1
|
Noguchi R, Yanagihara K, Iino Y, Komatsu T, Kubo T, Ono T, Osaki J, Adachi Y, Iwata S, Shiota Y, Seyama T, Kondo T. Establishment and characterization of novel cancer cachexia-inducing cell line, Aku60GC, of scirrhous gastric cancer. Hum Cell 2025; 38:82. [PMID: 40178664 DOI: 10.1007/s13577-025-01208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/10/2025] [Indexed: 04/05/2025]
Abstract
Cancer cachexia is a pathological state characterized by severe weight loss, skeletal muscle depletion, and adipose tissue reduction. Cancer cachexia is observed in gastric cancer (GC) with a higher incidence over 80%. Approximately 80% patients with advanced GC including scirrhous gastric cancer (SGC), which has the worst prognosis among all GC, are affected with cachexia. The exact pathophysiology in SGC cancer cachexia remains elusive, and therapeutic approaches for the cancer cachexia have not been established. Patient-derived cancer cachexia models are promising for elucidating the underlying mechanisms of disease progression and developing novel treatments, none of which originate from SGC. Therefore, we established a novel cancer cachexia-inducing cell line, designated Aku60GC, through stepwise selection of a patient-derived SGC cell line, HSC-60. Subcutaneous implantation of the Aku60GC cells into nude mice resulted in weight loss, muscle atrophy, and adipose tissue depletion with high reproducibility, accompanied by elevation of the circulating cytokines IL-8 and IL-18. Compared to parental HSC-60 cells, Aku60GC cells exhibited additional genomic changes, such as AKT2 and CCNE1 gains, a somatic mutation of RUNX1, and accelerated growth. Thus, our results demonstrate that the Aku60GC cell line is a valuable resource for research on cancer cachexia in SGC.
Collapse
Affiliation(s)
- Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kazuyoshi Yanagihara
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
- Department of Life Sciences, Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima-shi, Hiroshima, 731-0153, Japan.
- Biospecimen Laboratories, Inc., 1-5-10-105 Nakamagome, Ohta-ku, Tokyo, 143-0027, Japan.
| | - Yuki Iino
- Exploratory Oncology and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan
| | - Teruo Komatsu
- Exploratory Oncology and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan
| | - Takanori Kubo
- Department of Life Sciences, Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima-shi, Hiroshima, 731-0153, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Julia Osaki
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuki Adachi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shuhei Iwata
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yomogi Shiota
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Toshio Seyama
- Department of Life Sciences, Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima-shi, Hiroshima, 731-0153, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
2
|
Berriel Diaz M, Rohm M, Herzig S. Cancer cachexia: multilevel metabolic dysfunction. Nat Metab 2024; 6:2222-2245. [PMID: 39578650 DOI: 10.1038/s42255-024-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024]
Abstract
Cancer cachexia is a complex metabolic disorder marked by unintentional body weight loss or 'wasting' of body mass, driven by multiple aetiological factors operating at various levels. It is associated with many malignancies and significantly contributes to cancer-related morbidity and mortality. With emerging recognition of cancer as a systemic disease, there is increasing awareness that understanding and treatment of cancer cachexia may represent a crucial cornerstone for improved management of cancer. Here, we describe the metabolic changes contributing to body wasting in cachexia and explain how the entangled action of both tumour-derived and host-amplified processes induces these metabolic changes. We discuss energy homeostasis and possible ways that the presence of a tumour interferes with or hijacks physiological energy conservation pathways. In that context, we highlight the role played by metabolic cross-talk mechanisms in cachexia pathogenesis. Lastly, we elaborate on the challenges and opportunities in the treatment of this devastating paraneoplastic phenomenon that arise from the complex and multifaceted metabolic cross-talk mechanisms and provide a status on current and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Chair Molecular Metabolic Control, Technical University of Munich, Munich, Germany.
| |
Collapse
|
3
|
Li J, Hu X, Xie Z, Li J, Huang C, Huang Y. Overview of growth differentiation factor 15 (GDF15) in metabolic diseases. Biomed Pharmacother 2024; 176:116809. [PMID: 38810400 DOI: 10.1016/j.biopha.2024.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
GDF15 is a stress response cytokine and a distant member of the transforming growth factor beta (TGFβ) superfamily, its levels increase in response to cell stress and certain diseases in the serum. To exert its effects, GDF15 binds to glial-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL), which was firstly identified in 2017 and highly expressed in the brain stem. Many studies have demonstrated that elevated serum GDF15 is associated with anorexia and weight loss. Herein, we focus on the biology of GDF15, specifically how this circulating protein regulates appetite and metabolism in influencing energy homeostasis through its actions on hindbrain neurons to shed light on its impact on diseases such as obesity and anorexia/cachexia syndromes. It works as an endocrine factor and transmits metabolic signals leading to weight reduction effects by directly reducing appetite and indirectly affecting food intake through complex mechanisms, which could be a promising target for the treatment of energy-intake disorders.
Collapse
Affiliation(s)
- Jian Li
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, China
| | - Xiangjun Hu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Zichuan Xie
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiajin Li
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Chen Huang
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Huang
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Gagnon B, Murphy J, Simonyan D, Penafuerte CA, Sirois J, Chasen M, Tremblay ML. Cancer anorexia-cachexia syndrome is characterized by more than one inflammatory pathway. J Cachexia Sarcopenia Muscle 2024; 15:1041-1053. [PMID: 38481033 PMCID: PMC11154782 DOI: 10.1002/jcsm.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The interdependence of cytokines and appetite-modifying hormones implicated in cancer anorexia-cachexia syndrome (CACS) remains unclear. This study aimed to regroup these cytokines and hormones into distinct inflammatory (or non-inflammatory) pathways and determine whether these pathways can classify patients with CACS phenotypes. METHODS Clinical characteristics of 133 patients [61.7% male; mean age = 63.4 (SD: 13.1) years] with advanced cancer prior to oncology treatments were documented, including weight loss history. Patients completed the Functional Assessment of Anorexia-Cachexia Therapy (FAACT) questionnaire and Timed Up and Go test and had their sex-standardized skeletal muscle index (z-SMI) and fat mass index (z-FMI) derived using computed tomography scans. Their plasma levels of cytokines and appetite-modifying hormones were also determined. Date of death was recorded. Exploratory factor analysis (EFA) was used to regroup 15 cytokines and hormone into distinct inflammatory pathways (factors). For each patient, regression factor scores (RFS), which tell how strongly the patient associates with each factor, were derived. Two-step cluster analysis on the RFS was used to classify patients into groups. CACS phenotypes were correlated with RFS and compared between groups. Groups' survival was estimated using Kaplan-Meier analysis. RESULTS Patients had low z-SMI (mean = -3.78 cm2/m2; SD: 8.88) and z-FMI (mean = 0.08 kg2/m2; SD: 56.25), and 62 (46.6%) had cachexia. EFA identified three factors: (F-1) IFN-γ, IL-1β, Il-4, IL-6, IL-10, IL-12, TGFβ1 (positive contribution), and IL-18 (negative); (F-2) IL-8, IL-18, MCP-1, TGFβ1, TNF-α (positive), and ghrelin (negative); and (F-3) TRAIL and leptin (positive), and TGFβ1 and adiponectin (negative). RFS-1 was associated with cachexia (P = 0.002); RFS-2, with higher CRP (P < 0.0001) and decreased physical function (P = 0.01); and RFS-3 with better appetite (P = 0.04), lower CRP (P = 0.002), higher z-SMI (P = 0.04) and z-FMI (P < 0.0001), and less cachexia characteristics (all P < 0.001). Four patient groups were identified with specific RFS clusters aligning with the CACS continuum from no cachexia to pre-cachexia, cachexia, and terminal cachexia. Compared to the other two groups, groups 1 and 2 had higher plasma levels of IL-18 and TRAIL. Group 1 also had lower inflammatory cytokines, adiponectin, and CRP compared to the other three groups. Group 3 had inflammatory cytokine levels similar to group 2, except for TNF-α and leptin which were lower. Group 4 had very high inflammatory cytokines, adiponectin, and CRP compared to the other 3 groups (all P < 0.0001). Groups 3 and 4 had worse cachexia characteristics (P < 0.05) and shorter survival (log rank: P = 0.0009) than the other two groups. CONCLUSIONS This exploratory study identified three distinct pathways of inflammation, or lack thereof, characterizing different CACS phenotypes.
Collapse
Affiliation(s)
- Bruno Gagnon
- Département de médecine familiale et de médecine d'urgence, Centre de recherche sur le cancerUniversité Laval, Centre de recherche du CHU de QuébecQuébecCanada
- Division of Clinical EpidemiologyMcGill University Health CentreMontrealCanada
| | - Jessica Murphy
- Division of Clinical EpidemiologyMcGill University Health CentreMontrealCanada
- Department of Health, Kinesiology, and Applied PhysiologyConcordia UniversityMontrealCanada
| | - David Simonyan
- Clinical and Evaluative Research PlatformUniversité Laval, Centre de recherche du CHU de QuébecQuébecCanada
| | - Claudia A. Penafuerte
- Cura TherapeuticsNEOMED InstituteSaint‐LaurentCanada
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealCanada
| | - Jacinthe Sirois
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealCanada
| | - Martin Chasen
- Departments of Medicine and Family and Community MedicineUniversity of TorontoTorontoCanada
- Department of Family MedicineMcMaster UniversityHamiltonCanada
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealCanada
| |
Collapse
|
5
|
Dragan M, Chen Z, Li Y, Le J, Sun P, Haensel D, Sureshchandra S, Pham A, Lu E, Pham KT, Verlande A, Vu R, Gutierrez G, Li W, Jang C, Masri S, Dai X. Ovol1/2 loss-induced epidermal defects elicit skin immune activation and alter global metabolism. EMBO Rep 2023; 24:e56214. [PMID: 37249012 PMCID: PMC10328084 DOI: 10.15252/embr.202256214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Skin epidermis constitutes the outer permeability barrier that protects the body from dehydration, heat loss, and myriad external assaults. Mechanisms that maintain barrier integrity in constantly challenged adult skin and how epidermal dysregulation shapes the local immune microenvironment and whole-body metabolism remain poorly understood. Here, we demonstrate that inducible and simultaneous ablation of transcription factor-encoding Ovol1 and Ovol2 in adult epidermis results in barrier dysregulation through impacting epithelial-mesenchymal plasticity and inflammatory gene expression. We find that aberrant skin immune activation then ensues, featuring Langerhans cell mobilization and T cell responses, and leading to elevated levels of secreted inflammatory factors in circulation. Finally, we identify failure to gain body weight and accumulate body fat as long-term consequences of epidermal-specific Ovol1/2 loss and show that these global metabolic changes along with the skin barrier/immune defects are partially rescued by immunosuppressant dexamethasone. Collectively, our study reveals key regulators of adult barrier maintenance and suggests a causal connection between epidermal dysregulation and whole-body metabolism that is in part mediated through aberrant immune activation.
Collapse
Affiliation(s)
- Morgan Dragan
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- The NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
| | - Zeyu Chen
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- Present address:
Department of Dermatology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
- Present address:
Institute of PsoriasisTongji University School of MedicineShanghaiChina
| | - Yumei Li
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Johnny Le
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Peng Sun
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Daniel Haensel
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- Present address:
Program in Epithelial BiologyStanford University School of MedicineStanfordCAUSA
| | - Suhas Sureshchandra
- Department of Physiology and Biophysics, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Anh Pham
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Eddie Lu
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Katherine Thanh Pham
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Amandine Verlande
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Remy Vu
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- The NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
| | - Guadalupe Gutierrez
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Wei Li
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Cholsoon Jang
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Selma Masri
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Xing Dai
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- The NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
- Department of Dermatology, School of MedicineUniversity of CaliforniaIrvineCAUSA
| |
Collapse
|
6
|
Hegde M, Daimary UD, Girisa S, Kumar A, Kunnumakkara AB. Tumor cell anabolism and host tissue catabolism-energetic inefficiency during cancer cachexia. Exp Biol Med (Maywood) 2022; 247:713-733. [PMID: 35521962 DOI: 10.1177/15353702221087962] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cancer-associated cachexia (CC) is a pathological condition characterized by sarcopenia, adipose tissue depletion, and progressive weight loss. CC is driven by multiple factors such as anorexia, excessive catabolism, elevated energy expenditure by growing tumor mass, and inflammatory mediators released by cancer cells and surrounding tissues. In addition, endocrine system, systemic metabolism, and central nervous system (CNS) perturbations in combination with cachexia mediators elicit exponential elevation in catabolism and reduced anabolism in skeletal muscle, adipose tissue, and cardiac muscle. At the molecular level, mechanisms of CC include inflammation, reduced protein synthesis, and lipogenesis, elevated proteolysis and lipolysis along with aggravated toxicity and complications of chemotherapy. Furthermore, CC is remarkably associated with intolerance to anti-neoplastic therapy, poor prognosis, and increased mortality with no established standard therapy. In this context, we discuss the spatio-temporal changes occurring in the various stages of CC and highlight the imbalance of host metabolism. We provide how multiple factors such as proteasomal pathways, inflammatory mediators, lipid and protein catabolism, glucocorticoids, and in-depth mechanisms of interplay between inflammatory molecules and CNS can trigger and amplify the cachectic processes. Finally, we highlight current diagnostic approaches and promising therapeutic interventions for CC.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
7
|
Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers (Basel) 2022; 14:cancers14071679. [PMID: 35406450 PMCID: PMC8996963 DOI: 10.3390/cancers14071679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary As overweight and obesity increase among the population worldwide, a parallel increase in the number of individuals diagnosed with prostate cancer was observed. There appears to be a relationship between both diseases where the increase in the mass of fat tissue can lead to inflammation. Such a state of inflammation could produce many factors that increase the aggressiveness of prostate cancer, especially if this inflammation occurred in the fat stores adjacent to the prostate. Another important observation that links obesity, fat tissue inflammation, and prostate cancer is the increased production of blood clotting factors. In this article, we attempt to explain the role of these latter factors in the effect of increased body weight on the progression of prostate cancer and propose new ways of treatment that act by affecting how these clotting factors work. Abstract The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.
