1
|
Wilkin T, Hamilton NA, Cawley AT, Bhat S, Baoutina A. PCR-Based Equine Gene Doping Test for the Australian Horseracing Industry. Int J Mol Sci 2024; 25:2570. [PMID: 38473816 DOI: 10.3390/ijms25052570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The term 'gene doping' is used to describe the use of any unauthorized gene therapy techniques. We developed a test for five likely candidate genes for equine gene doping: EPO, FST, GH1, IGF1, and ILRN1. The test is based on real-time polymerase chain reaction (PCR) and includes separate screening and confirmation assays that detect different unique targets in each transgene. For doping material, we used nonviral (plasmid) and viral (recombinant adeno-associated virus) vectors carrying complementary DNA for the targeted genes; the vectors were accurately quantified by digital PCR. To reduce non-specific amplification from genomic DNA observed in some assays, a restriction digest step was introduced in the PCR protocol prior to cycling to cut the amplifiable targets within the endogenous genes. We made the screening stage of the test simpler and faster by multiplexing PCR assays for four transgenes (EPO, FST, IGF1, and ILRN1), while the GH1 assay is performed in simplex. Both stages of the test reliably detect at least 20 copies of each transgene in a background of genomic DNA equivalent to what is extracted from two milliliters of equine blood. The test protocol was documented and tested with equine blood samples provided by an official doping control authority. The developed tests will form the basis for screening official horseracing samples in Australia.
Collapse
Affiliation(s)
- Tessa Wilkin
- National Measurement Institute, Lindfield, NSW 2070, Australia
- Faculty of Veterinary Science, University of Sydney, Camperdown, NSW 2006, Australia
| | - Natasha A Hamilton
- Faculty of Veterinary Science, University of Sydney, Camperdown, NSW 2006, Australia
- Equine Genetics Research Centre, Racing Australia, Sydney, NSW 2000, Australia
| | - Adam T Cawley
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW 2000, Australia
- Racing Analytical Services Limited, Flemington, VIC 3031, Australia
| | - Somanath Bhat
- National Measurement Institute, Lindfield, NSW 2070, Australia
| | - Anna Baoutina
- National Measurement Institute, Lindfield, NSW 2070, Australia
| |
Collapse
|
2
|
Naumann N, Paßreiter A, Thomas A, Krug O, Walpurgis K, Thevis M. Analysis of Potential Gene Doping Preparations for Transgenic DNA in the Context of Sports Drug Testing Programs. Int J Mol Sci 2023; 24:15835. [PMID: 37958821 PMCID: PMC10648417 DOI: 10.3390/ijms242115835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Gene doping has been classified as a prohibited method by the World Anti-Doping Agency (WADA) and the International Olympic Committee (IOC) for over two decades. As gene therapeutic approaches improve and, concomitantly, safety concerns regarding clinical applications decline, apprehensions about their illicit use in elite sports continue to grow. Two products available via Internet-based providers and advertised as EPO-gene- and IGF1-gene-containing materials were analyzed for the presence of potential gene doping agents using a newly developed analytical approach, allowing for the detection of transgenic DNA corresponding to seven potential targets (EPO, FST, GH1, MSTN (Propeptide), IGF1, VEGFA, and VEGFD). Panel detection was based on a 20-plex polymerase chain reaction (PCR) followed by a single base extension (SBE) reaction and subsequent SBE product analyses via matrix-assisted time-of-flight laser desorption/ionization mass spectrometry (MALDI-TOF MS). Extracts of both products were found to contain transgenic EPO-DNA, while transgenic DNA for IGF-1 was not detected. The results were confirmed using SYBR Green qPCR with primer sets directed against EPO and IGF1 cDNA, and the CMV promotor sequence. In this case study, the detection of authentic (whilst low concentrated) transgenes, potentially intended for gene doping practices in readily available products, is reported for the first time.
Collapse
Affiliation(s)
- Nana Naumann
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, 50933 Cologne, Germany (M.T.)
| | - Alina Paßreiter
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, 50933 Cologne, Germany (M.T.)
| | - Andreas Thomas
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, 50933 Cologne, Germany (M.T.)
| | - Oliver Krug
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, 50933 Cologne, Germany (M.T.)
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA), 50933 Cologne, Germany
| | - Katja Walpurgis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, 50933 Cologne, Germany (M.T.)
| | - Mario Thevis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, 50933 Cologne, Germany (M.T.)
