1
|
Cooper KM, Colletta A, Hebda N, Devuni D. Alcohol associated liver disease and bariatric surgery: Current perspectives and future directions. World J Gastrointest Surg 2024; 16:650-657. [PMID: 38577096 PMCID: PMC10989338 DOI: 10.4240/wjgs.v16.i3.650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/27/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Bariatric surgery is a routinely performed procedure and is associated with a reduction in all-cause mortality in patients with obesity. However, bariatric surgery has also been linked to increased alcohol use with up to 30% of these patients developing alcohol use disorder (AUD). The mechanism of AUD after bariatric surgery is multifactorial and includes anatomic, metabolic, and neurohumoral changes associated with post-surgical anatomy. These patients are at increased risk of alcohol associated liver disease and, in some cases, require liver transplantation. In this article, we provide a scoping review of epidemiology, pathophysiology, and clinical outcomes of alcohol-related health conditions after bariatric surgery.
Collapse
Affiliation(s)
- Katherine M Cooper
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, United States
| | - Alessandro Colletta
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, United States
| | - Nicholas Hebda
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, United States
| | - Deepika Devuni
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, United States
- Division of Gastroenterology, UMass Chan Medical School, Worcester, MA 01655, United States
| |
Collapse
|
2
|
Eris T, Hassan M, Hikal Y, Sawah E, Daneshgar F, Teker AG, Ozel F, Luleci NE, Kaya E, Yilmaz Y. Changes in the etiology of chronic liver disease by referral to a FibroScan center: Increasing prevalence of the nonalcoholic fatty liver disease. HEPATOLOGY FORUM 2023; 4:7-13. [PMID: 36843891 PMCID: PMC9951899 DOI: 10.14744/hf.2022.2022.0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND AIM Chronic liver disease (CLD) is a leading cause of morbidity and mortality worldwide with a wide etiological spectrum. FibroScan® is used for follow-up of fibrosis and steatosis. This single-center study aims to review the distribution of indications by referral to FibroScan®. MATERIALS AND METHODS Demographic characteristics, CLD etiologies, and FibroScan® parameters of the patients who were referred to our tertiary care center between 2013 and 2021 were retrospectively evaluated. RESULTS Out of 9345 patients, 4946 (52.93%) were males, and the median age was 48 [18-88] years. Nonalcoholic fatty liver disease (NAFLD) was the most common indication (N=4768, 51.02%), followed by hepatitis B (N=3194, 34.18%) and hepatitis C (N=707, 7.57%). Adjusting for age, sex, and CLD etiology, the results revealed that patients with older age (Odds ratio (OR)=2.908; confidence interval (CI)=2.597-3.256; p<0.001) and patients with hepatitis C (OR=2.582; CI=2.168-3.075; p<0.001), alcoholic liver disease (OR=2.019; CI=1.524-2.674, p<0.001), and autoimmune hepatitis (OR=2.138; CI=1.360-3.660, p<0.001) had increased odds of advanced liver fibrosis compared to NAFLD. CONCLUSION NAFLD was the most common indication for referral to FibroScan®.
