1
|
Bassot A, Dragic H, Haddad SA, Moindrot L, Odouard S, Corlazzoli F, Marinari E, Bomane A, Brassens A, Marteyn A, Hibaoui Y, Petty TJ, Chalabi-Dchar M, Larrouquere L, Zdobnov EM, Legrand N, Tamburini J, Lincet H, Castets M, Yebra M, Migliorini D, Dutoit V, Walker PR, Preynat-Seauve O, Dietrich PY, Cosset É. Identification of a miRNA multi-targeting therapeutic strategy in glioblastoma. Cell Death Dis 2023; 14:630. [PMID: 37749143 PMCID: PMC10519979 DOI: 10.1038/s41419-023-06117-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023]
Abstract
Glioblastoma (GBM) is a deadly and the most common primary brain tumor in adults. Due to their regulation of a high number of mRNA transcripts, microRNAs (miRNAs) are key molecules in the control of biological processes and are thereby promising therapeutic targets for GBM patients. In this regard, we recently reported miRNAs as strong modulators of GBM aggressiveness. Here, using an integrative and comprehensive analysis of the TCGA database and the transcriptome of GBM biopsies, we identified three critical and clinically relevant miRNAs for GBM, miR-17-3p, miR-222, and miR-340. In addition, we showed that the combinatorial modulation of three of these miRNAs efficiently inhibited several biological processes in patient-derived GBM cells of all these three GBM subtypes (Mesenchymal, Proneural, Classical), induced cell death, and delayed tumor growth in a mouse tumor model. Finally, in a doxycycline-inducible model, we observed a significant inhibition of GBM stem cell viability and a significant delay of orthotopic tumor growth. Collectively, our results reveal, for the first time, the potential of miR-17-3p, miR-222 and miR-340 multi-targeting as a promising therapeutic strategy for GBM patients.
Collapse
Affiliation(s)
- Arthur Bassot
- Department of CITI, Team GLIMMER Of lIght, Cancer Research Centre of Lyon - CRCL, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Helena Dragic
- Department of CITI, Team GLIMMER Of lIght, Cancer Research Centre of Lyon - CRCL, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Sarah Al Haddad
- Laboratory of Tumor Immunology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
| | - Laurine Moindrot
- Department of CITI, Team GLIMMER Of lIght, Cancer Research Centre of Lyon - CRCL, INSERM U1052, CNRS UMR 5286, Lyon, France
- Laboratory of Tumor Immunology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
| | - Soline Odouard
- Laboratory of Tumor Immunology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
| | - Francesca Corlazzoli
- Laboratory of Tumor Immunology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Leman (SCCL), Agora Cancer Research Center, Geneva and Lausanne, Switzerland
| | - Eliana Marinari
- Laboratory of Tumor Immunology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Leman (SCCL), Agora Cancer Research Center, Geneva and Lausanne, Switzerland
| | - Alexandra Bomane
- Department of CITI, Team Cell Death and Chilhood Cancers, Cancer Research Centre of Lyon - CRCL, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Augustin Brassens
- Department of CITI, Team GLIMMER Of lIght, Cancer Research Centre of Lyon - CRCL, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Antoine Marteyn
- Laboratory of Tumor Immunology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
| | - Youssef Hibaoui
- Service de Gynécologie Obstétrique, HFR Fribourg - Hôpital Cantonal, Fribourg, Switzerland
| | - Tom J Petty
- Swiss Institute of Bioinformatics, Geneva, Switzerland
- SOPHiA GENETICS, Rolle, Switzerland
| | - Mounira Chalabi-Dchar
- Department of CITI, Team Ribosome, Translation & Cancer, Cancer Research Centre of Lyon - CRCL, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Louis Larrouquere
- Department of CITI, Team GLIMMER Of lIght, Cancer Research Centre of Lyon - CRCL, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Noémie Legrand
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
| | - Jérôme Tamburini
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Leman (SCCL), Agora Cancer Research Center, Geneva and Lausanne, Switzerland
| | - Hubert Lincet
- Department of CITI, Team GLIMMER Of lIght, Cancer Research Centre of Lyon - CRCL, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Marie Castets
- Department of CITI, Team Cell Death and Chilhood Cancers, Cancer Research Centre of Lyon - CRCL, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Mayra Yebra
- Department of Surgery, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
| | - Denis Migliorini
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Leman (SCCL), Agora Cancer Research Center, Geneva and Lausanne, Switzerland
| | - Valérie Dutoit
- Laboratory of Tumor Immunology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Leman (SCCL), Agora Cancer Research Center, Geneva and Lausanne, Switzerland
| | - Paul R Walker
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Leman (SCCL), Agora Cancer Research Center, Geneva and Lausanne, Switzerland
- Laboratory of Immunobiology of Brain Tumors, Center for Translational Research in OncoHematology, Geneva University Hospitals, and University of Geneva, Geneva, Switzerland
| | - Olivier Preynat-Seauve
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland
| | - Pierre-Yves Dietrich
- Laboratory of Tumor Immunology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Leman (SCCL), Agora Cancer Research Center, Geneva and Lausanne, Switzerland
| | - Érika Cosset
- Department of CITI, Team GLIMMER Of lIght, Cancer Research Centre of Lyon - CRCL, INSERM U1052, CNRS UMR 5286, Lyon, France.
- Laboratory of Tumor Immunology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland.
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland.
- Team: GLIMMER Of lIght "GLIoblastoma MetabolisM, HetERogeneity, and OrganoIds"; Cancer Research Centre of Lyon - CRCL, INSERM U1052, CNRS UMR 5286, Lyon, France.
| |
Collapse
|
2
|
Xu C, Qin C, Jian J, Peng Y, Wang X, Chen X, Wu D, Song Y. Identification of an immune-related gene signature as a prognostic target and the immune microenvironment for adrenocortical carcinoma. Immun Inflamm Dis 2022; 10:e680. [PMID: 36039643 PMCID: PMC9382862 DOI: 10.1002/iid3.680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Adrenocortical carcinoma (ACC) is a rare endocrine malignancy. Even with complete tumor resection and adjuvant therapies, the prognosis of patients with ACC remains unsatisfactory. In the microtumor environment, the impact of a disordered immune system and abnormal immune responses is enormous. To improve treatment, novel prognostic predictors and treatment targets for ACC need to be identified. Hence, credible prognostic biomarkers of immune-associated genes (IRGs) should be explored and developed. MATERIAL AND METHODS We downloaded RNA-sequencing data and clinical data from The Cancer Genome Atlas (TCGA) data set, Genotype-Tissue Expression data set, and Gene Expression Omnibus data set. Gene set enrichment analysis (GSEA) was applied to reveal the potential functions of differentially expressed genes. RESULTS GSEA indicated an association between ACC and immune-related functions. We obtained 332 IRGs and constructed a prognostic signature on the strength of 3 IRGs (INHBA, HELLS, and HDAC4) in the training cohort. The high-risk group had significantly poorer overall survival than the low-risk group (p < .001). Multivariate Cox regression was performed with the signature as an independent prognostic indicator for ACC. The testing cohort and the entire TCGA ACC cohort were utilized to validate these findings. Moreover, external validation was conducted in the GSE10927 and GSE19750 cohorts. The tumor-infiltrating immune cells analysis indicated that the quantity of T cells, natural killer cells, macrophage cells, myeloid dendritic cells, and mast cells in the immune microenvironment differed between the low-risk and high-risk groups. CONCLUSION Our three-IRG prognostic signature and the three IRGs can be used as prognostic indicators and potential immunotherapeutic targets for ACC. Inhibitors of the three novel IRGs might activate immune cells and play a synergistic role in combination therapy with immunotherapy for ACC in the future.
Collapse
Affiliation(s)
- Chengdang Xu
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Caipeng Qin
- Department of UrologyPeking University People's HospitalBeijingChina
| | - Jingang Jian
- Department of Urology, The First Affiliated Hospital of Soochow University, Dushu Lake Hospital Affiliated to Soochow UniversitySuzhou Medical College of Soochow UniversitySuzhouChina
| | - Yun Peng
- Department of UrologyPeking University People's HospitalBeijingChina
| | - Xinan Wang
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xi Chen
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yuxuan Song
- Department of UrologyPeking University People's HospitalBeijingChina
- Department of UrologyTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
3
|
Deciphering specific miRNAs in brain tumors: a 5-miRNA signature in glioblastoma. Mol Genet Genomics 2022; 297:507-521. [PMID: 35175428 DOI: 10.1007/s00438-022-01866-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022]
Abstract
MicroRNAs are endogenous non-coding RNAs with a marked impact on the development and progression of brain tumors. However, they commonly share different expression patterns in other types of tumors, thereby exhibiting lack of tissue specificity. Here, an integrative holistic analysis of microarray data is established for deciphering dysregulated miRNAs in glioblastoma, distinguishing them from eight other CNS tumors. The identification of dysregulated miRNAs was performed in a pool of 176 patients, 118 of which diagnosed with glioblastoma. Dysregulated miRNAs commonly expressed in glioblastoma were then discriminated from those co-expressed in other CNS tumors and further characterized. Overall, 21 miRNAs were found to be commonly dysregulated in glioblastoma. Notwithstanding, 16 miRNAs also exhibited a differential expression in at least one other CNS tumor. The remaining 5, specifically, hsa-miR-21-3p, hsa-miR-338-5p, hsa-miR-485-5p, hsa-miR-491-5p and hsa-miR-1290, were solely associated to glioblastoma. This signature is in-depth characterized, with the spotlight on tumor progression, invasion and patient survival. These five endogenous molecules, differentially expressed in glioblastoma, are thus suggested as potential therapeutic targets, modulating several genes involved in major signalling pathways, including MAPK/ERK, calcium, PI3K/AKT, mTOR and Wnt. In summary, these findings lay a foundation for further research on the expression and function of specific patterns of miRNAs expression in glioblastoma, providing reference for potential novel targets.
Collapse
|
4
|
Dai S, Yao D. An immune-associated ten-long noncoding RNA signature for predicting overall survival in cervical cancer. Transl Cancer Res 2021; 10:5295-5306. [PMID: 35116378 PMCID: PMC8799008 DOI: 10.21037/tcr-21-2390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/25/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Several immune-associated long non-coding RNA (lncRNA) signatures have been reported as prognostic models in different types of cancers; however, the immune-associated lncRNA signature for predicting overall survival (OS) in cervical cancer is unknown. METHODS The lncRNA expression profiles and clinical data of cervical cancer were acquired from The Cancer Genome Atlas (TCGA) dataset. Immune-associated genes were extracted from the Molecular Signatures Database (MSigDB), and the immune-associated lncRNAs were extracted for Cox regression analysis. Principal component analysis (PCA) was used to distinguish the high and low risk status of cervical cancer patients. Gene Set Enrichment Analysis (GSEA) was used for functional analyses. RESULTS Cox regression analyses and the least absolute shrinkage and selection operator (LASSO) Cox regression model were used to construct an immune-associated ten-lncRNA signature (containing AL021807.1, AL109976.1, LINC02446, MIR4458HG, AC004540.2, AC009065.8, AC083809.1, AC055822.1, AP000904.1, and FBXL19-AS1) for predicting OS in cervical cancer. The signature segregated the cervical cancer patients into 2 groups (high-risk group and low-risk group). The Kaplan-Meier survival curves of AL021807.1, AL109976.1, LINC02446, and MIR4458HG were statistically significant (P<0.05) and the others (including AC004540.2, AC009065.8, AC083809.1, AC055822.1, AP000904.1, and FBXL19-AS1) were not statistically significant (P>0.05). The Kaplan-Meier survival curves of the signature were statistically significant (P=1.134e-10), and the 5-year survival rate was 0.444 in the high-risk group [95% confidence interval (CI): 0.334 to 0.590] and 0.884 in the low-risk group (95% CI: 0.807 to 0.969). The area under curve (AUC) of the receiver operating characteristic (ROC) curve of the signature was 0.833. The concordance index (C-index) of the signature was 0.788 (95% CI: 0.730 to 0.846, P=1.884778e-22). The PCA successfully distinguished the high-risk group and low-risk group based on the signature. The GSEA showed that the signature-related protein coding genes (PCGs) may participate in immunologic biological processes and pathways. CONCLUSIONS This study revealed that the immune-associated ten-lncRNA signature is an independent factor for cervical cancer prognosis prediction, providing a bright future for immunotherapy of cervical cancer patients.