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA), 50933 Cologne, Germany
| |
Collapse
|
3
|
Sulo P, Šipková B. DNA diagnostics for reliable and universal identification of Helicobacter pylori. World J Gastroenterol 2021; 27:7100-7112. [PMID: 34887630 PMCID: PMC8613642 DOI: 10.3748/wjg.v27.i41.7100] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/11/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
Reliable diagnostics are a major challenge for the detection and treatment of Helicobacter pylori (H. pylori) infection. Currently at the forefront are non-invasive urea breath test (UBT) and stool antigen test (SAT). Polymerase chain reaction (PCR) is not endorsed due to nonspecific primers and the threat of false-positives. The specificity of DNA amplification can be achieved by nested PCR (NPCR), which involves two rounds of PCR. If the primers are properly designed for the variable regions of the 16S rRNA gene, it is not difficult to develop an NPCR assay for the unambiguous identification of H. pylori. Elaborate NPCR for a 454 bp amplicon was validated on 81 clinical biopsy, stool, and saliva samples, each from the same individuals, and compared with available H. pylori assays, namely histology, rapid urease test, SAT, and 13C-UBT. The assay was much more sensitive than simple PCR, and it was equally sensitive in biopsy samples as the 13C-UBT test, which is considered the gold standard. In addition, it is sufficiently specific because sequencing of the PCR products exclusively confirmed the presence of H. pylori-specific DNA. However, due to the threshold and lower abundance, the sensitivity was much lower in amplifications from stool or saliva. Reliable detection in saliva also complicates the ability of H. pylori to survive in the oral cavity aside from and independent of the stomach. The reason for the lower sensitivity in stool is DNA degradation; therefore, a new NPCR assay was developed to obtain a shorter 148 bp 16S rRNA amplicon. The assay was validated on stool samples from 208 gastroenterological patients and compared to SAT results. Surprisingly, this NPCR revealed the presence of H. pylori in twice the number of samples as SAT, indicating that many patients are misdiagnosed, not treated by antibiotics, and their problems are interpreted as chronic. Thus, it is unclear how to properly diagnose H. pylori in practice. In the first approach, SAT or UBT is sufficient. If samples are negative, the 148 bp amplicon NPCR assay should be performed. If problems persist, patients should not be considered negative, but due to threshold H. pylori abundance, they should be periodically tested. The advantage of NPCR over UBT is that it can be used universally, including questionable samples taken from patients with achlorhydria, receiving proton pump inhibitors, antibiotics, bismuth compound, intestinal metaplasia, or gastric ulcer bleeding.
Collapse
Affiliation(s)
- Pavol Sulo
- Department of Biochemistry, Comenius University, Bratislava 842 15, Slovakia
| | - Barbora Šipková
- Department of Biochemistry, Comenius University, Bratislava 842 15, Slovakia
| |
Collapse
|
4
|
Tozaki T, Ohnuma A, Kikuchi M, Ishige T, Kakoi H, Hirota KI, Kusano K, Nagata SI. Robustness of digital PCR and real-time PCR against inhibitors in transgene detection for gene doping control in equestrian sports. Drug Test Anal 2021; 13:1768-1775. [PMID: 34270866 DOI: 10.1002/dta.3131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022]
Abstract
Gene doping is a threat to fair competition in sports, both human and equestrian. One method of gene doping is to administer exogenous genetic materials, called transgenes, into the bodies of postnatal humans and horses. Polymerase chain reaction (PCR)-based transgene detection methods such as digital PCR and real-time PCR have been developed for gene doping testing in humans and horses. However, the significance of PCR inhibitors in gene doping testing has not been well evaluated. In this study, we evaluated the effects of PCR inhibitors on transgene detection using digital PCR and real-time PCR against gene doping. Digital PCR amplification was significantly inhibited by high concentrations of proteinase K (more than 0.1 μg/μl), ethylenediaminetetraacetic acid (more than 5 nmol/μl), and heparin (more than 0.05 unit/μl) but not by ethanol or genomic DNA. In addition, phenol affected droplet formation in the digital PCR amplification process. Real-time PCR amplification was inhibited by high concentrations of phenol (more than 1% v/v), proteinase K (more than 0.001 μg/μl), ethylenediaminetetraacetic acid (more than 1 nmol/μl), heparin (more than 0.005 unit/μl), and genomic DNA (more than 51.9 ng/μl) but not by ethanol. Although both PCR systems were inhibited by nearly the same substances, digital PCR was more robust than real-time PCR against the inhibitors. We believe that our findings are important for the development of better methods for transgene detection and prevention of false negative results in gene doping testing.