Collapse
Affiliation(s)
- Tansu Eris
- Marmara University School of Medicine, Istanbul, Turkiye
| | - Moomen Hassan
- Marmara University School of Medicine, Istanbul, Turkiye
| | - Yousra Hikal
- Marmara University School of Medicine, Istanbul, Turkiye
| | - Enas Sawah
- Marmara University School of Medicine, Istanbul, Turkiye
| | | | - Ayse Gulsen Teker
- Department of Public Health, Marmara University School of Medicine, Istanbul, Turkiye
| | - Furkan Ozel
- Department of Public Health, Marmara University School of Medicine, Istanbul, Turkiye
| | - Nimet Emel Luleci
- Department of Public Health, Marmara University School of Medicine, Istanbul, Turkiye
| | - Eda Kaya
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
| | - Yusuf Yilmaz
- Liver Research Unit, Institute of Gastroenterology, Marmara University, Istanbul, Turkiye
- Department of Gastroenterology, Recep Tayyip Erdogan University School of Medicine, Rize, Turkiye
| |
Collapse
|
3
|
Exploring Interactions between Primary Hepatocytes and Non-Parenchymal Cells on Physiological and Pathological Liver Stiffness. BIOLOGY 2021; 10:biology10050408. [PMID: 34063016 PMCID: PMC8147966 DOI: 10.3390/biology10050408] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Chronic liver disease is characterized by progressive hepatic fibrosis leading to the formation of cirrhosis irrespective of the etiology with no effective treatment currently available. Liver stiffness (LS) is currently the best clinical predictor of this fibrosis progression irrespective of the cause of the disease. However, it is not well understood how does LS regulate the critical hepatocytes–non parenchymal cell interactions. We here present, to the best of our knowledge, the first analyses of the impact of physiological and pathological stiffness on hepatocytes–non parenchymal cell interaction. Our findings indicate the role of stiffness in regulating the hepatocytes interactions with NPCs necessary for maintenance of hepatocytes function. Abstract Chronic liver disease is characterized by progressive hepatic fibrosis leading to the formation of cirrhosis irrespective of the etiology with no effective treatment currently available. Liver stiffness (LS) is currently the best clinical predictor of this fibrosis progression irrespective of the etiology. LS and hepatocytes-nonparenchymal cells (NPC) interactions are two variables known to be important in regulating hepatic function during liver fibrosis, but little is known about the interplay of these cues. Here, we use polydimethyl siloxane (PDMS) based substrates with tunable mechanical properties to study how cell–cell interaction and stiffness regulates hepatocytes function. Specifically, primary rat hepatocytes were cocultured with NIH-3T3 fibroblasts on soft (2 kPa) and stiff substrates that recreates physiologic (2 kPa) and cirrhotic liver stiffness (55 kPa). Urea synthesis by primary hepatocytes depended on the presence of fibroblast and was independent of the substrate stiffness. However, albumin synthesis and Cytochrome P450 enzyme activity increased in hepatocytes on soft substrates and when in coculture with a fibroblast. Western blot analysis of hepatic markers, E-cadherin, confirmed that hepatocytes on soft substrates in coculture promoted better maintenance of the hepatic phenotype. These findings indicate the role of stiffness in regulating the hepatocytes interactions with NPCs necessary for maintenance of hepatocytes function.
Collapse
|
4
|
Mueller S, Lackner C. Histological Confounders of Liver Stiffness. LIVER ELASTOGRAPHY 2020:233-242. [DOI: 10.1007/978-3-030-40542-7_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Neuman MG, Malnick S, Maor Y, Nanau RM, Melzer E, Ferenci P, Seitz HK, Mueller S, Mell H, Samuel D, Cohen LB, Kharbanda KK, Osna NA, Ganesan M, Thompson KJ, McKillop IH, Bautista A, Bataller R, French SW. Alcoholic liver disease: Clinical and translational research. Exp Mol Pathol 2015; 99:596-610. [PMID: 26342547 DOI: 10.1016/j.yexmp.2015.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 02/05/2023]
Abstract
The present review spans a broad spectrum of topics dealing with alcoholic liver disease (ALD), including clinical research, translational research, pathogenesis and therapies. A special accent is placed on alcohol misuse, as alcohol is a legally commercialized and taxable product. Drinking alcohol, particularly from a young age, is a major health problem. Alcoholism is known to contribute to morbidity and mortality. A systematic literature search was performed in order to obtain updated data (2008-2015). The review is focused on genetic polymorphisms of alcohol metabolizing enzymes and the role of cytochrome p450 2E1 and iron in ALD. Alcohol-mediated hepatocarcinogenesis is also discussed in the presence or absence of co-morbidities such as viral hepatitis C as well as therapeutic the role of innate immunity in ALD-HCV. Moreover, emphasis was placed on alcohol and drug interactions, as well as liver transplantation for end-stage ALD. Finally, the time came to eradicate alcohol-induced liver and intestinal damage by using betaine.