Collapse
Affiliation(s)
- Shengkang Dai
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
- People’s Hospital of Baise, Baise, China
| | - Desheng Yao
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
5
|
Liu J, Wang W, Chen L, Li Y, Zhao S, Liang Y. MicroRNA-33b replacement effect on growth and migration inhibition in ovarian cancer cells. Chem Biol Drug Des 2021; 101:1019-1026. [PMID: 34590776 DOI: 10.1111/cbdd.13964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Ovarian cancer is a devastating gynecological disease which is considered the major cause of cancer fatality around the world. The down-regulation of microRNA-33b (miR-33b) was reported in some malignancies. Hence, we transfected the miR-33b mimic into SKOV3 cells and evaluated the impacts of this interference on the growth and migration repression of these tumor cells as well as on targeted genes expression. METHODS In our study, transfecting the miR-33b mimic and inhibitor, negative control (NC), and NC inhibitor were established using Lipofectamine 2000. The cytotoxic effects of miR-33b were evaluated by MTT. To assess the miR-33b effects on cell migration, a scratching test was applied. The expression levels of miR-33b, ADAMTS, C-Myc, MMP9, K-Ras, and CXCR4 were evaluated using qRT-PCR. RESULTS These findings indicate that transfection of miR-143 mimic had no marked effects on the SKOV3 cell line. As expected, miR-33b relative expression levels were as follows: miR-33b mimic >NC and NC inhibitor >miR-33b inhibitor (p < 0.01). Moreover, transfected miR-33b mimic could suppress SKOV3 cells' proliferation, whereas transfected miR-33b inhibitor could promote cell proliferation (p < 0.01). MiR-33b overexpression significantly down-regulated the MMP9, CXCR-4, c-Myc, ADAMTS, and K-Ras mRNA levels (p < 0.05). CONCLUSION As expected, these results confirm the tumor-suppressive effect of miR-33b in the SKOV3 ovarian cancer cell line by reducing cell survival, proliferation, and migration.
Collapse
Affiliation(s)
- Jin Liu
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| | - Weiming Wang
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| | - Limin Chen
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yachai Li
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| | - Shuimiao Zhao
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yijuan Liang
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
6
|
Ping S, Wang S, He J, Chen J. Identification and Validation of Immune-Related lncRNA Signature as a Prognostic Model for Skin Cutaneous Melanoma. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:667-681. [PMID: 34113151 PMCID: PMC8184246 DOI: 10.2147/pgpm.s310299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022]
Abstract
Purpose Skin cutaneous melanoma (SKCM) is the most aggressive skin cancer that results in high morbidity and mortality rate worldwide. Immune-related long non-coding RNAs (IRlncRs) play an important role in regulating gene expression in tumors. Therefore, in this study, we aimed to identify IRlncRs signature that could predict prognosis and therapeutic targets for melanoma irrespective of the gene expression levels. Methods RNA-sequencing data were obtained from The Cancer Genome Atlas (TCGA). IRlncRs were identified using co-expression analysis and recognized using univariate analysis. The impact of IRlncRs on survival was analyzed using a modified least absolute shrinkage and selection operator (Lasso) regression model. A 1-year survival receiver operating characteristic curve was constructed, and the area under the curve was calculated to identify the optimal cut-off point to distinguish between high and low-risk groups in patients with SKCM. Furthermore, integrative analysis was performed to identify the impact of clinicopathological features, chemotherapeutic treatment, tumor-infiltrating immune cells, and mutant genes on survival. Results A total of 28 IRlncRs significantly associated with survival were identified. Seventeen IRlncRs pairs were used to build a survival risk model that could be used to distinguish between low and high-risk groups. The high-risk group was negatively associated with tumor-infiltrating immune cells and had a higher half inhibitory centration for chemotherapeutic agents such as cisplatin and vinblastine. Additionally, the high-risk group had a positive correlation with the expression of specific mutant genes such as BRAF and KIT. Conclusion Our findings demonstrate that some IRlncRs have a significant correlation with survival and therapeutic targets for SKCM patients and may provide new insight into the clinical diagnosis and treatment strategies for SKCM patients.
Collapse
Affiliation(s)
- Shuai Ping
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, People's Republic of China
| | - Siyuan Wang
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, People's Republic of China
| | - Jinbing He
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, People's Republic of China
| | - Jianghai Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| |
Collapse
|
7
|
Screening and Identification of an Immune-Associated lncRNA Prognostic Signature in Ovarian Carcinoma: Evidence from Bioinformatic Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6680036. [PMID: 33997040 PMCID: PMC8110384 DOI: 10.1155/2021/6680036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022]
Abstract
Backgrounds The dysregulated long noncoding RNAs (lncRNAs) have been described to be crucial regulators in the progression of ovarian carcinoma. The infiltration status of immune cells is also related to the clinical outcomes in ovarian carcinoma. The present research is aimed at constructing an immune-associated lncRNA signature with potential prognostic value for ovarian carcinoma patients. Methods We obtained 379 ovarian carcinoma cases with available clinical data and transcriptome data from The Cancer Genome Atlas database to evaluate the infiltration status of immune cells, thereby generating high and low immune cell infiltration groups. According to the expression of the immune-associated lncRNA signature, the risk score of each case was calculated. The high- and low-risk groups were classified using the median risk score as threshold. Results A total of 169 immune-associated lncRNAs that differentially expressed in ovarian carcinoma were included. According to the Lasso regression analysis and Cox univariate and multivariate analyses, 5 immune-associated lncRNAs, including AC134312.1, AL133467.1, CHRM3-AS2, LINC01722, and LINC02207, were identified as a predictive signature with significant prognostic value in ovarian carcinoma. The following Kaplan-Meier analysis, ROC analysis, and Cox univariate and multivariate analyses further suggested that the predicted signature may be an independent prognosticator for patients with ovarian carcinoma. The following gene set enrichment analysis showed that this 5 immune-associated lncRNAs signature was significantly related to the hedgehog pathway, basal cell carcinoma, Wnt signaling pathway, cytokine receptor interaction, antigen processing and presentation, and T cell receptor pathway. Conclusion : This study suggested a predictive model with 5 immune-associated lncRNAs that has an independent prognostic value for ovarian carcinoma patients.
Collapse
|
8
|
Zhang Z, Chen J, Huo X, Zong G, Huang K, Cheng M, Sun L, Yue X, Bian E, Zhao B. Identification of a mesenchymal-related signature associated with clinical prognosis in glioma. Aging (Albany NY) 2021; 13:12431-12455. [PMID: 33875619 PMCID: PMC8148476 DOI: 10.18632/aging.202886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/04/2021] [Indexed: 12/26/2022]
Abstract
Malignant glioma with a mesenchymal (MES) signature is characterized by shorter survival time due to aggressive dissemination and resistance to chemoradiotherapy. Here, this study used the TCGA database as the training set and the CGGA database as the testing set. Consensus clustering was performed on the two data sets, and it was found that two groups had distinguished prognostic and molecular features. Cox analysis and Lasso regression analysis were used to construct MES signature-based risk score model of glioma. Our results show that MES signature-based risk score model can be used to assess the prognosis of glioma. Three methods (ROC curve analyses, univariate Cox regression analysis, multivariate Cox regression analysis) were used to investigate the prognostic role of texture parameters. The result showed that the MES-related gene signature was proved to be an independent prognostic factor for glioma. Furthermore, functional analysis of the gene related to the risk signature showed that the genes sets were closely related to the malignant process of tumors. Finally, FCGR2A and EHD2 were selected for functional verification. Silencing these two genes inhibited the proliferation, migration and invasion of gliomas and reduced the expression of mesenchymal marker genes. Collectively, MES-related risk signature seems to provide a novel target for predicting the prognosis and treatment of glioma.
Collapse
Affiliation(s)
- Zhengwei Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Jie Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Xiuhao Huo
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Gang Zong
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Kebing Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Meng Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Libo Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Xiaoyu Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| |
Collapse
|
9
|
Wan J, Guo C, Fang H, Xu Z, Hu Y, Luo Y. Autophagy-Related Long Non-coding RNA Is a Prognostic Indicator for Bladder Cancer. Front Oncol 2021; 11:647236. [PMID: 33869042 PMCID: PMC8049181 DOI: 10.3389/fonc.2021.647236] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer (BC) is one of the most common malignant urinary system tumors, and its prognosis is poor. In recent years, autophagy has been closely linked to the development of BC. Therefore, we investigated the potential prognostic role of autophagy-related long non-coding RNA (lncRNA) in patients with BC. We obtained the lncRNA information and autophagy genes, respectively, from The Cancer Genome Atlas (TCGA) data set and the human autophagy database (HADb) and performed a co-expression analysis to identify autophagy gene-associated lncRNAs. Then, we divided the data into training group and testing group. In the training group, 15 autophagy-related lncRNAs were found to have a prognostic value (AC026369.3, USP30-as1, AC007991.2, AC104785.1, AC010503.4, AC037198.1, AC010331.1, AF131215.6, AC084357.2, THUMPD3-AS1, U62317.4, MAN1B1-DTt, AC024060.1, AL662844.4, and AC005229.4). The patients were divided into low-risk group and high-risk group based on the prognostic lncRNAs. The overall survival (OS) time for the high-risk group was shorter than that for the low-risk group [risk ratio (hazard ratio, HR) = 1.08, 95% CI: 1.06-1.10; p < 0.0001]. Using our model, the defined risk value can predict the prognosis of a patient. Next, the model was assessed in the TCGA testing group to further validate these results. A total of 203 patients with BC were recruited to verify the lncRNA characteristics. We divided these patients into high-risk group and low-risk group. The results of testing data set show that the survival time of high-risk patients is shorter than that of low-risk patients. In the training group, the area under the curve (AUC) was more than 0.7, indicating a high level of accuracy. The AUC for a risk model was greater than that for each clinical feature alone, indicating that the risk value of a model was the best indicator for predicting the prognosis. Further training data analysis showed that the gene set was significantly enriched in cancer-related pathways, including actin cytoskeleton regulation and gap junctions. In conclusion, our 15 autophagy-related lncRNAs have a prognostic potential for BC, and may play key roles in the biology of BC.
Collapse
Affiliation(s)
- Jiaming Wan
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Cheng Guo
- Department of Otorhinolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongpeng Fang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongye Xu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yongwei Hu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yun Luo
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Wu P, Zheng Y, Wang Y, Wang Y, Liang N. Development and validation of a robust immune-related prognostic signature in early-stage lung adenocarcinoma. J Transl Med 2020; 18:380. [PMID: 33028329 PMCID: PMC7542703 DOI: 10.1186/s12967-020-02545-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022] Open
Abstract
Background The incidence of stage I and stage II lung adenocarcinoma (LUAD) is likely to increase with the introduction of annual screening programs for high-risk individuals. We aimed to identify a reliable prognostic signature with immune-related genes that can predict prognosis and help making individualized management for patients with early-stage LUAD. Methods The public LUAD cohorts were obtained from the large-scale databases including 4 microarray data sets from the Gene Expression Omnibus (GEO) and 1 RNA-seq data set from The Cancer Genome Atlas (TCGA) LUAD cohort. Only early-stage patients with clinical information were included. Cox proportional hazards regression model was performed to identify the candidate prognostic genes in GSE30219, GSE31210 and GSE50081 (training set). The prognostic signature was developed using the overlapped prognostic genes based on a risk score method. Kaplan–Meier curve with log-rank test and time-dependent receiver operating characteristic (ROC) curve were used to evaluate the prognostic value and performance of this signature, respectively. Furthermore, the robustness of this prognostic signature was further validated in TCGA-LUAD and GSE72094 cohorts. Results A prognostic immune signature consisting of 21 immune-related genes was constructed using the training set. The prognostic signature significantly stratified patients into high- and low-risk groups in terms of overall survival (OS) in training data set, including GSE30219 (HR = 4.31, 95% CI 2.29–8.11; P = 6.16E−06), GSE31210 (HR = 11.91, 95% CI 4.15–34.19; P = 4.10E−06), GSE50081 (HR = 3.63, 95% CI 1.90–6.95; P = 9.95E−05), the combined data set (HR = 3.15, 95% CI 1.98–5.02; P = 1.26E−06) and the validation data set, including TCGA-LUAD (HR = 2.16, 95% CI 1.49–3.13; P = 4.54E−05) and GSE72094 (HR = 2.95, 95% CI 1.86–4.70; P = 4.79E−06). Multivariate cox regression analysis demonstrated that the 21-gene signature could serve as an independent prognostic factor for OS after adjusting for other clinical factors. ROC curves revealed that the immune signature achieved good performance in predicting OS for early-stage LUAD. Several biological processes, including regulation of immune effector process, were enriched in the immune signature. Moreover, the combination of the signature with tumor stage showed more precise classification for prognosis prediction and treatment design. Conclusions Our study proposed a robust immune-related prognostic signature for estimating overall survival in early-stage LUAD, which may be contributed to make more accurate survival risk stratification and individualized clinical management for patients with early-stage LUAD.