Collapse
Affiliation(s)
- Teruaki Tozaki
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Aoi Ohnuma
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Mio Kikuchi
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Taichiro Ishige
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Hironaga Kakoi
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Kei-Ichi Hirota
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Kanichi Kusano
- Equine Department, Japan Racing Association, Minato, Tokyo, Japan
| | - Shun-Ichi Nagata
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| |
Collapse
|
5
|
Tanisawa K, Wang G, Seto J, Verdouka I, Twycross-Lewis R, Karanikolou A, Tanaka M, Borjesson M, Di Luigi L, Dohi M, Wolfarth B, Swart J, Bilzon JLJ, Badtieva V, Papadopoulou T, Casasco M, Geistlinger M, Bachl N, Pigozzi F, Pitsiladis Y. Sport and exercise genomics: the FIMS 2019 consensus statement update. Br J Sports Med 2020; 54:969-975. [PMID: 32201388 PMCID: PMC7418627 DOI: 10.1136/bjsports-2019-101532] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2019] [Indexed: 12/26/2022]
Abstract
Rapid advances in technologies in the field of genomics such as high throughput DNA sequencing, big data processing by machine learning algorithms and gene-editing techniques are expected to make precision medicine and gene-therapy a greater reality. However, this development will raise many important new issues, including ethical, moral, social and privacy issues. The field of exercise genomics has also advanced by incorporating these innovative technologies. There is therefore an urgent need for guiding references for sport and exercise genomics to allow the necessary advancements in this field of sport and exercise medicine, while protecting athletes from any invasion of privacy and misuse of their genomic information. Here, we update a previous consensus and develop a guiding reference for sport and exercise genomics based on a SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis. This SWOT analysis and the developed guiding reference highlight the need for scientists/clinicians to be well-versed in ethics and data protection policy to advance sport and exercise genomics without compromising the privacy of athletes and the efforts of international sports federations. Conducting research based on the present guiding reference will mitigate to a great extent the risks brought about by inappropriate use of genomic information and allow further development of sport and exercise genomics in accordance with best ethical standards and international data protection principles and policies. This guiding reference should regularly be updated on the basis of new information emerging from the area of sport and exercise medicine as well as from the developments and challenges in genomics of health and disease in general in order to best protect the athletes, patients and all other relevant stakeholders.
Collapse
Affiliation(s)
- Kumpei Tanisawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Guan Wang
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UK
| | - Jane Seto
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Ioanna Verdouka
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UK
| | - Richard Twycross-Lewis
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Antonia Karanikolou
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UK
| | - Masashi Tanaka
- Department for Health and Longevity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Mats Borjesson
- Department of Neuroscience and Physiology, Center for Health and Performance, Goteborg University, Göteborg, Sweden
- Sahlgrenska University Hospital/Ostra, Göteborg, Sweden
| | - Luigi Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Michiko Dohi
- Sport Medical Center, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Bernd Wolfarth
- Department of Sport Medicine, Humboldt University and Charité University School of Medicine, Berlin, Germany
| | - Jeroen Swart
- UCT Research Unit for Exercise Science and Sports Medicine, Cape Town, South Africa
| | | | - Victoriya Badtieva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia, Moscow, Russian Federation
- Moscow Research and Practical Center for Medical Rehabilitation, Restorative and Sports Medicine, Moscow Healthcare Department, Moscow, Russian Federation
| | - Theodora Papadopoulou
- Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, UK
- British Association of Sport and Exercise Medicine, Doncaster, UK
| | | | - Michael Geistlinger
- Unit of International Law, Department of Constitutional, International and European Law, University of Salzburg, Salzburg, Salzburg, Austria