Collapse
|
8
|
Derry HM, Johnston CD, Burchett CO, Brennan-Ing M, Karpiak S, Zhu YS, Siegler EL, Glesby MJ. Links Between Inflammation, Mood, and Physical Function Among Older Adults With HIV. J Gerontol B Psychol Sci Soc Sci 2022; 77:50-60. [PMID: 33580236 PMCID: PMC8755907 DOI: 10.1093/geronb/gbab027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES People living with human immunodeficiency virus (PLWH) treated with antiretrovirals have life spans similar to their HIV-negative peers. Yet, they experience elevated inflammation-related multimorbidity. Drawing on biopsychosocial determinants of health may inform interventions, but these links are understudied in older PLWH. We investigated cross-sectional relationships between psychosocial factors (mood, loneliness, and stigma), inflammatory markers, and age-related health outcomes among 143 PLWH aged 54-78 years. METHOD Participants provided blood samples for serum cytokine and C-reactive protein (CRP) analyses, completed surveys assessing psychosocial factors and health, and completed frailty assessments. Regression models tested relationships between key psychosocial-, inflammation, and age-related health variables, adjusting for relevant sociodemographic and clinical factors. RESULTS Participants with more depressive symptoms had higher composite cytokine levels than those with fewer depressive symptoms (β = 0.22, t(126) = 2.71, p = .008). Those with higher cytokine levels were more likely to be prefrail or frail (adjusted odds ratio = 1.72, 95% confidence interval = 1.01-2.93) and reported worse physical function (β = -0.23, t(129) = -2.64, p = .009) and more cognitive complaints (β = -0.20, t(129) = -2.16, p = .03) than those with lower cytokine levels. CRP was not significantly related to these outcomes; 6-month fall history was not significantly related to inflammatory markers. DISCUSSION Novel approaches are needed to manage comorbidities and maximize quality of life among older PLWH. Illustrating key expected biopsychosocial links, our findings highlight several factors (e.g., depressive symptoms, poorer physical function) that may share bidirectional relationships with chronic inflammation, a key factor driving morbidity. These links may be leveraged to modify factors that drive excessive health risk among older PLWH.
Collapse
Affiliation(s)
- Heather M Derry
- Division of Geriatrics and Palliative Medicine, Weill Cornell Medicine, New York, US
| | - Carrie D Johnston
- Division of Infectious Diseases, Weill Cornell Medicine, New York, US
| | - Chelsie O Burchett
- Division of Geriatrics and Palliative Medicine, Weill Cornell Medicine, New York, US
- Department of Psychology, Stony Brook University, New York, US
| | - Mark Brennan-Ing
- Brookdale Center for Healthy Aging, Hunter College, City University of New York, US
| | - Stephen Karpiak
- ACRIA Center on HIV & Aging at GMHC, New York, US
- New York University, Rory Meyers College of Nursing, US
| | - Yuan-Shan Zhu
- Department of Medicine and Clinical and Translational Science Center, Weill Cornell Medicine, New York, US
| | - Eugenia L Siegler
- Division of Geriatrics and Palliative Medicine, Weill Cornell Medicine, New York, US
| | - Marshall J Glesby
- Division of Infectious Diseases, Weill Cornell Medicine, New York, US
| |
Collapse
|
9
|
Singh J, Thachil T, Eapen MS, Lim A, Sufyan W, Rawson R, Duncan H, De Ieso P, Sohal SS. Immunohistochemical investigation of cytokine expression levels as biomarkers in transrectal ultrasound-guided needle biopsy specimens of prostate adenocarcinoma. Mol Clin Oncol 2021; 15:191. [PMID: 34405051 DOI: 10.3892/mco.2021.2353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 06/24/2021] [Indexed: 12/27/2022] Open
Abstract
Cytokines influence the biological behaviour of prostate cancer (PC) and may influence patient outcome and serve as useful prognostic biomarkers. The aim of the present study was to evaluate cytokine expression levels in prostatic needle biopsy specimens and the association with clinicopathological characteristics of patients with PC. A total of 18 patients with PC who underwent transrectal ultrasound (TRUS) guided prostate biopsy were included in the clinical study. These patients were naïve to radiotherapy (RT) or androgen deprivation therapy prior to TRUS biopsy and clinical follow up data was collected. Cytokine expression levels were analysed by using immunohistochemistry and Spearman's correlation test was used to determine the correlation between cytokine expression and clinicopathological characteristics. Expression levels of pro-inflammatory TNF-α and IL-6 decreased as Gleason score (GS) increased; however, a statistically significant difference was not detected. A statically significant correlation was observed between needle biopsy specimen and pre-RT plasma sample expression levels of pro-inflammatory TNF-α and IL-6 (P=0.01 and P=0.05, respectively) and anti-inflammatory TGF-β1 (P=0.05). However, further studies are needed to confirm these results using a larger sample size to confirm the prognostic value of pro-inflammatory TNF-α and IL-6 and anti-inflammatory TGF-β1 in patients with PC.
Collapse
Affiliation(s)
- Jagtar Singh
- College of Health and Human Sciences, Charles Darwin University, Northern Territory 0810, Australia.,Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Thanuja Thachil
- Ballarat Austin Radiation Oncology Centre, Victoria 3350, Australia
| | - Mathew Suji Eapen
- Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Aijye Lim
- Department of Anatomical Pathology, Royal Darwin Hospital 0810, Australia
| | - Wajiha Sufyan
- Department of Anatomical Pathology, Royal Darwin Hospital 0810, Australia
| | - Robert Rawson
- Department of Anatomical Pathology, Royal Darwin Hospital 0810, Australia
| | - Henry Duncan
- Urology Department, Darwin Private Hospital, Northern Territory 0810, Australia
| | - Paolo De Ieso
- Peter MacCallum Cancer Centre, Victoria 3000, Australia
| | - Sukhwinder Singh Sohal
- Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| |
Collapse
|
10
|
Negishi K, Hoshide S, Shimpo M, Kario K. Growth Differentiation Factor 15 Predicts Cancer Death in Patients With Cardiovascular Risk Factors: The J-HOP Study. Front Cardiovasc Med 2021; 8:660317. [PMID: 34150865 PMCID: PMC8211884 DOI: 10.3389/fcvm.2021.660317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Disease-related anorexia-cachexia is associated with poor prognosis of patients with cardiovascular disease (CVD) or cancer. Growth differentiation factor-15 (GDF-15) has emerged as a central regulator of appetite and body weight. However, the exact role of GDF-15 in lean patients has not been elucidated. Aim: Our aim is to evaluate whether the association of GDF-15 with mortality, including cancer death, differs according to body mass index (BMI) level. Methods and Results: We collected blood samples from 4,061 patients with CV risk factors who were enrolled in the nationwide practice-based J-HOP (Japan Morning Surge-Home Blood Pressure) study. Serum GDF-15 levels were determined by immunoassay analysis. During a mean follow-up period of 6.6 years, we observed 174 (6.7/1000 person-year) all-cause deaths, 68 (2.6/1000 person-year) cancer deaths, and 56 (2.2/1000 person-year) CV deaths. Patients were stratified according to the cut-points of GDF-15 at 1,200 ng/L and BMI at 22.5 and 25.0 kg/m2. The association between the GDF-15/BMI based study groups and each outcome was evaluated by Cox-proportional hazard models with adjustment for established risk factors. The multivariate Cox regression model showed that patients with elevated GDF-15 (≥1,200 ng/L) and low BMI (<22.5 kg/m2) were significantly associated with increased risk of all outcomes [all-cause death, hazard ratio (HR) 3.15, 95% confidence interval (CI) 1.85-5.34, p < 0.001; cancer death, HR 3.52, 95%CI 1.64-7.57, p = 0.001; CV death, HR 2.88, 95%CI 1.20-6.92, p = 0.018, respectively] compared to a reference group with non-elevated GDF-15 and normal BMI (22.5-25.0 kg/m2). In analyses of a subgroup with low BMI (<22.5 kg/m2), patients with elevated GDF-15 had 4.79-fold increased risk of cancer death and 11-fold greater risk of CV death when compared with patients with non-elevated GDF-15 (<1,200 ng/L) after adjustment for established risk factors. Conclusion: In patients with CV risk factors, GDF-15 was associated with all-cause, cancer, and CV death. This relationship was especially remarkable in patients with low BMI. The serum GDF-15 levels in patients with low BMI might be a useful marker to identify the potential for anorexia-cachexia associated with CVD and cancer.
Collapse
Affiliation(s)
- Keita Negishi
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Satoshi Hoshide
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University, Tochigi, Japan.,Jichi Medical University Center of Excellence, Community Medicine Cardiovascular Research and Development, Tochigi, Japan
| | - Masahisa Shimpo
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
11
|
Unintentional weight loss: what radiologists need to know and what clinicians want to know. Abdom Radiol (NY) 2021; 46:2236-2250. [PMID: 33386448 DOI: 10.1007/s00261-020-02908-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Unintentional weight loss (UWL) is a common presenting symptom with a wide differential diagnosis. Causes may be organic (e.g., malignancy or gastrointestinal disease) or inorganic (e.g., psychosocial). The purpose of this review is to provide a guide for radiologists and other clinicians to understand the imaging modalities and laboratory studies involved in the diagnosis and treatment of UWL and the evidence supporting their routine use. Cases illustrating both common and uncommon causes of UWL are presented to emphasize both the breadth of pathology that may cause UWL as well as the importance of a multi-modality diagnostic approach. Imaging studies are crucial in the diagnosis of unintentional weight loss, particularly with regard to evaluating for the presence of malignancy. It is important for both the radiologist and other clinicians to understand the relative prevalence of the various causes of UWL and the utility of different imaging modalities in diagnosis and management.
Collapse
|
12
|
Pancreatic cancer induces muscle wasting by promoting the release of pancreatic adenocarcinoma upregulated factor. Exp Mol Med 2021; 53:432-445. [PMID: 33731895 PMCID: PMC8080719 DOI: 10.1038/s12276-021-00582-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/02/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Cancer cachexia is a highly debilitating condition characterized by weight loss and muscle wasting that contributes significantly to the morbidity and mortality of pancreatic cancer. The factors that induce cachexia in pancreatic cancer are largely unknown. We previously showed that pancreatic adenocarcinoma upregulated factor (PAUF) secreted by pancreatic cancer cells is responsible for tumor growth and metastasis. Here, we analyzed the relation between pancreatic cancer-derived PAUF and cancer cachexia in mice and its clinical significance. Body weight loss and muscle weight loss were significantly higher in mice with Panc-1/PAUF tumors than in those with Panc-1/Mock tumors. Direct administration of rPAUF to muscle recapitulated tumor-induced atrophy, and a PAUF-neutralizing antibody abrogated tumor-induced muscle wasting in Panc-1/PAUF tumor-bearing mice. C2C12 myotubes treated with rPAUF exhibited rapid inactivation of Akt-Foxo3a signaling, resulting in Atrogin1/MAFbx upregulation, myosin heavy chain loss, and muscle atrophy. The neutrophil-to-lymphocyte ratio and body weight loss were significantly higher in pancreatic cancer patients with high PAUF expression than in those with low PAUF expression. Analysis of different pancreatic cancer datasets showed that PAUF expression was significantly higher in the pancreatic cancer group than in the nontumor group. Analysis of The Cancer Genome Atlas data found associations between high PAUF expression or a high DNA copy number and poor overall survival. Our data identified tumor-secreted circulating PAUF as a key factor of cachexia, causing muscle wasting in mice. Neutralizing PAUF may be a useful therapeutic strategy for the treatment of pancreatic cancer-induced cachexia.
