1
|
Mao YA, Shi X, Sun P, Spanos M, Zhu L, Chen H, Wang X, Su C, Jin Y, Wang X, Chen X, Xiao J. Nanomedicines for cardiovascular diseases: Lessons learned and pathways forward. Biomaterials 2025; 320:123271. [PMID: 40117750 DOI: 10.1016/j.biomaterials.2025.123271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/09/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Cardiovascular diseases (CVDs) are vital causes of global mortality. Apart from lifestyle intervention like exercise for high-risk groups or patients at early period, various medical interventions such as percutaneous coronary intervention (PCI) and coronary artery bypass graft (CABG) surgery have been clinically used to reduce progression and prevalence of CVDs. However, invasive surgery risk and severe complications still contribute to ventricular remodeling, even heart failure. Innovations in nanomedicines have fueled impressive medical advances, representing a CVD therapeutic alternative. Currently, clinical translation of nanomedicines from bench to bedside continues to suffer unpredictable biosafety and orchestrated behavior mechanism, which, if appropriately addressed, might pave the way for their clinical implementation in the future. While state-of-the-art advances in CVDs nanomedicines are widely summarized in this review, the focus lies on urgent preclinical concerns and is transitioned to the ongoing clinical trials including stem cells-based, extracellular vesicles (EV)-based, gene, and Chimeric Antigen Receptor T (CAR T) cell therapy whose clinically applicable potential in CVD therapy will hopefully provide first answers. Overall, this review aims to provide a concise but comprehensive understanding of perspectives and challenges of CVDs nanomedicines, especially from a clinical perspective.
Collapse
Affiliation(s)
- Yi-An Mao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xiaozhou Shi
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Pingyuan Sun
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Liyun Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Hang Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xiya Wang
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chanyuan Su
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Yanjia Jin
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xu Wang
- Hangzhou Medical College, Binjiang Higher Education Park, Binwen Road 481, Hangzhou, 310053, China
| | - Xuerui Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Jin J, Zhang H, Lu Q, Tian L, Yao S, Lai F, Liang Y, Liu C, Lu Y, Tian S, Zhao Y, Ren W. Nanocarrier-mediated siRNA delivery: a new approach for the treatment of traumatic brain injury-related Alzheimer's disease. Neural Regen Res 2025; 20:2538-2555. [PMID: 39314170 PMCID: PMC11801294 DOI: 10.4103/nrr.nrr-d-24-00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024] Open
Abstract
Traumatic brain injury and Alzheimer's disease share pathological similarities, including neuronal loss, amyloid-β deposition, tau hyperphosphorylation, blood-brain barrier dysfunction, neuroinflammation, and cognitive deficits. Furthermore, traumatic brain injury can exacerbate Alzheimer's disease-like pathologies, potentially leading to the development of Alzheimer's disease. Nanocarriers offer a potential solution by facilitating the delivery of small interfering RNAs across the blood-brain barrier for the targeted silencing of key pathological genes implicated in traumatic brain injury and Alzheimer's disease. Unlike traditional approaches to neuroregeneration, this is a molecular-targeted strategy, thus avoiding non-specific drug actions. This review focuses on the use of nanocarrier systems for the efficient and precise delivery of siRNAs, discussing the advantages, challenges, and future directions. In principle, siRNAs have the potential to target all genes and non-targetable proteins, holding significant promise for treating various diseases. Among the various therapeutic approaches currently available for neurological diseases, siRNA gene silencing can precisely "turn off" the expression of any gene at the genetic level, thus radically inhibiting disease progression; however, a significant challenge lies in delivering siRNAs across the blood-brain barrier. Nanoparticles have received increasing attention as an innovative drug delivery tool for the treatment of brain diseases. They are considered a potential therapeutic strategy with the advantages of being able to cross the blood-brain barrier, targeted drug delivery, enhanced drug stability, and multifunctional therapy. The use of nanoparticles to deliver specific modified siRNAs to the injured brain is gradually being recognized as a feasible and effective approach. Although this strategy is still in the preclinical exploration stage, it is expected to achieve clinical translation in the future, creating a new field of molecular targeted therapy and precision medicine for the treatment of Alzheimer's disease associated with traumatic brain injury.
Collapse
Affiliation(s)
- Jie Jin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Huajing Zhang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Linqiang Tian
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Sanqiao Yao
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Feng Lai
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Chuanchuan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yujia Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sijia Tian
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Wenjie Ren
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
| |
Collapse
|
3
|
Ismail M, Liu J, Wang N, Zhang D, Qin C, Shi B, Zheng M. Advanced nanoparticle engineering for precision therapeutics of brain diseases. Biomaterials 2025; 318:123138. [PMID: 39914193 DOI: 10.1016/j.biomaterials.2025.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/31/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
Despite the increasing global prevalence of neurological disorders, the development of nanoparticle (NP) technologies for brain-targeted therapies confronts considerable challenges. One of the key obstacles in treating brain diseases is the blood-brain barrier (BBB), which restricts the penetration of NP-based therapies into the brain. To address this issue, NPs can be installed with specific ligands or bioengineered to boost their precision and efficacy in targeting brain-diseased cells by navigating across the BBB, ultimately improving patient treatment outcomes. At the outset of this review, we highlighted the critical role of ligand-functionalized or bioengineered NPs in treating brain diseases from a clinical perspective. We then identified the key obstacles and challenges NPs encounter during brain delivery, including immune clearance, capture by the reticuloendothelial system (RES), the BBB, and the complex post-BBB microenvironment. Following this, we overviewed the recent progress in NPs engineering, focusing on ligand-functionalization or bionic designs to enable active BBB transcytosis and targeted delivery to brain-diseased cells. Lastly, we summarized the critical challenges hindering clinical translation, including scalability issues and off-target effects, while outlining future opportunities for designing cutting-edge brain delivery technologies.
Collapse
Affiliation(s)
- Muhammad Ismail
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayi Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ningyang Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dongya Zhang
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Changjiang Qin
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meng Zheng
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
4
|
Komedchikova EN, Kolesnikova OA, Obozina AS, Antonova AO, Dukat AM, Fedotova PA, Khardikova DS, Sokol DV, Shimanskaia IO, Svetlakova AV, Shipunova VO. It takes Two: Advancing cancer treatment with two-step nanoparticle delivery. Biochem Biophys Res Commun 2025; 767:151921. [PMID: 40318380 DOI: 10.1016/j.bbrc.2025.151921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/07/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
The rapid advancement of nanobiotechnology has resulted in the development of numerous targeted nanoformulations and sophisticated nanobiorobots for biomedical applications. Despite the potential of nanostructures to improve drug delivery and therapeutic efficacy, their clinical application is still constrained by insufficient accumulation in tumor tissues. Current methodologies result in only an average of 0.6 % of administered nanoparticles reaching tumors, prompting the development of innovative strategies to improve targeting and influence the pharmacokinetics and pharmacodynamics of drugs. One such approach is two-step targeting, which includes either the concept of tumor pre-targeting with specific recognizing elements or the stimuli-sensitive activation of nanostructures. This review critically evaluates advancements in two-step drug delivery systems utilizing nanobiotechnology for targeted cancer therapy. For instance, two-step delivery based on the pre-targeting concept involves an initial injection of targeting molecules that bind to tumor-specific antigens, followed by the administration of drug-loaded nanocarriers modified with complementary adaptors. This approach enhances nanoparticle accumulation in tumors and improves therapeutic outcomes by increasing interaction avidity and overcoming steric hindrances. We critically assess existing adaptor systems for two-step drug delivery and synthesize findings from various studies demonstrating their efficacy in both in vitro and in vivo settings, while addressing challenges in clinical translation. We also explore future directions for developing novel adaptor systems to enhance two-step delivery mechanisms. This review aims to contribute to optimizing nanobiotechnology in oncology for more effective cancer therapies.
Collapse
Affiliation(s)
| | - Olga A Kolesnikova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | | | - Arina O Antonova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | - Alexei M Dukat
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | - Polina A Fedotova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | - Daria S Khardikova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | - Daniil V Sokol
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | - Iana O Shimanskaia
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | - Anna V Svetlakova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | | |
Collapse
|
5
|
Vikal A, Maurya R, Patel BB, Sharma R, Patel P, Patil UK, Das Kurmi B. Protacs in cancer therapy: mechanisms, design, clinical trials, and future directions. Drug Deliv Transl Res 2025; 15:1801-1827. [PMID: 39614036 DOI: 10.1007/s13346-024-01754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
Cancer develops as a result of changes in both genetic and epigenetic mechanisms, which lead to the activation of oncogenes and the suppression of tumor suppressor genes. Despite advancements in cancer treatments, the primary approach still involves a combination of chemotherapy, radiotherapy, and surgery, typically providing a median survival of approximately five years for patients. Unfortunately, these therapeutic interventions often bring about substantial side effects and toxicities, significantly impacting the overall quality of life for individuals undergoing treatment. Therefore, urgent need of research required which comes up with effective treatment of cancer. This review explores the transformative role of Proteolysis-Targeting Chimeras (PROTACs) in cancer therapy. PROTACs, an innovative drug development strategy, utilize the cell's protein degradation machinery to selectively eliminate disease-causing proteins. The review covers the historical background, mechanism of action, design, and structure of PROTACs, emphasizing their precision in targeting oncogenic proteins. The discussion extends to the challenges, nanotechnology applications, and ongoing clinical trials, showcasing promising results and clinical progress. The review concludes with insights into patents, future directions, and the potential impact of PROTACs in addressing dysregulated protein expression across various diseases. Overall, it provides a concise yet comprehensive overview for researchers, clinicians, and industry professionals involved in developing targeted therapies.
Collapse
Affiliation(s)
- Akash Vikal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Rashmi Maurya
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Brij Bihari Patel
- Department of Respiratory Medicine, School of Excellence in Pulmonary Medicines, Netaji Subhash Chandra Bose Medical College, Jabalpur, 482003, Madhya Pradesh, India
| | - Rajeev Sharma
- Department of Pharmacy, Amity University, Gwalior, 474005, Madhya Pradesh, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, 470003, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
6
|
Law COK, Leung HM, Wang M, Nie Q, Pham QH, Han KC, Wong TS, Chow KT, Lo PK, Lau TCK. Harnessing intracellular bacteria in bladder by intravesical delivery of antibiotics-loaded nanodiamonds to reduce the recurrence of urinary tract infection. J Nanobiotechnology 2025; 23:367. [PMID: 40394627 PMCID: PMC12093853 DOI: 10.1186/s12951-025-03459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 05/11/2025] [Indexed: 05/22/2025] Open
Abstract
Treating urinary tract infections (UTIs) effectively is a difficult task due to the emergence of antibiotic-resistant bacteria and limited antibiotic access to intracellular bacteria within the bladder lining. Numerous studies of the antibiotics-nanodiamonds (NDs) synthesis and their inhibitory effect on bacteria have been performed previously. However, their effectiveness and toxicity in cell-based and animal infection models remain unclear. In this study, we presented the utilization of biopolymer-coated nanodiamonds for the delivery of tetracycline (TET) to the intracellular bacterial communities within the bladder cells using an intravesical delivery approach, aiming to effectively treat UTIs. Compared with antibiotics alone, the TET-loaded ND-based carrier system significantly improved the clearance of intracellular bacteria in the infected cell and animal models. Moreover, the intravesical delivery avoids the potential toxic effects from NDs accumulation in the organs, and minimizes the loss of the drugs during delivery. These results offer a promising strategy to treat chronic infections and prevent the recurrence of urinary tract infections (rUTIs).
Collapse
Affiliation(s)
- Carmen Oi Kwan Law
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, China
| | - Hoi Man Leung
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
- Biotech and Health Care, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Meijun Wang
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, China
| | - Qichang Nie
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, China
| | - Quynh Hoa Pham
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, China
| | - Kam Chu Han
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, 3 Lok Man Road, Chai Wan, Kowloon, Hong Kong SAR, 999077, China
| | - Tak Siu Wong
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, 3 Lok Man Road, Chai Wan, Kowloon, Hong Kong SAR, 999077, China
| | - Kwan Ting Chow
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, China.
| | - Pik Kwan Lo
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China.
- Biotech and Health Care, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| | - Terrence Chi Kong Lau
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, China.
| |
Collapse
|
7
|
Sterin EH, Weinstein LA, Roy Chowdhury C, Guzzetti EC, Day ES. Standard purification methods are not sufficient to remove micellular lipophilic dye from polymer nanoparticle solution. RSC PHARMACEUTICS 2025; 2:527-534. [PMID: 40083440 PMCID: PMC11895857 DOI: 10.1039/d5pm00013k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Tracking nanoparticles' location is imperative for understanding cellular interactions, pharmacokinetics, and biodistribution. DiD is a lipophilic dye commonly used to label nanoparticles for trafficking studies. Herein, we show that DiD micelles form in polymer NP solutions during synthesis and can lead to false positive results in downstream assays. Potential methods to remove these micelles are also described.