| | - Norbert Bachl
- Institute of Sports Science, University of Vienna, Vienna, Austria
- Austrian Institute of Sports Medicine, Vienna, Austria
| | - Fabio Pigozzi
- Sport Medicine Unit, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Yannis Pitsiladis
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UK
| |
Collapse
|
6
|
|
7
|
Microfluidic Quantitative PCR Detection of 12 Transgenes from Horse Plasma for Gene Doping Control. Genes (Basel) 2020; 11:genes11040457. [PMID: 32340130 PMCID: PMC7230449 DOI: 10.3390/genes11040457] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
Gene doping, an activity which abuses and misuses gene therapy, is a major concern in sports and horseracing industries. Effective methods capable of detecting and monitoring gene doping are urgently needed. Although several PCR-based methods that detect transgenes have been developed, many of them focus only on a single transgene. However, numerous genes associated with athletic ability may be potential gene-doping material. Here, we developed a detection method that targets multiple transgenes. We targeted 12 genes that may be associated with athletic performance and designed two TaqMan probe/primer sets for each one. A panel of 24 assays was prepared and detected via a microfluidic quantitative PCR (MFQPCR) system using integrated fluidic circuits (IFCs). The limit of detection of the panel was 6.25 copy/μL. Amplification-specificity was validated using several concentrations of reference materials and animal genomic DNA, leading to specific detection. In addition, target-specific detection was successfully achieved in a horse administered 20 mg of the EPO transgene via MFQPCR. Therefore, MFQPCR may be considered a suitable method for multiple-target detection in gene-doping control. To our knowledge, this is the first application of microfluidic qPCR (MFQPCR) for gene-doping control in horseracing.
Collapse
|
8
|
Abstract
Being an elite athlete is an extremely coveted position, which can lead an individual to use doping. As knowledge is extended, doping techniques have become increasingly sophisticated, and the newest method of doping is gene doping. This article aims to present an updated bibliographic survey that addresses gene doping between 1983 and 2018. Anti-doping agencies have not yet approved any detection technique for this type of doping. The possibility of eradicating such doping is almost zero mainly because gene therapy advances rapidly. In this scenario, the future of gene doping must be discussed and decided before irreversible limits are exceeded.
Collapse
Affiliation(s)
- Rebeca Araujo Cantelmo
- Curso de Especialização em Ciências Forenses, Instituto Paulista de Estudos Bioéticos e Jurídicos (IPEBJ), Ribeirão Preto, Brazil
| | | | - Celso Teixeira Mendes-Junior
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departmento de Química, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Daniel Junqueira Dorta
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departmento de Química, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
9
|
Zhao L, Wang J, Li GX, Qiu FZ, Chen C, Zhao MC, Wang L, Duan SX, Feng ZS, Ma XJ. A highly sensitive 1-tube nested real-time RT-PCR assay using LNA-modified primers for detection of respiratory syncytial virus. Diagn Microbiol Infect Dis 2018; 93:101-106. [PMID: 30266400 PMCID: PMC7126397 DOI: 10.1016/j.diagmicrobio.2018.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/23/2018] [Accepted: 09/03/2018] [Indexed: 12/31/2022]
Abstract
Respiratory syncytial virus (RSV) causes serious respiratory tract infection worldwide. The relatively low RSV load makes it difficult to detect in frail, elderly, and severely immune-compromised patients. In the present study, we developed a locked nucleic acid–-based 1-tube nested real-time RT-PCR (OTNRT-PCR) assay with the advantages of extremely high sensitivity, facile operability, and less likelihood of cross-contamination. The sensitivity, specificity, and clinical performance of the OTNRT-PCR assay were compared in parallel with a conventional TaqMan probe-based real-time PCR (qRT-PCR) assay and a traditional 2-step nested RT-PCR assay. The limit of detection of the OTNRT-PCR assay was 1.02 × 10−1 TCID50/mL, equivalent to the traditional 2-step nested RT-PCR assay and 25-fold lower than the qRT-PCR assay. Of 616 nasopharyngeal aspirates tested, 143 RSV-negative samples by qRT-PCR were confirmed as positive by sequencing the OTNRT-PCR products. We therefore conclude that OTNRT-PCR is more sensitive than qRT-PCR for detection of RSV in clinical samples.