Collapse
|
13
|
Role of Sphingosine 1-Phosphate Signalling Axis in Muscle Atrophy Induced by TNFα in C2C12 Myotubes. Int J Mol Sci 2021; 22:ijms22031280. [PMID: 33525436 PMCID: PMC7866171 DOI: 10.3390/ijms22031280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle atrophy is characterized by a decrease in muscle mass causing reduced agility, increased fatigability and higher risk of bone fractures. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNFα), are strong inducers of skeletal muscle atrophy. The bioactive sphingolipid sphingosine 1-phoshate (S1P) plays an important role in skeletal muscle biology. S1P, generated by the phosphorylation of sphingosine catalyzed by sphingosine kinase (SK1/2), exerts most of its actions through its specific receptors, S1P1-5. Here, we provide experimental evidence that TNFα induces atrophy and autophagy in skeletal muscle C2C12 myotubes, modulating the expression of specific markers and both active and passive membrane electrophysiological properties. NMR-metabolomics provided a clear picture of the deep remodelling of skeletal muscle fibre metabolism induced by TNFα challenge. The cytokine is responsible for the modulation of S1P signalling axis, upregulating mRNA levels of S1P2 and S1P3 and downregulating those of SK2. TNFα increases the phosphorylated form of SK1, readout of its activation. Interestingly, pharmacological inhibition of SK1 and specific antagonism of S1P3 prevented the increase in autophagy markers and the changes in the electrophysiological properties of C2C12 myotubes without affecting metabolic remodelling induced by the cytokine, highlighting the involvement of S1P signalling axis on TNFα-induced atrophy in skeletal muscle.
Collapse
|
14
|
The Intricate Role of p53 in Adipocyte Differentiation and Function. Cells 2020; 9:cells9122621. [PMID: 33297294 PMCID: PMC7762213 DOI: 10.3390/cells9122621] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
For more than three decades, numerous studies have demonstrated the function of p53 in cell cycle, cellular senescence, autophagy, apoptosis, and metabolism. Among diverse functions, the essential role of p53 is to maintain cellular homeostatic response to stress by regulating proliferation and apoptosis. Recently, adipocytes have been studied with increasing intensity owing to the increased prevalence of metabolic diseases posing a serious public health concern and because metabolic dysfunction can directly induce tumorigenesis. The prevalence of metabolic diseases has steadily increased worldwide, and a growing interest in these diseases has led to the focus on the role of p53 in metabolism and adipocyte differentiation with or without metabolic stress. However, our collective understanding of the direct role of p53 in adipocyte differentiation and function remains insufficient. Therefore, this review focuses on the newly discovered roles of p53 in adipocyte differentiation and function.
Collapse
|
15
|
Nosacka RL, Delitto AE, Delitto D, Patel R, Judge SM, Trevino JG, Judge AR. Distinct cachexia profiles in response to human pancreatic tumours in mouse limb and respiratory muscle. J Cachexia Sarcopenia Muscle 2020; 11:820-837. [PMID: 32039571 PMCID: PMC7296265 DOI: 10.1002/jcsm.12550] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cancer cachexia is a life-threatening metabolic syndrome that causes significant loss of skeletal muscle mass and significantly increases mortality in cancer patients. Currently, there is an urgent need for better understanding of the molecular pathophysiology of this disease so that effective therapies can be developed. The majority of pre-clinical studies evaluating skeletal muscle's response to cancer have focused on one or two pre-clinical models, and almost all have focused specifically on limb muscles. In the current study, we reveal key differences in the histology and transcriptomic signatures of a limb muscle and a respiratory muscle in orthotopic pancreatic cancer patient-derived xenograft (PDX) mice. METHODS To create four cohorts of PDX mice evaluated in this study, tumours resected from four pancreatic ductal adenocarcinoma patients were portioned and attached to the pancreas of immunodeficient NSG mice. RESULTS Body weight, muscle mass, and fat mass were significantly decreased in each PDX line. Histological assessment of cryosections taken from the tibialis anterior (TA) and diaphragm (DIA) revealed differential effects of tumour burden on their morphology. Subsequent genome-wide microarray analysis on TA and DIA also revealed key differences between their transcriptomes in response to cancer. Genes up-regulated in the DIA were enriched for extracellular matrix protein-encoding genes and genes related to the inflammatory response, while down-regulated genes were enriched for mitochondria related protein-encoding genes. Conversely, the TA showed up-regulation of canonical atrophy-associated pathways such as ubiquitin-mediated protein degradation and apoptosis, and down-regulation of genes encoding extracellular matrix proteins. CONCLUSIONS These data suggest that distinct biological processes may account for wasting in different skeletal muscles in response to the same tumour burden. Further investigation into these differences will be critical for the future development of effective clinical strategies to counter cancer cachexia.
Collapse
Affiliation(s)
- Rachel L Nosacka
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, USA
| | - Andrea E Delitto
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, USA
| | - Dan Delitto
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, USA
| | - Rohan Patel
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, USA
| | - Sarah M Judge
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, USA
| | - Jose G Trevino
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, USA
| | - Andrew R Judge
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, USA
| |
Collapse
|
16
|
Underwood PW, Zhang DY, Cameron ME, Gerber MH, Delitto D, Maduka MU, Cooper KJ, Han S, Hughes SJ, Judge SM, Judge AR, Trevino JG. Nicotine Induces IL-8 Secretion from Pancreatic Cancer Stroma and Worsens Cancer-Induced Cachexia. Cancers (Basel) 2020; 12:329. [PMID: 32024069 PMCID: PMC7072641 DOI: 10.3390/cancers12020329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/18/2023] Open
Abstract
Smoking is highly associated with pancreatic cancer. Nicotine, the addictive component of tobacco, is involved in pancreatic cancer tumorigenesis, metastasis, and chemoresistance. This work aimed to describe the role of nicotine within the pancreatic cancer tumor microenvironment. Nicotine treatment was used in vitro to assess its effect on tumor-associated stromal cells and pancreatic cancer cells. Nicotine treatment was then used in a pancreatic cancer patient-derived xenograft model to study the effects in vivo. Nicotine induced secretion of interleukin 8 (IL-8) by tumor-associated stroma cells in an extracellular signal-regulated kinase (ERK)-dependent fashion. The secreted IL-8 and nicotine acted on the pancreatic cancer cell, resulting in upregulation of IL-8 receptor. Nicotine treatment of mice bearing pancreatic cancer patient-derived xenografts had significantly increased tumor mass, increased tumor-free weight loss, and decreased muscle mass. These represent important pathways through which nicotine acts within the tumor microenvironment and worsens pancreatic cancer-induced cachexia, potentially representing future therapeutic targets.
Collapse
Affiliation(s)
- Patrick W. Underwood
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL 32610, USA; (P.W.U.); (D.Y.Z.); (M.E.C.); (M.H.G.); (M.U.M.); (K.J.C.); (S.H.); (S.J.H.)
| | - Dong Yu Zhang
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL 32610, USA; (P.W.U.); (D.Y.Z.); (M.E.C.); (M.H.G.); (M.U.M.); (K.J.C.); (S.H.); (S.J.H.)
| | - Miles E. Cameron
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL 32610, USA; (P.W.U.); (D.Y.Z.); (M.E.C.); (M.H.G.); (M.U.M.); (K.J.C.); (S.H.); (S.J.H.)
| | - Michael H. Gerber
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL 32610, USA; (P.W.U.); (D.Y.Z.); (M.E.C.); (M.H.G.); (M.U.M.); (K.J.C.); (S.H.); (S.J.H.)
| | - Daniel Delitto
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Michael U. Maduka
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL 32610, USA; (P.W.U.); (D.Y.Z.); (M.E.C.); (M.H.G.); (M.U.M.); (K.J.C.); (S.H.); (S.J.H.)
| | - Kyle J. Cooper
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL 32610, USA; (P.W.U.); (D.Y.Z.); (M.E.C.); (M.H.G.); (M.U.M.); (K.J.C.); (S.H.); (S.J.H.)
| | - Song Han
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL 32610, USA; (P.W.U.); (D.Y.Z.); (M.E.C.); (M.H.G.); (M.U.M.); (K.J.C.); (S.H.); (S.J.H.)
| | - Steven J. Hughes
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL 32610, USA; (P.W.U.); (D.Y.Z.); (M.E.C.); (M.H.G.); (M.U.M.); (K.J.C.); (S.H.); (S.J.H.)
| | - Sarah M. Judge
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, FL 32610, USA; (S.M.J.); (A.R.J.)
| | - Andrew R. Judge
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, FL 32610, USA; (S.M.J.); (A.R.J.)
| | - Jose G. Trevino
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL 32610, USA; (P.W.U.); (D.Y.Z.); (M.E.C.); (M.H.G.); (M.U.M.); (K.J.C.); (S.H.); (S.J.H.)
| |
Collapse
|
17
|
Zwickl H, Zwickl-Traxler E, Pecherstorfer M. Is Neuronal Histamine Signaling Involved in Cancer Cachexia? Implications and Perspectives. Front Oncol 2019; 9:1409. [PMID: 31921666 PMCID: PMC6933599 DOI: 10.3389/fonc.2019.01409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
In this paper, we present evidence in support of our hypothesis that the neuronal histaminergic system might be involved in cancer cachexia1. To build our premise, we present the research and the reasonable inferences that can be drawn from it in a section by section approach starting from one of the key issues related to cachexia, increased resting energy expenditure (REE), and progressing to the other, anorexia. Based on an extensive survey of the literature and our own deliberations on the abovementioned topics, we investigate whether histamine signaling might be the mechanism used by a tumor to hijack the body's thermogenic machinery. Our hypothesis in short is that hypothalamic histaminergic neurons are stimulated by inputs from the parasympathetic nervous system (PSNS), which senses tumor traits early in cancer development. Histamine release in the preoptic area of the hypothalamus primarily activates brown adipose tissue (BAT), triggering a highly energy demanding mechanism. Chronic activation of BAT, which, in this context, refers to intermittent and/or low grade activation by the sympathetic nervous system, leads to browning of white adipose tissue and further enhances thermogenic potential. Aberrant histamine signaling not only triggers energy-consuming processes, but also anorexia. Moreover, since functions such as taste, smell, and sleep are governed by discrete structures of the brain, which are targeted by distinct histaminergic neuron populations even relatively minor symptoms of cachexia, such as sleep disturbances and taste and smell distortions, also might be ascribed to aberrant histamine signaling. In late stage cachexia, the sympathetic tone in skeletal muscle breaks down, which we hypothesize might be caused by a reduction in histamine signaling or by the interference of other cachexia related mechanisms. Histamine signaling thus might delineate distinct stages of cachexia progression, with the early phase marked by a PSNS-mediated increase in histamine signaling, increased sympathetic tone and symptomatic adipose tissue depletion, and the late phase characterized by reduced histamine signaling, decreased sympathetic tone and symptomatic muscle wasting. To support our hypothesis, we review the literature from across disciplines and highlight the many commonalities between the mechanisms underlying cancer cachexia and current research findings on the regulation of energy homeostasis (particularly as it relates to hypothalamic histamine signaling). Extrapolating from the current body of knowledge, we develop our hypothetical framework (based on experimentally falsifiable assumptions) about the role of a distinct neuron population in the pathophysiology of cancer cachexia. Our hope is that presenting our ideas will spark discussion about the pathophysiology of cachexia, cancer's devastating and intractable syndrome.
