parasite Immunol 2012; 33:589-93. [PMID: 21797885 DOI: 10.1111/j.1365-3024.2011.01324.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Knowledge of immunity enables us to predict that the reactions set in response to infection with helminth would prevent concomitant disease driven by an opposing spectrum of immune events. In another way, the immune response generated to combat the helminth infection could counteract the immunopathological reactions that drive autoimmune diseases. Rodent model systems recapitulate many aspects of human autoimmune diseases and have been enormously useful in defining mechanisms of immunopathology after infection. From this theoretical perspective, many researchers have proved that infection with a variety of helminth can ameliorate disease in murine model systems. Thus, helminth-evoked Th2 events were shown to improve disorders in which Th1 events predominated. This raised the question, 'Can this information be translated into therapies for autoimmune diseases in humans via actual infection, cell delivery or drug intervention?' In this review, we will present some experimental trails to treat autoimmune disorders through establishment of some parasitic infections.
Collapse
Affiliation(s)
- M El-Malky
- Departments of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | | | | | | |
Collapse
|
47
|
Abstract
The role of B cells in autoimmune diseases involves different cellular functions, including the well-established secretion of autoantibodies, autoantigen presentation and ensuing reciprocal interactions with T cells, secretion of inflammatory cytokines, and the generation of ectopic germinal centers. Through these mechanisms B cells are involved both in autoimmune diseases that are traditionally viewed as antibody mediated and also in autoimmune diseases that are commonly classified as T cell mediated. This new understanding of the role of B cells opened up novel therapeutic options for the treatment of autoimmune diseases. This paper includes an overview of the different functions of B cells in autoimmunity; the involvement of B cells in systemic lupus erythematosus, rheumatoid arthritis, and type 1 diabetes; and current B-cell-based therapeutic treatments. We conclude with a discussion of novel therapies aimed at the selective targeting of pathogenic B cells.
Collapse
Affiliation(s)
- Christiane S. Hampe
- Department of Medicine, University of Washington, SLU-276, 850 Republican, Seattle, WA 98109, USA
- *Christiane S. Hampe:
| |
Collapse
|
48
|
Dobritzsch D, Lindh I, Uysal H, Nandakumar KS, Burkhardt H, Schneider G, Holmdahl R. Crystal structure of an arthritogenic anticollagen immune complex. ACTA ACUST UNITED AC 2011; 63:3740-8. [DOI: 10.1002/art.30611] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Koobkokkruad T, Kadotani T, Hutamekalin P, Mizutani N, Yoshino S. Arthrogenicity of type II collagen monoclonal antibodies associated with complement activation and antigen affinity. JOURNAL OF INFLAMMATION-LONDON 2011; 8:31. [PMID: 22054174 PMCID: PMC3217917 DOI: 10.1186/1476-9255-8-31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 11/04/2011] [Indexed: 11/16/2022]
Abstract
Background The collagen antibody-induced arthritis (CAIA) model, which employs a cocktail of monoclonal antibodies (mAbs) to type II collagen (CII), has been widely used for studying the pathogenesis of autoimmune arthritis. In this model, not all mAbs to CII are capable of inducing arthritis because one of the initial events is the formation of collagen-antibody immune complexes on the cartilage surface or in the synovium, and subsequent activation of the complement by the complexes induces arthritis, suggesting that a combination of mAbs showing strong ability to bind mouse CII and activate the complement may effectively induce arthritis in mice. In the present study, we examined the relationship between the induction of arthritis by the combination of IgG2a (CII-6 and C2A-12), IgG2b (CII-3, C2B-14 and C2B-16) and IgM (CM-5) subclones of monoclonal antibodies (mAb) of anti-bovine or chicken CII and the ability of mAbs to activate complement and bind mouse CII. Methods DBA/1J mice were injected with several combinations of mAbs followed by lipopolysaccharide. Furthermore, the ability of mAbs to activate the complement and bind mouse CII was examined by ELISA. Results First, DBA/1J mice were injected with the combined 4 mAbs (CII-3, CII-6, C2B-14, and CM-5) followed by lipopolysaccharide, resulting in moderate arthritis. Excluding one of the mAbs, i.e., using only CII-3, CII-6, and C2B-14, induced greater inflammation of the joints. Next, adding C2A-12 but not C2B-16 to these 3 mAbs produced more severe arthritis. A combination of five clones, consisting of all 5 mAbs, was less effective. Histologically, mice given the newly developed 4-clone cocktail had marked proliferation of synovial tissues, massive infiltration by inflammatory cells, and severe destruction of cartilage and bone. Furthermore, 4 of the 6 clones (CII-3, CII-6, C2B-14, and C2A-12) showed not only a strong cross-reaction with mouse CII but also marked activation of the complement in vitro. Conclusion The combination of 4 mAbs showing strong abilities to activate the complement and bind mouse CII effectively induced arthritis in DBA/1J mice. This in vitro system may be useful for the selection of mAbs associated with the development of arthritis.
Collapse
Affiliation(s)
- Thongchai Koobkokkruad
- Department of Pharmacology, Kobe Pharmaceutical University, 4-9-1 Motoyamakita-machi, Higashinada-ku, Kobe-shi, Hyogo-ken, Japan
| | - Tatsuya Kadotani
- Department of Pharmacology, Kobe Pharmaceutical University, 4-9-1 Motoyamakita-machi, Higashinada-ku, Kobe-shi, Hyogo-ken, Japan
| | - Pilaiwanwadee Hutamekalin
- Department of Pharmacology, Kobe Pharmaceutical University, 4-9-1 Motoyamakita-machi, Higashinada-ku, Kobe-shi, Hyogo-ken, Japan
| | - Nobuaki Mizutani
- Department of Pharmacology, Kobe Pharmaceutical University, 4-9-1 Motoyamakita-machi, Higashinada-ku, Kobe-shi, Hyogo-ken, Japan
| | - Shin Yoshino
- Department of Pharmacology, Kobe Pharmaceutical University, 4-9-1 Motoyamakita-machi, Higashinada-ku, Kobe-shi, Hyogo-ken, Japan
| |
Collapse
|
50
|
Cao D, Khmaladze I, Jia H, Bajtner E, Nandakumar KS, Blom T, Mo JA, Holmdahl R. Pathogenic Autoreactive B Cells Are Not Negatively Selected toward Matrix Protein Collagen II. THE JOURNAL OF IMMUNOLOGY 2011; 187:4451-8. [DOI: 10.4049/jimmunol.1101378] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|