Collapse
Affiliation(s)
- Eric H Sterin
- Department of Biomedical Engineering, University of Delaware Newark DE 19713 USA
| | - Laura A Weinstein
- Department of Biomedical Engineering, University of Delaware Newark DE 19713 USA
| | | | - Emma C Guzzetti
- Department of Biomedical Engineering, University of Delaware Newark DE 19713 USA
| | - Emily S Day
- Department of Biomedical Engineering, University of Delaware Newark DE 19713 USA
- Department of Materials Science and Engineering, University of Delaware Newark DE 19716 USA
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute Newark DE 19713 USA
| |
Collapse
|
8
|
Wagner AM, Lanier OL, Savk A, Peppas NA. Polybasic nanogels for intracellular co-delivery of paclitaxel and carboplatin: a novel approach to ovarian cancer therapy. RSC PHARMACEUTICS 2025; 2:553-569. [PMID: 39990011 PMCID: PMC11843545 DOI: 10.1039/d4pm00330f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/08/2025] [Indexed: 02/25/2025]
Abstract
Ovarian cancer is one of the leading causes of cancer-related deaths in women, with limited progress in treatments despite decades of research. Common treatment protocols rely on surgical removal of tumors and chemotherapy drugs, such as paclitaxel and carboplatin, which are capable of reaching cancer cells throughout the body. However, the effectiveness of these drugs is often limited due to toxic reactions in patients, nonspecific drug distribution affecting healthy cells, and the development of treatment resistance. In this study, we introduce a polybasic nanogel system composed of poly(diethylaminoethyl methacrylate-co-cyclohexyl methacrylate)-g-poly(ethylene glycol) designed for the targeted co-delivery of paclitaxel and carboplatin directly to ovarian cancer cells. These nanogel systems can respond to the cellular microenvironment to achieve controlled, on-demand drug release, reducing off-target effects and enhancing therapeutic uptake. Additionally, we investigated nanoparticle degradation and controlled drug release as a function of various crosslinkers, including tetraethylene glycol dimethacrylate, bis(2-methacryloyl)oxyethyl disulfide, poly(lactic acid)-b-poly(ethylene glycol)-b-poly(lactic acid)dimethacrylate, and polycaprolactone dimethacrylate. Our results, using OVCAR-3 human ovarian cancer cells, demonstrated that this dual-delivery system outperformed free drugs in inducing cancer cell death, representing a promising advance in the field of nanoparticle-based therapies for ovarian cancer. By loading two chemotherapeutic agents into a single, environmentally responsive particle, this approach shows the potential to overcome common resistance mechanisms and achieve more effective tumor suppression. In summary, by delivering chemotherapy more precisely, it may be possible to enhance therapeutic outcomes while minimizing toxicity and nonspecific drug distribution, ultimately improving patient quality of life.
Collapse
Affiliation(s)
- Angela M Wagner
- McKetta Department of Chemical Engineering, The University of Texas at Austin Austin TX USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin Austin TX USA
| | - Olivia L Lanier
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin Austin TX USA
- Department of Biomedical Engineering, The University of Texas at Austin Austin TX USA
- Department of Chemical and Biological Engineering, University of New Mexico Albuquerque NM USA
- Department of Biomedical Engineering, University of New Mexico Albuquerque NM USA
- Cancer Therapeutics Program, University of New Mexico Comprehensive Cancer Center Albuquerque NM USA
| | - Ani Savk
- McKetta Department of Chemical Engineering, The University of Texas at Austin Austin TX USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin Austin TX USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin Austin TX USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin Austin TX USA
- Department of Biomedical Engineering, The University of Texas at Austin Austin TX USA
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin Austin TX USA
- Department of Pediatrics, Dell Medical School, University of Texas at Austin Austin TX USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin Austin TX USA
| |
Collapse
|
9
|
Gamboa L, Zamat AH, Thiveaud CA, Lee HJ, Kulaksizoglu E, Zha Z, Campbell NS, Chan CS, Fábrega S, Oliver SA, Su FY, Phuengkham H, Vanover D, Peck HE, Sivakumar A, Dahotre SN, Harris AM, Santangelo PJ, Kwong GA. Sensitizing solid tumors to CAR-mediated cytotoxicity by lipid nanoparticle delivery of synthetic antigens. NATURE CANCER 2025:10.1038/s43018-025-00968-5. [PMID: 40379831 DOI: 10.1038/s43018-025-00968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/03/2025] [Indexed: 05/19/2025]
Abstract
Chimeric antigen receptor (CAR) T cell immunotherapy relies on CAR targeting of tumor-associated antigens; however, heterogenous antigen expression, interpatient variation and off-tumor expression by healthy cells remain barriers. Here we develop synthetic antigens to sensitize solid tumors for recognition and elimination by CAR T cells. Unlike tumor-associated antigens, we design synthetic antigens that are orthogonal to endogenous proteins to eliminate off-tumor targeting and that have a small genetic footprint to facilitate efficient tumor delivery to tumors by lipid nanoparticles. Using a camelid single-domain antibody (VHH) as a synthetic antigen, we show that adoptive transfer of anti-VHH CAR T cells to female mice bearing VHH-expressing tumors reduced tumor burden in multiple syngeneic and xenograft models of cancer, improved survival, induced epitope spread, protected against tumor rechallenge and mitigated antigen escape in heterogenous tumors. Our work supports the in situ delivery of synthetic antigens to treat antigen-low or antigen-negative tumors with CAR T cells.
Collapse
Affiliation(s)
- Lena Gamboa
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Ali H Zamat
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Chloé A Thiveaud
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Hee Jun Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Elif Kulaksizoglu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Zizhen Zha
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Noah S Campbell
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Ching Shen Chan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Sydney Fábrega
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - S Abbey Oliver
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Fang-Yi Su
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Hathaichanok Phuengkham
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Hannah E Peck
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Anirudh Sivakumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Shreyas N Dahotre
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Adrian M Harris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Gabriel A Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA.
- Parker H. Petit Institute of Bioengineering and Bioscience, Atlanta, GA, USA.
- Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, USA.
- The Georgia Immunoengineering Consortium, Emory University and Georgia Tech, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
10
|
Chao CJ, Zhang E, Trinh DN, Udofa E, Lin H, Silvers C, Huo J, He S, Zheng J, Cai X, Bao Q, Zhang L, Phan P, Elgendy SM, Shi X, Burdette JE, Lee SSY, Gao Y, Zhang P, Zhao Z. Integrating antigen capturing nanoparticles and type 1 conventional dendritic cell therapy for in situ cancer immunization. Nat Commun 2025; 16:4578. [PMID: 40379691 DOI: 10.1038/s41467-025-59840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 05/02/2025] [Indexed: 05/19/2025] Open
Abstract
Eliciting a robust immune response against tumors is often hampered by the inadequate presence of effective antigen presenting cells and their suboptimal ability to present antigens within the immunosuppressive tumor microenvironment. Here, we report a cascade antigen relay strategy integrating antigen capturing nanoparticles (AC-NPs) and migratory type 1 conventional dendritic cells (cDC1s), named Antigen Capturing nanoparticle Transformed Dendritic Cell therapy (ACT-DC), to facilitate in situ immunization. AC-NPs are engineered to capture antigens directly from the tumor and facilitate their delivery to adoptively transferred migratory cDC1s, enhancing antigen presentation to the lymph nodes and reshaping the tumor microenvironment. Our findings suggest that ACT-DC improves in situ antigen collection, triggers a robust systemic immune response without the need for exogenous antigens, and transforms the tumor environment into a more "immune-hot" state. In multiple tumor models including colon cancer, melanoma, and glioma, ACT-DC in combination with immune checkpoint inhibitors eliminates primary tumors in 50-100% of treated mice and effectively rejects two separate tumor rechallenges. Collectively, ACT-DC could provide a broadly effective approach for in situ cancer immunization and tumor microenvironment modulation.
Collapse
Affiliation(s)
- Chih-Jia Chao
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Endong Zhang
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Duong N Trinh
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Edidiong Udofa
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Hanchen Lin
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Caylee Silvers
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jiawei Huo
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shan He
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Jingtian Zheng
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Xiaoying Cai
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Qing Bao
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Luyu Zhang
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Philana Phan
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Sara M Elgendy
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Xiangqian Shi
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Steve Seung-Young Lee
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Yu Gao
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Peng Zhang
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
11
|
Liu M, Wang R, Hoi MPM, Wang Y, Wang S, Li G, Vong CT, Chong CM. Nano-Based Drug Delivery Systems for Managing Diabetes: Recent Advances and Future Prospects. Int J Nanomedicine 2025; 20:6221-6252. [PMID: 40395654 PMCID: PMC12091710 DOI: 10.2147/ijn.s508875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/05/2025] [Indexed: 05/22/2025] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder, which is characterized by high blood glucose levels, and this can lead to serious diabetic complications. According to the World Health Organization, approximately 830 million adults worldwide are living with diabetes in 2024, with its prevalence continuing to rise steadily over the years. To treat this disease, researchers have developed a variety of first-line drugs, such as sulfonylureas and thiazolidinediones. Despite their long clinical use, there are still many drawbacks and limitations. One of the main drawbacks is low bioavailability, this causes the diabetic patients to take the drugs frequently to lower the blood glucose levels continuously. Some patients may have to take multiple drugs to increase the effectiveness of lowering blood glucose levels. To address these limitations, nano-based drug delivery systems have emerged to overcome these problems. It has emerged as a promising approach for diabetes management, which offers controlled and localized release of anti-diabetic drugs, thus enhancing therapeutic efficacy. This review discusses recent advances in the field of nano-based drug delivery systems for diabetes management, safety and toxicity profiles of anti-diabetic drugs, and future perspectives for the development of nanomedicine in diabetic treatment. Literature search was conducted using electronic databases, and only English literatures were used and published between 2014 and 2024. Recent advancements in nanotechnology have facilitated the development of various nanocarriers, such as polymeric carrier nanoparticles, nanoliposomes, nanocrystals, nanosuspension and inorganic nanoparticles, which enhance drug stability, bioavailability, and efficacy. These systems can deliver anti-diabetic drugs and natural compounds more effectively, thereby minimizing side effects and improving patient compliance. As the field continues to evolve, the successful clinical implementation of nanodrugs could revolutionize the management of diabetes and improve the quality of life for millions of diabetic patients worldwide.
Collapse
Affiliation(s)
- Meihan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| | - Rui Wang
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangzhou, People’s Republic of China
- Department of Histology and Embryology, School of Basic Medical Science, Southern Medical University, Guangzhou, People’s Republic of China
| | - Maggie Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangzhou, People’s Republic of China
- Department of Histology and Embryology, School of Basic Medical Science, Southern Medical University, Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangzhou, People’s Republic of China
- School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| |
Collapse
|
12
|
Benderski K, Lammers T, Sofias AM. Analysis of multi-drug cancer nanomedicine. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01932-1. [PMID: 40374796 DOI: 10.1038/s41565-025-01932-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2025] [Indexed: 05/18/2025]
Abstract
Multi-drug nanomedicine is gaining momentum for co-delivering more than one drug to the same site at the same time. Our analysis of 273 pre-clinical tumour growth inhibition studies shows that multi-drug nanotherapy outperforms single-drug therapy, multi-drug combination therapy, and single-drug nanotherapy by 43, 29 and 30%, respectively. Combination nanotherapy also results in the best overall survival rates, with 56% of studies demonstrating complete or partial survival, versus 20-37% for control regimens. Within the multi-drug nanomedicine groups, we analysed the effect of (co-)administration schedule and strategy, passive versus active targeting, nanocarrier material and the type of therapeutic agent. Most importantly, it was found that co-encapsulating two different drugs in the same nanoformulation reduces tumour growth by a further 19% compared with the combination of two individually encapsulated nanomedicines. We finally show that the benefit of multi-drug nanotherapy is consistently observed across different cancer types, in sensitive and resistant tumours, and in xenograft and allograft models. Altogether, this meta-analysis substantiates the value of multi-drug nanomedicine as a potent strategy to improve cancer therapy.
Collapse
Affiliation(s)
- Karina Benderski
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany.
- Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Aachen, Germany.
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany.
- Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
13
|
Saini G, Sheoran P, Jangra M, Gahlaut A, Raj V. Advancing Biosensing Frontiers Through Gold Nanoparticle Engineering: Synthesis Strategies and Detection Paradigms. Crit Rev Anal Chem 2025:1-20. [PMID: 40375431 DOI: 10.1080/10408347.2025.2502581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Gold Nanoparticles (GNPs) play a pivotal role in nanobiotechnology because of their distinct physicochemical traits, such as optical properties, compatibility with biological systems, and their ability to be easily functionalized. The top-down and bottom-up approaches are for the synthesis of GNPs. There are various chemical, physical, and green synthesis techniques, such as chemical reduction, seed-mediated growth, physical ablation method, pyrolysis, sputtering, etc. are some methods for the synthesis of GNPs. The use of plants, algae, fungi, and other microorganisms has recently arisen as a new approach for the eco-friendly synthesis with precise control over NP size, shape, and surface properties. The functionalization strategies involving biomolecules, polymers, and ligands enhance their stability and target specificity, facilitating their integration into biosensors. The detection of biomolecules, pathogens, and environmental toxins with high sensitivity and accuracy is facilitated by multiple signals such as localized surface plasmon resonance (LSPR), alterations in color, and electrochemical characteristics. Furthermore, their role in point-of-care diagnostics, drug delivery, and imaging underscores their versatility in biomedical applications. This review provides a comprehensive overview of recent advancements in the synthesis, functionalization, and GNPs-based biosensors. In addition, the review highlights recent advancements, challenges, and future prospects of GNPs in biosensing and nanomedicine, offering an understanding of diagnostics and therapeutic monitoring. The key challenges include stability, reproducibility, and scalability, and the future focuses on green synthesis with enhanced sensitivity and multiplexed biosensing applications.
Collapse
Affiliation(s)
- Geetanjali Saini
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Parneet Sheoran
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Madhu Jangra
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Anjum Gahlaut
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vikas Raj
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
14
|
Huq MA, Rana MR, Samad A, Rahman MS, Rahman MM, Ashrafudoulla M, Akter S, Park JW. Green Synthesis, Characterization, and Potential Antibacterial and Anticancer Applications of Gold Nanoparticles: Current Status and Future Prospects. Biomedicines 2025; 13:1184. [PMID: 40427012 PMCID: PMC12109534 DOI: 10.3390/biomedicines13051184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/07/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Drug resistance is a serious problem for human health worldwide. Day by day this drug resistance is increasing and creating an anxious situation for the treatment of both cancer and infectious diseases caused by pathogenic microorganisms. Researchers are trying to solve this terrible situation to overcome drug resistance. Biosynthesized gold nanoparticles (AuNPs) could be a promising agent for controlling drug-resistant pathogenic microorganisms and cancer cells. AuNPs can be synthesized via chemical and physical approaches, carrying many threats to the ecosystem. Green synthesis of AuNPs using biological agents such as plants and microbes is the most fascinating and attractive alternative to physicochemical synthesis as it offers many advantages, such as simplicity, non-toxicity, cost-effectiveness, and eco-friendliness. Plant extracts contain numerous biomolecules, and microorganisms produce various metabolites that act as reducing, capping, and stabilizing agents during the synthesis of AuNPs. The characterization of green-synthesized AuNPs has been conducted using multiple instruments including UV-Vis spectrophotometry (UV-Vis), transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), DLS, and Fourier transform infrared spectroscopy (FT-IR). AuNPs have detrimental effects on bacterial and cancer cells via the disruption of cell membranes, fragmentation of DNA, production of reactive oxygen species, and impairment of metabolism. The biocompatibility and biosafety of synthesized AuNPs must be investigated using a proper in vitro and in vivo screening model system. In this review, we have emphasized the green, facile, and eco-friendly synthesis of AuNPs using plants and microorganisms and their potential antimicrobial and anticancer applications and highlighted their antibacterial and anticancer mechanisms. This study demonstrates that green-synthesized AuNPs may potentially be used to control pathogenic bacteria as well as cancer cells.
Collapse
Affiliation(s)
- Md. Amdadul Huq
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Md. Rasel Rana
- Department of Microbiology, Faculty of Science and Engineering, Rabindra Maitree University, Kushtia 7000, Bangladesh;
| | - Abdus Samad
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - M. Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh;
| | - Md Ashrafudoulla
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA;
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea;
| | - Jong-Whi Park
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
15
|
Mendoza-Guevara CC, Martinez-Escobar A, Ramos-Godínez MDP, Muñoz-Medina JE, Ramon-Gallegos E. Efficient Delivery of SARS-CoV-2 Plasmid DNA in HEK-293T Cells Using Chitosan Nanoparticles. Pharmaceuticals (Basel) 2025; 18:683. [PMID: 40430502 PMCID: PMC12114681 DOI: 10.3390/ph18050683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/24/2025] [Accepted: 05/01/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Gene therapy has emerged as a promising strategy for treating a wide range of diseases. However, a major challenge remains in developing efficient and safe delivery systems for genetic material. Nanoparticles, particularly chitosan nanoparticles (CNPs), have gained significant attention as a potential solution. This study focuses on designing a SARS-CoV-2 plasmid DNA (pDNA) conjugated with CNPs and evaluating its in vitro delivery efficiency. Methods: The Omicron Spike DNA sequence was inserted into the pIRES2-eGFP expression vector, and CNPs were synthesized with optimized physicochemical properties to enhance stability, cellular uptake, and transfection efficiency. The conjugate was characterized using UV-Vis, FT-IR, DLS, and TEM techniques. Transfection efficiency was assessed and compared to the commercially available TurboFect reagent as a control. Results: CNPs-pDNA polyplexes with an average size of 159.0 ± 33.1 nm (TEM), a zeta potential of +19.7 ± 0.3 mV, and 100% ± 0.0 encapsulation efficiency were developed as a non-viral delivery system. CNPs efficiently serve as a delivery vehicle for the constructed pDNA without altering cell morphology, achieving transfection efficiencies of 62-74%, compared to 55-70% for TurboFect. Furthermore, RT-qPCR confirmed the expression of Spike mRNA, and Western blot assays validated the expression of Spike protein. Notably, Spike protein expression from CNPs was found to be two-fold higher than the control at 96 h post-transfection. Conclusions: These findings suggest that CNPs are a promising and versatile platform for delivering genetic material. Importantly, this study highlights the intrinsic properties of chitosan, without the use of additional ligands, as a key factor in achieving efficient gene delivery.
Collapse
Affiliation(s)
- Citlali Cecilia Mendoza-Guevara
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Ciudad de México 07738, Mexico; (C.C.M.-G.); (A.M.-E.)
| | - Alejandro Martinez-Escobar
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Ciudad de México 07738, Mexico; (C.C.M.-G.); (A.M.-E.)
| | | | - José Esteban Muñoz-Medina
- Banco de Muestras de la CCILE, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México 07760, Mexico;
| | - Eva Ramon-Gallegos
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Ciudad de México 07738, Mexico; (C.C.M.-G.); (A.M.-E.)
| |
Collapse
|
16
|
Wang Y, Barmin R, Mottaghy FM, Kiessling F, Lammers T, Pallares RM. Nanoparticles in nuclear medicine: From diagnostics to therapeutics. J Control Release 2025; 383:113815. [PMID: 40319914 DOI: 10.1016/j.jconrel.2025.113815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/13/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
The use of nanoparticles in nuclear medicine is paradoxical. While several nanoformulations, such as 99mTc colloids, have been used for diagnosis for decades, only a few new radionanomedicines have been able to reach the market, despite extensive preclinical efforts. This contradiction is dictated by the unique features of nanoparticles, such as (potential) prolonged circulation times, slow compartment exchanges, and large accumulations in the mononuclear phagocyte system, which allow for certain specific applications while preventing others. In this review, we discuss the development and clinical application of radiolabeled nanoparticles as imaging agents for disease diagnosis and patient stratification, as well as their promise and potential to be used as next-generation formulations to improve the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Ying Wang
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Roman Barmin
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| |
Collapse
|
17
|
Moradi-Sardareh H, Esmaeili F, Momtahan S, Tehrani SS, Paknejad M. A double-edged sword effect of silver nanoparticles on angiogenesis in 4T1 breast cancer-bearing mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5321-5333. [PMID: 39549061 DOI: 10.1007/s00210-024-03516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/03/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Silver nanoparticles (AgNPs) are increasingly known to have anticancer effects, but few studies have examined their adverse effects, so the underlying mechanisms are not yet fully understood. The current study investigated the critical influence of AgNPs on angiogenesis in 4T1 breast cancer-bearing mice. METHODS The sub-lethal dose of AgNPs (0.25 mg/kg) was carried out. Female BALB/c mice (N = 35) were divided into 7 groups; normal control, cancer control, AgNPs control (one dose of (0.25 mg/kg) AgNPs), single dose AgNPs before cancer, single dose AgNPs after cancer, 5 doses AgNPs after cancer, and doxorubicin. 4T1 breast cancer cell induction was performed subcutaneously on the left flank. Intraperitoneal (IP) administration of AgNPs and doxorubicin was carried out for all studied groups. RESULTS Weight gain was normal in all study groups except the doxorubicin-treated group. Administering AgNPs before cancer induction promotes tumorigenesis, raises MMP-2 and MMP-9 activity, and increases CD31 and Ki67 expression. The cancer control group experienced the same outcomes. On the other hand, depending on the administered doses, the injection of AgNPs after tumor induction resulted in a notable decrease in tumor volume. In the doxorubicin-treated group, similar results were observed, while a dose of AgNPs before cancer induction lead to increasing tumor volume compared to the cancer control group. The differences of biochemical markers including LDH, ALP, AST, ALT, BUN, and Cr between different groups were not significant. Significant differences were seen among all studied groups except doxorubicin and single dose AgNPs before cancer groups for serum TAC levels. CONCLUSIONS It appears that AgNPs are considered a double-edged sword in the fight against cancer. AgNPs not only have anti-cancer effects on tumor size and angiogenesis, but they also might have cancer-stimulating roles. To confirm this conclusion, more detailed investigations are needed.
Collapse
Affiliation(s)
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Momtahan
- Department of Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Paknejad
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Boff MO, Xavier FAC, Diz FM, Gonçalves JB, Ferreira LM, Zambeli J, Pazzin DB, Previato TTR, Erwig HS, Gonçalves JIB, Bruzzo FTK, Marinowic D, da Costa JC, Zanirati G. mTORopathies in Epilepsy and Neurodevelopmental Disorders: The Future of Therapeutics and the Role of Gene Editing. Cells 2025; 14:662. [PMID: 40358185 PMCID: PMC12071303 DOI: 10.3390/cells14090662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 05/15/2025] Open
Abstract
mTORopathies represent a group of neurodevelopmental disorders linked to dysregulated mTOR signaling, resulting in conditions such as tuberous sclerosis complex, focal cortical dysplasia, hemimegalencephaly, and Smith-Kingsmore Syndrome. These disorders often manifest with epilepsy, cognitive impairments, and, in some cases, structural brain anomalies. The mTOR pathway, a central regulator of cell growth and metabolism, plays a crucial role in brain development, where its hyperactivation leads to abnormal neuroplasticity, tumor formation, and heightened neuronal excitability. Current treatments primarily rely on mTOR inhibitors, such as rapamycin, which reduce seizure frequency and tumor size but fail to address underlying genetic causes. Advances in gene editing, particularly via CRISPR/Cas9, offer promising avenues for precision therapies targeting the genetic mutations driving mTORopathies. New delivery systems, including viral and non-viral vectors, aim to enhance the specificity and efficacy of these therapies, potentially transforming the management of these disorders. While gene editing holds curative potential, challenges remain concerning delivery, long-term safety, and ethical considerations. Continued research into mTOR mechanisms and innovative gene therapies may pave the way for transformative, personalized treatments for patients affected by these complex neurodevelopmental conditions.
Collapse
Affiliation(s)
- Marina Ottmann Boff
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Fernando Antônio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Fernando Mendonça Diz
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| | - Júlia Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| | - Laura Meireles Ferreira
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Jean Zambeli
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- School of Medicine, University of the Valley of the Rio dos Sinos (UNISINOS), São Leopoldo 93022-750, RS, Brazil
| | - Douglas Bottega Pazzin
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Thales Thor Ramos Previato
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Helena Scartassini Erwig
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- School of Health and Life, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| | - Fernanda Thays Konat Bruzzo
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| | - Daniel Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- School of Health and Life, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| | - Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| |
Collapse
|
19
|
Riexinger J, Caganek T, Wang X, Yin Y, Chung K, Zhou L, Bayley H, Krishna Kumar R. High-Resolution Patterned Delivery of Chemical Signals From 3D-Printed Picoliter Droplet Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2412292. [PMID: 40304119 DOI: 10.1002/adma.202412292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/11/2024] [Indexed: 05/02/2025]
Abstract
Synthetic cells, such as giant unilamellar vesicles, can be engineered to detect and release chemical signals to control target cell behavior. However, control over target-cell populations is limited due to poor spatial or temporal resolution and the inability of synthetic cells to deliver patterned signals. Here, 3D-printed picoliter droplet networks are described that direct gene expression in underlying bacterial populations by patterned release of a chemical signal with temporal control. Shrinkage of the droplet networks prior to use achieves spatial control over gene expression with ≈50 µm resolution. Ways to store chemical signals in the droplet networks and to activate release at controlled points in time are also demonstrated. Finally, it is shown that the spatially-controlled delivery system can regulate competition between bacteria by inducing the patterned expression of toxic bacteriocins. This system provides the groundwork for the use of picoliter droplet networks in fundamental biology and in medicine in applications that require the controlled formation of chemical gradients (i.e., for the purpose of local control of gene expression) within a target group of cells.