Collapse
Affiliation(s)
- Hannes Zwickl
- Department of Internal Medicine 2, University Hospital Krems, Karl Landsteiner Private University of Health Sciences, Krems, Austria
| | - Elisabeth Zwickl-Traxler
- Department of Internal Medicine 2, University Hospital Krems, Karl Landsteiner Private University of Health Sciences, Krems, Austria
| | - Martin Pecherstorfer
- Department of Internal Medicine 2, University Hospital Krems, Karl Landsteiner Private University of Health Sciences, Krems, Austria
| |
Collapse
|
18
|
IL-8 Released from Human Pancreatic Cancer and Tumor-Associated Stromal Cells Signals through a CXCR2-ERK1/2 Axis to Induce Muscle Atrophy. Cancers (Basel) 2019; 11:cancers11121863. [PMID: 31769424 PMCID: PMC6966692 DOI: 10.3390/cancers11121863] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 01/18/2023] Open
Abstract
Tumor-derived cytokines are known to drive the catabolism of host tissues, including skeletal muscle. However, our understanding of the specific cytokines that initiate this process remains incomplete. In the current study, we conducted multiplex analyte profiling of cytokines in conditioned medium (CM) collected from human pancreatic cancer (PC) cells, human tumor-associated stromal (TAS) cells, and their co-culture. Of the factors identified, interleukin-8 (IL-8) is released at high levels from PC cells and PC/TAS co-culture and has previously been associated with low muscle mass in cancer patients. We, therefore, treated C2C12 myotubes with IL-8 which led to the activation of ERK1/2, STAT, and Smad signaling, and induced myotube atrophy. Moreover, the treatment of mice with IL-8 also induced significant muscle wasting, confirming the in vivo relevance of IL-8 on muscle. Mechanistically, IL-8-induced myotube atrophy is inhibited by treatment with the CXCR2 antagonist, SB225002, or by treatment with the ERK1/2 inhibitor, U0126. We further demonstrate that this axis mediates muscle atrophy induced by pancreatic cancer cell CM, as neutralization of IL-8 or treatment with SB225002 or U0126 significantly inhibit CM-induced myotube atrophy. Thus, these data support a key role of IL-8 released from human PC cells in initiating atrophy of muscle cells via CXCR2-ERK1/2.
Collapse
|
19
|
Rosa-Caldwell ME, Fix DK, Washington TA, Greene NP. Muscle alterations in the development and progression of cancer-induced muscle atrophy: a review. J Appl Physiol (1985) 2019; 128:25-41. [PMID: 31725360 DOI: 10.1152/japplphysiol.00622.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cancer cachexia-cancer-associated body weight and muscle loss-is a significant predictor of mortality and morbidity in cancer patients across a variety of cancer types. However, despite the negative prognosis associated with cachexia onset, there are no clinical therapies approved to treat or prevent cachexia. This lack of treatment may be partially due to the relative dearth of literature on mechanisms occurring within the muscle before the onset of muscle wasting. Therefore, the purpose of this review is to compile the current scientific literature on mechanisms contributing to the development and progression of cancer cachexia, including protein turnover, inflammatory signaling, and mitochondrial dysfunction. We define "development" as changes in cell function occurring before the onset of cachexia and "progression" as alterations to cell function that coincide with the exacerbation of muscle wasting. Overall, the current literature suggests that multiple aspects of cellular function, such as protein turnover, inflammatory signaling, and mitochondrial quality, are altered before the onset of muscle loss during cancer cachexia and clearly highlights the need to study more thoroughly the developmental stages of cachexia. The studying of these early aberrations will allow for the development of effective therapeutics to prevent the onset of cachexia and improve health outcomes in cancer patients.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Dennis K Fix
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Nicholas P Greene
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
20
|
Blum RA, Mair S, Duus EM. Appetite and food intake results from phase I studies of anamorelin. J Cachexia Sarcopenia Muscle 2019; 10:1027-1035. [PMID: 31074178 PMCID: PMC6818453 DOI: 10.1002/jcsm.12439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/18/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Loss of appetite and body weight are potentially devastating, highly prevalent cancer complications. The ghrelin receptor is a mediator of appetite and metabolism, and anamorelin is a novel, orally administered ghrelin receptor agonist. Effects on appetite and food intake may influence body-weight gain but can be difficult to measure in multi-site studies. Here, we summarize two single-centre trials. METHODS Both trials were phase I, randomized, double-blind, placebo-controlled, partly/wholly crossover studies of healthy young adults. Study 102 tested single anamorelin doses of 1-20 mg. Assessments included post-dose self-ratings on 100 mm visual analogue scales for hunger, anticipated eating pleasure, and anticipated quantity of food consumption. Study 101 tested single 10, 25, and 50 mg doses. Assessments included the same scales plus caloric intake beginning 4 h post-dose. RESULTS Study 102 treated 16 male subjects (mean age, 26.3 years). Mean hunger scores generally increased after all treatments, with significant differences from placebo (P < 0.05) in the 5 mg anamorelin group at 0.5 and 1 h post-dose (+8.2 and +13.2 mm). Results for other scales were similar. Study 101 treated nine male subjects (mean age, 26.3 years). Pooled findings for anamorelin 25 and 50 mg vs. placebo showed significant mean increases in hunger scores at all but 1 pre-prandial time point, including the first assessment, 0.5 h post-dose (+10.9 vs. +0.7 mm, P = 0.0077), and the last assessment, 4 h post-dose (+32.7 vs. +7.0 mm, P = 0.0170), with a significant mean 18.4% increase vs. placebo in caloric intake (P = 0.0148). CONCLUSIONS In single-centre studies of healthy adults, single anamorelin doses of 1-20 mg elicited modest increases in hunger, and single doses of 25 and 50 mg achieved significant increases in hunger and caloric intake. The findings are consistent with dose-related weight gain reported in a prior phase I study as well as multi-centre findings in cachectic cancer patients and expand the evidence supporting anamorelin as a potential intervention.
Collapse
Affiliation(s)
- Robert A Blum
- Buffalo Clinical Research Center, LLC, Buffalo, NY, USA
| | | | - Elizabeth M Duus
- Formerly, Helsinn Therapeutics (US), Incorporated, Iselin, NJ, USA
| |
Collapse
|
21
|
Cury SS, de Moraes D, Freire PP, de Oliveira G, Marques DVP, Fernandez GJ, Dal-Pai-Silva M, Hasimoto ÉN, Dos Reis PP, Rogatto SR, Carvalho RF. Tumor Transcriptome Reveals High Expression of IL-8 in Non-Small Cell Lung Cancer Patients with Low Pectoralis Muscle Area and Reduced Survival. Cancers (Basel) 2019; 11:E1251. [PMID: 31455042 PMCID: PMC6769884 DOI: 10.3390/cancers11091251] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/15/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022] Open
Abstract
Cachexia is a syndrome characterized by an ongoing loss of skeletal muscle mass associated with poor patient prognosis in non-small cell lung cancer (NSCLC). However, prognostic cachexia biomarkers in NSCLC are unknown. Here, we analyzed computed tomography (CT) images and tumor transcriptome data to identify potentially secreted cachexia biomarkers (PSCB) in NSCLC patients with low-muscularity. We integrated radiomics features (pectoralis muscle, sternum, and tenth thoracic (T10) vertebra) from CT of 89 NSCLC patients, which allowed us to identify an index for screening muscularity. Next, a tumor transcriptomic-based secretome analysis from these patients (discovery set) was evaluated to identify potential cachexia biomarkers in patients with low-muscularity. The prognostic value of these biomarkers for predicting recurrence and survival outcome was confirmed using expression data from eight lung cancer datasets (validation set). Finally, C2C12 myoblasts differentiated into myotubes were used to evaluate the ability of the selected biomarker, interleukin (IL)-8, in inducing muscle cell atrophy. We identified 75 over-expressed transcripts in patients with low-muscularity, which included IL-6, CSF3, and IL-8. Also, we identified NCAM1, CNTN1, SCG2, CADM1, IL-8, NPTX1, and APOD as PSCB in the tumor secretome. These PSCB were capable of distinguishing worse and better prognosis (recurrence and survival) in NSCLC patients. IL-8 was confirmed as a predictor of worse prognosis in all validation sets. In vitro assays revealed that IL-8 promoted C2C12 myotube atrophy. Tumors from low-muscularity patients presented a set of upregulated genes encoding for secreted proteins, including pro-inflammatory cytokines that predict worse overall survival in NSCLC. Among these upregulated genes, IL-8 expression in NSCLC tissues was associated with worse prognosis, and the recombinant IL-8 was capable of triggering atrophy in C2C12 myotubes.
Collapse
Affiliation(s)
- Sarah Santiloni Cury
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Diogo de Moraes
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Paula Paccielli Freire
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Grasieli de Oliveira
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | | | - Geysson Javier Fernandez
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Érica Nishida Hasimoto
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618687, São Paulo, Brazil
| | - Patricia Pintor Dos Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618687, São Paulo, Brazil
- Experimental Research Unit, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618687, São Paulo, Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, Vejle Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle 7100, Denmark
| | - Robson Francisco Carvalho
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil.
| |
Collapse
|
22
|
Local and Systemic Cytokine Profiling for Pancreatic Ductal Adenocarcinoma to Study Cancer Cachexia in an Era of Precision Medicine. Int J Mol Sci 2018; 19:ijms19123836. [PMID: 30513792 PMCID: PMC6321633 DOI: 10.3390/ijms19123836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 01/28/2023] Open
Abstract
Cancer cachexia is a debilitating condition seen frequently in patients with pancreatic ductal adenocarcinoma (PDAC). The underlying mechanisms driving cancer cachexia are not fully understood but are related, at least in part, to the immune response to the tumor both locally and systemically. We hypothesize that there are unique differences in cytokine levels in the tumor microenvironment and systemic circulation between PDAC tumors and that these varying profiles affect the degree of cancer cachexia observed. Patient demographics, operative factors, oncologic factors, and perioperative data were collected for the two patients in the patient derived xenograft (PDX) model. Human pancreatic cancer PDX were created by implanting fresh surgical pancreatic cancer tissues directly into immunodeficient mice. At PDX end point, mouse tumor, spleen and muscle tissues were collected and weighed, muscle atrophy related gene expression measured, and tumor and splenic soluble proteins were analyzed. PDX models were created from surgically resected patients who presented with different degrees of cachexia. Tumor free body weight and triceps surae weight differed significantly between the PDX models and control (P < 0.05). Both PDX groups had increased atrophy related gene expression in muscle compared to control (FoxO1, Socs3, STAT3, Acvr2b, Atrogin-1, MuRF1; P < 0.05). Significant differences were noted in splenic soluble protein concentrations in 14 of 15 detected proteins in tumor bearing mice when compared to controls. Eight splenic soluble proteins were significantly different between PDX groups (P < 0.05). Tumor soluble proteins were significantly different between the two PDX groups in 15 of 24 detected proteins (P < 0.05). PDX models preserve the cachectic heterogeneity found in patients and are associated with unique cytokine profiles in both the spleen and tumor between different PDX. These data support the use of PDX as a strategy to study soluble cachexia protein markers and also further efforts to elucidate which cytokines are most related to cachexia in order to provide potential targets for immunotherapy.
Collapse
|
23
|
Hou YC, Wang CJ, Chao YJ, Chen HY, Wang HC, Tung HL, Lin JT, Shan YS. Elevated Serum Interleukin-8 Level Correlates with Cancer-Related Cachexia and Sarcopenia: An Indicator for Pancreatic Cancer Outcomes. J Clin Med 2018; 7:jcm7120502. [PMID: 30513776 PMCID: PMC6306800 DOI: 10.3390/jcm7120502] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 01/06/2023] Open
Abstract
Cancer cachexia (CC), characterized by body weight loss and sarcopenia, contributes to over 20% of all cancer-related death. Approximately 80% of pancreatic cancer (PC) patients develop CC during disease progression. Pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α, have been correlated with CC; however, its prognostic significance remains unclear. In this study, serum levels of the CC-related cytokines were determined in normal donors and PC patients. IL-8 expression was assessed in PC tissue microarrays. The correlation of levels of each cytokine with disease progression, weight loss, and sarcopenia was calculated. The relationships among the baseline variables, CC, and IL-8 expression with disease progression were examined using univariate and multivariate analyses. Of these mentioned cytokines, only serum IL-8 level was elevated in the locally advanced group (n = 55) compared with the normal (n = 17) and resected groups (n = 55). Serum IL-8 level was positively correlated with CC status, weight loss, sarcopenia, but was negatively correlated with total psoas area (TPA). IL-8 expression in tissue samples was also positively associated with weight loss. Furthermore, serum IL-8 level was an independent predictor of survival. In conclusion, elevated serum IL-8 level significantly correlates with CC and sarcopenia and can be used as a prognostic indicator in PC.
Collapse
Affiliation(s)
- Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Department of Clinical Medical Research, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Chih-Jung Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Ying-Jui Chao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Hao-Yun Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Hao-Chen Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Department of Clinical Medical Research, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Hui-Ling Tung
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Jung-Ting Lin
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Department of Clinical Medical Research, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| |
Collapse
|
24
|
Myokines as Possible Therapeutic Targets in Cancer Cachexia. J Immunol Res 2018; 2018:8260742. [PMID: 30426026 PMCID: PMC6217752 DOI: 10.1155/2018/8260742] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/23/2018] [Indexed: 01/04/2023] Open
Abstract
Cachexia is an extremely serious syndrome which occurs in most patients with different cancers, and it is characterized by systemic inflammation, a negative protein and energy balance, and involuntary loss of body mass. This syndrome has a dramatic impact on the patient's quality of life, and it is also associated with a low response to chemotherapy leading to a decrease in survival. Despite this, cachexia is still underestimated and often untreated. New research is needed in this area to understand this complex phenomenon and ultimately find treatment methods and therapeutic targets. The skeletal muscle can act as an endocrine organ. Signaling between muscles and other systems is done through myokines, cytokines, and proteins produced and released by myocytes. In this review, we would like to draw attention to some of the most important myokines that could have potential as biomarkers and therapeutic targets: myostatin, irisin, myonectin, decorin, fibroblast growth factor 21, interleukin-6, interleukin-8, and interleukin-15.