Collapse
Affiliation(s)
- Li Zhao
- Hebei Medical University, Shijiazhuang, 050031, Hebei, China; Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Ji Wang
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Gui-Xia Li
- Children's Hospital of Hebei Province, Shijiazhuang, 050031, Hebei, China.
| | - Fang-Zhou Qiu
- Hebei Medical University, Shijiazhuang, 050031, Hebei, China; Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Chen Chen
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Meng-Chuan Zhao
- Children's Hospital of Hebei Province, Shijiazhuang, 050031, Hebei, China.
| | - Le Wang
- Children's Hospital of Hebei Province, Shijiazhuang, 050031, Hebei, China.
| | - Su-Xia Duan
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Children's Hospital of Hebei Province, Shijiazhuang, 050031, Hebei, China.
| | - Zhi-Shan Feng
- Children's Hospital of Hebei Province, Shijiazhuang, 050031, Hebei, China.
| | - Xue-Jun Ma
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
10
|
Salamin O, Kuuranne T, Saugy M, Leuenberger N. Loop-mediated isothermal amplification (LAMP) as an alternative to PCR: A rapid on-site detection of gene doping. Drug Test Anal 2017; 9:1731-1737. [PMID: 29045058 DOI: 10.1002/dta.2324] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/21/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
Innovation in medical research has been diverted at multiple occasions to enhance human performance. The predicted great progress in gene therapy has raised some concerns regarding its misuse in the world of sports (gene doping) for several years now. Even though there is no evidence that gene doping has ever been used in sports, the continuous improvement of gene therapy techniques increases the likelihood of abuse. Therefore, since 2004, efforts have been invested by the anti-doping community and WADA for the development of detection methods. Several nested PCR and qPCR-based strategies exploiting the absence of introns in the transgenic DNA have been proposed for the long-term detection of transgene in blood. Despite their great sensitivity, those protocols are hampered by limitations of the techniques that can be cumbersome and costly. The purpose of this perspective is to describe a new approach based on loop-mediated isothermal amplification (LAMP) for the detection of gene doping. This protocol enables a rapid and simple method to amplify nucleic acids with a high sensitivity and specificity and with a simple visual detection of the results. LAMP is already being used in clinical application for the detection of viruses or mutations. Therefore, this technique has the potential to be further developed for the detection of foreign genetic material in elite athletes. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Olivier Salamin
- Center of Research and Expertise in anti-Doping sciences - REDs, University of Lausanne, 1015 Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Ch. des Croisettes 22, 1066 Epalinges, Switzerland
| | - Martial Saugy
- Center of Research and Expertise in anti-Doping sciences - REDs, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Leuenberger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Ch. des Croisettes 22, 1066 Epalinges, Switzerland
| |
Collapse
|
11
|
Niu P, Qi S, Yu B, Zhang C, Wang J, Li Q, Ma X. Development of a highly sensitive real-time nested RT-PCR assay in a single closed tube for detection of enterovirus 71 in hand, foot, and mouth disease. Arch Virol 2016; 161:3003-10. [PMID: 27475103 PMCID: PMC7086773 DOI: 10.1007/s00705-016-2985-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/11/2016] [Indexed: 12/29/2022]
Abstract
Enterovirus 71 (EV71) is one of the major causative agents of outbreaks of hand, foot, and mouth disease (HFMD). A commercial TaqMan probe-based real-time PCR assay has been widely used for the differential detection of EV71 despite its relatively high cost and failure to detect samples with a low viral load (Ct value > 35). In this study, a highly sensitive real-time nested RT-PCR (RTN RT-PCR) assay in a single closed tube for detection of EV71 in HFMD was developed. The sensitivity and specificity of this assay were evaluated using a reference EV71 stock and a panel of controls consisting of coxsackievirus A16 (CVA16) and common respiratory viruses, respectively. The clinical performance of this assay was evaluated and compared with those of a commercial TaqMan probe-based real-time PCR (qRT-PCR) assay and a traditional two-step nested RT-PCR assay. The limit of detection for the RTN RT-PCR assay was 0.01 TCID50/ml, with a Ct value of 38.3, which was the same as that of the traditional two-step nested RT-PCR assay and approximately tenfold lower than that of the qRT-PCR assay. When testing the reference strain EV71, this assay showed favorable detection reproducibility and no obvious cross-reactivity. The testing results of 100 clinical throat swabs from HFMD-suspected patients revealed that 41 samples were positive for EV71 by both RTN RT-PCR and traditional two-step nested RT-PCR assays, whereas only 29 were EV71 positive by qRT-PCR assay.