Collapse
Affiliation(s)
- Jorin Riexinger
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Thomas Caganek
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Medical Sciences Division, University of Oxford, Headley Way, Oxford, OX3 9DU, UK
| | - Xingzao Wang
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Yutong Yin
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Khoa Chung
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Linna Zhou
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Hagan Bayley
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Ravinash Krishna Kumar
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, Sir Alexander Fleming Building, Imperial College Road, London, SW7 2AZ, UK
| |
Collapse
|
20
|
Morozova O. Advancements and Perspectives in Nanotechnology and Nanomedicine. Viruses 2025; 17:638. [PMID: 40431650 PMCID: PMC12115571 DOI: 10.3390/v17050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/29/2025] Open
Abstract
Progress in atom visualization and miniaturization in microelectronics resulted in the discovery of nanomaterials in the second half of the 20th century [...].
Collapse
Affiliation(s)
- Olga Morozova
- Institute of Future Biophysics, 9/7 Institutsky Per., Dolgoprudny 141700, Moscow Region, Russia;
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya Street, Moscow 119435, Russia
- Ivanovsky Institute of Virology of the National Research Center of Epidemiology and Microbiology of N.F. Gamaleya of the Russian Ministry of Health, 16 Gamaleya Street, Moscow 123098, Russia
| |
Collapse
|
21
|
Lin S, Xu Z, Liu Y, Yang G, Qi X, Huang Y, Zhou M, Jiang X. Engineered Macrophage Membrane-Camouflaged Nanodecoys Reshape the Infectious Microenvironment for Efficient Periodontitis Treatment. ACS NANO 2025; 19:15345-15362. [PMID: 40228155 DOI: 10.1021/acsnano.4c14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
A vicious cycle between microbiota dysbiosis and hyperactivated inflammation, hardly disrupted by conventional therapies, remains a significant clinical challenge for periodontitis treatment. Herein, by cloaking a cascade catalysis system in an engineered macrophage membrane, a nanodecoy-based strategy, with targeted bacteria-killing and immunomodulatory abilities, is proposed for reshaping the hostile periodontitis microenvironment. Specifically, recombinant human antimicrobial peptide, LL-37, is anchored to a Toll-like receptor-enriched macrophage membrane via genetic engineering, which facilitates the specific bacteria elimination and efficient tissue retention of the nanodecoys. Moreover, the cascade catalysis system integrates L-amino acid oxidase (LAAO) with hollowed manganese dioxide (hMnO2) by reciprocal elevation of the catalytic efficiency of hMnO2 and LAAO, leading to accelerated O2 generation under a hypoxic microenvironment and disrupted metabolism of periodontopathogenic bacteria. Notably, the nanodecoys trigger the nuclear translocation of NF-E2-related factor-2 (NRF2) to reduce oxidative stress response and rewire the polarization of macrophages, thereby boosting the osteogenic differentiation of osteoblasts. Furthermore, the alveolar bone regeneration therapeutically benefits from the nanodecoys in vivo. Altogether, these results highlight the attractive functions of engineered macrophage membrane-cloaked nanodecoys for effective periodontitis treatment.
Collapse
Affiliation(s)
- Sihan Lin
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
| | - Zeqian Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
| | - Yulan Liu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
| | - Guangzheng Yang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
| | - Xuanyu Qi
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
| | - Yijia Huang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
| | - Mingliang Zhou
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
- Shanghai Stomatological Hospital, Fudan University, Shanghai 201102, People's Republic of China
| |
Collapse
|
22
|
Yang L, Wu W, Yang J, Xu M. Nanoparticle-mediated delivery of herbal-derived natural products to modulate immunosenescence-induced drug resistance in cancer therapy: a comprehensive review. Front Oncol 2025; 15:1567896. [PMID: 40356750 PMCID: PMC12066338 DOI: 10.3389/fonc.2025.1567896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/28/2025] [Indexed: 05/15/2025] Open
Abstract
Immunosenescence, the age-associated decline of the immune system, is pivotal in fostering drug resistance within the tumor microenvironment (TME). The accumulation of senescent immune cells and the release of pro-inflammatory senescence-associated secretory phenotype (SASP) factors create a milieu that supports tumor survival and undermines therapeutic efficacy. Traditional cancer treatments often fail to address this underlying issue, leading to suboptimal outcomes. This article proposes an innovative strategy to overcome immunosenescence-induced drug resistance through the nanoparticle-mediated delivery of herbal-derived natural products (HDNPs), which possess senolytic and immunomodulatory properties capable of clearing senescent cells and rejuvenating immune function. Nanoparticle delivery systems enhance these compounds' stability, bioavailability, and targeted delivery to the TME and senescent immune cells. By harnessing the synergistic effects of HDNPs and nanotechnology, this approach offers a novel and multifaceted solution to drug resistance in cancer therapy. It holds the potential to restore immune surveillance, reduce pro-survival signaling in cancer cells, and enhance the efficacy of conventional treatments. This paradigm shift emphasizes the importance of addressing immunosenescence as a therapeutic target and paves the way for more effective and personalized cancer interventions.
Collapse
Affiliation(s)
- Lichang Yang
- Xuzhou Affiliated Hospital of Nanjing University of Chinese Medicine, Xuzhou, China
| | - Wei Wu
- Department of Geriatrics, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Yang
- Xuzhou Affiliated Hospital of Nanjing University of Chinese Medicine, Xuzhou, China
| | - Manman Xu
- Department of Geriatrics, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Elblová P, Anthi J, Liu M, Lunova M, Jirsa M, Stephanopoulos N, Lunov O. DNA Nanostructures for Rational Regulation of Cellular Organelles. JACS AU 2025; 5:1591-1616. [PMID: 40313805 PMCID: PMC12042030 DOI: 10.1021/jacsau.5c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 05/03/2025]
Abstract
DNA nanotechnology has revolutionized materials science and biomedicine by enabling precise manipulation of matter at the nanoscale. DNA nanostructures (DNs) in particular represent a promising frontier for targeted therapeutics. Engineered DNs offer unprecedented molecular programmability, biocompatibility, and structural versatility, making them ideal candidates for advanced drug delivery, organelle regulation, and cellular function modulation. This Perspective explores the emerging role of DNs in modulating cellular behavior through organelle-targeted interventions. We highlight current advances in nuclear, mitochondrial, and lysosomal targeting, showcasing applications ranging from gene delivery to cancer therapeutics. For instance, DNs have enabled precision mitochondrial disruption in cancer cells, lysosomal pH modulation to enhance gene silencing, and nuclear delivery of gene-editing templates. While DNs hold immense promise for advancing nanomedicine, outstanding challenges include optimizing biological interactions and addressing safety concerns. This Perspective highlights the current potential of DNs for rational control of targeted organelles, which could lead to novel therapeutic strategies and advancement of precision nanomedicines in the future.
Collapse
Affiliation(s)
- Petra Elblová
- FZU
- Institute of Physics of the Czech Academy of Sciences, 182 21 Prague, Czech Republic
- Faculty
of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Judita Anthi
- FZU
- Institute of Physics of the Czech Academy of Sciences, 182 21 Prague, Czech Republic
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign
Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Minghui Liu
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign
Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Mariia Lunova
- FZU
- Institute of Physics of the Czech Academy of Sciences, 182 21 Prague, Czech Republic
- Institute
for Clinical & Experimental Medicine (IKEM), 14 021 Prague, Czech Republic
| | - Milan Jirsa
- Institute
for Clinical & Experimental Medicine (IKEM), 14 021 Prague, Czech Republic
| | - Nicholas Stephanopoulos
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign
Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Oleg Lunov
- FZU
- Institute of Physics of the Czech Academy of Sciences, 182 21 Prague, Czech Republic
| |
Collapse
|
24
|
Yang A, Lu Y, Zhang Z, Wang J. Nanodrug Delivery Systems for Acute Lymphoblastic Leukemia Therapy. Pharmaceuticals (Basel) 2025; 18:639. [PMID: 40430460 PMCID: PMC12114507 DOI: 10.3390/ph18050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/19/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant tumor caused by abnormal proliferation of B-line or T-line lymphocytes in the bone marrow. Traditional treatments have limitations. Because of their unique advantages, nanodrug delivery systems (NDDSs) show great potential in the treatment of ALL. In this paper, the pathological features of ALL, the limitations of current therapeutic methods, and the definition and composition of NDDSs were reviewed. Research strategies for the use of NDDSs in the treatment of ALL were discussed. In addition, challenges and future development directions of NDDSs in the treatment of ALL were also discussed, aiming to provide reference for the application of NDDSs in the diagnosis and treatment of ALL.
Collapse
Affiliation(s)
- Aiyun Yang
- Translational Medicine Laboratory, Beijing Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China;
| | - Yuanfang Lu
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China; (Y.L.); (Z.Z.)
| | - Zuo Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China; (Y.L.); (Z.Z.)
| | - Jianhua Wang
- Translational Medicine Laboratory, Beijing Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China;
| |
Collapse
|
25
|
Liu N, Wang X, Wang Z, Kan Y, Fang Y, Gao J, Kong X, Wang J. Nanomaterials-driven in situ vaccination: a novel frontier in tumor immunotherapy. J Hematol Oncol 2025; 18:45. [PMID: 40247328 PMCID: PMC12007348 DOI: 10.1186/s13045-025-01692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/19/2025] [Indexed: 04/19/2025] Open
Abstract
In situ vaccination (ISV) has emerged as a promising strategy in cancer immunotherapy, offering a targeted approach that uses the tumor microenvironment (TME) to stimulate an immune response directly at the tumor site. This method minimizes systemic exposure while maintaining therapeutic efficacy and enhancing safety. Recent advances in nanotechnology have enabled new approaches to ISV by utilizing nanomaterials with unique properties, including enhanced permeability, retention, and controlled drug release. ISV employing nanomaterials can induce immunogenic cell death and reverse the immunosuppressive and hypoxic TME, thereby converting a "cold" tumor into a "hot" tumor and facilitating a more robust immune response. This review examines the mechanisms through which nanomaterials-based ISV enhances anti-tumor immunity, summarizes clinical applications of these strategies, and evaluates its capacity to serve as a neoadjuvant therapy for eliminating micrometastases in early-stage cancer patients. Challenges associated with the clinical translation of nanomaterials-based ISV, including nanomaterial metabolism, optimization of treatment protocols, and integration with other therapies such as radiotherapy, chemotherapy, and photothermal therapy, are also discussed. Advances in nanotechnology and immunotherapy continue to expand the possible applications of ISV, potentially leading to improved outcomes across a broad range of cancer types.
Collapse
Affiliation(s)
- Naimeng Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yonemori Kan
- Department of Medical Oncology, National Cancer Center Hospital (NCCH), 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jidong Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518127, China.
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
26
|
Jiang M, Zhang X, Cui Z, Li M, Qiang H, Ji K, Li M, Yuan XX, Wen B, Xue Q, Gao J, Lu Z, Wu Y. Nanomaterial-Based Autophagy Modulation: Multiple Weapons to Inflame Immune Systems and the Tumor Microenvironment. Biomater Res 2025; 29:0111. [PMID: 40231206 PMCID: PMC11994884 DOI: 10.34133/bmr.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/26/2024] [Indexed: 04/16/2025] Open
Abstract
Autophagy, a fundamental cellular process, is a sensitive indicator of environmental shifts and is crucial for the clearance of cellular debris, the remodeling of cellular architecture, and the facilitation of cell growth and development. The interplay between stromal, tumor, and immune cells within the tumor microenvironment is intricately linked to autophagy. Therefore, the modulation of autophagy in these cell types is essential for developing effective cancer treatment strategies. This review describes the design and optimization of nanomaterials that modulate autophagy in tumor-associated and immune cells. This review elucidates the primary mechanisms by which nanomaterials induce autophagy and discusses their application in cancer therapy, underscoring the potential of these materials to eradicate cancer cells, bolster the immune response, and elicit robust, enduring antitumor immunity, thereby advancing the frontiers of oncological treatment.