Collapse
|
25
|
Emerging role of extracellular vesicles in mediating cancer cachexia. Biochem Soc Trans 2018; 46:1129-1136. [PMID: 30242118 DOI: 10.1042/bst20180213] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022]
Abstract
Cancer cachexia is a multifactorial metabolic syndrome characterized by the rapid loss of skeletal muscle mass with or without the loss of fat mass. Nearly 50-80% of all cancer patients' experience rapid weight loss results in ∼20% of cancer-related deaths. The levels of pro-inflammatory and pro-cachectic factors were significantly up-regulated in cachexia patients when compared with the patients who were without cachexia. It is becoming evident that these factors work synergistically to induce cancer cachexia. Extracellular vesicles (EVs) including exosomes and microvesicles are implicated in cell-cell communication, immune response, tissue repair, epigenetic regulation, and in various diseases including cancer. It has been reported that these EVs regulate cancer progression, metastasis, organotropism and chemoresistance. In recent times, the role of EVs in regulating cancer cachexia is beginning to unravel. The aim of this mini article is to review the recent knowledge gained in the field of EVs and cancer cachexia. Specifically, the role of tumour cell-derived EVs in promoting catabolism in distally located skeletal muscles and adipose tissue will be discussed.
Collapse
|
26
|
Cramer Z, Sadek J, Vazquez GG, Di Marco S, Pause A, Pelletier J, Gallouzi IE. eIF4A inhibition prevents the onset of cytokine-induced muscle wasting by blocking the STAT3 and iNOS pathways. Sci Rep 2018; 8:8414. [PMID: 29849089 PMCID: PMC5976662 DOI: 10.1038/s41598-018-26625-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/15/2018] [Indexed: 02/07/2023] Open
Abstract
Cachexia is a deadly muscle wasting syndrome that arises under conditions linked to chronic inflammation, such as cancer. Cytokines, including interferon γ (IFNγ), tumor necrosis factor α (TNFα) and interleukin-6 (IL-6), and their downstream effectors such as Signal Transducer and Activator of Transcription 3 (STAT3), have been shown to play a prominent role in muscle wasting. Previously, we demonstrated that Pateamine A (PatA), a compound that targets eukaryotic initiation factor 4A (eIF4A), could prevent muscle wasting by modulating the translation of the inducible Nitric Oxide Synthase (iNOS) mRNA. Here we show that hippuristanol, a compound that impedes eIF4A in a manner distinct from PatA, similarly inhibits the iNOS/NO pathway and cytokine-induced muscle wasting. Furthermore, we show that hippuristanol perturbs the activation of the STAT3 pathway and expression of STAT3-gene targets such as IL-6. The decreased activation of STAT3, which resulted from a decrease in STAT3 protein expression, was due to the inhibition of STAT3 translation as there were no changes in STAT3 mRNA levels. These effects are likely dependent on the inhibition of eIF4A activity since we observed similar results using PatA. Our results identify the inhibition of eIF4A-responsive transcripts, such as STAT3, as a viable approach to alleviate cachexia.
Collapse
Affiliation(s)
- Zvi Cramer
- McGill University, Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, Montreal, Quebec, Canada
| | - Jason Sadek
- McGill University, Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, Montreal, Quebec, Canada
| | - Gabriela Galicia Vazquez
- McGill University, Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, Montreal, Quebec, Canada
| | - Sergio Di Marco
- McGill University, Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, Montreal, Quebec, Canada
| | - Arnim Pause
- McGill University, Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, Montreal, Quebec, Canada
| | - Jerry Pelletier
- McGill University, Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, Montreal, Quebec, Canada
| | - Imed-Eddine Gallouzi
- McGill University, Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, Montreal, Quebec, Canada. .,Hamad Bin Khalifa University (HBKU), College of Science and Engineering, Life Sciences Division, Education City, Doha, PB, 5825, Qatar.
| |
Collapse
|
27
|
Chen MC, Hsu WL, Chou TC. Anti-cachectic effect of Antrodia cinnamomea extract in lung tumor-bearing mice under chemotherapy. Oncotarget 2018; 9:19584-19596. [PMID: 29731967 PMCID: PMC5929410 DOI: 10.18632/oncotarget.24680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/28/2018] [Indexed: 01/06/2023] Open
Abstract
Skeletal muscle atrophy, the most characteristic feature of cancer cachexia, often occurs in patients with cancer undergoing chemotherapy. Antrodia cinnamomea (AC) a widely used edible medical fungus, exhibits hepatoprotective, anti-inflammatory and anticancer activities. In this study, we investigated whether combined treatment with the ethonolic extract of AC ameliorates cachexia symptoms, especially muscle wasting, in lung tumor-bearing mice treated with chemotherapy. Our results revealed that gemcitabine and cisplatin-induced severe body weight loss and skeletal muscle atrophy in the mice with cancer were greatly attenuated after AC extract administration. The protection may be attributed to the inhibition of skeletal muscle proteolysis by suppressing myostatin and activin release, muscle wasting-related FoxO3/MuRF-1/MAFbx signaling, proteasomal enzyme activity, and pro-inflammatory cytokine production. A significant decrease in insulin-like growth factor 1 (IGF-1) expression and formation was observed in the atrophying muscle of the conventional chemotherapy treatment group (CGC), and this decrease was markedly reversed by AC treatment. Additionally, the anorexia, intestinal injury and dysfunction that occurred in the CGC group were mitigated by AC extract. Taken together, these results demonstrated that the AC extract has a protective effect against chemotherapy-induced muscle atrophy mainly by attenuating muscle proteolysis, pro-inflammatory cytokine production, and anorexia, and activating IGF-1-dependent protein synthesis.
Collapse
Affiliation(s)
- Meng-Chuan Chen
- School of Dentistry, Graduated Institute of Dental Science, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Lin Hsu
- Department of Radiation Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tz-Chong Chou
- Cancer Research Center, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan.,China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
28
|
Gangadharan A, Choi SE, Hassan A, Ayoub NM, Durante G, Balwani S, Kim YH, Pecora A, Goy A, Suh KS. Protein calorie malnutrition, nutritional intervention and personalized cancer care. Oncotarget 2017; 8:24009-24030. [PMID: 28177923 PMCID: PMC5410360 DOI: 10.18632/oncotarget.15103] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/23/2017] [Indexed: 12/27/2022] Open
Abstract
Cancer patients often experience weight loss caused by protein calorie malnutrition (PCM) during the course of the disease or treatment. PCM is expressed as severe if the patient has two or more of the following characteristics: obvious significant muscle wasting, loss of subcutaneous fat; nutritional intake of <50% of recommended intake for 2 weeks or more; bedridden or otherwise significantly reduced functional capacity; weight loss of >2% in 1 week, 5% in 1 month, or 7.5% in 3 months. Cancer anorexia-cachexia syndrome (CACS) is a multifactorial condition of advanced PCM associated with underlying illness (in this case cancer) and is characterized by loss of muscle with or without loss of fat mass. Cachexia is defined as weight loss of more than 5% of body weight in 12 months or less in the presence of chronic disease. Hence with a chronic illness on board even a small amount of weight loss can open the door to cachexia. These nutritional challenges can lead to severe morbidity and mortality in cancer patients. In the clinic, the application of personalized medicine and the ability to withstand the toxic effects of anti-cancer therapies can be optimized when the patient is in nutritional homeostasis and is free of anorexia and cachexia. Routine assessment of nutritional status and appropriate intervention are essential components of the effort to alleviate effects of malnutrition on quality of life and survival of patients.
Collapse
Affiliation(s)
- Anju Gangadharan
- The Genomics and Biomarkers Program, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Sung Eun Choi
- Department of Family, Nutrition, and Exercise Sciences, Queens College, The City University of New York, Flushing, NY, USA
| | - Ahmed Hassan
- The Genomics and Biomarkers Program, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Gina Durante
- Department of Clinical Nutrition, Baystate Medical Center, Springfield, MA, USA
| | - Sakshi Balwani
- The Genomics and Biomarkers Program, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Young Hee Kim
- Department of Clinical Nutrition, Baystate Medical Center, Springfield, MA, USA
| | - Andrew Pecora
- Clinical Divisions, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Andre Goy
- Clinical Divisions, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - K Stephen Suh
- The Genomics and Biomarkers Program, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| |
Collapse
|
29
|
Loumaye A, Thissen JP. Biomarkers of cancer cachexia. Clin Biochem 2017; 50:1281-1288. [PMID: 28739222 DOI: 10.1016/j.clinbiochem.2017.07.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
Abstract
Cachexia is a complex multifactorial syndrome, characterized by loss of skeletal muscle and fat mass, which affects the majority of advanced cancer patients and is associated with poor prognosis. Interestingly, reversing muscle loss in animal models of cancer cachexia leads to prolong survival. Therefore, detecting cachexia and maintaining muscle mass represent a major goal in the care of cancer patients. However, early diagnosis of cancer cachexia is currently limited for several reasons. Indeed, cachexia development is variable according to tumor and host characteristics. In addition, safe, accessible and non-invasive tools to detect skeletal muscle atrophy are desperately lacking in clinical practice. Finally, the precise molecular mechanisms and the key players involved in cancer cachexia remain poorly characterized. The need for an early diagnosis of cancer cachexia supports therefore the quest for a biomarker that might reflect skeletal muscle atrophy process. Current research offers different promising ways to identify such a biomarker. Initially, the quest for a biomarker of cancer cachexia has mostly focused on mediators of muscle atrophy, produced by both tumor and host, in an attempt to define new therapeutic approaches. In another hand, molecules released by the muscle into the circulation during the atrophy process have been also considered as potential biomarkers. More recently, several "omics" studies are emerging to identify new muscular or circulating markers of cancer cachexia. Some genetic markers could also contribute to identify patients more susceptible to develop cachexia. This article reviews our current knowledge regarding potential biomarkers of cancer cachexia.
Collapse
Affiliation(s)
- Audrey Loumaye
- Endocrinology, Diabetology and Nutrition Department, IREC, Université Catholique de Louvain, Cliniques Universitaires St-Luc, Brussels, Belgium.
| | - Jean-Paul Thissen
- Endocrinology, Diabetology and Nutrition Department, IREC, Université Catholique de Louvain, Cliniques Universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
30
|
Jiao Y, Zhao J, Shi G, Liu X, Xiong X, Li X, Zhang H, Ma Q, Lu Y. Stanniocalcin2 acts as an anorectic factor through activation of STAT3 pathway. Oncotarget 2017; 8:91067-91075. [PMID: 29207625 PMCID: PMC5710906 DOI: 10.18632/oncotarget.19412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022] Open
Abstract
The regulation of food intake and body weight has been hotly investigated. In the present study, we show that stanniocalcin2 (STC2), a cytokine ubiquitously expressed and especially upregulated in many types of human cancers, has a regulatory role in food intake and weight loss. Systemic treatment of C57BL/6 mice with recombinant STC2 protein resulted in decreased food intake and body weight, whereas energy expenditure was not affected. Similarly, STC2 treatment also induced anorexia in hyperphagic leptin-deficient mice, leading to a significant reduction in body weight and improvement of blood glucose levels. Furthermore, intracerebroventricular administration of STC2 to mice led to an acute decrease in food intake, which was mediated, at least in part, by activation of STAT3 pathway. Taken together, our results revealed the importance of STC2 in the regulation of feeding behavior as well as body weight.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiejie Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guojun Shi
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xing Liu
- Department of Endocrinology, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xuelian Xiong
- Department of Endocrinology, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoying Li
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Endocrinology, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qinyun Ma
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Lu
- Department of Endocrinology, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
31
|
Expression analysis of inflammasome sensors and implication of NLRP12 inflammasome in prostate cancer. Sci Rep 2017; 7:4378. [PMID: 28663562 PMCID: PMC5491527 DOI: 10.1038/s41598-017-04286-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/11/2017] [Indexed: 12/17/2022] Open
Abstract
Inflammasomes are multi-proteins complex regulating inflammation-associated signaling. While inflammation plays a critical role in cancer cell growth, studies remain uncharacterized on the role of inflammasomes in prostate cancer. Using Gene Expression Omnibus (GEO) public datasets, we screened the expression profiles of inflammasome sensors NLRP3, NLRC4, NLRP6, NRLP12, and AIM2 in prostate tumor tissues, and verified their mRNA level in a panel of prostate cancer cell lines. The selected expression of NLRP3 and NLRP12 inflammasomes was validated, and the clinical association was evaluated in human prostate archival tumor tissues. We observed that the expression of inflammasome sensors was dysregulated at the mRNA level except for the NLRP12. The intensity of NLRP12 immunostaining was significantly higher in malignant prostate as compared to their adjacent benign tissues. In contrast, the NLRP3 immunostaining in prostate tissues was heterogeneous. The inflammasome complex proteins ASC (apoptosis-associated speck-like protein containing a CARD) and pro-caspase-1, as well as its downstream targets IL-1β and IL-18 were confined to aggressive prostate cancer cells. These data suggest an increased expression of NLRP12 in association with prostate cancer and support the role of NLRP12 inflammasome complex regulating inflammatory cytokines in understanding the role of inflammation in the prostate cancer.