Collapse
Affiliation(s)
- Pancheng Wu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yi Zheng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yanyu Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yadong Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
11
|
Xing X, He Z, Wang Z, Mo Z, Chen L, Yang B, Zhang Z, Chen S, Ye L, Zhang R, Zheng Y, Chen W, Li D. Association between H3K36me3 modification and methylation of LINE-1 and MGMT in peripheral blood lymphocytes of PAH-exposed workers. Toxicol Res (Camb) 2020; 9:661-668. [PMID: 33178426 DOI: 10.1093/toxres/tfaa074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 01/24/2023] Open
Abstract
To explore the epigenetic alterations in response to DNA damage following polycyclic aromatic hydrocarbons (PAHs) exposure and the crosstalk between different epigenetic regulations, we examined trimethylated Lys 36 of histone H3 (H3K36me3) and methylation of 'long interspersed element-1 (LINE-1)' and 'O 6-methylguanine-DNA methyltransferase (MGMT)' in peripheral blood lymphocytes (PBLCs) of 173 coke oven workers (PAH-exposed group) and 94 non-exposed workers (control group). The PAH-exposed group showed higher internal PAH exposure level, enhanced DNA damage and increased MGMT expression (all P < 0.001). Notably, the methylation of LINE-1 and MGMT decreased by 3.9 and 40.8%, respectively, while H3K36me3 level was 1.7 times higher in PBLCs of PAH-exposed group compared to control group (all P < 0.001). These three epigenetic marks were significantly associated with DNA damage degree (all P < 0.001) and PAH exposure level in a dose-response manner (all P < 0.001). LINE-1 hypomethylation is correlated with enhanced H3K36me3 modification (β = -0.198, P = 0.002), indicating a synergistic effect between histone modification and DNA methylation at the whole genome level. In addition, MGMT expression was positively correlated with H3K36me3 modification (r = 0.253, P < 0.001), but not negatively correlated with MGMT methylation (r = 0.202, P < 0.05). The in vitro study using human bronchial epithelial cells treated with the organic extract of coke oven emissions confirmed that H3K36me3 is important for MGMT expression following PAH exposure. In summary, our study indicates that histone modification and DNA methylation might have synergistic effects on DNA damage induced by PAH exposure at the whole genome level and H3K36me3 is more essential for MGMT expression during the course.
Collapse
Affiliation(s)
- Xiumei Xing
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhini He
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Ziwei Wang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Ziying Mo
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Liping Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Boyi Yang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhengbao Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Shen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Lizhu Ye
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Rui Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University 38 Dengzhou Road, Qingdao 266021, China
| | - Wen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Daochuan Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| |
Collapse
|
12
|
Song Y, Jin D, Chen J, Luo Z, Chen G, Yang Y, Liu X. Identification of an immune-related long non-coding RNA signature and nomogram as prognostic target for muscle-invasive bladder cancer. Aging (Albany NY) 2020; 12:12051-12073. [PMID: 32579540 PMCID: PMC7343518 DOI: 10.18632/aging.103369] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/01/2020] [Indexed: 12/24/2022]
Abstract
To identify an immune-related prognostic signature based on long non-coding RNAs (lncRNAs) and find immunotherapeutic targets for bladder urothelial carcinoma, we downloaded RNA-sequencing data from The Cancer Genome Atlas (TCGA) dataset. Functional enrichment analysis demonstrated bladder urothelial carcinoma was related to immune-related functions. We obtained 332 immune-related genes and 262 lncRNAs targeting immune-related genes. We constructed a signature based on eight lncRNAs in training cohort. Patients were classified as high-risk and low-risk according to signature risk score. High-risk patients had poor overall survival compared with low-risk patients (P < 0.001). Multivariate Cox regression suggested the signature was an independent prognostic indicator. The findings were further validated in testing, entire TCGA and external validation cohorts. Gene set enrichment analysis indicated significant enrichment of immune-related phenotype in high-risk group. Immunohistochemistry and online analyses validated the functions of 4 key immune-related genes (LIG1, TBX1, CTSG and CXCL12) in bladder urothelial carcinoma. Nomogram proved to be a good classifier for muscle-invasive bladder cancer through combining the signature. In conclusion, our immune-related prognostic signature and nomogram provided prognostic indicators and potential immunotherapeutic targets for muscle-invasive bladder cancer.
Collapse
Affiliation(s)
- Yuxuan Song
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Donghui Jin
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jingyi Chen
- Department of Gastroenterology and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Zhiwen Luo
- Department of Hepatobiliary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guangyuan Chen
- The Second Clinical Medical School, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yongjiao Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
13
|
Wu F, Chai RC, Wang Z, Liu YQ, Zhao Z, Li GZ, Jiang HY. Molecular classification of IDH-mutant glioblastomas based on gene expression profiles. Carcinogenesis 2020; 40:853-860. [PMID: 30877769 PMCID: PMC6642368 DOI: 10.1093/carcin/bgz032] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/15/2019] [Accepted: 02/13/2019] [Indexed: 01/22/2023] Open
Abstract
Isocitrate dehydrogenase (IDH) mutant glioblastoma (GBM), accounts for ~10% GBMs, arises from lower grade diffuse glioma and preferentially appears in younger patients. Here, we aim to establish a robust gene expression-based molecular classification of IDH-mutant GBM. A total of 33 samples from the Chinese Glioma Genome Atlas RNA-sequencing data were selected as training set, and 21 cases from Chinese Glioma Genome Atlas microarray data were used as validation set. Consensus clustering identified three groups with distinguished prognostic and molecular features. G1 group, with a poorer clinical outcome, mainly contained TERT promoter wild-type and male cases. G2 and G3 groups had better prognosis differed in gender. Gene ontology analysis showed that genes enriched in G1 group were involved in DNA replication, cell division and cycle. On the basis of the differential genes between G1 and G2/G3 groups, a six-gene signature was developed with a Cox proportional hazards model. Kaplan-Meier analysis found that the acquired signature could differentiate the outcome of low- and high-risk cases. Moreover, the signature could also serve as an independent prognostic factor for IDH-mutant GBM in the multivariate Cox regression analysis. Gene ontology and gene set enrichment analyses revealed that gene sets correlated with high-risk group were involved in cell cycle, cell proliferation, DNA replication and repair. These finding highlights heterogeneity within IDH-mutant GBMs and will advance our molecular understanding of this lethal cancer.
Collapse
Affiliation(s)
- Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Rui-Chao Chai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Zhiliang Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Yu-Qing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Guan-Zhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Hao-Yu Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| |
Collapse
|
14
|
Shan X, Zhang C, Wang Z, Wang K, Wang J, Qiu X, Jiang T, Yang P. Prognostic value of a nine-gene signature in glioma patients based on tumor-associated macrophages expression profiling. Clin Immunol 2020; 216:108430. [PMID: 32325251 DOI: 10.1016/j.clim.2020.108430] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 03/29/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022]
Abstract
Tumor-associated macrophages (TAMs) are regarded as the most abundantly infiltrating immune cells around the tumor microenvironment in gliomas, which plays an important role in tumorgenesis and immunosuppression. A total of 216 patients diagnosed with primary glioma were obtained from the Chinese Glioma Genome Atlas of which the RNA sequencing data was used as training set. RNA sequencing from the Cancer Genome Atlas was applicated for validation. We found that mesenchymal subtype showed strong positive correlation with macrophage-related genes (MRGs) expression. Survival analysis showed that high expression level of MRG predicted poor prognosis. A TAM-based nine-gene signature was constructed, which divided the samples into high- and low-risk of unfavorable outcome. The result of Cox regression analysis showed that the risk score was an independent prognostic factor in gliomas. Hence, the expression of TAMs was correlated with patient survival. The nine-TAM-related gene signature can predict patient survival efficiently.
Collapse
Affiliation(s)
- Xia Shan
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, China; Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, China
| | - Chuanbao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China
| | - Zheng Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China
| | - Kuanyu Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China
| | - Xiaoguang Qiu
- Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China; Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, China; Center of Brain Tumor, Beijing Institute for Brain Disorder, China; China National Clinical Research Center for Neurological Diseases, China; Chinese Glioma Genome Atlas Network (CGGA), China
| | - Pei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China; Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, China.
| |
Collapse
|
15
|
Identification of N 6-methyladenosine-related lncRNAs for patients with primary glioblastoma. Neurosurg Rev 2020; 44:463-470. [PMID: 31938968 DOI: 10.1007/s10143-020-01238-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/26/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022]
Abstract
To investigate the m6a-related long non-coding RNAs (lncRNAs) that may be exploited as potential biomarkers in primary glioblastoma (pGBM), a cohort of 268 glioma samples from GSE16011 dataset was included for discovery. The Chinese Glioma Genome Atlas (CGGA) microarray and RNA sequencing databases were used for validation. Bioinformatic analyses were performed using the R software. The m6a-lncRNA co-expression networks were constructed, and four m6a-related lncRNAs (MIR9-3HG, LINC00900, MIR155HG, and LINC00515) were identified in pGBM patients on the univariate Cox regression analysis. Patients in the low-risk group had longer overall survival (OS) and progression-free survival (PFS) than those in the high-risk group (P = 0.0025, P = 0.0070). Moreover, the high-risk group displayed older age, isocitrate dehydrogenase (IDH) wild-type, classical and mesenchymal TCGA subtype, and G3 CGGA subtype. Distinct m6a status was identified according to histologic grade and two groups (low-risk and high-risk). Functional annotation showed that differentially expressed genes between the two groups were enriched in immune response, apoptosis, cell adhesion, negative regulation of transcription, negative regulation of RNA metabolic process, and regulation of RNA metabolic process. We profiled the m6a status in glioma and identified four m6a-related prognostic lncRNAs for pGBMs.
Collapse
|
16
|
Li G, Zhai Y, Wang Z, Wang Z, Huang R, Jiang H, Li R, Feng Y, Chang Y, Jiang T, Zhang W. Postoperative standard chemoradiotherapy benefits primary glioblastoma patients of all ages. Cancer Med 2019; 9:1955-1965. [PMID: 31851783 PMCID: PMC7064041 DOI: 10.1002/cam4.2754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/07/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Glioblastoma is the most malignant tumor of the central nervous system. Several prediction models have been produced to aid in prognosis assessment. Age, a primary decision factor for prognosis, is associated with increased genomic alterations, however the exact link between increased age and poor prognosis is unknown. OBJECTIVE In this study, we aimed to reveal the underlying cause of poor prognosis in elderly patients. METHODS This study included data on 616 primary GBM tumor samples from the CGGA and TCGA databases and 41 nontumor brain tissue samples obtained from GSE53890. Hallmarks and clinicopathological characteristics were evaluated in both tumor and nontumor brain tissues. The association between choice of treatment regimen and age was measured using ANOVA and Student's t test. RESULTS Age was a robust predictor of poor prognosis in glioma. No age-related hallmarks of cancer were detected, including pathological characteristics or mutations. However, treatment choice was strongly significantly different between old and young patients. Combined chemo-radiation therapy could benefit old and young GBM patients, however, old patients are currently less likely to choose it. CONCLUSION The vast divergence in prognosis between young and old GBM patients is largely caused by choice of treatment rather than age-related tumor genomic characteristics. Postoperative standard radio- and chemotherapy provide strong benefits to primary glioblastoma patients of all ages.
Collapse
Affiliation(s)
- Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - You Zhai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiliang Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ruoyu Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Haoyu Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Renpeng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuemei Feng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yuanhao Chang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| |
Collapse
|
17
|
Wu F, Zhao Z, Chai RC, Liu YQ, Li GZ, Jiang HY, Jiang T. Prognostic power of a lipid metabolism gene panel for diffuse gliomas. J Cell Mol Med 2019; 23:7741-7748. [PMID: 31475440 PMCID: PMC6815778 DOI: 10.1111/jcmm.14647] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/29/2019] [Accepted: 08/13/2019] [Indexed: 01/17/2023] Open
Abstract
Lipid metabolism reprogramming plays important role in cell growth, proliferation, angiogenesis and invasion in cancers. However, the diverse lipid metabolism programmes and prognostic value during glioma progression remain unclear. Here, the lipid metabolism-related genes were profiled using RNA sequencing data from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) database. Gene ontology (GO) and gene set enrichment analysis (GSEA) found that glioblastoma (GBM) mainly exhibited enrichment of glycosphingolipid metabolic progress, whereas lower grade gliomas (LGGs) showed enrichment of phosphatidylinositol metabolic progress. According to the differential genes of lipid metabolism between LGG and GBM, we developed a nine-gene set using Cox proportional hazards model with elastic net penalty, and the CGGA cohort was used for validation data set. Survival analysis revealed that the obtained gene set could differentiate the outcome of low- and high-risk patients in both cohorts. Meanwhile, multivariate Cox regression analysis indicated that this signature was a significantly independent prognostic factor in diffuse gliomas. Gene ontology and GSEA showed that high-risk cases were associated with phenotypes of cell division and immune response. Collectively, our findings provided a new sight on lipid metabolism in diffuse gliomas.