Collapse
Affiliation(s)
- Min Jiang
- Department of Gastrointestinal Surgery,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- College of Life Science,
Mudanjiang Medical University, Mudanjiang 157011, China
| | - Xinyi Zhang
- Changhai Clinical Research Unit,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Zhilei Cui
- Department of Respiratory Medicine,
XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Meng Li
- Department of Dermatology, Shanghai Children’s Medical Center,
Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Huifen Qiang
- Changhai Clinical Research Unit,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Keqin Ji
- Changhai Clinical Research Unit,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Meigui Li
- School of Pharmacy,
Henan University, Kaifeng 475004, China
| | - Xinyang Xuan Yuan
- Department of Dermatology,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Beibei Wen
- School of Pharmacy,
Henan University, Kaifeng 475004, China
| | - Qian Xue
- Changhai Clinical Research Unit,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai 200433, China
| | - Jie Gao
- Changhai Clinical Research Unit,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai 200433, China
| | - Zhengmao Lu
- Department of Gastrointestinal Surgery,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Yan Wu
- College of Life Science,
Mudanjiang Medical University, Mudanjiang 157011, China
| |
Collapse
|
27
|
An Y, Ji C, Zhang H, Jiang Q, Maitz MF, Pan J, Luo R, Wang Y. Engineered Cell Membrane Coating Technologies for Biomedical Applications: From Nanoscale to Macroscale. ACS NANO 2025; 19:11517-11546. [PMID: 40126356 DOI: 10.1021/acsnano.4c16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Cell membrane coating has emerged as a promising strategy for the surface modification of biomaterials with biological membranes, serving as a cloak that can carry more functions. The cloaked biomaterials inherit diverse intrinsic biofunctions derived from different cell sources, including enhanced biocompatibility, immunity evasion, specific targeting capacity, and immune regulation of the regenerative microenvironment. The intrinsic characteristics of biomimicry and biointerfacing have demonstrated the versatility of cell membrane coating technology on a variety of biomaterials, thus, furthering the research into a wide range of biomedical applications and clinical translation. Here, the preparation of cell membrane coatings is emphasized, and different sizes of coated biomaterials from nanoscale to macroscale as well as the engineering strategies to introduce additional biofunctions are summarized. Subsequently, the utilization of biomimetic membrane-cloaked biomaterials in biomedical applications is discussed, including drug delivery, imaging and phototherapy, cancer immunotherapy, anti-infection and detoxification, and implant modification. In conclusion, the latest advancements in clinical and preclinical studies, along with the multiple benefits of cell membrane-coated nanoparticles (NPs) in biomimetic systems, are elucidated.
Collapse
Affiliation(s)
- Yongqi An
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cheng Ji
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hao Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Manfred F Maitz
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Dresden 01069, Germany
| | - Junqiang Pan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Department of Cardiovascular Medicine, Xi'an Central Hospital, Xi'an 710003, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Research Unit. of Minimally Invasive Treatment of Structural Heart-Disease, Chinese Academy of Medical Sciences (2021RU013), Chengdu, 610065, China
| |
Collapse
|
28
|
Tran V, Nguyen N, Renkes S, Nguyen KT, Nguyen T, Alexandrakis G. Current and Near-Future Technologies to Quantify Nanoparticle Therapeutic Loading Efficiency and Surface Coating Efficiency with Targeted Moieties. Bioengineering (Basel) 2025; 12:362. [PMID: 40281721 PMCID: PMC12025210 DOI: 10.3390/bioengineering12040362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 04/29/2025] Open
Abstract
Active targeting nanoparticles are a new generation of drug and gene delivery systems with the potential for greatly improved therapeutics delivery compared to conventional nanomedicine approaches. Despite their potential, the translation of active targeting nanoparticles faces challenges in production scale-up and batch consistency. Accurate quality control methods for nanoparticle therapeutic payload and coating characterization are critical for attaining the desired levels of batch repeatability, drug/gene loading efficiency, targeting molecule coating effectiveness, and safety profiles. Current limitations in nanoparticle characterization technologies, such as relying on ensemble-average analysis, pose challenges in assessing the drug/gene content and surface modification heterogeneity, which can greatly affect therapeutic outcomes. Single-molecule analysis technologies have emerged as a promising alternative, offering rich information on heterogeneity and stochastic variations between nanoparticle batches. This review first evaluates and identifies the challenges of traditional nanoparticle characterization tools that rely on indirect, bulk solution quantification methods. Subsequently, newly emerging characterization technologies are introduced for the quantification of therapeutic loading and targeted moiety coating efficiencies with single-nanoparticle resolution, to help guide researchers towards advancing the translation of active targeting nanoparticles into the clinical setting.
Collapse
Affiliation(s)
| | | | | | | | - Tam Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; (V.T.); (N.N.); (S.R.); (K.T.N.)
| | - George Alexandrakis
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; (V.T.); (N.N.); (S.R.); (K.T.N.)
| |
Collapse
|
29
|
Floyd TG, Gurnani P, Rho JY. Characterisation of polymeric nanoparticles for drug delivery. NANOSCALE 2025; 17:7738-7752. [PMID: 40018862 DOI: 10.1039/d5nr00071h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Polymeric nanoparticles represent an innovative approach to drug delivery, particularly for addressing complex diseases like cancer. Their nanoscale dimensions facilitate targeted cellular uptake and effective navigation of biological barriers. With a broad range of polymerisation and functionalisation techniques, these nanoparticles can enable precise drug release, enhanced stability, and improved bioavailability while minimising side effects. Compared to conventional carriers, polymeric nanoparticles offer superior stability and versatility. However, despite these beneficial attributes, challenges remain in understanding their dynamic behaviour and interactions within biological systems. This mini-review aims to highlight key characterisation methods for studying polymeric nanocarriers, explore recent advances, and examine current challenges that must be addressed to optimise their therapeutic potential and advance these promising targeted drug delivery systems.
Collapse
Affiliation(s)
- Thomas G Floyd
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Pratik Gurnani
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Julia Y Rho
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
30
|
Tang J, Karbhari N, Campian JL. Therapeutic Targets in Glioblastoma: Molecular Pathways, Emerging Strategies, and Future Directions. Cells 2025; 14:494. [PMID: 40214448 PMCID: PMC11988183 DOI: 10.3390/cells14070494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, characterized by rapid growth, invasive infiltration into surrounding brain tissue, and resistance to conventional therapies. Despite advancements in surgery, radiotherapy, and chemotherapy, median survival remains approximately 15 months, underscoring the urgent need for innovative treatments. Key considerations informing treatment development include oncogenic genetic and epigenetic alterations that may dually serve as therapeutic targets and facilitate treatment resistance. Various immunotherapeutic strategies have been explored and continue to be refined for their anti-tumor potential. Technical aspects of drug delivery and blood-brain barrier (BBB) penetration have been addressed through novel vehicles and techniques including the incorporation of nanotechnology. Molecular profiling has emerged as an important tool to individualize treatment where applicable, and to identify patient populations with the most drug sensitivity. The goal of this review is to describe the spectrum of potential GBM therapeutic targets, and to provide an overview of key trial outcomes. Altogether, the progress of clinical and preclinical work must be critically evaluated in order to develop therapies for GBM with the strongest therapeutic efficacy.
Collapse
Affiliation(s)
- Justin Tang
- Department of Biomedical Science, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (N.K.); (J.L.C.)
| | - Nishika Karbhari
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (N.K.); (J.L.C.)
| | - Jian L. Campian
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (N.K.); (J.L.C.)
| |
Collapse
|
31
|
Wang W, Wang S, Xu S, Chai R, Yuan J, Zhang H, Li Y, Pu X, Li X, Sun J, He Z, Sun B. An assembly modules deformation strategy improved the chemical stability and self-assembly stability of docetaxel prodrugs nanoassemblies. NANOSCALE 2025; 17:7016-7029. [PMID: 39982137 DOI: 10.1039/d4nr05002a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Self-assembly prodrugs usually consist of drug modules, activation modules, and assembly modules. The selection of suitable modules to construct prodrug nanoassemblies with self-assembly stability and "intelligent" activation is a challenge. As a common assembly module, oleic acid can provide a driving force and steric hindrance for prodrugs self-assembly. However, the unsaturated double bond of oleic acid is readily oxidized and it affects its chemical stability. Herein, two docetaxel (DTX) prodrugs were designed using disulfide bonds as activation modules and two different fatty acids (isostearic acid and oleic acid) as assembly modules, respectively. Compared with oleic acid, isostearic acid had higher chemical stability. Simultaneously, the terminal propyl structure of isostearic acid compensated for the steric hindrance without a double bond. Overall, this structural deformation improved the self-assembly ability and chemical stability of the prodrug nanoassemblies, thus balancing the effectiveness and safety of the prodrugs. Our findings reveal the importance of the assembly modules and provide a guidance for the rational design of prodrug nanoassemblies.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, No. 59 Mailbox, 103 Wenhua Road, Shenyang, 110016, China.
| | - Shuo Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, No. 59 Mailbox, 103 Wenhua Road, Shenyang, 110016, China.
| | - Shengyao Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, No. 59 Mailbox, 103 Wenhua Road, Shenyang, 110016, China.
| | - Rong Chai
- Peking Union Second Pharmaceutical Factory Ltd, Beijing 102600, China
| | - Jun Yuan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, No. 59 Mailbox, 103 Wenhua Road, Shenyang, 110016, China.
| | - Hao Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, No. 59 Mailbox, 103 Wenhua Road, Shenyang, 110016, China.
| | - Yaqi Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, No. 59 Mailbox, 103 Wenhua Road, Shenyang, 110016, China.
| | - Xiaohui Pu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Xin Li
- Department of Respiratory Disease, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, No. 59 Mailbox, 103 Wenhua Road, Shenyang, 110016, China.
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, No. 59 Mailbox, 103 Wenhua Road, Shenyang, 110016, China.
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, No. 59 Mailbox, 103 Wenhua Road, Shenyang, 110016, China.
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| |
Collapse
|
32
|
Zhang W, Wang Q, Zhai F, Fan X, Meng F, Shen G, Zhu Y, Cao J, Yu F. Core-Shell Magnetic Nanocarriers: Fe 3O 4-Hydroxyapatite/Polysuccinimide Hybrids for Enhanced Oral Bioavailability of Fluorouracil. Int J Nanomedicine 2025; 20:3671-3695. [PMID: 40130197 PMCID: PMC11932132 DOI: 10.2147/ijn.s507458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/08/2025] [Indexed: 03/26/2025] Open
Abstract
Objective This study pioneers a pH-responsive core-shell nanoplatform integrating magnetic Fe3O4-hydroxyapatite (Fe/HAP) with polysuccinimide (PSI) polymer, engineered to enhance tumor-targeted delivery of fluorouracil (5-FU) for liver cancer therapy. Methods The individual components-hydroxyapatite (HAP), magnetite (F3O4), iron-doped hydroxyapatite (Fe/HAP), and polysuccinimide (PSI)-were synthesized and systematically characterized through Fourier-transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). Through a combination of single-factor experiments and Box-Behnken design (BBD) response surface methodology, the formulation parameters were optimized for two nanoparticle systems: (1) non-magnetic 5-FU-loaded PSI-HAP (designated as 5-FU@DC, where DC denotes "drug carrier") and (2) magnetic-targeted formulations 5-FU@PSI-Fe/HAP with varying iron content (5-FU@FeDC20, 5-FU@FeDC30, 5-FU@FeDC40). The engineered nanoparticles were thoroughly characterized for their morphological characteristics, hydrodynamic properties (particle size distribution and zeta potential), magnetic responsiveness (vibrating sample magnetometry), and pH-dependent drug release profiles. Nile Red was used to label the drug-loaded nanoparticles, and small animal imaging technology was employed to track their distribution in mice in vivo. Furthermore, in vitro studies examined the effects of these formulations on the proliferation, apoptosis, and migration of Huh-7 liver cancer cells. Results The formulations (5-FU@DC and 5-FU@FeDC) were found to form uniform spherical or near-spherical nanoparticles. Vibrating sample magnetometer (VSM) analysis confirmed that the 5-FU@FeDC formulations displayed paramagnetic properties. Zeta potential measurements showed that all prepared systems had negative charges, similar to human biological membranes. All nanoparticles gradually released the drug at pH levels above 5, with the release rate increasing as the pH increased. Compared to the non-magnetic 5-FU@DC formulation, the magnetic 5-FU@FeDC formulations showed significantly longer distribution and retention times in liver tissue and more effectively inhibited the proliferation of Huh-7 cells. Conclusion The current study developed a magnetic targeting nano-delivery system using PSI and Fe/HAP as formulation excipients. The system offers uniform particle size, a simple preparation process, and a cost-effective method for targeted drug delivery. It is not only suitable for liver-targeted drug delivery but also applicable for drug delivery to other tissues in the body for anti-tumor drugs.