Collapse
|
32
|
Crocetin treatment inhibits proliferation of colon cancer cells through down-regulation of genes involved in the inflammation. Saudi J Biol Sci 2017; 25:1767-1771. [PMID: 30591798 PMCID: PMC6303136 DOI: 10.1016/j.sjbs.2017.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/03/2017] [Accepted: 04/09/2017] [Indexed: 01/09/2023] Open
Abstract
Background The current study was designed to investigate the effect of crocetin on the proliferation inhibition of colon cancer cells and the underlying mechanism. Methods MTT assay showed inhibition of proliferation of colon cancer cells in a dose based manner by crocetin treatment. At 30 µM concentration of crocetin proliferation rate of colon cancer cells was reduced to 14% after 24 h. Flow cytometry and fluorescence microscopy revealed induction of apoptosis in colon cancer cells on treatment with crocetin. The tube formation was suppressed significantly in the cultures of HUVEC treated with 30 µM concentration of crocetin compared to the control cultures. Results The results from transwell assay revealed a significant reduction in the population of DU-145 cells passing through filters of transwell on treatment with crocetin compared to the control cells. Treatment of the DU-145 cells with crocetin caused a significant reduction in the expression levels of NF-κB, VEGF and MMP-9. The results from RT-PCR analysis revealed a significant reduction in the expression of genes involved in inflammation including, HMGB1, IL-6 and IL-8 on treatment of DU-145 cells with crocetin. However, the expression of NAG-1 gene was increased by crocetin treatment in DU-145 cells significantly compared to the control cells. Conclusion Crocetin inhibits growth of colon cancer cells and prevents tube formation through induction of apoptosis. Therefore, crocetin can be used efficiently for the treatment of colon cancer.
Collapse
|
33
|
Aalinkeel R, Nair B, Chen C, Mahajan SD, Reynolds JL, Zhang H, Sun H, Sykes DE, Chadha KC, Turowski SG, Bothwell KD, Seshadri M, Cheng C, Schwartz SA. Nanotherapy silencing the interleukin-8 gene produces regression of prostate cancer by inhibition of angiogenesis. Immunology 2016; 148:387-406. [PMID: 27159450 PMCID: PMC4948039 DOI: 10.1111/imm.12618] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 04/05/2016] [Accepted: 05/03/2016] [Indexed: 01/12/2023] Open
Abstract
Interleukin-8 (IL-8) is a pro-angiogenic cytokine associated with aggressive prostate cancer (CaP). We detected high levels of IL-8 in sera from patients with CaP compared with healthy controls and patients with benign prostatic hypertrophy. This study examines the role of IL-8 in the pathogenesis of metastatic prostate cancer. We developed a biocompatible, cationic polylactide (CPLA) nanocarrier to complex with and efficiently deliver IL-8 small interfering RNA (siRNA) to CaP cells in vitro and in vivo. CPLA IL-8 siRNA nanocomplexes (nanoplexes) protect siRNA from rapid degradation, are non-toxic, have a prolonged lifetime in circulation, and their net positive charge facilitates penetration of cell membranes and subsequent intracellular trafficking. Administration of CPLA IL-8 siRNA nanoplexes to immunodeficient mice bearing human CaP tumours produced significant antitumour activities with no adverse effects. Systemic (intravenous) or local intra-tumour administration of IL-8 siRNA nanoplexes resulted in significant inhibition of CaP growth. Magnetic resonance imaging and ultrasonography of experimental animals demonstrated reduction of tumour perfusion in vivo following nanoplex treatment. Staining of tumour sections for CD31 confirmed significant damage to tumour neovasculature after nanoplex therapy. These studies demonstrate the efficacy of IL-8 siRNA nanotherapy for advanced, treatment-resistant human CaP.
Collapse
Affiliation(s)
- Ravikumar Aalinkeel
- Department of MedicineDivision of Allergy, Immunology and RheumatologyUniversity at Buffalo and Kaleida HealthBuffaloNYUSA
| | - Bindukumar Nair
- Department of MedicineDivision of Allergy, Immunology and RheumatologyUniversity at Buffalo and Kaleida HealthBuffaloNYUSA
| | - Chih‐Kuang Chen
- Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloNYUSA
| | - Supriya D. Mahajan
- Department of MedicineDivision of Allergy, Immunology and RheumatologyUniversity at Buffalo and Kaleida HealthBuffaloNYUSA
| | - Jessica L. Reynolds
- Department of MedicineDivision of Allergy, Immunology and RheumatologyUniversity at Buffalo and Kaleida HealthBuffaloNYUSA
| | - Hanguang Zhang
- Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloNYUSA
| | - Haotian Sun
- Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloNYUSA
| | - Donald E. Sykes
- Department of MedicineDivision of Allergy, Immunology and RheumatologyUniversity at Buffalo and Kaleida HealthBuffaloNYUSA
| | - Kailash C. Chadha
- Department of Molecular and Cellular BiologyRoswell Park Cancer InstituteBuffaloNYUSA
| | - Steven G. Turowski
- Department of Pharmacology and TherapeuticsCancer Cell Center Roswell Park Cancer InstituteBuffaloNYUSA
| | - Katelyn D. Bothwell
- Department of Pharmacology and TherapeuticsCancer Cell Center Roswell Park Cancer InstituteBuffaloNYUSA
| | - Mukund Seshadri
- Department of Pharmacology and TherapeuticsCancer Cell Center Roswell Park Cancer InstituteBuffaloNYUSA
| | - Chong Cheng
- Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloNYUSA
| | - Stanley A. Schwartz
- Department of MedicineDivision of Allergy, Immunology and RheumatologyUniversity at Buffalo and Kaleida HealthBuffaloNYUSA
| |
Collapse
|
34
|
Mueller TC, Bachmann J, Prokopchuk O, Friess H, Martignoni ME. Molecular pathways leading to loss of skeletal muscle mass in cancer cachexia--can findings from animal models be translated to humans? BMC Cancer 2016; 16:75. [PMID: 26856534 PMCID: PMC4746781 DOI: 10.1186/s12885-016-2121-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/03/2016] [Indexed: 02/06/2023] Open
Abstract
Background Cachexia is a multi-factorial, systemic syndrome that especially affects patients with cancer of the gastrointestinal tract, and leads to reduced treatment response, survival and quality of life. The most important clinical feature of cachexia is the excessive wasting of skeletal muscle mass. Currently, an effective treatment is still lacking and the search for therapeutic targets continues. Even though a substantial number of animal studies have contributed to a better understanding of the underlying mechanisms of the loss of skeletal muscle mass, subsequent clinical trials of potential new drugs have not yet yielded any effective treatment for cancer cachexia. Therefore, we questioned to which degree findings from animal studies can be translated to humans in clinical practice and research. Discussion A substantial amount of animal studies on the molecular mechanisms of muscle wasting in cancer cachexia has been conducted in recent years. This extensive review of the literature showed that most of their observations could not be consistently reproduced in studies on human skeletal muscle samples. However, studies on human material are scarce and limited in patient numbers and homogeneity. Therefore, their results have to be interpreted critically. Summary More research is needed on human tissue samples to clarify the signaling pathways that lead to skeletal muscle loss, and to confirm pre-selected drug targets from animal models in clinical trials. In addition, improved diagnostic tools and standardized clinical criteria for cancer cachexia are needed to conduct standardized, randomized controlled trials of potential drug candidates in the future.
Collapse
Affiliation(s)
- Tara C Mueller
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany.
| | - Jeannine Bachmann
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Olga Prokopchuk
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Marc E Martignoni
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| |
Collapse
|
35
|
Subclinical Inflammation and Endothelial Dysfunction in Patients with Chronic Pancreatitis and Newly Diagnosed Pancreatic Cancer. Dig Dis Sci 2016; 61:1121-9. [PMID: 26597191 PMCID: PMC4789226 DOI: 10.1007/s10620-015-3972-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/11/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent studies have suggested that various cytokines may be important players in the development and progression of chronic pancreatitis (CP) and pancreatic adenocarcinoma (PC). AIMS We studied endothelial dysfunction and subclinical inflammation in patients with newly diagnosed pancreatic adenocarcinoma and CP. METHODS A total of 45 patients were included in the present investigation, 27 with CP and 18 with PC. In addition, the study included 13 age- and body weight-matched healthy subjects served as controls. In all subjects, plasma adiponectin, TNF-alfa, interleukin 6 (IL-6), interleukin 1beta (IL-1β), E-selectin, thrombomodulin, adhesion molecules ICAM and VCAM, and endothelin-1 were assessed. RESULTS PC and CP patients as compared with controls had significantly greater plasma adiponectin (13,292 and 12,227 vs 5408 ng/ml; p < 0.0003), TNF-alfa (22.1 and 23.1 vs 13 pg/ml; p < 0.0002), and IL-6 (6.6 and 7.3 vs 3.3 pg/ml; p < 0.0001). Moreover, there was significantly higher concentration of ICAM (931 and 492 vs 290 ng/ml; p < 0.005) and VCAM (1511 and 1080 vs 840 ng/ml; p < 0.01) in PC and CP patients. When PC and CP patients with and without diabetes were considered separately, there was no difference in adiponectin, cytokines, and parameters of endothelial dysfunction. CONCLUSION In summary, our data indicate that patients with CP and PC express high levels of several cytokines compared with healthy individuals, especially adiponectin, TNF-α and IL-6. Serum TNF-α and ICAM concentrations coordinately increase in advanced CP. Furthermore, especially in PC subjects, elevated markers of endothelial dysfunction are present. This study provides additional evidence that changes in inflammatory cytokine and adhesion molecules in PC and CP are not likely related to endocrine disorders.
Collapse
|
36
|
Rohner NA, Thomas SN. Melanoma growth effects on molecular clearance from tumors and biodistribution into systemic tissues versus draining lymph nodes. J Control Release 2015; 223:99-108. [PMID: 26721446 DOI: 10.1016/j.jconrel.2015.12.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/12/2015] [Accepted: 12/16/2015] [Indexed: 12/19/2022]
Abstract
Factors produced within or administered directly into the tumor interstitium, such as cytokines, chemokines, proteases, exosomes, microvesicles, or therapeutic agents, play important and multifaceted roles in the regulation of malignant disease progression. Their bioavailability to mediate signaling in distributed tissues outside of the tumor microenvironment, however, has not been well described. We therefore sought to elucidate the relative extent to which factors from within the primary tumor disseminate to systemic tissues as well as how these distribution profiles are influenced by both hydrodynamic size and the remodeling tumor vasculature. To accomplish this goal, we intratumorally co-infused into the dermal lesions of B16F10 melanoma-bearing mice at prescribed times post tumor implantation a near infrared fluorescent tracer panel ranging from 5 to 500nm in hydrodynamic diameter and compared the in vivo clearance and biodistribution profiles to that of naïve animals. Our results indicate that tumor growth reduces tumor-draining lymph node accumulation and alters the distribution of tumor-derived factors amongst systemic tissues. Despite these changes, previously developed principles of size-dependent lymph node drug targeting are conserved in melanomas, suggesting their applicability to sentinel lymph node-targeted drug delivery. Tumor progression was also found to result in a significant increase in the hydrodynamic size of factors originating from the tumor that accumulated within systemic tissues. This suggests that tumor vascular remodeling may redirect the organism-wide signaling activity of tumor-derived factors and may negatively contribute to disease progression by altering the bioavailability of molecules important to the regulation of pre-metastatic niche formation and the induction of anti-tumor immunity.