Collapse
Affiliation(s)
- Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Rui-Chao Chai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Yu-Qing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Guan-Zhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Hao-Yu Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| |
Collapse
|
18
|
Jovčevska I. Genetic secrets of long-term glioblastoma survivors. Bosn J Basic Med Sci 2019; 19:116-124. [PMID: 30114377 DOI: 10.17305/bjbms.2018.3717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
Glioblastomas are the most aggressive and lethal primary astrocytic tumors of the central nervous system. They account for 60% to 70% of all gliomas and the majority are diagnosed in Caucasian male patients at advanced age. Genetic analyses of glioblastoma show a great intra- and inter-tumor heterogeneity, which opens up a debate about its cellular origin. Different types of brain cells, including astrocytes, neural stem cells, oligodendrocyte precursor cells and glioblastoma stem cells are proposed to have a role in tumor initiation and spreading; however, data is still inconclusive. Due to short life expectancy, long-term glioblastoma survivors are defined as patients who live longer than two years post-diagnosis. Extreme survivors, living 10 years or more after diagnosis, comprise less than 1% of all patients. Molecular testing indicates genetic differences between short- and long-term survivors with glioblastoma. The most informative are IDH1/2 gene mutations and MGMT promoter methylation, which are associated with a better response to standard clinical care. Moreover, a decreased expression of the CHI3L1, FBLN4, EMP3, IGFBP2, IGFBP3, LGALS3, MAOB, PDPN, SERPING1 and TIMP1 genes has been associated with prolonged survival. In addition, emerging evidence suggests the role of different microRNAs in predicting patient survival. Other factors that may affect the survival of glioblastoma patients include clinical/demographic characteristics such as seizures at presentation, age at diagnosis, and the extent of surgical resection. Because of the small number of long-term survivors with glioblastoma, comparative studies on genetic differences between short- and long-term survivors are challenging. To improve patient management and clinical outcomes, a thorough "omics" approach is necessary for identifying differences between short- and long-term survivors with glioblastoma.
Collapse
Affiliation(s)
- Ivana Jovčevska
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
19
|
ALDH1A3 induces mesenchymal differentiation and serves as a predictor for survival in glioblastoma. Cell Death Dis 2018; 9:1190. [PMID: 30538217 PMCID: PMC6290011 DOI: 10.1038/s41419-018-1232-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 02/08/2023]
Abstract
As aldehyde dehydrogenase (ALDH) is a novel stem cell marker, increasing studies have confirmed that high ALDH activity promotes tumorigenesis and progression in cancers. Some preliminary studies have found that ALDH1A3 may play an important role in glioma malignant progression, but so far there was no conclusive conclusion. The purpose of our study was to elucidate the mechanisms by which ALDH1A3 regulated in glioma and to provide practical tools for clinical application. Aldefluor, flow cytometry sorting and qRT-PCR were performed to verify the role of ALDH1A3 in ALDH activity maintenance. Transwell, immunofluorescence, glycolytic assays, and orthotopic xenograft models were used to explore ALDH1A3 bio-functions in GBM. LASSO-COX, COX survival analysis and Kaplan–Meier analysis were used to establish the prognostic evaluation system and predict postoperative chemotherapy sensitivity of GBMs. Our integrated study found that (1) ALDH1A3 associates with mesenchymal differentiation of GBM in Eastern and Western world patients. (2) ALDH1A3 plays a critical role in ALDH activity maintenance. (3) ALDH1A3 is an activator of mesenchymal transformation in GBM. (4) ALDH1A3-derived PMT markers’ molecular signature can predict 1-, 2-, and 3-year survival rates of GBMs precisely. In conclusion, ALDH1A3 was a major contributor to ALDH activity and a key driver in triggering mesenchymal transformation in GBM. ALDH1A3-based molecular classification scheme can help to improve guidance for prognosis forecasting and individualized treatment decision making for GBM patients.
Collapse
|
20
|
Feng L, Ma J, Ji H, Liu Y, Hu W. MiR-184 Retarded the Proliferation, Invasiveness and Migration of Glioblastoma Cells by Repressing Stanniocalcin-2. Pathol Oncol Res 2018; 24:853-860. [PMID: 28887636 DOI: 10.1007/s12253-017-0298-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/21/2017] [Indexed: 12/31/2022]
Abstract
To investigate the repression of miR-184 on Stanniocalcin-2 (STC2) and how this axis affects the propagation, invasiveness and migration ability of glioblastoma cells. RT-PCR was employed to determine the miR-184 and STC2 mRNA expression both in tissues and cells. Western blot was employed to determine the protein expression levels. The cells were transfected via lipofection. MTT, colony formation, invasion and scratch healing assays were conducted to study the propagation, invasiveness and migratory ability of glioblastoma cells, respectively. The dual luciferase reporter gene assay was conducted to determine whether miR-184 could directly bind to STC2 mRNA 3'UTR. MiR-184 was under-expressed whereas STC2 was over-expressed in glioblastoma tissues and cell line. The up-regulation of miR-184 significantly suppressed the propagation, migratory ability and invasion of glioblastoma cells, whereas the over-expression of STC2 restored this effect. MiR-184 was confirmed to directly target STC2. MiR-184 could retard the propagation, invasiveness and migratory ability of glioblastoma cells by suppressing STC2.
Collapse
Affiliation(s)
- Linsen Feng
- Department of Neurosurgery, Taixing People's Hospital, Taizhou, Jiangsu, 225400, China
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Jianhua Ma
- Department of Neurosurgery, Taixing People's Hospital, Taizhou, Jiangsu, 225400, China
| | - Haiming Ji
- Department of Neurosurgery, Taixing People's Hospital, Taizhou, Jiangsu, 225400, China
| | - Yichun Liu
- Department of Neurosurgery, Taixing People's Hospital, Taizhou, Jiangsu, 225400, China
| | - Weixing Hu
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
21
|
Wang Q, Cai J, Fang C, Yang C, Zhou J, Tan Y, Wang Y, Li Y, Meng X, Zhao K, Yi K, Zhang S, Zhang J, Jiang C, Zhang J, Kang C. Mesenchymal glioblastoma constitutes a major ceRNA signature in the TGF-β pathway. Theranostics 2018; 8:4733-4749. [PMID: 30279734 PMCID: PMC6160778 DOI: 10.7150/thno.26550] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/15/2018] [Indexed: 12/27/2022] Open
Abstract
Rationale: Competitive endogenous RNA (ceRNA) networks play important roles in posttranscriptional regulation. Their dysregulation is common in cancer. However, ceRNA signatures have been poorly examined in the invasive and aggressive phenotypes of mesenchymal glioblastoma (GBM). This study aims to characterize mesenchymal glioblastoma at the mRNA-miRNA level and identify the mRNAs in ceRNA networks (micNET) markers and their mechanisms in tumorigenesis. Methods: The mRNAs in ceRNA networks (micNETs) of glioblastoma were investigated by constructing a GBM ceRNA network followed by integration with a STRING protein interaction network. The prognostic micNET markers of mesenchymal GBM were identified and validated across multiple datasets. ceRNA interactions were identified between micNETs and miR181 family members. LY2109761, an inhibitor of TGFBR2, demonstrated tumor-suppressive effects on both primary cultured cells and a patient-derived xenograft intracranial model. Results: We characterized mesenchymal glioblastoma at the mRNA-miRNA level and reported a ceRNA network that could separate the mesenchymal subtype from other subtypes. Six genes (TGFBR2, RUNX1, PPARG, ACSL1, GIT2 and RAP1B) that interacted with each other in both a ceRNA-related manner and in terms of their protein functions were identified as markers of the mesenchymal subtype. The coding sequence (CDS) and 3'-untranslated region (UTR) of TGFBR2 upregulated the expression of these genes, whereas TGFBR2 inhibition by siRNA or miR-181a/d suppressed their expression levels. Furthermore, mesenchymal subtype-related genes and the invasion phenotype could be reversed by suppressing the six mesenchymal marker genes. Conclusions: This study suggests that the micNETs may have translational significance in the diagnosis of mesenchymal GBM and may be novel therapeutic targets.
Collapse
Affiliation(s)
- Qixue Wang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Jinquan Cai
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Chuan Fang
- Department of Neurosurgery, Hebei University Affiliated Hospital, Baoding 071000, China
| | - Chao Yang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Junhu Zhou
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Yanli Tan
- Department of Pathology, Medical College of Hebei University, Baoding, Hebei 071000, China
| | - Yunfei Wang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Yansheng Li
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Xiangqi Meng
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Kai Zhao
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Kaikai Yi
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Sijing Zhang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Jianning Zhang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Chuanlu Jiang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Jing Zhang
- Institute for Cancer Genetics, Columbia University Medical Center, Columbia University, New York, New York 10032, USA
| | - Chunsheng Kang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| |
Collapse
|
22
|
Yuan GQ, Wei NL, Mu LY, Wang XQ, Zhang YN, Zhou WN, Pan YW. A 4-miRNAs signature predicts survival in glioblastoma multiforme patients. Cancer Biomark 2018; 20:443-452. [PMID: 28869437 DOI: 10.3233/cbm-170205] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Although O(6)-methylguanine DNA methyltransferase (MGMT) promoter methylation status is an important marker for glioblastoma multiforme (GBM), there is considerable variability in the clinical outcome of patients with similar methylation profles. OBJECTIVE We examined whether a MicroRNA (miRNA) signature can be identified for predicting clinical outcomes and helping in treatment decisions. METHODS The differentially expressed miRNAs were evaluated in 6 pairs of short- (⩽ 450 days) and long-term survivors (> 450 days) by using microarray. Real time quantitative PCR (qRT-PCR) was applied to further verify screened miRNAs with a greater number of samples (n= 48). Meanwhile, functional interpretation of miRNA profile was carried out based on miRNA-target databases. In addition, MGMT promoter methylation status was tested by means of pyrosequencing (PSQ) testing. RESULTS Six miRNAs were upregulated in the long-term survival group (fold change ⩾ 2.0, P< 0.05). The further verification by qRT-PCR indicated that the increase in let-7g-5p, miR-139-5p, miR-17-5p and miR-9-3p level in long-term survivors was statistically significant. Kaplan-Meier survival analysis showed that high expression of a prognostic 4-miRNA signature was significantly associated with good patient survival (p= 0.0012). The signature regulated signaling pathways including Calcium, MAPK, ErbB, mTOR and cell cycle involved in carcinogenesis from glial progenitor cell to primary GBM. CONCLUSIONS The 4-miRNA signature was identified as an independent prognostic biomarker that identified patients who have a favorable outcome.
Collapse
Affiliation(s)
- G Q Yuan
- Institute of Neurology, The Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - N L Wei
- Department of Neurosurgery, Fudan University Huashan Hospital, Fudan University, Shanghai 20040, China
| | - L Y Mu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| | - X Q Wang
- Institute of Neurology, The Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Y N Zhang
- Department of Neurosurgery, The Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - W N Zhou
- Department of Neurosurgery, The Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Y W Pan
- Institute of Neurology, The Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China.,Department of Neurosurgery, The Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| |
Collapse
|
23
|
Nevel KS, Wilcox JA, Robell LJ, Umemura Y. The Utility of Liquid Biopsy in Central Nervous System Malignancies. Curr Oncol Rep 2018; 20:60. [PMID: 29876874 DOI: 10.1007/s11912-018-0706-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Liquid biopsy is a sampling of tumor cells or tumor nucleotides from biofluids. This review explores the roles of liquid biopsy for evaluation and management of patients with primary and metastatic CNS malignancies. RECENT FINDINGS Circulating tumor cell (CTC) detection has emerged as a relatively sensitive and specific tool for diagnosing leptomeningeal metastases. Circulating tumor DNA (ctDNA) detection can effectively demonstrate genetic markup of CNS tumors in the cerebrospinal fluid, though its role in managing CNS malignancies is less well-defined. The value of micro RNA (miRNA) detection in CNS malignancies is unclear at this time. Current standard clinical tools for the diagnosis and monitoring of CNS malignancies have limitations, and liquid biopsy may help address clinical practice and knowledge gaps. Liquid biopsy offers exciting potential for the diagnosis, prognosis, and treatment of CNS malignancies, but each modality needs to be studied in large prospective trials to better define their use.
Collapse
Affiliation(s)
- Kathryn S Nevel
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Jessica A Wilcox
- Department of Neurology, NewYork-Presbyterian Hospital, Weill Cornell Medical Center, 520 E 70th St, Starr Pavilion 607, New York, NY, 10021, USA
| | - Lindsay J Robell
- Department of Neurology, University of Michigan, 1914 Taubman Center, 1500 E. Medical Center Dr., SPC 5316, Ann Arbor, MI, 48109-5316, USA
| | - Yoshie Umemura
- Department of Neurology, University of Michigan, 1914 Taubman Center, 1500 E. Medical Center Dr., SPC 5316, Ann Arbor, MI, 48109-5316, USA.
| |
Collapse
|
24
|
Chen B, Liang T, Yang P, Wang H, Liu Y, Yang F, You G. Classifying lower grade glioma cases according to whole genome gene expression. Oncotarget 2018; 7:74031-74042. [PMID: 27677590 PMCID: PMC5342033 DOI: 10.18632/oncotarget.12188] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/13/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To identify a gene-based signature as a novel prognostic model in lower grade gliomas. RESULTS A gene signature developed from HOXA7, SLC2A4RG and MN1 could segregate patients into low and high risk score groups with different overall survival (OS), and was validated in TCGA RNA-seq and GSE16011 mRNA array datasets. Receiver operating characteristic (ROC) was performed to show that the three-gene signature was more sensitive and specific than histology, grade, age, IDH1 mutation and 1p/19q co-deletion. Gene Set Enrichment Analysis (GSEA) and GO analysis showed high-risk samples were associated with tumor associated macrophages (TAMs) and highly invasive phenotypes. Moreover, HOXA7-siRNA inhibited migration and invasion in vitro, and downregulated MMP9 at the protein level in U251 glioma cells. METHODS A cohort of 164 glioma specimens from the Chinese Glioma Genome Atlas (CGGA) array database were assessed as the training group. TCGA RNA-seq and GSE16011 mRNA array datasets were used for validation. Regression analyses and linear risk score assessment were performed for the identification of the three-gene signature comprising HOXA7, SLC2A4RG and MN1. CONCLUSIONS We established a three-gene signature for lower grade gliomas, which could independently predict overall survival (OS) of lower grade glioma patients with higher sensitivity and specificity compared with other clinical characteristics. These findings indicate that the three-gene signature is a new prognostic model that could provide improved OS prediction and accurate therapies for lower grade glioma patients.