Collapse
Affiliation(s)
- Wenhui Zhang
- School of Pharmacy, Mudanjiang Medical University, Mudanjiang, 157011, People’s Republic of China
| | - Qiang Wang
- Hongqi People Hospital, Mudanjiang Medical University, Mudanjiang, 157011, People’s Republic of China
| | - Fengguo Zhai
- School of Pharmacy, Mudanjiang Medical University, Mudanjiang, 157011, People’s Republic of China
| | - Xingjun Fan
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, People’s Republic of China
| | - Fanqin Meng
- School of Pharmacy, Mudanjiang Medical University, Mudanjiang, 157011, People’s Republic of China
| | - Guangzhi Shen
- School of Pharmacy, Mudanjiang Medical University, Mudanjiang, 157011, People’s Republic of China
| | - Ying Zhu
- School of Pharmacy, Mudanjiang Medical University, Mudanjiang, 157011, People’s Republic of China
| | - Jingdan Cao
- School of Pharmacy, Mudanjiang Medical University, Mudanjiang, 157011, People’s Republic of China
| | - Fengbo Yu
- School of Pharmacy, Mudanjiang Medical University, Mudanjiang, 157011, People’s Republic of China
| |
Collapse
|
33
|
Ghadami A, Fathi-Karkan S, Siddiqui B, Gondal SA, Rahdar A, Garousi NA, Kharaba Z, Ghotekar S. Nanotechnology in Imatinib delivery: advancing cancer treatment through innovative nanoparticles. Med Oncol 2025; 42:116. [PMID: 40100578 DOI: 10.1007/s12032-025-02660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Nanotechnology-based drug delivery systems have improved target medicines' therapeutic efficacy and specificity in cancer therapy. Imatinib, one of the tyrosine kinase inhibitors widely used for treating chronic myeloid leukemia and gastrointestinal stromal tumors (GIST), faces many drawbacks, such as poor solubility, reduced bioavailability, and the development of resistance. The paper critically reviews advances in nanotechnology-based approaches toward the delivery of Imatinib, relating to polymeric, lipid-based, carbon-based, and stimuli-responsive nanoparticles. These methods enhance solubility, stability, and targeted distribution and are often used to facilitate the co-delivery of other anticancer drugs with considerable problems in cancer treatment. Although much potential for these technologies exists, scalability, safety, and regulatory approval, among other features, need resolution before real cost can meet clinical efficacy. Further directions would go toward bio-inspired system development, enhancing regulatory frameworks, and cost-effective manufacturing processes that bring nanotechnology into the realm of standard treatment for cancer.
Collapse
Affiliation(s)
- Azam Ghadami
- Department of Chemical and Polymer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran.
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Science, Bojnurd, Iran.
| | - Bazla Siddiqui
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Sonia Ashfaq Gondal
- School of Pharmacy, University of Management and Technology, 72-A Raiwand Road, Dubai Chowk, Lahore, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran.
| | | | - Zelal Kharaba
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Suresh Ghotekar
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India.
| |
Collapse
|
34
|
Cai Q, Guo R, Chen D, Deng Z, Gao J. SynBioNanoDesign: pioneering targeted drug delivery with engineered nanomaterials. J Nanobiotechnology 2025; 23:178. [PMID: 40050980 PMCID: PMC11884119 DOI: 10.1186/s12951-025-03254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/19/2025] [Indexed: 03/10/2025] Open
Abstract
Synthetic biology and nanotechnology fusion represent a transformative approach promoting fundamental and clinical biomedical science development. In SynBioNanoDesign, biological systems are reimagined as dynamic and programmable materials to yield engineered nanomaterials with emerging and specific functionalities. This review elucidates a comprehensive examination of synthetic biology's pivotal role in advancing engineered nanomaterials for targeted drug delivery systems. It begins with exploring the fundamental synergy between synthetic biology and nanotechnology, then highlights the current landscape of nanomaterials in targeted drug delivery applications. Subsequently, the review discusses the design of novel nanomaterials informed by biological principles, focusing on expounding the synthetic biology tools and the potential for developing advanced nanomaterials. Afterward, the research advances of innovative materials design through synthetic biology were systematically summarized, emphasizing the integration of genetic circuitry to program nanomaterial responses. Furthermore, the challenges, current weaknesses and opportunities, prospective directions, and ethical and societal implications of SynBioNanoDesign in drug delivery are elucidated. Finally, the review summarizes the transformative impact that synthetic biology may have on drug-delivery technologies in the future.
Collapse
Affiliation(s)
- Qian Cai
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China
| | - Rui Guo
- National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dafu Chen
- National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiangtao Gao
- National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
35
|
de Castro Carvalho Silva L, Cunha Dos Reis LF, Malaquias LCC, Carvalho FC, Novaes RD, Marques MJ. Impact of nanostructured formulations for schistosomiasis treatment: a systematic review of in vivo preclinical evidence. J Pharm Pharmacol 2025; 77:341-351. [PMID: 39820345 DOI: 10.1093/jpp/rgae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Schistosomiasis is a neglected tropical disease caused by Schistosoma sp., and praziquantel (PZQ) is the first-line treatment. However, traditional PZQ formulations have low solubility and fast metabolism, limiting its effectiveness. Thus, nanoparticles have been proposed to improve the bioavailability and efficacy of poorly soluble antischistosomal drugs. AIMS This systematic review used in vivo preclinical studies to map the available evidence and compare the efficacy of free PZQ and PZQ-based nanostructured formulations (N-PZQ) for schistosomiasis treatment. METHODS PubMed, Embase, Scopus, and Web of Science were searched, and 1186 experimental studies published between 1974 and 2024 were screened. Parasitological, histopathological, pharmacokinetic, and toxicological outcomes were evaluated. RESULTS Twelve relevant studies were identified exploring N-PZQ formulations based on liposomes, nanoliposomes, and nanocrystals. N-PZQ demonstrated better therapeutic efficacy than free PZQ, reducing parasite load, modifying oogram profiles, and down-regulating liver granuloma development (number and size). N-PZQ also exhibited improved pharmacokinetic profile, with enhanced bioavailability and longer half-life, as well as reduced toxicity (cytotoxicity, genotoxicity, and hepatotoxicity) compared to free PZQ. CONCLUSION PZQ-based nanostructured formulations represent a promising strategy to enhance schistosomiasis treatment by improving chemotherapy efficacy, optimizing antiparasitic responses, pharmacokinetics, and reducing drug toxicity.
Collapse
Affiliation(s)
- Laís de Castro Carvalho Silva
- Departamento de Parasitologia e Patologia, Universidade Federal de Alfenas, Alfenas, 37130-001, Minas Gerais, Brazil
| | - Luís Felipe Cunha Dos Reis
- Departamento de Biologia Estrutural, Universidade Federal de Alfenas, Alfenas, 37130-001, Minas Gerais, Brazil
| | - Luiz Cosme Cotta Malaquias
- Departamento de Microbiologia e Imunologia, Universidade Federal de Alfenas, Alfenas, 37130-001, Minas Gerais, Brazil
| | - Flávia Chiva Carvalho
- Departamento de Alimentos e Medicamentos Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, 37130-001, Minas Gerais, Brazil
| | - Rômulo Dias Novaes
- Departamento de Biologia Estrutural, Universidade Federal de Alfenas, Alfenas, 37130-001, Minas Gerais, Brazil
| | - Marcos José Marques
- Departamento de Parasitologia e Patologia, Universidade Federal de Alfenas, Alfenas, 37130-001, Minas Gerais, Brazil
| |
Collapse
|
36
|
Wu W, Zhang J, Qu X, Chen T, Li J, Yang Y, Chen L, Hoover A, Guo F, Kong C, Bao B, Lin Q, Zhou M, Zhu L, Wu X, Ma Y. Enabling Targeted Drug Delivery for Treatment of Ulcerative Colitis with Mucosal-Adhesive Photoreactive Hydrogel. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404836. [PMID: 39900372 PMCID: PMC11948015 DOI: 10.1002/advs.202404836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 11/01/2024] [Indexed: 02/05/2025]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease. UC treatments are limited by significant adverse effects associated with non-specific drug delivery, such as systematic inhibition of the host immune system. Endoscopic delivery of a synthetic hydrogel material with biocompatible gelation that can efficiently cover irregular tissue surfaces provides an effective approach for targeted drug delivery at the gastrointestinal (GI) tract. An ideal integration of synthetic material with intestinal epithelium entails an integrated and preferable chemically bonded interface between the hydrogel and mucosal surface. In this study, a photo-triggered coupling reaction is leveraged as the crosslinking platform to develop a mucosal-adhesive hydrogel, which is compatible with endoscope-directed drug delivery for UC treatment. The results demonstrated superior spatiotemporal specificity and drug pharmacokinetics with this delivery system in vivo. Delivery of different drugs with the hydrogel leads to greatly enhanced therapeutic efficacy and significantly reduced systemic drug exposure with rat colitis models. The study presents a strategy for targeted and persistent drug delivery for UC treatment.
Collapse
Affiliation(s)
- Wen Wu
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityNo. 270 Dongan RoadShanghai200032China
| | - Jian Zhang
- Ben May Department for Cancer ResearchUniversity of ChicagoGCIS W408B, 929 E 57th StreetChicagoIL60637USA
| | - Xiao Qu
- Department of EndoscopyFudan University Shanghai Cancer CenterNo. 270 Dongan RoadShanghai200032China
| | - Ting Chen
- School of Biomedical EngineeringShanghai Jiao Tong UniversityNo. 800 Dongchuan RoadShanghai200240China
| | - Jinming Li
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityNo. 270 Dongan RoadShanghai200032China
| | - Yongzhi Yang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityNo. 270 Dongan RoadShanghai200032China
| | - Lifeng Chen
- Ben May Department for Cancer ResearchUniversity of ChicagoGCIS W408B, 929 E 57th StreetChicagoIL60637USA
| | - Alex Hoover
- Ben May Department for Cancer ResearchUniversity of ChicagoGCIS W408B, 929 E 57th StreetChicagoIL60637USA
| | - Fanying Guo
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityNo. 270 Dongan RoadShanghai200032China
| | - Cheng Kong
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityNo. 270 Dongan RoadShanghai200032China
| | - Bingkun Bao
- School of Biomedical EngineeringShanghai Jiao Tong UniversityNo. 800 Dongchuan RoadShanghai200240China
| | - Qiuning Lin
- School of Biomedical EngineeringShanghai Jiao Tong UniversityNo. 800 Dongchuan RoadShanghai200240China
| | - Mengxin Zhou
- School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyNo.130 Meilong RoadShanghai200237China
| | - Linyong Zhu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityNo. 800 Dongchuan RoadShanghai200240China
| | - Xiaoyang Wu
- Ben May Department for Cancer ResearchUniversity of ChicagoGCIS W408B, 929 E 57th StreetChicagoIL60637USA
| | - Yanlei Ma
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityNo. 270 Dongan RoadShanghai200032China
| |
Collapse
|
37
|
Diao Y, Gao J, Ma Y, Pan G. Epitope-imprinted biomaterials with tailor-made molecular targeting for biomedical applications. Bioact Mater 2025; 45:162-180. [PMID: 39634057 PMCID: PMC11616479 DOI: 10.1016/j.bioactmat.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Molecular imprinting technology (MIT), a synthetic strategy to create tailor-made molecular specificity, has recently achieved significant advancements. Epitope imprinting strategy, an improved MIT by imprinting the epitopes of biomolecules (e.g., proteins and nucleic acids), enables to target the entire molecule through recognizing partial epitopes exposed on it, greatly expanding the applicability and simplifying synthesis process of molecularly imprinted polymers (MIPs). Thus, epitope imprinting strategy offers promising solutions for the fabrication of smart biomaterials with molecular targeting and exhibits wide applications in various biomedical scenarios. This review explores the latest advances in epitope imprinting techniques, emphasizing selection of epitopes and functional monomers. We highlight the significant improvements in specificity, sensitivity, and stability of these materials, which have facilitated their use in bioanalysis, clinical therapy, and pharmaceutical development. Additionally, we discuss the application of epitope-imprinted materials in the recognition and detection of peptides, proteins, and cells. Despite these advancements, challenges such as template complexity, imprinting efficiency, and scalability remain. This review addresses these issues and proposes potential directions for future research to overcome these barriers, thereby enhancing the efficacy and practicality of epitope molecularly imprinting technology in biomedical fields.
Collapse
Affiliation(s)
- Youlu Diao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| | - Jia Gao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
38
|
Li A, Li Y, Jia Y, He Y, Yuan M, Hao Z, He Y, Fu Y, Zhang J, Gao D, Zhang X, Jiang X, Tu W. Natural MOF-Like Photocatalytic Nanozymes Alleviate Tumor Pressure for Enhanced Nanodrug Penetration. Adv Healthc Mater 2025; 14:e2400596. [PMID: 38932657 DOI: 10.1002/adhm.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/02/2024] [Indexed: 06/28/2024]
Abstract
In oncological nanomedicine, overcoming the dual-phase high interstitial pressure in the tumor microenvironment is pivotal for enhancing the penetration and efficacy of nanotherapeutics. The elevated tumor interstitial solid pressure (TISP) is largely attributed to the overaccumulation of collagen in the extracellular matrix, while the increased tumor interstitial fluid pressure (TIFP) stems from the accumulation of fluid due to the aberrant vascular architecture. In this context, metal-organic frameworks (MOFs) with catalytic efficiency have shown potential in degrading tumor interstitial components, thereby reducing interstitial pressure. However, the potential biotoxicity of the organic components of MOFs limits their clinical translation. To circumvent this, a MOF-like photocatalytic nanozyme, RPC@M, using naturally derived cobalt phytate (CoPA) and resveratrol (Res) is developed. This nanozyme not only facilitates the decomposition of water in the tumor interstitium under photoactivation to reduce TIFP, but also generates an abundance of reactive oxygen species through its peroxidase-like activity to exert cytotoxic effects on tumor cells. Moreover, Res contributes to the reduction of collagen deposition, thereby lowering TISP. The concurrent diminution of both TISP and TIFP by RPC@M leads to enhanced tumor penetration and potent antitumor activity, presenting an innovative approach in constructing tumor therapeutic nanozymes from natural products.