Collapse
Affiliation(s)
- Nathan Andrew Rohner
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Susan Napier Thomas
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States.
| |
Collapse
|
37
|
Toledo M, Busquets S, Penna F, Zhou X, Marmonti E, Betancourt A, Massa D, López-Soriano FJ, Han H, Argilés JM. Complete reversal of muscle wasting in experimental cancer cachexia: Additive effects of activin type II receptor inhibition and β-2 agonist. Int J Cancer 2015; 138:2021-9. [DOI: 10.1002/ijc.29930] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/14/2015] [Accepted: 11/04/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Míriam Toledo
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona; Barcelona Spain
| | - Sílvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona; Barcelona Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB); Barcelona Spain
| | - Fabio Penna
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona; Barcelona Spain
| | - Xiaolan Zhou
- Departments of Metabolic Disorders and Protein Science; Amgen Research, Thousand Oaks; CA
| | - Enrica Marmonti
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona; Barcelona Spain
| | - Angelica Betancourt
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona; Barcelona Spain
| | - David Massa
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona; Barcelona Spain
| | - Francisco J. López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona; Barcelona Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB); Barcelona Spain
| | - H.Q. Han
- Departments of Metabolic Disorders and Protein Science; Amgen Research, Thousand Oaks; CA
| | - Josep M. Argilés
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona; Barcelona Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB); Barcelona Spain
| |
Collapse
|
38
|
Carson JA, Hardee JP, VanderVeen BN. The emerging role of skeletal muscle oxidative metabolism as a biological target and cellular regulator of cancer-induced muscle wasting. Semin Cell Dev Biol 2015; 54:53-67. [PMID: 26593326 DOI: 10.1016/j.semcdb.2015.11.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022]
Abstract
While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle's metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed.
Collapse
Affiliation(s)
- James A Carson
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC, 29208, USA.
| | - Justin P Hardee
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC, 29208, USA
| | - Brandon N VanderVeen
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC, 29208, USA
| |
Collapse
|
39
|
Anorexia-cachexia and obesity treatment may be two sides of the same coin: role of the TGF-b superfamily cytokine MIC-1/GDF15. Int J Obes (Lond) 2015; 40:193-7. [PMID: 26620888 DOI: 10.1038/ijo.2015.242] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 06/17/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022]
Abstract
Anorexia-cachexia associated with cancer and other diseases is a common and often fatal condition representing a large area of unmet medical need. It occurs most commonly in advanced cancer and is probably a consequence of molecules released by tumour cells, or tumour-associated interstitial or immune cells. These may then act directly on muscle to cause atrophy and/or may cause anorexia, which then leads to loss of both fat and lean mass. Although the aetiological triggers for this syndrome are not well characterized, recent data suggest that MIC-1/GDF15, a transforming growth factor-beta superfamily cytokine produced in large amounts by cancer cells and as a part of other disease processes, may be an important trigger. This cytokine acts on feeding centres in the hypothalamus and brainstem to cause anorexia leading to loss of lean and fat mass and eventually cachexia. In animal studies, the circulating concentrations of MIC-1/GDF15 required to cause this syndrome are similar to those seen in patients with advanced cancer, and at least some epidemiological studies support an association between MIC-1/GDF15 serum levels and measures of nutrition. This article will discuss its mechanisms of central appetite regulation, and the available data linking this action to anorexia-cachexia syndromes that suggest it is a potential target for therapy of cancer anorexia-cachexia and conversely may also be useful for the treatment of severe obesity.
Collapse
|
40
|
Roth MD, Harui A. Human tumor infiltrating lymphocytes cooperatively regulate prostate tumor growth in a humanized mouse model. J Immunother Cancer 2015; 3:12. [PMID: 25901284 PMCID: PMC4404579 DOI: 10.1186/s40425-015-0056-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/06/2015] [Indexed: 12/17/2022] Open
Abstract
Background The complex interactions that occur between human tumors, tumor infiltrating lymphocytes (TIL) and the systemic immune system are likely to define critical factors in the host response to cancer. While conventional animal models have identified an array of potential anti-tumor therapies, mouse models often fail to translate into effective human treatments. Our goal is to establish a humanized tumor model as a more effective pre-clinical platform for understanding and manipulating TIL. Methods The immune system in NOD/SCID/IL-2Rγnull (NSG) mice was reconstituted by the co-administration of human peripheral blood lymphocytes (PBL) or subsets (CD4+ or CD8+) and autologous human dendritic cells (DC), and animals simultaneously challenged by implanting human prostate cancer cells (PC3 line). Tumor growth was evaluated over time and the phenotype of recovered splenocytes and TIL characterized by flow cytometry and immunohistochemistry (IHC). Serum levels of circulating cytokines and chemokines were also assessed. Results A tumor-bearing huPBL-NSG model was established in which human leukocytes reconstituted secondary lymphoid organs and promoted the accumulation of TIL. These TIL exhibited a unique phenotype when compared to splenocytes with a predominance of CD8+ T cells that exhibited increased expression of CD69, CD56, and an effector memory phenotype. TIL from huPBL-NSG animals closely matched the features of TIL recovered from primary human prostate cancers. Human cytokines were readily detectible in the serum and exhibited a different profile in animals implanted with PBL alone, tumor alone, and those reconstituted with both. Immune reconstitution slowed but could not eliminate tumor growth and this effect required the presence of CD4+ T cell help. Conclusions Simultaneous implantation of human PBL, DC and tumor results in a huPBL-NSG model that recapitulates the development of human TIL and allows an assessment of tumor and immune system interaction that cannot be carried out in humans. Furthermore, the capacity to manipulate individual features and cell populations provides an opportunity for hypothesis testing and outcome monitoring in a humanized system that may be more relevant than conventional mouse models.
Collapse
Affiliation(s)
- Michael D Roth
- Division of Pulmonary & Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690 USA
| | - Airi Harui
- Division of Pulmonary & Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690 USA
| |
Collapse
|
41
|
Chen PM, Chen SC, Liu CJ, Hung MH, Tsai CF, Hu YW, Chen MH, Shen CC, Su TP, Yeh CM, Lu T, Chen TJ, Hu LY. The association between prostate cancer and mood disorders: a nationwide population-based study in Taiwan. Int Psychogeriatr 2015; 27:481-90. [PMID: 25335499 DOI: 10.1017/s104161021400218x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND This study identified possible risk factors for newly diagnosed mood disorders, including depressive and bipolar disorders, in prostate cancer patients. METHODS From 2000 to 2006, two cohorts were evaluated on the occurrence of mood disorder diagnosis and treatment. For the first cohort, data of patients diagnosed with prostate cancer was obtained from the Taiwan National Health Insurance (NHI) Research Database. As the second cohort, a cancer-free comparison group was matched for age, comorbidities, geographic region, and socioeconomic status. RESULTS Final analyses involved 12,872 men with prostate cancer and 12,872 matched patients. Increased incidence of both depressive (IRR 1.52, 95% CI 1.30-1.79, P <0.001) and bipolar disorder (IRR 1.84, 95% CI 1.25-2.74, P = 0.001) was observed among patients diagnosed with prostate cancer. Multivariate matched regression models show that cerebrovascular disease (CVD) and radiotherapy treatment could be independent risk factors for developing subsequent depressive and bipolar disorders. CONCLUSION We observed that the risk of developing newly diagnosed depressive and bipolar disorders is higher among Taiwanese prostate cancer patients. Clinicians should be aware of the possibility of increased depressive and bipolar disorders among prostate cancer patients in Taiwan. A prospective study is necessary to confirm these findings.
Collapse
Affiliation(s)
- Pan-Ming Chen
- Department of Psychiatry,Yuanshan Branch,Taipei Veterans General Hospital,Yilan,Taiwan
| | - San-Chi Chen
- Division of Hematology and Oncology,Department of Medicine,Taipei Veterans General Hospital,Taipei,Taiwan
| | - Chia-Jen Liu
- Division of Hematology and Oncology,Department of Medicine,Taipei Veterans General Hospital,Taipei,Taiwan
| | - Man-Hsin Hung
- Division of Hematology and Oncology,Department of Medicine,Taipei Veterans General Hospital,Taipei,Taiwan
| | - Chia-Fen Tsai
- Department of Psychiatry,Taipei Veterans General Hospital,Taipei,Taiwan
| | - Yu-Wen Hu
- Cancer Center,Taipei Veterans General Hospital,Taipei,Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry,Taipei Veterans General Hospital,Taipei,Taiwan
| | - Cheng-Che Shen
- Department of Psychiatry,Chiayi Branch,Taichung Veterans General Hospital,Chiayi,Taiwan
| | - Tung-Ping Su
- Department of Psychiatry,Taipei Veterans General Hospital,Taipei,Taiwan
| | - Chiu-Mei Yeh
- Department of Family Medicine,Taipei Veterans General Hospital,Taipei,Taiwan
| | - Ti Lu
- Department of Psychiatry,Kaohsiung Veterans General Veterans Hospital,Kaohsiung City,Taiwan
| | - Tzeng-Ji Chen
- School of Medicine,National Yang-Ming University,Taipei,Taiwan
| | - Li-Yu Hu
- Department of Psychiatry,Kaohsiung Veterans General Veterans Hospital,Kaohsiung City,Taiwan
| |
Collapse
|
42
|
DiPippo VA, Olson WC, Nguyen HM, Brown LG, Vessella RL, Corey E. Efficacy studies of an antibody-drug conjugate PSMA-ADC in patient-derived prostate cancer xenografts. Prostate 2015; 75:303-13. [PMID: 25327986 DOI: 10.1002/pros.22916] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/08/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND It is timely and important to develop new treatment modalities for advanced prostate cancer, because even the newly FDA approved treatments, despite providing significant survival benefits, do not constitute cure of this disease. Antibody drug conjugates (ADCs) represent a promising approach to cancer therapy. Prostate-specific membrane antigen (PSMA) is expressed in advanced prostate cancer and targeting this protein is used for imaging of advanced prostate cancer as well as development of targeting strategies. The objective of our studies was to evaluate the efficacy of PSMA ADC against a series of patient-derived prostate cancer xenografts (LuCaP 58, LuCaP 77, LuCaP 96CR, and LuCaP 105) with different characteristics, including varying levels of PSMA expression and responses to androgen suppression. METHODS Mice bearing subcutaneous LuCaP prostate cancer-derived xenografts received PSMA antibody monomethyl auristatin E (MMAE) drug conjugate (PSMA ADC) in which the antibody and MMAE are linked via a protease-cleavable linker. PSMA ADC dose ranged from 1 to 6 mg/kg. Unmodified PSMA mAb + free MMAE at the amount equivalent to those contained in 6 mg/kg PSMA ADC was used as control. All treatments were administered once a week via tail-vein injections and repeated four times once a week and tumor responses were monitored for 10 weeks. IHC analyses were performed to determine PSMA and AR expression and effects on proliferation. RESULTS Treatment responses varied widely across the tumor models, from complete tumor regressions in LuCaP 96CR to largely unimpeded tumor progression of LuCaP 58, which had the lowest baseline level of PSMA expression. Intermediate antitumor effects were seen for LuCaP 77 and LuCaP 105 tumors, despite their having similar basal expression of PSMA as LuCaP 96CR. Interestingly, we detected substantial differences in responses even within the same model, indicating that PSMA expression is not the only factor involved in treatment outcomes. CONCLUSIONS Our results show high efficacy of PSMA ADC in advanced prostate cancer but also considerable variability in effects despite PSMA expression. Further studies to identify tumor characteristics that are predictive of treatment response are ongoing.
Collapse
|
43
|
Gasperi V, Evangelista D, Oddi S, Florenzano F, Chiurchiù V, Avigliano L, Catani MV, Maccarrone M. Regulation of inflammation and proliferation of human bladder carcinoma cells by type-1 and type-2 cannabinoid receptors. Life Sci 2014; 138:41-51. [PMID: 25445433 DOI: 10.1016/j.lfs.2014.09.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/08/2014] [Accepted: 09/29/2014] [Indexed: 01/14/2023]
Abstract
AIMS Pro-inflammatory cytokines, growth and angiogenic factors released by leukocytes are involved in carcinogenesis and cancer progression, but they are also crucial for fighting tumour growth and spreading. We have previously demonstrated that endocannabinoids modulate cell-to-cell crosstalk during inflammation. Here, we investigated the inflammatory and tumourigenic properties of endocannabinoids in a human urinary bladder carcinoma cell line. MAIN METHODS Endocannabinoid-treated ECV304 cells were checked for tumour necrosis factor (TNF)-α secretion (by ELISA assay) and surface exposure of selectins (by in situ ELISA and FACS analysis). ECV304/Jurkat T cell interaction was assessed by adhesion and live imaging experiments. Proliferation rate, cell death and cell cycle were determined by FACS analysis. KEY FINDINGS By binding to type-1 (CB1) and type-2 (CB2) cannabinoid receptors, the endocannabinoid 2-arachidonoylglycerol (2-AG) exacerbates the pro-inflammatory status surrounding bladder carcinoma ECV304 cells, by: (i) enhancing TNF-α release, (ii) increasing surface exposure of P- and E-selectins, and (iii) allowing Jurkat T lymphocytes to adhere to treated cancer cells. We also found that the CB1 inverse agonist AM281, unlike 2-AG, decreases cancer proliferation by delaying cell cycle progression. SIGNIFICANCE Our data suggest that 2-AG modulates the inflammatory milieu of cancer cells in vitro, while AM281 plays a more specific role in proliferation. Collectively, these findings suggest that CB receptors may play distinct roles in cancer biology, depending on the specific ligand employed. CONCLUSIONS The in vivo assessment of the role of CB receptors in inflammation and cancer might be instrumental in broadening the understanding about bladder cancer biology.