Collapse
Affiliation(s)
- Peihua Niu
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shunxiang Qi
- Institute for Viral Disease Control and Prevention, Center for Disease Control and Prevention of Hebei, Shijiazhuang, Hebei, People's Republic of China
| | - Benzhang Yu
- Department of Laboratory Medicine, Shengli Oil Field Central Hospital, Jinan Road, Dongying, Shandong, People's Republic of China
| | - Chen Zhang
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Ji Wang
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qi Li
- Institute for Viral Disease Control and Prevention, Center for Disease Control and Prevention of Hebei, Shijiazhuang, Hebei, People's Republic of China.
| | - Xuejun Ma
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.
| |
Collapse
|
12
|
Neuberger EWI, Perez I, Le Guiner C, Moser D, Ehlert T, Allais M, Moullier P, Simon P, Snyder RO. Establishment of two quantitative nested qPCR assays targeting the human EPO transgene. Gene Ther 2016; 23:330-9. [DOI: 10.1038/gt.2016.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 12/02/2015] [Accepted: 12/31/2015] [Indexed: 12/30/2022]
|
13
|
Moser DA, Braga L, Raso A, Zacchigna S, Giacca M, Simon P. Transgene detection by digital droplet PCR. PLoS One 2014; 9:e111781. [PMID: 25375130 PMCID: PMC4222945 DOI: 10.1371/journal.pone.0111781] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/30/2014] [Indexed: 01/19/2023] Open
Abstract
Somatic gene therapy is a promising tool for the treatment of severe diseases. Because of its abuse potential for performance enhancement in sports, the World Anti-Doping Agency (WADA) included the term ‘gene doping’ in the official list of banned substances and methods in 2004. Several nested PCR or qPCR-based strategies have been proposed that aim at detecting long-term presence of transgene in blood, but these strategies are hampered by technical limitations. We developed a digital droplet PCR (ddPCR) protocol for Insulin-Like Growth Factor 1 (IGF1) detection and demonstrated its applicability monitoring 6 mice injected into skeletal muscle with AAV9-IGF1 elements and 2 controls over a 33-day period. A duplex ddPCR protocol for simultaneous detection of Insulin-Like Growth Factor 1 (IGF1) and Erythropoietin (EPO) transgenic elements was created. A new DNA extraction procedure with target-orientated usage of restriction enzymes including on-column DNA-digestion was established. In vivo data revealed that IGF1 transgenic elements could be reliably detected for a 33-day period in DNA extracted from whole blood. In vitro data indicated feasibility of IGF1 and EPO detection by duplex ddPCR with high reliability and sensitivity. On-column DNA-digestion allowed for significantly improved target detection in downstream PCR-based approaches. As ddPCR provides absolute quantification, it ensures excellent day-to-day reproducibility. Therefore, we expect this technique to be used in diagnosing and monitoring of viral and bacterial infection, in detecting mutated DNA sequences as well as profiling for the presence of foreign genetic material in elite athletes in the future.
Collapse
Affiliation(s)
- Dirk A. Moser
- Faculty of Psychology, Genetic Psychology, Ruhr-University-Bochum, Bochum, Germany
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Luca Braga
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Molecular Medicine, Trieste, Italy
| | - Andrea Raso
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Molecular Medicine, Trieste, Italy
| | - Serena Zacchigna
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Molecular Medicine, Trieste, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Molecular Medicine, Trieste, Italy
| | - Perikles Simon
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes Gutenberg-University Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
14
|
Hu Y, Arsov I. A rapid single-tube protocol for HAV detection by nested real-time PCR. FOOD AND ENVIRONMENTAL VIROLOGY 2014; 6:189-195. [PMID: 24902810 DOI: 10.1007/s12560-014-9152-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
Infections by food-borne viruses such as hepatitis A virus (HAV) and norovirus are significant public health concerns worldwide. Since food-borne viruses are rarely confirmed through direct isolation from contaminated samples, highly sensitive molecular techniques remain the methods of choice for the detection of viral genetic material. Our group has previously developed a specific nested real-time PCR (NRT-PCR) assay for HAV detection that improved overall sensitivity. Furthermore in this study, we have developed a single-tube NRT-PCR approach for HAV detection in food samples that reduces the likelihood of cross contamination between tubes during sample manipulation. HAV RNA was isolated from HAV-spiked food samples and HAV-infected cell cultures. All reactions following HAV RNA isolation, including conventional reverse transcriptase PCR, nested-PCR, and RT-PCR were performed in a single tube. Our results demonstrated that all the samples tested positive by RT-PCR and nested-PCR were also positive by a single-tube NRT-PCR. The detection limits observed for HAV-infected cell cultures and HAV-spiked green onions were 0.1 and 1 PFU, respectively. This novel method retained the specificity and robustness of the original NRT-PCR method, while greatly reducing sample manipulation, turnaround time, and the risk of carry-over contamination. Single-tube NRT-PCR thus represents a promising new tool that can potentially facilitate the detection of HAV in foods thereby improving food safety and public health.