Collapse
Affiliation(s)
- Baoshi Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tingyu Liang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Pei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), China
| | - Haoyuan Wang
- Department of Neurosurgery, Guangdong Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanwei Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), China
| | - Fan Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Gan You
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), China
| |
Collapse
|
25
|
Zhang C, Li J, Wang H, Song SW. Identification of a five B cell-associated gene prognostic and predictive signature for advanced glioma patients harboring immunosuppressive subtype preference. Oncotarget 2018; 7:73971-73983. [PMID: 27738332 PMCID: PMC5342028 DOI: 10.18632/oncotarget.12605] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/27/2016] [Indexed: 12/29/2022] Open
Abstract
High grade gliomas contribute to most brain tumor mortality. A few studies reported that the immune system affected glioma development, and immune biomarkers helped understand the disease and formulate effective immunotherapy for patients. Currently, no B lymphocyte-based prognostic signature was reported in gliomas. By applying 78 B cell lineage-specific genes, we conducted a whole-genome gene expression analysis in 782 high grade gliomas derived from three independent datasets by Cox regression analysis and risk score method for signature identification, and then used Gene Ontology, Gene Set Enrichment Analysis, and other statistical methods for functional annotations of the signature-defined differences. We developed a five B cell-associated gene signature for prognosis of high grade glioma patients, which is independent of clinicopathological and genetic features. The signature identified high risk patients suitable for chemoradiotherapy, whereas low risk patients should rule out chemotherapy with radiotherapy only. We found that tumors of TCGA Mesenchymal subtype and wild type IDH1 were preferentially stratified to the high risk group, which bore strong immunosuppressive microenvironment, while tumors of TCGA Proneural subtype and mutated IDH1 were significantly accumulated to the low risk group, which exhibited less immunosuppressive state. The five B cell-associated gene signature predicts poor survival of high risk patients bearing strong immunosuppression and helps select optimal therapeutic regimens for glioma patients.
Collapse
Affiliation(s)
- Chuanbao Zhang
- Beijing Neurosurgical Institute, Capital Medical University, TiantanXili, Dongcheng District, Beijing 100050, China
| | - Jiye Li
- Beijing Neurosurgical Institute, Capital Medical University, TiantanXili, Dongcheng District, Beijing 100050, China.,Beijing Institute for Brain Disorders, Youanmen, Beijing, 100069, China.,Center for Brain Disorders Research, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Haoyuan Wang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Sonya Wei Song
- Beijing Neurosurgical Institute, Capital Medical University, TiantanXili, Dongcheng District, Beijing 100050, China.,Beijing Institute for Brain Disorders, Youanmen, Beijing, 100069, China.,Center for Brain Disorders Research, Capital Medical University, Youanmen, Beijing, 100069, China
| |
Collapse
|
26
|
Survival kinase genes present prognostic significance in glioblastoma. Oncotarget 2018; 7:20140-51. [PMID: 26956052 PMCID: PMC4991443 DOI: 10.18632/oncotarget.7917] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/14/2016] [Indexed: 01/28/2023] Open
Abstract
Cancer biomarkers with a strong predictive power for diagnosis/prognosis and a potential to be therapeutic targets have not yet been fully established. Here we employed a loss-of-function screen in glioblastoma (GBM), an infiltrative brain tumor with a dismal prognosis, and identified 20 survival kinase genes (SKGs). Survival analyses using The Cancer Genome Atlas (TCGA) datasets revealed that the expression of CDCP1, CDKL5, CSNK1E, IRAK3, LATS2, PRKAA1, STK3, TBRG4, and ULK4 stratified GBM prognosis with or without temozolomide (TMZ) treatment as a covariate. For the first time, we found that GBM patients with a high level of NEK9 and PIK3CB had a greater chance of having recurrent tumors. The expression of CDCP1, IGF2R, IRAK3, LATS2, PIK3CB, ULK4, or VRK1 in primary GBM tumors was associated with recurrence-related prognosis. Notably, the level of PIK3CB in recurrent tumors was much higher than that in newly diagnosed ones. Congruent with these results, genes in the PI3K/AKT pathway showed a significantly strong correlation with recurrence rate, further highlighting the pivotal role of PIK3CB in the disease progression. Importantly, 17 SKGs together presented a novel GBM prognostic signature. SKGs identified herein are associated with recurrence rate and present prognostic significance in GBM, thereby becoming attractive therapeutic targets.
Collapse
|
27
|
Zhang Y, Xu Y, Li F, Li X, Feng L, Shi X, Wang L, Li X. Dissecting dysfunctional crosstalk pathways regulated by miRNAs during glioma progression. Oncotarget 2017; 7:25769-82. [PMID: 27013589 PMCID: PMC5041942 DOI: 10.18632/oncotarget.8265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/08/2016] [Indexed: 01/14/2023] Open
Abstract
Glioma is a malignant nervous system tumor with a high fatality rate and poor prognosis. MicroRNAs (miRNAs) are important post-transcriptional modulators of glioma initiation and progression. Tumor progression often results from dysfunctional co-operation between pathways regulated by miRNAs. We therefore constructed a glioma progression-related miRNA-pathway crosstalk network that not only revealed some key miRNA-pathway patterns, but also helped characterize the functional roles of miRNAs during glioma progression. Our data indicate that crosstalk between cell cycle and p53 pathways is associated with grade II to grade III progression, while cell communications-related pathways involving regulation of actin cytoskeleton and adherens junctions are associated with grade IV glioblastoma progression. Furthermore, miRNAs and their crosstalk pathways may be useful for stratifying glioma and glioblastoma patients into groups with short or long survival times. Our data indicate that a combination of miRNA and pathway crosstalk information can be used for survival prediction.
Collapse
Affiliation(s)
- Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Feng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xiang Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Li Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xinrui Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
28
|
Prognostic value of a microRNA signature as a novel biomarker in patients with lower-grade gliomas. J Neurooncol 2017; 137:127-137. [DOI: 10.1007/s11060-017-2704-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/24/2017] [Indexed: 01/23/2023]
|
29
|
Wang W, Zhao Z, Yang F, Wang H, Wu F, Liang T, Yan X, Li J, Lan Q, Wang J, Zhao J. An immune-related lncRNA signature for patients with anaplastic gliomas. J Neurooncol 2017; 136:263-271. [PMID: 29170907 DOI: 10.1007/s11060-017-2667-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/11/2017] [Indexed: 12/26/2022]
Abstract
We investigated immune-related long non-coding RNAs (lncRNAs) that may be exploited as potential therapeutic targets in anaplastic gliomas. We obtained 572 lncRNAs and 317 immune genes from the Chinese Glioma Genome Atlas microarray and constructed immune-related lncRNAs co-expression networks to identify immune-related lncRNAs. Two additional datasets (GSE16011, REMBRANDT) were used for validation. Gene set enrichment analysis and principal component analysis were used for functional annotation. Immune-lncRNAs co-expression networks were constructed. Nine immune-related lncRNAs (SNHG8, PGM5-AS1, ST20-AS1, LINC00937, AGAP2-AS1, MIR155HG, TUG1, MAPKAPK5-AS1, and HCG18) signature was identified in patients with anaplastic gliomas. Patients in the low-risk group showed longer overall survival (OS) and progression-free survival than those in the high-risk group (P < 0.0001; P < 0.0001). Additionally, patients in the high-risk group displayed no-deletion of chromosomal arms 1p and/or 19q, isocitrate dehydrogenase wild-type, classical and mesenchymal TCGA subtype, G3 CGGA subtype, and lower Karnofsky performance score (KPS). Moreover, the signature was an independent factor and was significantly associated with the OS (P = 0.000, hazard ratio (HR) = 1.434). These findings were further validated in two additional datasets (GSE16011, REMBRANDT). Low-risk and high-risk groups displayed different immune status based on principal components analysis. Our results showed that the nine immune-related lncRNAs signature has prognostic value for anaplastic gliomas.
Collapse
Affiliation(s)
- Wen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China.,Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Fan Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Haoyuan Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Fan Wu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Tingyu Liang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Xiaoyan Yan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Jiye Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China. .,Chinese Glioma Cooperative Group (CGCG), Beijing, China. .,China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China. .,Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China. .,China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
30
|
A 4-miRNA signature to predict survival in glioblastomas. PLoS One 2017; 12:e0188090. [PMID: 29136645 PMCID: PMC5685622 DOI: 10.1371/journal.pone.0188090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
Glioblastomas are among the most lethal cancers; however, recent advances in survival have increased the need for better prognostic markers. microRNAs (miRNAs) hold great prognostic potential being deregulated in glioblastomas and highly stable in stored tissue specimens. Moreover, miRNAs control multiple genes representing an additional level of gene regulation possibly more prognostically powerful than a single gene. The aim of the study was to identify a novel miRNA signature with the ability to separate patients into prognostic subgroups. Samples from 40 glioblastoma patients were included retrospectively; patients were comparable on all clinical aspects except overall survival enabling patients to be categorized as short-term or long-term survivors based on median survival. A miRNome screening was employed, and a prognostic profile was developed using leave-one-out cross-validation. We found that expression patterns of miRNAs; particularly the four miRNAs: hsa-miR-107_st, hsa-miR-548x_st, hsa-miR-3125_st and hsa-miR-331-3p_st could determine short- and long-term survival with a predicted accuracy of 78%. Heatmap dendrograms dichotomized glioblastomas into prognostic subgroups with a significant association to survival in univariate (HR 8.50; 95% CI 3.06–23.62; p<0.001) and multivariate analysis (HR 9.84; 95% CI 2.93–33.06; p<0.001). Similar tendency was seen in The Cancer Genome Atlas (TCGA) using a 2-miRNA signature of miR-107 and miR-331 (miR sum score), which were the only miRNAs available in TCGA. In TCGA, patients with O6-methylguanine-DNA-methyltransferase (MGMT) unmethylated tumors and low miR sum score had the shortest survival. Adjusting for age and MGMT status, low miR sum score was associated with a poorer prognosis (HR 0.66; 95% CI 0.45–0.97; p = 0.033). A Kyoto Encyclopedia of Genes and Genomes analysis predicted the identified miRNAs to regulate genes involved in cell cycle regulation and survival. In conclusion, the biology of miRNAs is complex, but the identified 4-miRNA expression pattern could comprise promising biomarkers in glioblastoma stratifying patients into short- and long-term survivors.
Collapse
|
31
|
Duong C, Nguyen T, Sheppard JP, Ong V, Chung LK, Nagasawa DT, Yang I. Genomic and Molecular Characterization of Brain Tumors in Asian and Non-Asian Patients of Los Angeles: A Single Institution Analysis. Brain Tumor Res Treat 2017; 5:64-69. [PMID: 29188206 PMCID: PMC5700029 DOI: 10.14791/btrt.2017.5.2.64] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 08/24/2017] [Accepted: 09/21/2017] [Indexed: 01/01/2023] Open
Abstract
Background Worldwide, approximately 2% of new cancers are of the brain. Five-year survival rates among brain cancer patients have been reported as a little over a third. Differences in clinical outcomes between brain tumor patients of different races remain poorly understood. Methods A retrospective chart review was performed on brain tumor resection patients≥18 years old. Demographics, treatment variables, and survival outcomes were collected. Primary outcomes were length of stay, recurrence rate, progression-free survival (PFS), and overall survival (OS). Results A total of 452 patients were included in analysis. Females and males had nearly a 1:1 ratio (n=242 and n=220, respectively). Mean age was 54.8 years (SD: 14.5 range: 18–90). Females composed 69% (n=48) of Asian patients; males constituted 31% (n=22). Mean age of the Asian patients was 55.9 years (SD: 14.6 range: 26–89). Asian-only cohort tumor pathologies included glioblastoma (GBM) (n=14), high-grade glioma (n=7), low-grade glioma (n=4), meningioma (n=38), and metastases (n=7). Of the 185 meningioma patients, non-Asian patients comprised 79% of the group (n=146). Of the 65 GBM patients in total, non-Asian patients made up 89% of the GBM cohort (n=58). There were no statistically significant differences between these groups of both cohorts in recurrence (p=0.1580 and p=0.6294, respectively), PFS (p=0.9662 and p=0.4048, respectively), or OS (p=0.3711 and p=0.8183, respectively). Conclusion Studies evaluating the survival between patients of different racial backgrounds against several tumor varieties are rare. Patients of certain racial backgrounds may need additional consideration when being attended to despite the same mutational composition as their counterparts. Repeated studies using national databases may yield more conclusive results.