Collapse
Affiliation(s)
- Anshuo Li
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China
| | - Yifei Li
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Yanmin Jia
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, China
| | - Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Meng Yuan
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Zining Hao
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Yaqian He
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Yihan Fu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Jinhui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Xuwu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China
| | - Wenkang Tu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| |
Collapse
|
39
|
Pichler V, Martinho RP, Temming L, Segers T, Wurm FR, Koshkina O. The Environmental Impact of Medical Imaging Agents and the Roadmap to Sustainable Medical Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404411. [PMID: 39905748 PMCID: PMC11884531 DOI: 10.1002/advs.202404411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/22/2024] [Indexed: 02/06/2025]
Abstract
Medical imaging agents, i.e., contrast agents for magnetic resonance imaging (MRI) and radiopharmaceuticals, play a vital role in the diagnosis of diseases. Yet, they mostly contain harmful and non-biodegradable substances, such as per- and polyfluoroalkyl substances (PFAS), heavy metals or radionuclides. As a result of their increasing clinical use, these agents are entering various water bodies and soil, posing risks to environment and human health. Here, the environmental effects of the application of imaging agents are outlined for the major imaging modalities, and the respective chemistry of the contrast agents with environmental implications is linked. Recommendations are introduced for the design and application of contrast agents: the 3Cs of imaging agents: control, change, and combine; and recent approaches for more sustainable imaging strategies are highlighted. This combination of measures should engage an open discussion, inspire solutions to reduce pollution by imaging agents, and increase awareness for the impact of toxic waste related to imaging agents.
Collapse
Affiliation(s)
- Verena Pichler
- Department of Pharmaceutical SciencesDivision of Pharmaceutical ChemistryUniversity of ViennaVienna1090Austria
| | - Ricardo P. Martinho
- Biomolecular Nanotechnology GroupDepartment of Molecules and MaterialsMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversity of TwenteEnschede7522The Netherlands
| | - Lisanne Temming
- Sustainable Polymer ChemistryDepartment of Molecules and MaterialsMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversity of TwenteEnschede7522The Netherlands
| | - Tim Segers
- BIOS / Lab on a Chip GroupMax Planck Center Twente for Complex Fluid DynamicsMESA+ Institute for NanotechnologyUniversity of TwenteEnschede7514DMThe Netherlands
| | - Frederik R. Wurm
- Sustainable Polymer ChemistryDepartment of Molecules and MaterialsMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversity of TwenteEnschede7522The Netherlands
| | - Olga Koshkina
- Sustainable Polymer ChemistryDepartment of Molecules and MaterialsMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversity of TwenteEnschede7522The Netherlands
- Phos4nova B.V.EnschedeThe Netherlands
| |
Collapse
|
40
|
Roointan A, Xu R, Corrie S, Hagemeyer CE, Alt K. Nanotherapeutics in Kidney Disease: Innovations, Challenges, and Future Directions. J Am Soc Nephrol 2025; 36:500-518. [PMID: 39705082 PMCID: PMC11888965 DOI: 10.1681/asn.0000000608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/17/2024] [Indexed: 12/22/2024] Open
Abstract
The treatment and management of kidney diseases present a significant global challenge, affecting over 800 million individuals and necessitating innovative therapeutic strategies that transcend symptomatic relief. The application of nanotechnology to therapies for kidney diseases, while still in its early stages, holds transformative potential for improving treatment outcomes. Recent advancements in nanoparticle-based drug delivery leverage the unique physicochemical properties of nanoparticles for targeted and controlled therapeutic delivery to the kidneys. Current research is focused on understanding the functional and phenotypic changes in kidney cells during both acute and chronic conditions, allowing for the identification of optimal target cells. In addition, the development of tailored nanomedicines enhances their retention and binding to key renal membranes and cell populations, ultimately improving localization, tolerability, and efficacy. However, significant barriers remain, including inconsistent nanoparticle synthesis and the complexity of kidney-specific targeting. To overcome these challenges, the field requires advanced synthesis techniques, refined targeting strategies, and the establishment of animal models that accurately reflect human kidney diseases. These efforts are critical for the clinical application of nanotherapeutics, which promise novel solutions for kidney disease management. This review evaluates a substantial body of in vivo research, highlighting the prospects, challenges, and opportunities presented by nanotechnology-mediated therapies and their potential to transform kidney disease treatment.
Collapse
Affiliation(s)
- Amir Roointan
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- NanoTheranostics Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Rong Xu
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Simon Corrie
- Department of Chemical and Biological Engineering, Monash University, Melbourne, Victoria, Australia
| | - Christoph E. Hagemeyer
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Karen Alt
- NanoTheranostics Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Song Y, Wang Y, Man J, Xu Y, Zhou G, Shen W, Chao Y, Yang K, Pei P, Hu L. Chimeric Antigen Receptor Cells Solid Tumor Immunotherapy Assisted by Biomaterials Tools. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10246-10264. [PMID: 39903799 DOI: 10.1021/acsami.4c20275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Chimeric antigen receptor (CAR) immune cell therapies have revolutionized oncology, particularly in hematological malignancies, yet their efficacy against solid tumors remains limited due to challenges such as dense stromal barriers and immunosuppressive microenvironments. With advancements in nanobiotechnology, researchers have developed various strategies and methods to enhance the CAR cell efficacy in solid tumor treatment. In this Review, we first outline the structure and mechanism of CAR-T (T, T cell), CAR-NK (NK, natural killer), and CAR-M (M, macrophage) cell therapies and deeply analyze the potential of these cells in the treatment of solid tumors and the challenges they face. Next, we explore how biomaterials can optimize these treatments by improving the tumor microenvironment, controlling CAR cell release, promoting cell infiltration, and enhancing efficacy. Finally, we summarize the current challenges and potential solutions, emphasize the effective combination of biomaterials and CAR cell therapy, and look forward to its future clinical application and treatment strategies. This Review provides important theoretical perspectives and practical guidance for the future development of more effective solid tumor treatment strategies.
Collapse
Affiliation(s)
- Yujie Song
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yifan Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianping Man
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yihua Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Wenhao Shen
- Department of Oncology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Yu Chao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
42
|
Tenchov R, Hughes KJ, Ganesan M, Iyer KA, Ralhan K, Lotti Diaz LM, Bird RE, Ivanov JM, Zhou QA. Transforming Medicine: Cutting-Edge Applications of Nanoscale Materials in Drug Delivery. ACS NANO 2025; 19:4011-4038. [PMID: 39823199 PMCID: PMC11803921 DOI: 10.1021/acsnano.4c09566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025]
Abstract
Since their inception in the early 1960s, the development and use of nanoscale materials have progressed tremendously, and their roles in diverse fields ranging from human health to energy and electronics are undeniable. The application of nanotechnology inventions has revolutionized many aspects of everyday life including various medical applications and specifically drug delivery systems, maximizing the therapeutic efficacy of the contained drugs by means of bioavailability enhancement or minimization of adverse effects. In this review, we utilize the CAS Content Collection, a vast repository of scientific information extracted from journal and patent publications, to analyze trends in nanoscience research relevant to drug delivery in an effort to provide a comprehensive and detailed picture of the use of nanotechnology in this field. We examine the publication landscape in the area to provide insights into current knowledge advances and developments. We review the major classes of nanosized drug delivery systems, their delivery routes, and targeted diseases. We outline the most discussed concepts and assess the advantages of various nanocarriers. The objective of this review is to provide a broad overview of the evolving landscape of current knowledge regarding nanosized drug delivery systems, to outline challenges, and to evaluate growth opportunities. The merit of the review stems from the extensive, wide-ranging coverage of the most up-to-date scientific information, allowing unmatched breadth of landscape analysis and in-depth insights.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS,
a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Kevin J. Hughes
- CAS,
a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | - Kavita A. Iyer
- CAS,
a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | - Leilani M. Lotti Diaz
- CAS,
a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert E. Bird
- CAS,
a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Julian M. Ivanov
- CAS,
a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
43
|
Dai L, Liu J, Yang T, Yu X, Lu Y, Pan L, Zhou S, Shu D, Liu Y, Mao W, Qian Z. Lipoic acid-boronophenylalanine-derived multifunctional vesicles for cancer chemoradiotherapy. Nat Commun 2025; 16:1329. [PMID: 39900898 PMCID: PMC11790874 DOI: 10.1038/s41467-025-56507-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
Cancer remains a major health challenge, with the effectiveness of chemotherapy often limited by its lack of specificity and systemic toxicity. Nanotechnology, particularly in targeted drug delivery, has emerged as a key innovation to address these limitations. This study introduces lipoic acid-boronophenylalanine (LA-BPA) derivatives that incorporate short-chain polyethylene glycol (PEG) as a spacer. These derivatives distinctively self-assemble into vesicles under specific pH conditions, exhibiting a pH-dependent reversible assembly characteristic. Notably, these vesicles target cancer cells by binding to sialic acid via phenylboronic acid groups, subsequently depleting cellular glutathione and elevating reactive oxygen species, thereby inducing apoptosis via mitochondrial dysfunction and mitophagy. The vesicles demonstrate high efficiency in encapsulating doxorubicin, featuring a glutathione-responsive release mechanism, which present a promising option for tumor therapy. Additionally, the derivatives of the B-10 isotope, containing up to 1.6% boron, are engineered for incorporation into LPB-3-based vesicles. This design facilitates their application in boron neutron capture therapy (BNCT) alongside chemotherapy for the treatment of pancreatic cancer. Our findings highlight the potential of LA-BPA derivatives in developing more precise, effective, and less detrimental chemoradiotherapy approaches, marking an advancement in nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Liqun Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tingyu Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaorui Yu
- Neuboron Medtech Ltd., Nanjing, Jiangsu Province, China
| | - Yi Lu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Siming Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Diyun Shu
- Neuboron Medtech Ltd., Nanjing, Jiangsu Province, China
| | - Yuanhao Liu
- Neuboron Medtech Ltd., Nanjing, Jiangsu Province, China
- Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu Province, China
| | - Wuyu Mao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
44
|
Chakraborty DD, Chakraborty P, Mondal A. An insight into cancer nanomedicine based on polysaccharides. Int J Biol Macromol 2025; 290:138678. [PMID: 39672407 DOI: 10.1016/j.ijbiomac.2024.138678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
With cancer rates on the rise around the world, cancer treatment has dominated scientific discussions in recent years. The toxicity of cytotoxic drugs, their lack of tumor localization, and their uniform dispersion into tumor tissues are the obstacles to cancer therapy. Other cancer treatment drawbacks include short blood circulation half-lives and undesirable pharmacokinetic behavior. Low-molecular-weight drugs conjugated with macromolecular carriers are better distributed in the body. The enhanced permeation and retention (EPR) effect causes natural and synthetic polymers, such as polysaccharides, proteins, antibodies, and poly amino acids, to accumulate in tumor tissue. Many manufactured and natural polymers are attractive polymeric drug carriers, allowing the creation of prodrugs from medicinal substances. Polysaccharides are biological polymers with structural and functional variations. They are also non-toxic, hydrophilic, biodegradable, and efficiently bioactive. Polysaccharides are ideal for synthesizing many nanoparticles due to their functional groups. Their ability to adapt to their microenvironment makes them valuable. Nanoplatforms based on polysaccharides can deliver targeted anticancer drugs for personalized cancer treatment. Unique polysaccharide structures and properties offer chemical and biological advantages for novel drug delivery. Polysaccharide-drug conjugation could revolutionize cancer chemotherapy. This study investigates polysaccharide conjugates and polysaccharides as natural biomaterials for cancer drug delivery.