Collapse
Affiliation(s)
- Valeria Gasperi
- Department of Experimental Medicine & Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Daniela Evangelista
- Department of Experimental Medicine & Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Sergio Oddi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy; European Center for Brain Research (CERC)/IRCCS S. Lucia Foundation, Rome, Italy
| | | | - Valerio Chiurchiù
- European Center for Brain Research (CERC)/IRCCS S. Lucia Foundation, Rome, Italy; Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy
| | - Luciana Avigliano
- Department of Experimental Medicine & Surgery, Tor Vergata University of Rome, Rome, Italy
| | - M Valeria Catani
- Department of Experimental Medicine & Surgery, Tor Vergata University of Rome, Rome, Italy.
| | - Mauro Maccarrone
- European Center for Brain Research (CERC)/IRCCS S. Lucia Foundation, Rome, Italy; Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy.
| |
Collapse
|
44
|
de Carvalho TMR, Miguel Marin D, da Silva CA, de Souza AL, Talamoni M, Lima CSP, Monte Alegre S. Evaluation of patients with head and neck cancer performing standard treatment in relation to body composition, resting metabolic rate, and inflammatory cytokines. Head Neck 2014; 37:97-102. [PMID: 24339184 DOI: 10.1002/hed.23568] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 09/29/2013] [Accepted: 12/09/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Squamous cell carcinoma of the head and neck (SCCHN) usually emerges as a set of signs and symptoms that, either alone or in combination with standard treatment, may lead to malnutrition and weight loss. METHODS This study evaluated patients with SCCHN before day 0 and 30 days after the end of treatment, with/without tumor resection. Each individual patient underwent analyses of body composition and resting metabolic rate, as well as assessment of serum glucose, insulin, leptin, adiponectin, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), IL-1β, and insulin sensitivity. RESULTS There was body mass loss during treatment and significant reduction in body fat and free fat mass. Early nutritional monitoring and tumor resection before treatment led to a better nutritional status and reduced inflammatory state. CONCLUSION Early nutritional monitoring and resection of the tumor by surgery may be important factors for patients to better tolerate treatment.
Collapse
|
45
|
Miao L, Holley AK, Zhao Y, St Clair WH, St Clair DK. Redox-mediated and ionizing-radiation-induced inflammatory mediators in prostate cancer development and treatment. Antioxid Redox Signal 2014; 20:1481-500. [PMID: 24093432 PMCID: PMC3936609 DOI: 10.1089/ars.2013.5637] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
SIGNIFICANCE Radiation therapy is widely used for treatment of prostate cancer. Radiation can directly damage biologically important molecules; however, most effects of radiation-mediated cell killing are derived from the generated free radicals that alter cellular redox status. Multiple proinflammatory mediators can also influence redox status in irradiated cells and the surrounding microenvironment, thereby affecting prostate cancer progression and radiotherapy efficiency. RECENT ADVANCES Ionizing radiation (IR)-generated oxidative stress can regulate and be regulated by the production of proinflammatory mediators. Depending on the type and stage of the prostate cancer cells, these proinflammatory mediators may lead to different biological consequences ranging from cell death to development of radioresistance. CRITICAL ISSUES Tumors are heterogeneous and dynamic communication occurs between stromal and prostate cancer cells, and complicated redox-regulated mechanisms exist in the tumor microenvironment. Thus, antioxidant and anti-inflammatory strategies should be carefully evaluated for each patient at different stages of the disease to maximize therapeutic benefits while minimizing unintended side effects. FUTURE DIRECTIONS Compared with normal cells, tumor cells are usually under higher oxidative stress and secrete more proinflammatory mediators. Thus, redox status is often less adaptive in tumor cells than in their normal counterparts. This difference can be exploited in a search for new cancer therapeutics and treatment regimes that selectively activate cell death pathways in tumor cells with minimal unintended consequences in terms of chemo- and radio-resistance in tumor cells and toxicity in normal tissues.
Collapse
Affiliation(s)
- Lu Miao
- 1 Graduate Center for Toxicology, University of Kentucky , Lexington, Kentucky
| | | | | | | | | |
Collapse
|
46
|
Chadha KC, Miller A, Nair BB, Schwartz SA, Trump DL, Underwood W. New serum biomarkers for prostate cancer diagnosis. CLINICAL CANCER INVESTIGATION JOURNAL 2014; 3:72-79. [PMID: 25593898 DOI: 10.4103/2278-0513.125802] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Prostate-specific antigen (PSA) is currently used as a biomarker for diagnosis and management of prostate cancer (CaP). However, PSA typically lacks the sensitivity and specificity desired of a diagnostic marker. OBJECTIVE The goal of this study was to identify an additional biomarker or a panel of biomarkers that is more sensitive and specific than PSA in differentiating benign versus malignant prostate disease and/or localized CaP versus metastatic CaP. METHODS Concurrent measurements of circulating interleukin-8 (IL-8), Tumor necrosis factor-α (TNF-α) and soluble tumor necrosis factor-α receptors 1 (sTNFR1) were obtained from four groups of men: (1) Controls (2) with elevated prostate-specific antigen with a negative prostate biopsy (elPSA_negBx) (3) with clinically localized CaP and (4) with castration resistant prostate cancer. RESULTS TNF-α Area under the receiver operating characteristic curve (AUC = 0.93) and sTNFR1 (AUC = 0.97) were strong predictors of elPSA_negBx (vs. CaP). The best predictor of elPSA_negBx vs CaP was sTNFR1 and IL-8 combined (AUC = 0.997). The strongest single predictors of localized versus metastatic CaP were TNF-α (AUC = 0.992) and PSA (AUC = 0.963) levels. CONCLUSIONS The specificity and sensitivity of a PSA-based CaP diagnosis can be significantly enhanced by concurrent serum measurements of IL-8, TNF-α and sTNFR1. In view of the concerns about the ability of PSA to distinguish clinically relevant CaP from indolent disease, assessment of these biomarkers in the larger cohort is warranted.
Collapse
Affiliation(s)
- Kailash C Chadha
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, University at Buffalo, Buffalo, NY, USA
| | - Austin Miller
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, University at Buffalo, Buffalo, NY, USA
| | - Bindukumar B Nair
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, University at Buffalo, Buffalo, NY, USA ; Department of Medicine, Division of Allergy/Immunology and Rheumatology, University at Buffalo, Buffalo, NY, USA
| | - Stanley A Schwartz
- Department of Medicine, Division of Allergy/Immunology and Rheumatology, University at Buffalo, Buffalo, NY, USA
| | - Donald L Trump
- Department of Medicine, Roswell Park Cancer Institute, University at Buffalo, Buffalo, NY, USA
| | - Willie Underwood
- Department of Urologic Oncology, Roswell Park Cancer Institute, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
47
|
Girard D, Marino FE, Cannon J. Evidence for reduced neuromuscular function in men with a history of androgen deprivation therapy for prostate cancer. Clin Physiol Funct Imaging 2013; 34:209-17. [DOI: 10.1111/cpf.12084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/21/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Danielle Girard
- Exercise and Sports Science Laboratories; School of Human Movement Studies; Charles Sturt University; Bathurst NSW Australia
| | - Frank E. Marino
- Exercise and Sports Science Laboratories; School of Human Movement Studies; Charles Sturt University; Bathurst NSW Australia
| | - Jack Cannon
- Exercise and Sports Science Laboratories; School of Human Movement Studies; Charles Sturt University; Bathurst NSW Australia
| |
Collapse
|
48
|
Vitamin k2, a naturally occurring menaquinone, exerts therapeutic effects on both hormone-dependent and hormone-independent prostate cancer cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:287358. [PMID: 24062781 PMCID: PMC3767046 DOI: 10.1155/2013/287358] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/30/2013] [Indexed: 12/31/2022]
Abstract
In recent years, several studies have shown that vitamin k2 (VK2) has anticancer activity in a variety of cancer cells. The antitumor effects of VK2 in prostate cancer are currently not known. In the present study, we sought to characterize the anticancer potential of VK2 in both androgen-dependent and -independent prostate cancer cells. Our investigations show that VK2 is able to suppress viability of androgen-dependent and androgen-independent prostate cancer cells via caspase-3 and -8 dependent apoptosis. We also show that VK2 treatment reduces androgen receptor expression and PSA secretion in androgen-dependent prostate cancer cells. Our results also implicate VK2 as a potential anti-inflammatory agent, as several inflammatory genes are downregulated in prostate cancer cells following treatment with VK2. Additionally, AKT and NF-kB levels in prostate cancer cells are reduced significantly when treated with VK2. These findings correlated with the results of the Boyden chamber and angiogenesis assay, as VK2 treatment reduced cell migration and angiogenesis potential of prostate cancer cells. Finally, in a nude mice model, VK2 administration resulted in significant inhibition of both androgen-dependent and androgen-independent tumor growth. Overall, our results suggest that VK2 may be a potential therapeutic agent in the treatment of prostate cancer.
Collapse
|
49
|
Ardestani S, Li B, Deskins DL, Wu H, Massion PP, Young PP. Membrane versus soluble isoforms of TNF-α exert opposing effects on tumor growth and survival of tumor-associated myeloid cells. Cancer Res 2013; 73:3938-50. [PMID: 23704210 DOI: 10.1158/0008-5472.can-13-0002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
TNF-α, produced by most malignant cells, orchestrates the interplay between malignant cells and myeloid cells, which have been linked to tumor growth and metastasis. Although TNF-α can exist as one of two isoforms, a 26-kDa membrane tethered form (mTNF-α) or a soluble 17-kDa cytokine (sTNF-α), the vast majority of published studies have only investigated the biologic effects of the soluble form. We show for the first time that membrane and soluble isoforms have diametrically opposing effects on both tumor growth and myeloid content. Mouse lung and melanoma tumor lines expressing mTNF-α generated small tumors devoid of monocytes versus respective control lines or lines expressing sTNF-α. The lack of myeloid cells was due to a direct effect of mTNF-α on myeloid survival via induction of cell necrosis by increasing reactive oxygen species. Human non-small cell lung carcinoma expressed varying levels of both soluble and membrane TNF-α, and gene expression patterns favoring mTNF-α were predictive of improved lung cancer survival. These data suggest that there are significant differences in the role of different TNF-α isoforms in tumor progression and the bioavailability of each isoform may distinctly regulate tumor progression. This insight is critical for effective intervention in cancer therapy with the available TNF-α inhibitors, which can block both TNF-α isoforms.
Collapse
Affiliation(s)
- Shidrokh Ardestani
- Department of Pathology, Vanderbilt Ingram Cancer Center/Cancer Biostatistics Center, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
50
|
To SQ, Knower KC, Clyne CD. Origins and actions of tumor necrosis factor α in postmenopausal breast cancer. J Interferon Cytokine Res 2013; 33:335-45. [PMID: 23472660 DOI: 10.1089/jir.2012.0155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Tumor necrosis factor α (TNFα) has many roles in both physiological and pathological states. Initially thought to cause necrosis of tumors, research has shown that in many tumor types, including breast cancer, TNFα contributes to growth and proliferation. The presence of TNFα-derived from the tumor and infiltrating immune cells-within a breast tumor microenvironment has been correlated with a more aggressive phenotype, and the postmenopausal ER+ subtype of breast cancers appears to strongly respond to its many pro-growth signaling functions. We discuss how TNFα regulates estrogen biosynthesis within the breast, affecting the activity of the key estrogen-synthesizing enzymes aromatase, estrone sulfatase, and 17β-HSD type 1. Additionally, we describe the anti-adipogenic actions of TNFα that are critical in preventing adjacent estrogen-producing adipose fibroblasts from differentiating, ensuring that the tumor maintains a constant source of estrogen-producing cells. We examine how the increased risk of developing breast cancer in older and obese individuals may be linked to the levels of TNFα in the body. Finally, we evaluate the feasibility of targeting TNFα and its associated pathways as a novel approach to breast cancer therapeutics.
Collapse
Affiliation(s)
- Sarah Q To
- Cancer Drug Discovery Laboratory, Prince Henry's Institute of Medical Research, Clayton, Australia
| | | | | |
Collapse
|