Collapse
Affiliation(s)
- Courtney Duong
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Thien Nguyen
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - John P Sheppard
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Vera Ong
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Lawrance K Chung
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Daniel T Nagasawa
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Isaac Yang
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Head and Neck Surgery, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,Los Angeles Biomedical Research Institute, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,Harbor-UCLA Medical Center, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
32
|
Ahir BK, Ozer H, Engelhard HH, Lakka SS. MicroRNAs in glioblastoma pathogenesis and therapy: A comprehensive review. Crit Rev Oncol Hematol 2017; 120:22-33. [PMID: 29198335 DOI: 10.1016/j.critrevonc.2017.10.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 09/05/2017] [Accepted: 10/04/2017] [Indexed: 01/17/2023] Open
Abstract
Glioblastoma (GBM), also known as grade IV astrocytoma, is the most aggressive primary intracranial tumor of the adult brain. MicroRNAs (miRNAs), a class of small non-coding RNA species, have critical functions across various biological processes. A great deal of progress has been made recently in dissecting miRNA pathways associated with the pathogenesis of GBM. miRNA expression signatures called gene signatures also characterize and contribute to the phenotypic diversity of GBM subclasses through their ability to regulate developmental growth and differentiation. miRNA molecules have been identified as diagnostic and prognostic biomarkers for patient stratification and may also serve as therapeutic targets and agents. This review summarizes: (i) the current understanding of the roles of miRNAs in the pathogenesis of GBM, (ii) the potential use of miRNAs in GBM diagnosis and glioma grading, (iii) further prospects of developing miRNAs as novel biomarkers and therapeutic targets for GBM, and (iv) important practical considerations when considering miRNA therapy for GBM patients.
Collapse
Affiliation(s)
- Bhavesh K Ahir
- Section of Hematology and Oncology, Department of Medicine, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Howard Ozer
- Section of Hematology and Oncology, Department of Medicine, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Herbert H Engelhard
- Department of Neurosurgery, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Sajani S Lakka
- Section of Hematology and Oncology, Department of Medicine, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
33
|
Xu X, Zhang F, Chen X, Ying Q. MicroRNA‑518b functions as a tumor suppressor in glioblastoma by targeting PDGFRB. Mol Med Rep 2017; 16:5326-5332. [PMID: 28849154 PMCID: PMC5647064 DOI: 10.3892/mmr.2017.7298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 05/09/2017] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive type of primary human brain tumor in China. Dysregulated microRNA (miRNA/miR) expression has been hypothesized to serve a role in the tumorigenesis and progression of human GBM. To explore the potential mechanisms affecting GBM tumorigenesis, the function of miR-518b in regulating GBM cell proliferation and angiogenesis was examined in vitro by CCK-8 and tube formation assay and in vivo by xenograft assay. The present study demonstrated that the expression of miR-518b was downregulated in GBM tissues and in GBM cell lines (U87 and U251). In addition, the expression levels of miR-518b were highly associated with tumor size, World Health Organization grade and prognosis. Furthermore, overexpression of miR-518b suppressed GBM cell proliferation and angiogenesis, and induced GBM cell apoptosis in vitro and in vivo. Overexpression of miR-518b also inhibited the expression of platelet-derived growth factor receptor β (PDGFRB), and the present study confirmed that the 3′ untranslated region (3′UTR) of PDGFRB was a direct target of miR-518b. In conclusion, to the best of our knowledge, the present study is the first to present evidence suggesting that miR-518b may serve as a potential marker and target in GBM treatment.
Collapse
Affiliation(s)
- Xiaolong Xu
- Department of Neurosurgery, The Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Fenglin Zhang
- Department of Neurosurgery, The 411th Hospital of PLA, Shanghai 200081, P.R. China
| | - Xianzhen Chen
- Department of Neurosurgery, The Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Qi Ying
- Department of Neurosurgery, The 411th Hospital of PLA, Shanghai 200081, P.R. China
| |
Collapse
|
34
|
Zhao K, Wang Q, Wang Y, Huang K, Yang C, Li Y, Yi K, Kang C. EGFR/c-myc axis regulates TGFβ/Hippo/Notch pathway via epigenetic silencing miR-524 in gliomas. Cancer Lett 2017; 406:12-21. [PMID: 28778566 DOI: 10.1016/j.canlet.2017.07.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/05/2017] [Accepted: 07/24/2017] [Indexed: 01/27/2023]
Abstract
The epidermal growth factor receptor (EGFR) frequently undergoes high-level genomic amplification and variant III (vIII) deletion in adult glioblastoma. MicroRNAs (miRNAs) are recognized to participate in gene expression regulation. We found that miR-524-3p and miR-524-5p were suppressed in the classical molecular subtype of glioblastoma (GBM) from Chinese Glioma Genome Atlas (CGGA) data, and the suppression was associated with EGFR overexpression and EGFRvIII mutation. These two miRNAs improved overall survival time of patients with glioma, and their overexpression could restrain glioma cell migration, proliferation, and cell cycle, and control tumor formation in vivo. Interestingly, both of the miRNAs had a synergistic inhibitory effect on glioma cells. Furthermore, we confirmed that EGFR amplification/EGFRvIII mutation can repress the expression of Pri-miR-524 by histone modification. MiR-524-3p and miR-524-5p inhibited TGF/β, Notch and the Hippo pathway by targeting Smad2, Hes1 and Tead1, respectively; these pathways repressed their common downstream transcription factor, C-myc. More interestingly, C-myc bound to the promoter region of EGFR/EGFRvIII and activated its expression. These findings indicate that miR-524 mediates the EGFR/EGFRvIII stimulating effect. It may serve as a potential therapeutic agent and classical-specific biomarker for the development of glioma.
Collapse
Affiliation(s)
- Kai Zhao
- Lab of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Qixue Wang
- Lab of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yunfei Wang
- Lab of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Kai Huang
- Lab of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Yang
- Lab of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yansheng Li
- Lab of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaikai Yi
- Lab of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunsheng Kang
- Lab of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
35
|
Joint Covariate Detection on Expression Profiles for Selecting Prognostic miRNAs in Glioblastoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3017948. [PMID: 28409153 PMCID: PMC5377059 DOI: 10.1155/2017/3017948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/18/2017] [Accepted: 02/27/2017] [Indexed: 12/21/2022]
Abstract
An important application of expression profiles is to stratify patients into high-risk and low-risk groups using limited but key covariates associated with survival outcomes. Prior to that, variables considered to be associated with survival outcomes are selected. A combination of single variables, each of which is significantly related to survival outcomes, is always regarded to be candidates for posterior patient stratification. Instead of individually significant variables, a combination that contains not only significant but also insignificant variables is supposed to be concentrated on. By means of bottom-up enumeration on each pair of variables, we propose a joint covariate detection strategy to select candidates that not only correspond to close association with survival outcomes but also help to make a clear stratification of patients. Experimental results on a publicly available dataset of glioblastoma multiforme indicate that the selected pair composed of an individually significant and an insignificant miRNA keeps a better performance than the combination of significant single variables. The selected miRNA pair is ultimately regarded to be associated with the prognosis of glioblastoma multiforme by further pathway analysis.
Collapse
|
36
|
Identification of high risk anaplastic gliomas by a diagnostic and prognostic signature derived from mRNA expression profiling. Oncotarget 2017; 6:36643-51. [PMID: 26436699 PMCID: PMC4742201 DOI: 10.18632/oncotarget.5421] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/16/2015] [Indexed: 01/01/2023] Open
Abstract
Anaplastic gliomas are characterized by variable clinical and genetic features, but there are few studies focusing on the substratification of anaplastic gliomas. To identify a more objective and applicable classification of anaplastic gliomas, we analyzed whole genome mRNA expression profiling of four independent datasets. Univariate Cox regression, linear risk score formula and receiver operating characteristic (ROC) curve were applied to derive a gene signature with best prognostic performance. The corresponding clinical and molecular information were further analyzed for interpretation of the different prognosis and the independence of the signature. Gene ontology (GO), Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA) were performed for functional annotation of the differences. We found a three-gene signature, by applying which, the anaplastic gliomas could be divided into low risk and high risk groups. The two groups showed a high concordance with grade II and grade IV gliomas, respectively. The high risk group was more aggressive and complex. The three-gene signature showed diagnostic and prognostic value in anaplastic gliomas.
Collapse
|
37
|
Li J, Wang Y, Li QG, Xue JJ, Wang Z, Yuan X, Tong JD, Xu LC. Downregulation of FBP1 Promotes Tumor Metastasis and Indicates Poor Prognosis in Gastric Cancer via Regulating Epithelial-Mesenchymal Transition. PLoS One 2016; 11:e0167857. [PMID: 27978536 PMCID: PMC5158319 DOI: 10.1371/journal.pone.0167857] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/21/2016] [Indexed: 01/15/2023] Open
Abstract
Background Recent studies indicated that some glycolytic enzymes are complicated, multifaceted proteins rather than simple components of the glycolytic pathway. FBP1 plays a vital role in glucose metabolism, but its role in gastric cancer tumorigenesis and metastasis has not been fully understood. Methods The prognostic value of FBP1 was first studied in The Cancer Genome Atlas (TCGA) database and validated in in-house database. The effect of FBP1 on cell proliferation and metastasis was examined in vitro. Nonparametric test and Log-rank test were used to evaluate the clinical significance of FBP1 expression. Results In the TCGA cohort, FBP1 mRNA level were shown to be predictive of overall survival in gastric cancer (P = 0.029). In the validation cohort, FBP1 expression were inversely correlated with advanced N stage (P = 0.021) and lymphovascular invasion (P = 0.011). Multivariate Cox regression analysis demonstrated that FBP1 was an independent predictor for both overall survival (P = 0.004) and disease free survival (P<0.001). Functional studies demonstrated that ectopic FBP1 expression inhibited proliferation and invasion in gastric cancer cells, while silencing FBP1 expression had opposite effects (P<0.05). Mechanically, FBP1 serves as a tumor suppressor by inhibiting epithelial-mesenchymal transition (EMT). Conclusions Downregulation of FBP1 promotes gastric cancer metastasis by facilitating EMT and acts as a potential prognostic factor and therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Jing Li
- Department of Oncology, Yangzhou NO.1 People’s Hospital, The Second Clinical School of Yangzhou University, Yangzhou, Jiangsu Province, China
- Research Center of Cancer Prevention and Treatment, Medical College of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Ying Wang
- Department of Oncology, Yangzhou NO.1 People’s Hospital, The Second Clinical School of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Qing-Guo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin-Jun Xue
- Department of Oncology, Yangzhou NO.1 People’s Hospital, The Second Clinical School of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhu Wang
- Department of Oncology, Yangzhou NO.1 People’s Hospital, The Second Clinical School of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Xin Yuan
- Department of Oncology, Yangzhou NO.1 People’s Hospital, The Second Clinical School of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Jian-Dong Tong
- Department of Oncology, Yangzhou NO.1 People’s Hospital, The Second Clinical School of Yangzhou University, Yangzhou, Jiangsu Province, China
- * E-mail: (LCX); (JDT)
| | - Li-Chun Xu
- Research Center of Cancer Prevention and Treatment, Medical College of Yangzhou University, Yangzhou, Jiangsu Province, China
- * E-mail: (LCX); (JDT)
| |
Collapse
|
38
|
Ferreira WAS, Pinheiro DDR, Costa Junior CAD, Rodrigues-Antunes S, Araújo MD, Leão Barros MB, Teixeira ACDS, Faro TAS, Burbano RR, Oliveira EHCD, Harada ML, Borges BDN. An update on the epigenetics of glioblastomas. Epigenomics 2016; 8:1289-305. [PMID: 27585647 DOI: 10.2217/epi-2016-0040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glioblastomas, also known as glioblastoma multiforme (GBM), are the most aggressive and malignant type of primary brain tumor in adults, exhibiting notable variability at the histopathological, genetic and epigenetic levels. Recently, epigenetic alterations have emerged as a common hallmark of many tumors, including GBM. Considering that a deeper understanding of the epigenetic modifications that occur in GBM may increase the knowledge regarding the tumorigenesis, progression and recurrence of this disease, in this review we discuss the recent major advances in GBM epigenetics research involving histone modification, glioblastoma stem cells, DNA methylation, noncoding RNAs expression, including their main alterations and the use of epigenetic therapy as a valid option for GBM treatment.