Collapse
Affiliation(s)
- Manuela G Neuman
- In Vitro Drug Safety and Biotechnology, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Stephen Malnick
- Division of Gastroenterology, Kaplan Health Sciences Centre, Department of Medicine, Faculty of Medicine, Hebrew University, Rehovot, Israel
| | - Yaakov Maor
- Division of Gastroenterology, Kaplan Health Sciences Centre, Department of Medicine, Faculty of Medicine, Hebrew University, Rehovot, Israel
| | - Radu M Nanau
- In Vitro Drug Safety and Biotechnology, Toronto, Ontario, Canada
| | - Ehud Melzer
- Division of Gastroenterology, Kaplan Health Sciences Centre, Department of Medicine, Faculty of Medicine, Hebrew University, Rehovot, Israel
| | | | - Helmut K Seitz
- University of Heidelberg, Heidelberg, Germany; Department of Medicine, Gastroenterology and Hepatology, Centre for Alcohol Research, Salem Medical Centre, Heidelberg, Germany
| | - Sebastian Mueller
- University of Heidelberg, Heidelberg, Germany; Department of Medicine, Gastroenterology and Hepatology, Centre for Alcohol Research, Salem Medical Centre, Heidelberg, Germany
| | - Haim Mell
- Israel Antidrug and Alcohol Authority, Jerusalem, Israel
| | - Didier Samuel
- Liver Transplant Unit, Research Inserm-Paris XI Unit 785, Centre Hepatobiliaire, Hopital Paul Brousse, Villejuif, Paris, France
| | - Lawrence B Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre and Department of Internal Medicine, University of Toronto, Toronto, Canada
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kyle J Thompson
- Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - Iain H McKillop
- Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - Abraham Bautista
- Office of Extramural Activities, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Ramon Bataller
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
6
|
Natarajan V, Berglund EJ, Chen DX, Kidambi S. Substrate stiffness regulates primary hepatocyte functions. RSC Adv 2015; 5:80956-80966. [PMID: 32733675 PMCID: PMC7392243 DOI: 10.1039/c5ra15208a] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Liver fibrosis occurs as a consequence of chronic injuries from viral infections, metabolic disorders, and alcohol abuse. Fibrotic liver microenvironment (LME) is characterized by excessive deposition and aberrant turnover of extracellular matrix proteins, which leads to increased tissue stiffness. Liver stiffness acts as a vital cue in the regulation of hepatic responses in both healthy and diseased states; however, the effect of varying stiffness on liver cells is not well understood. There is a critical need to engineer in vitro models that mimic the liver stiffness corresponding to various stages of disease progression in order to elucidate the role of individual cellular responses. Here we employed polydimethyl siloxane (PDMS) based substrates with tunable mechanical properties to investigate the effect of substrate stiffness on the behavior of primary rat hepatocytes. To recreate physiologically relevant stiffness, we designed soft substrates (2 kPa) to represent the healthy liver and stiff substrates (55 kPa) to represent the diseased liver. Tissue culture plate surface (TCPS) served as the control substrate. We observed that hepatocytes cultured on soft substrates displayed a more differentiated and functional phenotype for a longer duration as compared to stiff substrates and TCPS. We demonstrated that hepatocytes on soft substrates exhibited higher urea and albumin synthesis. Cytochrome P450 (CYP) activity, another critical marker of hepatocytes, displayed a strong dependence on substrate stiffness, wherein hepatocytes on soft substrates retained 2.7 fold higher CYP activity on day 7 in culture, as compared to TCPS. We further observed that an increase in stiffness induced downregulation of key drug transporter genes (NTCP, UGT1A1, and GSTM-2). In addition, we observed that the epithelial cell phenotype was better maintained on soft substrates as indicated by higher expression of hepatocyte nuclear factor 4α, cytokeratin 18, and connexin 32. These results indicate that the substrate stiffness plays a significant role in modulating hepatocyte behavior. Our PDMS based liver model can be utilized to investigate the signaling pathways mediating the hepatocyte-LME communication to understand the progression of liver diseases.