Collapse
Affiliation(s)
- Yuan Hu
- FDA, Northeast Regional Laboratory, 158-15 Liberty Avenue, Jamaica, NY, USA,
| | | |
Collapse
|
15
|
Pope HG, Wood RI, Rogol A, Nyberg F, Bowers L, Bhasin S. Adverse health consequences of performance-enhancing drugs: an Endocrine Society scientific statement. Endocr Rev 2014; 35:341-75. [PMID: 24423981 PMCID: PMC4026349 DOI: 10.1210/er.2013-1058] [Citation(s) in RCA: 357] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the high prevalence of performance-enhancing drug (PED) use, media attention has focused almost entirely on PED use by elite athletes to illicitly gain a competitive advantage in sports, and not on the health risks of PEDs. There is a widespread misperception that PED use is safe or that adverse effects are manageable. In reality, the vast majority of PED users are not athletes but rather nonathlete weightlifters, and the adverse health effects of PED use are greatly underappreciated. This scientific statement synthesizes available information on the medical consequences of PED use, identifies gaps in knowledge, and aims to focus the attention of the medical community and policymakers on PED use as an important public health problem. PED users frequently consume highly supraphysiologic doses of PEDs, combine them with other PEDs and/or other classical drugs of abuse, and display additional associated risk factors. PED use has been linked to an increased risk of death and a wide variety of cardiovascular, psychiatric, metabolic, endocrine, neurologic, infectious, hepatic, renal, and musculoskeletal disorders. Because randomized trials cannot ethically duplicate the large doses of PEDs and the many factors associated with PED use, we need observational studies to collect valid outcome data on the health risks associated with PEDs. In addition, we need studies regarding the prevalence of PED use, the mechanisms by which PEDs exert their adverse health effects, and the interactive effects of PEDs with sports injuries and other high-risk behaviors. We also need randomized trials to assess therapeutic interventions for treating the adverse effects of PEDs, such as the anabolic-androgen steroid withdrawal syndrome. Finally, we need to raise public awareness of the serious health consequences of PEDs.
Collapse
Affiliation(s)
- Harrison G Pope
- McLean Hospital (H.G.P.), Harvard Medical School, Belmont, Massachusetts 02478; University of Southern California (R.I.W.), Los Angeles, California 90089; University of Virginia (A.R.), Charlottesville, Virginia 22904; Department of Pharmaceutical Biosciences, (F.N.), Upsala University, SE-751 24, Upsala, Sweden; United States Anti-Doping Agency (L.B.), Colorado Springs, Colorado 80919; and Brigham and Women's Hospital (S.B.), Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | |
Collapse
|
16
|
Thevis M, Kuuranne T, Geyer H, Schänzer W. Annual banned-substance review: analytical approaches in human sports drug testing. Drug Test Anal 2013; 6:164-84. [DOI: 10.1002/dta.1591] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/06/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| | - Tiia Kuuranne
- Doping Control Laboratory; United Medix Laboratories; Höyläämötie 14 00380 Helsinki Finland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
| |
Collapse
|
17
|
PCR-based detection of gene transfer vectors: application to gene doping surveillance. Anal Bioanal Chem 2013; 405:9641-53. [DOI: 10.1007/s00216-013-7264-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/03/2013] [Accepted: 07/16/2013] [Indexed: 12/21/2022]
|
18
|
Reichel C. Sports drug testing for erythropoiesis-stimulating agents and autologous blood transfusion. Drug Test Anal 2012; 4:803-4. [DOI: 10.1002/dta.1405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christian Reichel
- Doping Control Laboratory; AIT Seibersdorf Laboratories; A-2444 Seibersdorf; Austria
| |
Collapse
|