Collapse
Affiliation(s)
| | - Prithviraj Chakraborty
- Royal School of Pharmacy, The Assam Royal Global University, Betkuchi, Guwahati-781035, India
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha-743234, India.
| |
Collapse
|
45
|
Stellpflug A, Caron J, Fasciano S, Wang B, Wang S. Bone-derived nanoparticles (BNPs) enhance osteogenic differentiation via Notch signaling. NANOSCALE ADVANCES 2025; 7:735-747. [PMID: 39823045 PMCID: PMC11734751 DOI: 10.1039/d4na00797b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025]
Abstract
Mesenchymal stem cell (MSC)-based bone tissue regeneration has gained significant attention due to the excellent differentiation capacity and immunomodulatory activity of MSCs. Enhancing osteogenesis regulation is crucial for improving the therapeutic efficacy of MSC-based regeneration. By utilizing the regenerative capacity of bone ECM and the functionality of nanoparticles, we recently engineered bone-based nanoparticles (BNPs) from decellularized porcine bones. The effects of internalization of BNPs on MSC viability, proliferation, and osteogenic differentiation were first investigated and compared at different time points. The phenotypic behaviors, including cell number, proliferation, and differentiation were characterized and compared. By incorporating a LNA/DNA nanobiosensor and MSC live cell imaging, we monitored and compared Notch ligand delta-like 4 (Dll4) expression dynamics in the cytoplasm and nucleus during osteogenic differentiation. Pharmacological interventions are used to inhibit Notch signaling to examine the mechanisms involved. The results suggest that Notch inhibition mediates the osteogenic process, with reduced expression of early and late stage differentiation markers (ALP and calcium mineralization). The internalization of BNPs led to an increase in Dll4 expression, exhibiting a time-dependent pattern that aligned with enhanced cell proliferation and differentiation. Our findings indicate that the observed changes in BNP-treated cells during osteogenic differentiation could be associated with elevated levels of Dll4 mRNA expression. In summary, this study provides new insights into MSC osteogenic differentiation and the molecular mechanisms through which BNPs stimulate this process. The results indicate that BNPs influence osteogenesis by modulating Notch ligand Dll4 expression, demonstrating a potential link between Notch signaling and the proteins present in BNPs.
Collapse
Affiliation(s)
- Austin Stellpflug
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin Milwaukee WI 53226 USA
| | - Justin Caron
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven West Haven CT 06516 USA
| | - Samantha Fasciano
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven West Haven CT 06516 USA
| | - Bo Wang
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin Milwaukee WI 53226 USA
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven West Haven CT 06516 USA
| |
Collapse
|
46
|
Rechberger JS, Toll SA, Biswas S, You HB, Chow WD, Kendall N, Navalkele P, Khatua S. Advances in the Repurposing and Blood-Brain Barrier Penetrance of Drugs in Pediatric Brain Tumors. Cancers (Basel) 2025; 17:439. [PMID: 39941807 PMCID: PMC11816256 DOI: 10.3390/cancers17030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Central nervous system (CNS) tumors are the leading cause of cancer-related mortality in children, with prognosis remaining dismal for some of these malignancies. Though the past two decades have seen advancements in surgery, radiation, and targeted therapy, major unresolved hurdles continue to undermine the therapeutic efficacy. These include challenges in suboptimal drug delivery through the blood-brain barrier (BBB), marked intra-tumoral molecular heterogeneity, and the elusive tumor microenvironment. Drug repurposing or re-tasking FDA-approved drugs with evidence of penetration into the CNS, using newer methods of intracranial drug delivery facilitating optimal drug exposure, has been an area of intense research. This could be a valuable tool, as most of these agents have already gone through the lengthy process of drug development and the evaluation of safety risks and the optimal pharmacokinetic profile. They can now be used and tested in clinics with an accelerated and different approach. Conclusions: The next-generation therapeutic strategy should prioritize repurposing oncologic and non-oncologic drugs that have been used for other indication, and have demonstrated robust preclinical activity against pediatric brain tumors. In combination with novel drug delivery techniques, these drugs could hold significant therapeutic promise in pediatric neurooncology.
Collapse
Affiliation(s)
| | - Stephanie A. Toll
- Children’s Hospital of Michigan, Central Michigan University School of Medicine, Saginaw, MI 48602, USA;
| | - Subhasree Biswas
- Bronglais General Hospital, Caradog Road, Aberystwyth SY23 1ER, Wales, UK;
| | - Hyo Bin You
- Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (H.B.Y.); (W.D.C.)
| | - William D. Chow
- Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (H.B.Y.); (W.D.C.)
| | - Nicholas Kendall
- School of Medicine, University of South Dakota Sanford, Vermillion, SD 57069, USA;
| | - Pournima Navalkele
- Division of Oncology, Children’s Hospital of Orange County, Orange, CA 92868, USA;
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
47
|
Shaw JR, Vaidya R, Xu F, Dharmaraj S, Pearson RM. Microfluidics-generated PLA nanoparticles: impact of purification method on macrophage interactions, anti-inflammatory effects, biodistribution, and protein corona formation. RSC PHARMACEUTICS 2025; 2:135-146. [PMID: 39650739 PMCID: PMC11615567 DOI: 10.1039/d4pm00233d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024]
Abstract
Polymeric nanoparticles (NPs) are traditionally formulated using batch methodologies that are poorly scalable and require time consuming, hands-on purification procedures. Here, we prepared poly(lactic acid) (PLA)-based polymeric NPs using a scalable microfluidics-based method and systematically investigated the impact of purification method (centrifugation versus tangential flow filtration (TFF)) to remove poly(vinyl alcohol) (PVA) on macrophage uptake, anti-inflammatory effects, biodistribution, and protein corona formation. TFF purification demonstrated significantly higher recovery of NPs compared to the centrifugation method, with little-to-no aggregation observed. PVA removal efficiency was superior with centrifugation, although TFF was comparable. NP cellular association, in vitro anti-inflammatory activity, and in vivo biodistribution studies suggested purification method-dependent alterations, which were correlated with protein corona profiles. This study underscores the potential of TFF, combined with microfluidics, as an efficient and high-yield purification method for NPs, and reveals the need for extensive confirmation of NP biological activity alongside physicochemical properties when developing NP therapeutics at-scale.
Collapse
Affiliation(s)
- Jacob R Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine 685 W. Baltimore Street Baltimore MD 21201 USA
| | - Radha Vaidya
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N. Pine Street Baltimore MD 21201 USA +410-706-3257
| | - Fanny Xu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N. Pine Street Baltimore MD 21201 USA +410-706-3257
| | - Shruti Dharmaraj
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N. Pine Street Baltimore MD 21201 USA +410-706-3257
| | - Ryan M Pearson
- Department of Microbiology and Immunology, University of Maryland School of Medicine 685 W. Baltimore Street Baltimore MD 21201 USA
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N. Pine Street Baltimore MD 21201 USA +410-706-3257
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine 22 S. Greene Street Baltimore MD 21201 USA
| |
Collapse
|
48
|
Basingab FS, Alshahrani OA, Alansari IH, Almarghalani NA, Alshelali NH, Alsaiary AH, Alharbi N, Zaher KA. From Pioneering Discoveries to Innovative Therapies: A Journey Through the History and Advancements of Nanoparticles in Breast Cancer Treatment. BREAST CANCER (DOVE MEDICAL PRESS) 2025; 17:27-51. [PMID: 39867813 PMCID: PMC11761866 DOI: 10.2147/bctt.s501448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
Nanoparticle technology has revolutionized breast cancer treatment by offering innovative solutions addressing the gaps in traditional treatment methods. This paper aimed to comprehensively explore the historical journey and advancements of nanoparticles in breast cancer treatment, highlighting their transformative impact on modern medicine. The discussion traces the evolution of nanoparticle-based therapies from their early conceptualization to their current applications and future potential. We initially explored the historical context of breast cancer treatment, highlighting the limitations of conventional therapies, such as surgery, radiation, and chemotherapy. The advent of nanotechnology has introduced a new era characterized by the development of various nanoparticles, including liposomes, dendrimers, and gold nanoparticles, designed to target cancer cells with remarkable precision. We further described the mechanisms of action for nanoparticles, including passive and active targeting, and reviewed significant breakthroughs and clinical trials that have validated their efficacy. Current applications of nanoparticles in breast cancer treatment have been examined, showcasing clinically approved therapies and comparing their effectiveness with traditional methods. This article also discusses the latest advancements in nanoparticle research, including drug delivery systems and combination therapy innovations, while addressing the current technical, biological, and regulatory challenges. The technical challenges include efficient and targeted delivery to tumor sites without affecting healthy tissue; biological, such as potential toxicity, immune system activation, or resistance mechanisms; economic, involving high production and scaling costs; and regulatory, requiring rigorous testing for safety, efficacy, and long-term effects to meet stringent approval standards. Finally, we have explored emerging trends, the potential for personalized medicine, and the ethical and social implications of this transformative technology. In conclusion, through comprehensive analysis and case studies, this paper underscores the profound impact of nanoparticles on breast cancer treatment and their future potential.
Collapse
Affiliation(s)
- Fatemah S Basingab
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Omniah A Alshahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Ibtehal H Alansari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Nada A Almarghalani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Nada H Alshelali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Abeer Hamad Alsaiary
- Biology Department, College of Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Najwa Alharbi
- Department of Biology Science, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Kawther A Zaher
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| |
Collapse
|
49
|
Zhang J, Pan T, Lee J, Goldberg S, King SA, Tang E, Hu Y, Chen L, Hoover A, Zhu L, Eng OS, Dekel B, Huang J, Wu X. Enabling tumor-specific drug delivery by targeting the Warburg effect of cancer. Cell Rep Med 2025; 6:101920. [PMID: 39809265 PMCID: PMC11866520 DOI: 10.1016/j.xcrm.2024.101920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/14/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Metabolic reprogramming of tumor cells is an emerging hallmark of cancer. Among all the changes in cancer metabolism, increased glucose uptake and the accumulation of lactate under normoxic conditions (the "Warburg effect") is a common feature of cancer cells. In this study, we develop a lactate-responsive drug delivery platform by targeting the Warburg effect. We design and test a gold/mesoporous silica Janus nanoparticle system as a gated drug carrier, in which the gold particles are functionalized with lactate oxidase and the silica particles are capped with α-cyclodextrin through surface arylboronate modification. In the presence of lactate, the lactate oxidase generates hydrogen peroxide, which induces the self-immolation reaction of arylboronate, leading to uncapping and drug release. Our results demonstrate greatly improved drug delivery specificity and therapeutic efficacy with this platform for the treatment of different cancers. Our findings present an effective approach for drug delivery by metabolic targeting of tumors.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Tony Pan
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Jimmy Lee
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA; Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sanja Goldberg
- Pediatric Stem Cell Research Institute, Safra Children's Hospital, Sheba Medical Center, Tel Aviv, Israel
| | - Sarah Ann King
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Erting Tang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Yifei Hu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Lifeng Chen
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Alex Hoover
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Linyong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Oliver S Eng
- Department of Surgery, University of California, Irvine, Orange, CA 92868, USA
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Safra Children's Hospital, Sheba Medical Center, Tel Aviv, Israel; Division of Pediatric Nephrology and Pediatric Stem Cell Research Institute, Safra Children's Hospital, Sheba Medical Center, Tel Hasomer, Sago Center for Regenerative Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jun Huang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
50
|
Padti AC, Bhavi SM, Thokchom B, Singh SR, Bhat SS, Harini BP, Sillanpää M, Yarajarla RB. Nanoparticle Interactions with the Blood Brain Barrier: Insights from Drosophila and Implications for Human Astrocyte Targeted Therapies. Neurochem Res 2025; 50:80. [PMID: 39832031 DOI: 10.1007/s11064-025-04333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
This review explores the intricate connections between Drosophila models and the human blood-brain barrier (BBB) with nanoparticle-based approaches for neurological treatment. Drosophila serves as a powerful model organism due to its evolutionary conservation of key biological processes, particularly in the context of the BBB, which is formed by glial cells that share structural and functional similarities with mammalian endothelial cells. Recent advancements in nanoparticle technology have highlighted their potential for effective drug delivery across the BBB, utilizing mechanisms such as passive diffusion, receptor-mediated transcytosis, and carrier-mediated transport. The ability to engineer nanoparticles with specific physicochemical properties-such as size, surface charge, and functionalization-enhances their targeting capabilities, particularly towards astrocytes, which play a crucial role in maintaining BBB integrity and responding to neuroinflammation. Insights gained from Drosophila studies have informed the design of personalized nanomedicine strategies aimed at treating neurodegenerative diseases, including Alzheimer's, Parkinson's disease etc. As research progresses, the integration of findings from Drosophila models with emerging humanized BBB systems will pave the way for innovative therapeutic approaches that improve drug delivery and patient outcomes in neurological disorders.
Collapse
Affiliation(s)
- Akshata Choudhari Padti
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Santosh Mallikarjun Bhavi
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Bothe Thokchom
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Sapam Riches Singh
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Shivanand S Bhat
- Department of Botany, Smt. Indira Gandhi Government First Grade Women's College, Sagar, Karnataka, 577401, India
| | - B P Harini
- Department of Zoology and Centre for Applied Genetics, Bangalore University, Bangaluru, Karnataka, 560056, India
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Norrebrogade 44, Aarhus C, 8000, Denmark
| | - Ramesh Babu Yarajarla
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India.
| |
Collapse
|