Collapse
Affiliation(s)
- Vaishaali Natarajan
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, NE, 68588, USA
| | - Eric J Berglund
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, NE, 68588, USA
| | - Dorothy X Chen
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, NE, 68588, USA
| | - Srivatsan Kidambi
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, NE, 68588, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, NE, 68588, USA
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, NE, 68198, USA
| |
Collapse
|
7
|
The role of iron in alcohol-mediated hepatocarcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 815:89-112. [PMID: 25427903 DOI: 10.1007/978-3-319-09614-8_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) is the major liver disease in the developed world and characterized by hepatic iron overload in ca. 50% of all patients. This iron overload is an independent factor of disease progression, hepatocellular carcinoma and it determines survival. Since simple phlebotomy does not allow the efficient removal of excess iron in ALD, a better understanding of the underlying mechanisms is urgently needed to identify novel targeted treatment strategies. This review summarizes the present knowledge on iron overload in patients with ALD. Although multiple sides of the cellular and systemic iron homeostasis may be affected during alcohol consumption, most studies have focused on potential hepatic causes. However, it should not be overlooked that more than 90% of the major iron pool, the hemoglobin-associated iron, is efficiently recycled within the human body and it is also strongly affected by alcohol. The few available studies suggest various molecular mechanisms that involve iron regulatory protein (IRP1), transferrin receptor 1 (TfR1), and the systemic iron master switch hepcidin, but not classical mutations of the HFE gene. Notably, reactive oxygen species (ROS), namely, hydrogen peroxide (H2O2), are powerful modulators of these iron-steering proteins. For instance, depending on the level, H2O2 may both strongly suppress and induce the expression of hepcidin that could partly explain the anemia and iron overload observed in these patients. More studies with appropriate ROS models such as the novel GOX/CAT system are required to unravel the mechanisms of iron overload in ALD to consequently identify molecular-targeted therapies in the future.
Collapse
|
8
|
Mueller S, Seitz HK, Rausch V. Non-invasive diagnosis of alcoholic liver disease. World J Gastroenterol 2014; 20:14626-41. [PMID: 25356026 PMCID: PMC4209529 DOI: 10.3748/wjg.v20.i40.14626] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/30/2014] [Accepted: 07/22/2014] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) is the most common liver disease in the Western world. For many reasons, it is underestimated and underdiagnosed. An early diagnosis is absolutely essential since it (1) helps to identify patients at genetic risk for ALD; (2) can trigger efficient abstinence namely in non-addicted patients; and (3) initiate screening programs to prevent life-threatening complications such as bleeding from varices, spontaneous bacterial peritonitis or hepatocellular cancer. The two major end points of ALD are alcoholic liver cirrhosis and the rare and clinically-defined alcoholic hepatitis (AH). The prediction and early diagnosis of both entities is still insufficiently solved and usually relies on a combination of laboratory, clinical and imaging findings. It is not widely conceived that conventional screening tools for ALD such as ultrasound imaging or routine laboratory testing can easily overlook ca. 40% of manifest alcoholic liver cirrhosis. Non-invasive methods such as transient elastography (Fibroscan), acoustic radiation force impulse imaging or shear wave elastography have significantly improved the early diagnosis of alcoholic cirrhosis. Present algorithms allow either the exclusion or the exact definition of advanced fibrosis stages in ca. 95% of patients. The correct interpretation of liver stiffness requires a timely abdominal ultrasound and actual transaminase levels. Other non-invasive methods such as controlled attenuation parameter, serum levels of M30 or M65, susceptometry or breath tests are under current evaluation to assess the degree of steatosis, apoptosis and iron overload in these patients. Liver biopsy still remains an important option to rule out comorbidities and to confirm the prognosis namely for patients with AH.
Collapse
|