Collapse
Affiliation(s)
- Wallax Augusto Silva Ferreira
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Danilo do Rosário Pinheiro
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Carlos Antonio da Costa Junior
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Symara Rodrigues-Antunes
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Mariana Diniz Araújo
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Mariceli Baia Leão Barros
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Adriana Corrêa de Souza Teixeira
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Thamirys Aline Silva Faro
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | | | | | - Maria Lúcia Harada
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Bárbara do Nascimento Borges
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| |
Collapse
|
39
|
Cheng W, Ren X, Cai J, Zhang C, Li M, Wang K, Liu Y, Han S, Wu A. A five-miRNA signature with prognostic and predictive value for MGMT promoter-methylated glioblastoma patients. Oncotarget 2016; 6:29285-95. [PMID: 26320189 PMCID: PMC4745726 DOI: 10.18632/oncotarget.4978] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/11/2015] [Indexed: 11/25/2022] Open
Abstract
Although O(6)-methylguanine DNA methyltransferase (MGMT) promoter methylation status is an important marker for glioblastoma multiforme (GBM), there is considerable variability in the clinical outcome of patients with similar methylation profiles. The present study aimed to refine the prognostic and predictive value of MGMT promoter status in GBM by identifying a micro (mi)RNA risk signature. Data from The Cancer Genome Atlas was used for this study, with MGMT promoter-methylated samples randomly divided into training and internal validation sets. Data from The Chinese Glioma Genome Atlas was used for independent validation. A five miRNA-based risk signature was established for MGMT promoter-methylated GBM to distinguish cases as high- or low-risk with distinct prognoses, which was confirmed using internal and external validation sets. Importantly, the prognostic value of the signature was significant in different cohorts stratified by clinicopathologic factors and alkylating chemotherapy, and a multivariate Cox analysis found it to be an independent prognostic marker along with age and chemotherapy. Based on these three factors, we developed a quantitative model with greater accuracy for predicting the 1-year survival of patients with MGMT promoter-methylated GBM. These results indicate that the five-miRNA signature is an independent risk predictor for GBM with MGMT promoter methylation and can be used to identify patients at high risk of unfavorable outcome and resistant to alkylating chemotherapy, underscoring its potential for personalized GBM management.
Collapse
Affiliation(s)
- Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiufang Ren
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanbao Zhang
- Beijing Neurosurgical Institute, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingyang Li
- Beijing Neurosurgical Institute, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kuanyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yang Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
40
|
Wang G, Gu J, Gao Y. MicroRNA target for MACC1 and CYR61 to inhibit tumor growth in mice with colorectal cancer. Tumour Biol 2016; 37:13983-13993. [PMID: 27492459 DOI: 10.1007/s13277-016-5252-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/15/2016] [Indexed: 12/30/2022] Open
Abstract
Cysteine-rich protein 61 (CYR61) and metastasis associated in colon cancer (MACC1) protein promoted human colorectal cancer (CRC) cell metastasis and closely related to the patient's prognosis in colorectal cancer. The purpose of this article is to investigate whether CYR61 and MACC1 can serve as dual potential targets for gene therapy of human CRC. In this study, microRNA (miRNA) targeting for both CYR61 and MACC1 was used to investigate the mechanism and therapeutic effects for CRC cells and mice with CRC. We observed that silencing miRNA for CYR61 and MACC1 inhibited the epithelial-mesenchymal transition (EMT) process, and co-treatment strengthened this effect. MTT assay showed that the growth of colorectal tumor cells was decreased due to miRNA treatment. Apoptosis assay revealed that miRNA for CYR61 and MACC1 promoted CRC cells apoptotic. The animals' study results showed that the expression levels of CYR61 and MACC1 were significantly decreased after miRNA-100 and miRNA-143 treatment, respectively. The expression levels of apoptosis-promoting protein were increased significantly after treatment with miRNA-100 and miRNA-143, which suggested that both miRNA-100 and miRNA-143 may induce apoptosis by mitochondria-dependent pathway. In addition, metastasis and invasion assays showed that miRNA-100 and miRNA-143 treatment inhibited obviously migratory and invasive abilities of CRC cells. Furthermore, our data also showed that the tumor growth was significantly inhibited and survival rate of tumor-bearing mice was greatly improved by common treatments of miRNA-100 and miRNA-143. In conclusion, the abilities of apoptosis, metastasis, and invasion in CRC tumor cells were significantly suppressed by miRNA-100 and miRNA-143 targeting CYR61 and MACC1, respectively. As a result, CYR61 and MACC1 may serve as potential targets for gene therapy in human CRC treatments.
Collapse
Affiliation(s)
- Guiqi Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Hebei Medical University, No. 89, Donggang Road, Shijiazhuang, 050031, China
| | - Jingfeng Gu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Hebei Medical University, No. 89, Donggang Road, Shijiazhuang, 050031, China.
| | - Yingchao Gao
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Hebei Medical University, No. 89, Donggang Road, Shijiazhuang, 050031, China
| |
Collapse
|
41
|
Yan W, Liu Y, Yang P, Wang Z, You Y, Jiang T. MicroRNA profiling of Chinese primary glioblastoma reveals a temozolomide-chemoresistant subtype. Oncotarget 2016; 6:11676-82. [PMID: 25869098 PMCID: PMC4484485 DOI: 10.18632/oncotarget.3258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/30/2015] [Indexed: 01/01/2023] Open
Abstract
Accumulating evidence demonstrates that defining molecular subtypes based on objective genetic alterations may permit a more rational, patient-specific approach to molecular targeted therapy across various cancers. The objective of this study was to subtype primary glioblastoma (pGBM) based on MicroRNA (miRNA) profiling in Chinese population. Here, miRNA expression profiles from 82 pGBM samples were analyzed and 78 independent pGBM samples were used for qRT-PCR validation. We found that two distinct subgroups with different prognosis and chemosensitivities to temozolomide (TMZ) in Chinese pGBM samples. One subtype is TMZ chemoresistant (termed the TCR subtype) and confers a poor prognosis. The other subtype is TMZ-chemosensitive (termed the TCS subtype) and confers a relatively better prognosis compared with the TCR subtype. A classifier consisting of seven miRNAs was then identified (miR-1280, miR-1238, miR-938 and miR-423-5p (overexpressed in the TCR subtype); and let-7i, miR-151-3p and miR-93 (downregulated in the TCR subtype)), which could be used to assign pGBM samples to the corresponding subtype. The classifier was validated using both internal and external samples. Meanwhile, the genetic alterations of the TCR and TCS subtypes were also analyzed. The TCR subtype was characterized by no IDH1 mutation, and EGFR and Ki-67 overexpression. The TCS subtype displayed the opposite situation. Taken together, the results indicate a distinct subgroup with poor prognosis and TMZ-chemoresistance.
Collapse
Affiliation(s)
- Wei Yan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China.,Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yanwei Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China.,Beijing Institute for Brain Disorders, Brain Tumor Center, Beijing, PR China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Pei Yang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China.,Beijing Institute for Brain Disorders, Brain Tumor Center, Beijing, PR China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Zheng Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China.,Beijing Institute for Brain Disorders, Brain Tumor Center, Beijing, PR China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Yongping You
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China.,Beijing Institute for Brain Disorders, Brain Tumor Center, Beijing, PR China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
42
|
Franceschi S, Mazzanti CM, Lessi F, Aretini P, Carbone FG, LA Ferla M, Scatena C, Ortenzi V, Vannozzi R, Fanelli G, Pasqualetti F, Bevilacqua G, Zavaglia K, Naccarato AG. Investigating molecular alterations to profile short- and long-term recurrence-free survival in patients with primary glioblastoma. Oncol Lett 2015; 10:3599-3606. [PMID: 26788176 DOI: 10.3892/ol.2015.3738] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 08/17/2015] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive type of primary brain tumor. Despite the progress in recent years regarding the diagnosis and treatment of GB, the recurrence rate remains high, due to the infiltrative and dispersive nature of the tumor, which typically results in poor patient prognosis. In the present study, 19 formalin-fixed, paraffin-embedded GB samples were selected from patients with GB tumors. The samples were classified into a short or long recurrence-free survival (RFS) group, based on the time of first recurrence of the disease in the patients. The 19 samples were molecularly characterized for mutations in the isocitrate dehydrogenase 1 (IDH1) gene, amplification of the epidermal growth factor receptor (EGFR) gene, presence of the EGFR variant III, and methylation of the promoter region of the O6-methylguanine-DNA methyltransferase (MGMT) gene. Then, the expression of 84 genes involved in cell-cell and cell-matrix interactions, and that of 84 microRNAs (miRNAs) associated with brain cancer, was profiled. In addition, a copy number variation analysis of 23 genes reported to undergo frequent genomic alterations in human glioma was also performed. Differences in the expression levels of a number of genes were detected across the short and long RFS groups. Among these genes, 5 in particular were selected, and a 5-genes combination approach was developed, which was able to differentiate between patients with short and long RFS outcome. The high levels of sensitivity and precision displayed by this 5-genes combination approach, which were confirmed with a cross-validation method, provide a strong foundation for further validation of the involvement of the aforementioned genes in GB in a larger patient population. In conclusion, the present study has demonstrated how the expression pattern of miRNAs and mRNAs in patients with GB defines a particular molecular hallmark that may increase or reduce the aggressive behavior of GB tumors, thus influencing the survival rates of patients with GB, their response to therapy and their tendency to suffer a relapse.
Collapse
Affiliation(s)
- Sara Franceschi
- Department of Translational Research and of New Surgical and Medical Technologies, University Hospital of Pisa, Pisa I-56126, Italy; Genomic Section, Pisa Science Foundation, Pisa I-56121, Italy
| | | | - Francesca Lessi
- Genomic Section, Pisa Science Foundation, Pisa I-56121, Italy
| | - Paolo Aretini
- Genomic Section, Pisa Science Foundation, Pisa I-56121, Italy
| | - Francesco G Carbone
- Department of Translational Research and of New Surgical and Medical Technologies, University Hospital of Pisa, Pisa I-56126, Italy
| | - Marco LA Ferla
- Genomic Section, Pisa Science Foundation, Pisa I-56121, Italy
| | - Cristian Scatena
- Department of Translational Research and of New Surgical and Medical Technologies, University Hospital of Pisa, Pisa I-56126, Italy
| | - Valerio Ortenzi
- Department of Translational Research and of New Surgical and Medical Technologies, University Hospital of Pisa, Pisa I-56126, Italy
| | - Riccardo Vannozzi
- Department of Neurosurgery, University Hospital of Pisa, Pisa I-56124, Italy
| | - Giovanni Fanelli
- Department of Neurosurgery, University Hospital of Pisa, Pisa I-56124, Italy
| | | | - Generoso Bevilacqua
- Department of Translational Research and of New Surgical and Medical Technologies, University Hospital of Pisa, Pisa I-56126, Italy
| | - Katia Zavaglia
- Department of Translational Research and of New Surgical and Medical Technologies, University Hospital of Pisa, Pisa I-56126, Italy
| | - Antonio G Naccarato
- Department of Translational Research and of New Surgical and Medical Technologies, University Hospital of Pisa, Pisa I-56126, Italy
| |
Collapse
|
43
|
Areeb Z, Stylli SS, Koldej R, Ritchie DS, Siegal T, Morokoff AP, Kaye AH, Luwor RB. MicroRNA as potential biomarkers in Glioblastoma. J Neurooncol 2015; 125:237-48. [PMID: 26391593 DOI: 10.1007/s11060-015-1912-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/29/2015] [Indexed: 12/28/2022]
Abstract
Glioblastoma is the most aggressive and lethal tumour of the central nervous system and as such the identification of reliable prognostic and predictive biomarkers for patient survival and tumour recurrence is paramount. MicroRNA detection has rapidly emerged as potential biomarkers, in patients with glioblastoma. Over the last decade, analysis of miRNA in laboratory based studies have yielded several candidates as potential biomarkers however, the accepted use of these candidates in the clinic is yet to be validated. Here we will examine the use of miRNA signatures to improve glioblastoma stratification into subgroups and summarise recent advances made in miRNA examination as potential biomarkers for glioblastoma progression and recurrence.
Collapse
Affiliation(s)
- Zammam Areeb
- Clinical Sciences Building, Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
| | - Stanley S Stylli
- Clinical Sciences Building, Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
| | - Rachel Koldej
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
- Haematology and Immunology Translational Research Laboratory, Cancer Immunology Research Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - David S Ritchie
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
- Haematology and Immunology Translational Research Laboratory, Cancer Immunology Research Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Tali Siegal
- Center for Neuro-Oncology, Davidoff Institute of Oncology, Rabin Medical Center, Petach Tokva, Israel
| | - Andrew P Morokoff
- Clinical Sciences Building, Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
| | - Andrew H Kaye
- Clinical Sciences Building, Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
| | - Rodney B Luwor
- Clinical Sciences Building, Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia.
| |
Collapse
|
44
|
Nie QM, Lin YY, Yang X, Shen L, Guo LM, Que SL, Li XX, Ge JW, Wang GS, Xiong WH, Guo P, Qiu YM. IDH1R¹³²H decreases the proliferation of U87 glioma cells through upregulation of microRNA-128a. Mol Med Rep 2015; 12:6695-701. [PMID: 26324126 PMCID: PMC4626131 DOI: 10.3892/mmr.2015.4241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 07/28/2015] [Indexed: 11/21/2022] Open
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1) are found in >70% of secondary glioblastomas and lower-grade gliomas (grades II–III). Among the numerous phenotypic differences between IDH1 mutant and wild-type glioma patients, the most salient is an improved survival rate for patients with a mutation. MicroRNAs (miRNAs) are a class of small, non-coding, single-stranded RNAs that can negatively regulate gene expression at the post-transcriptional level, predominantly by binding to the 3′-untranslated region of their target mRNAs. The dysregulated expression of several miRNAs has been reported to modulate glioma progression; however, it is unclear whether mutations in IDH1 regulate glioma cell proliferation through miRNA dysregulation. In the present study, stable overexpression of IDH1WT or IDH1R132H was established in the U87 glioma cell line. It was found that IDH1R132H decreased cell proliferation of U87 glioma cells by inducing the expression of the miRNA miR-128a. This process was dependent on the transcription factor hypoxia inducible factor-1α (HIF-1α), which binds to a hypoxia response element in the promoter of miR-128a. Furthermore, miR-128a negatively regulated the expression of B-cell-specific Moloney murine leukemia virus integration site 1 protein (Bmi-1), which is involved in suppressing cell proliferation. These findings suggest that the IDH1R132H-HIF-1α-miR-128a-Bmi-1 pathway is involved in glioma cell proliferation.
Collapse
Affiliation(s)
- Quan-Min Nie
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Ying-Ying Lin
- Shanghai Institute of Head Trauma, Shanghai 200127, P.R. China
| | - Xi Yang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Lin Shen
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Lie-Mei Guo
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Shuang-Lin Que
- Department of Neurosurgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Xiao-Xiong Li
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Jian-Wei Ge
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Gui-Song Wang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Wen-Hao Xiong
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Pin Guo
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yong-Ming Qiu
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
45
|
Wang H, Tao T, Yan W, Feng Y, Wang Y, Cai J, You Y, Jiang T, Jiang C. Upregulation of miR-181s reverses mesenchymal transition by targeting KPNA4 in glioblastoma. Sci Rep 2015; 5:13072. [PMID: 26283154 PMCID: PMC4539550 DOI: 10.1038/srep13072] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 07/16/2015] [Indexed: 12/18/2022] Open
Abstract
The goal of this work was to explore the most effective miRNAs affecting glioblastoma multiforme (GBM) phenotype transition and malignant progression. We annotated 491 TCGA samples’ miRNA expression profiles according to their mRNA-based subtypes and found that the mesenchymal tumors had significantly decreased miR-181 family expression compared with the other three subtypes while the proneural subtype harbored extremely high miR-181 family expression. Patients with high miR-181 family expression had longer overall survival (p = 0.0031). We also confirmed that NF-κB-targeting genes and the EMT (epithelial-mesenchymal transition) pathway were inversely correlated with miR-181 family expression and that the entire miR-181 family inhibited glioma cell invasion and proliferation; of these, miR-181b was the most effective suppressor. Furthermore, miR-181b was validated to suppress EMT by targeting KPNA4 and was associated with survival outcome in the TCGA and CGGA datasets and in another independent cohort. The EMT-inhibitory effect of miR-181b was lost after KPNA4 expression was restored. We also identified the antitumorigenic activity of miR-181b in vitro and in vivo. Our results showed that miR-181 family expression was closely correlated with TCGA subtypes and patients’ overall survival, indicating that miR-181b, a tumor-suppressive miRNA, could be a novel therapeutic candidate for treating gliomas.
Collapse
Affiliation(s)
- Hongjun Wang
- 1] Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China [2] Chinese Glioma Cooperative Group (CGCG)
| | - Tao Tao
- Department of Urology, Affiliated Zhongda Hospital, Southeast University, Nanjing, China; Surgical Research Center, Medical School, Southeast University, Nanjing, China
| | - Wei Yan
- 1] Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China [2] Chinese Glioma Cooperative Group (CGCG)
| | - Yan Feng
- 1] Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China [2] Chinese Glioma Cooperative Group (CGCG)
| | - Yongzhi Wang
- 1] Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China [2] Beijing Neurosurgical Institute, Beijing, China [3] Chinese Glioma Cooperative Group (CGCG)
| | - Jinquan Cai
- 1] Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China [2] Chinese Glioma Cooperative Group (CGCG)
| | - Yongping You
- 1] Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China [2] Chinese Glioma Cooperative Group (CGCG)
| | - Tao Jiang
- 1] Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China [2] Beijing Neurosurgical Institute, Beijing, China [3] Chinese Glioma Cooperative Group (CGCG)
| | - Chuanlu Jiang
- 1] Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China [2] Chinese Glioma Cooperative Group (CGCG)
| |
Collapse
|
46
|
Abstract
The control of malignant glioma cell cycle by microRNAs (miRNAs) is well established. The deregulation of miRNAs in glioma may contribute to tumor proliferation by directly targeting the critical cell-cycle regulators. Tumor suppressive miRNAs inhibit cell cycle through repressing the expression of positive cell-cycle regulators. However, oncogenic miRNAs promote the cell-cycle progression by targeting cell-cycle negative regulators. Recent studies have identified that transcription factors had involved in the expression of miRNAs. Transcription factors and miRNAs are implicated in regulatory network of glioma cell cycle, the deregulation of these transcription factors might be a cause of the deregulation of miRNAs. Abnormal versions of miRNAs have been implicated in the cell cycle of glioma. Based on those, miRNAs are excellent biomarker candidates and potential targets for therapeutic intervention in glioma.
Collapse
Affiliation(s)
- Qing Ouyang
- a Department of Neurosurgery, Daping Hospital & Research Institute of Surgery , Third Military Medical University , Chongqing , China
| | - Lunshan Xu
- a Department of Neurosurgery, Daping Hospital & Research Institute of Surgery , Third Military Medical University , Chongqing , China
| | - Hongjuan Cui
- b State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology , Southwest University , Chongqing , China
| | - Minhui Xu
- a Department of Neurosurgery, Daping Hospital & Research Institute of Surgery , Third Military Medical University , Chongqing , China
| | - Liang Yi
- a Department of Neurosurgery, Daping Hospital & Research Institute of Surgery , Third Military Medical University , Chongqing , China
| |
Collapse
|
47
|
Cai J, Zhang W, Yang P, Wang Y, Li M, Zhang C, Wang Z, Hu H, Liu Y, Li Q, Wen J, Sun B, Wang X, Jiang T, Jiang C. Identification of a 6-cytokine prognostic signature in patients with primary glioblastoma harboring M2 microglia/macrophage phenotype relevance. PLoS One 2015; 10:e0126022. [PMID: 25978454 PMCID: PMC4433225 DOI: 10.1371/journal.pone.0126022] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 03/27/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Glioblastomas (GBM) are comprised of a heterogeneous population of tumor cells, immune cells, and extracellular matrix. Interactions among these different cell types and pro-/anti-inflammatory cytokines may promote tumor development and progression. AIMS The objective of this study was to develop a cytokine-related gene signature to improve outcome prediction for patients with primary GBM. METHODS Here, we used Cox regression and risk-score analysis to develop a cytokine-related gene signature in primary GBMs from the whole transcriptome sequencing profile of the Chinese Glioma Genome Atlas (CGGA) database (n=105). We also examined differences in immune cell phenotype and immune factor expression between the high-risk and low-risk groups. RESULTS Cytokine-related genes were ranked based on their ability to predict survival in the CGGA database. The six genes showing the strongest predictive value were CXCL10, IL17R, CCR2, IL17B, IL10RB, and CCL2. Patients with a high-risk score had poor overall survival and progression-free survival. Additionally, the high-risk group was characterized by increased mRNA expression of M2 microglia/macrophage markers and elevated levels of IL10 and TGFβ1. CONCLUSION The six cytokine-related gene signature is sufficient to predict survival and to identify a subgroup of primary GBM exhibiting the M2 cell phenotype.
Collapse
Affiliation(s)
- Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Wei Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Pei Yang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Yinyan Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Mingyang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Chuanbao Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Zheng Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Huimin Hu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Yanwei Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Qingbin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Jinchong Wen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Bo Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Xiaofeng Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| |
Collapse
|
48
|
Christinat Y, Krek W. Integrated genomic analysis identifies subclasses and prognosis signatures of kidney cancer. Oncotarget 2015; 6:10521-31. [PMID: 25826081 PMCID: PMC4496372 DOI: 10.18632/oncotarget.3294] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/08/2015] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To define robust miRNA-based molecular classifiers for human clear cell renal cell carcinoma (ccRCC) subgrouping and prognostication. EXPERIMENTAL DESIGN Multidimensional data of over 500 clear cell renal cell carcinoma (ccRCC) patients were retrieved from The Cancer Genome Atlas (TCGA) archive. Data analysis was based on a novel computational approach that selectively considers patients with extreme expression values of miRNAs to detect survival-associated molecular signatures. RESULTS Our in silico analysis unveiled a novel ccRCC-specific 5-miRNA (miR-10b, miR-21, miR-143, miR-183, and miR-192) signature able, when combined with information from conventional TNM staging and the age of the patient, to prognosticate ccRCC outcome more accurately than known ccRCC miRNA signatures or TNM staging alone. Furthermore, our approach revealed the existence of 6 distinct subgroups of ccRCC characterized by discrete differences in overall survival, tumor stage, and mutational spectra in key ccRCC tumor suppressor genes. It also demonstrated that BAP1 mutations correlate with tumor progression rather than overall survival. CONCLUSION Integrated analysis of multidimensional data from the TCGA archive allowed to draw a portrait of distinct molecular subclasses of human ccRCC and to define signatures for prognosticating disease outcome. Together, these results offer new prospects for more accurate stratification and prognostication of ccRCC.
Collapse
Affiliation(s)
- Yann Christinat
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Wilhelm Krek
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
49
|
Akers JC, Ramakrishnan V, Kim R, Phillips S, Kaimal V, Mao Y, Hua W, Yang I, Fu CC, Nolan J, Nakano I, Yang Y, Beaulieu M, Carter BS, Chen CC. miRNA contents of cerebrospinal fluid extracellular vesicles in glioblastoma patients. J Neurooncol 2015; 123:205-16. [PMID: 25903655 DOI: 10.1007/s11060-015-1784-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 04/08/2015] [Indexed: 01/08/2023]
Abstract
Analysis of extracellular vesicles (EVs) derived from plasma or cerebrospinal fluid (CSF) has emerged as a promising biomarker platform for therapeutic monitoring in glioblastoma patients. However, the contents of the various subpopulations of EVs in these clinical specimens remain poorly defined. Here we characterize the relative abundance of miRNA species in EVs derived from the serum and cerebrospinal fluid of glioblastoma patients. EVs were isolated from glioblastoma cell lines as well as the plasma and CSF of glioblastoma patients. The microvesicle subpopulation was isolated by pelleting at 10,000×g for 30 min after cellular debris was cleared by a 2000×g (20 min) spin. The exosome subpopulation was isolated by pelleting the microvesicle supernatant at 120,000×g (120 min). qRT-PCR was performed to examine the distribution of miR-21, miR-103, miR-24, and miR-125. Global miRNA profiling was performed in select glioblastoma CSF samples. In plasma and cell line derived EVs, the relative abundance of miRNAs in exosome and microvesicles were highly variable. In some specimens, the majority of the miRNA species were found in exosomes while in other, they were found in microvesicles. In contrast, CSF exosomes were enriched for miRNAs relative to CSF microvesicles. In CSF, there is an average of one molecule of miRNA per 150-25,000 EVs. Most EVs derived from clinical biofluids are devoid of miRNA content. The relative distribution of miRNA species in plasma exosomes or microvesicles is unpredictable. In contrast, CSF exosomes are the major EV compartment that harbor miRNAs.
Collapse
Affiliation(s)
- Johnny C Akers
- Center for Theoretical and Applied Neuro-Oncology, University of California, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Xavier-Magalhães A, Nandhabalan M, Jones C, Costa BM. Molecular prognostic factors in glioblastoma: state of the art and future challenges. CNS Oncol 2015; 2:495-510. [PMID: 25054820 DOI: 10.2217/cns.13.48] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gliomas account for the majority of primary tumors of the CNS, of which glioblastoma (GBM) is the most common and malignant, and for which survival is very poor. Despite significant inter- and intra-tumor heterogeneity, all patients are treated with a standardized therapeutic approach. While some clinical features of GBM patients have already been established as classic prognostic factors (e.g., patient age at diagnosis and Karnofsky performance status), one of the most important research fields in neuro-oncology today is the identification of novel molecular determinants of patient survival and tumor response to therapy. Here, we aim to review and discuss some of the most relevant and novel prognostic biomarkers in adult and pediatric GBM patients that may aid in stratifying subgroups of GBMs and rationalizing treatment decisions.
Collapse
Affiliation(s)
- Ana Xavier-Magalhães
- Life & Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | |
Collapse
|