1
|
Brunner A, Unterberger SH, Auer H, Hautz T, Schneeberger S, Stalder R, Badzoka J, Kappacher C, Huck CW, Zelger B, Pallua JD. Suitability of Fourier transform infrared microscopy for the diagnosis of cystic echinococcosis in human tissue sections. JOURNAL OF BIOPHOTONICS 2024; 17:e202300513. [PMID: 38531615 DOI: 10.1002/jbio.202300513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/14/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
Cystic echinococcosis (CE) is a global health concern caused by cestodes, posing diagnostic challenges due to nonspecific symptoms and inconclusive radiographic results. Diagnosis relies on histopathological evaluation of affected tissue, demanding comprehensive tools. In this retrospective case study, Fourier transform infrared microscopy was explored for detecting and identifying CE through biochemical changes in human tissue sections. Tissue samples from 11 confirmed CE patients were analyzed. Archived FFPE blocks were cut and stained, and then CE-positive unstained sections were examined using Fourier transform infrared microscopy post-deparaffinization. Results revealed the method's ability to distinguish echinococcus elements from human tissue, irrespective of organ type. This research showcases the potential of mid-infrared microscopy as a valuable diagnostic tool for CE, offering promise in enhancing diagnostic precision in the face of the disease's complexities.
Collapse
Affiliation(s)
- A Brunner
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - S H Unterberger
- Department of Material-Technology, Leopold-Franzens University Innsbruck, Innsbruck, Austria
| | - H Auer
- Department of Medical Parasitology, Clinical Institute of Hygiene and Medical Microbiology, Medical University of Vienna, Vienna, Austria
| | - T Hautz
- OrganLifeTM, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - S Schneeberger
- OrganLifeTM, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - R Stalder
- Institute of Mineralogy and Petrography, Leopold-Franzens University Innsbruck, Innsbruck, Austria
| | - J Badzoka
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
| | - C Kappacher
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
| | - C W Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
| | - B Zelger
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - J D Pallua
- Department of Hospital for Orthopedics and Traumatology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Delrue C, De Bruyne S, Speeckaert MM. Unlocking the Diagnostic Potential of Saliva: A Comprehensive Review of Infrared Spectroscopy and Its Applications in Salivary Analysis. J Pers Med 2023; 13:907. [PMID: 37373896 DOI: 10.3390/jpm13060907] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Infrared (IR) spectroscopy is a noninvasive and rapid analytical technique that provides information on the chemical composition, structure, and conformation of biomolecules in saliva. This technique has been widely used to analyze salivary biomolecules, owing to its label-free advantages. Saliva contains a complex mixture of biomolecules including water, electrolytes, lipids, carbohydrates, proteins, and nucleic acids which are potential biomarkers for several diseases. IR spectroscopy has shown great promise for the diagnosis and monitoring of diseases such as dental caries, periodontitis, infectious diseases, cancer, diabetes mellitus, and chronic kidney disease, as well as for drug monitoring. Recent advancements in IR spectroscopy, such as Fourier-transform infrared (FTIR) spectroscopy and attenuated total reflectance (ATR) spectroscopy, have further enhanced its utility in salivary analysis. FTIR spectroscopy enables the collection of a complete IR spectrum of the sample, whereas ATR spectroscopy enables the analysis of samples in their native form, without the need for sample preparation. With the development of standardized protocols for sample collection and analysis and further advancements in IR spectroscopy, the potential for salivary diagnostics using IR spectroscopy is vast.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sander De Bruyne
- Department of Clinical Biology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
3
|
Güney Coşkun M, Kolay E, Basaranoglu M. Telenutrition for the management of inflammatory bowel disease: Benefits, limits, and future perspectives. World J Clin Cases 2023; 11:308-315. [PMID: 36686349 PMCID: PMC9850965 DOI: 10.12998/wjcc.v11.i2.308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/24/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Patients with inflammatory bowel disease (IBD) require lifelong and personalized care by a multidisciplinary healthcare team. However, the traditional medical model is not ideal for patients who require continuous close monitoring and whose symptoms may dramatically worsen between regularly scheduled visits. Additionally, close dietary follow-up and monitoring of IBD in a traditional setting are challenging because of the disease complexity, high pressure on outpatient clinics with a small number of IBD specialist dietitians, and rising incidence. Given the significant burden of IBD, there is a need to develop effective dietary management strategies. The coronavirus disease 2019 pandemic caused an unprecedented shift from in-person care to delivering health care via technological remote devices. Traditional nutrition therapy and consultation can be provided by telenutrition through remote electronic communication applications that could greatly benefit patient care. Telenutrition might be useful, safe, and cost-effective compared with standard care. It is likely that virtual care for chronic diseases including IBD will continue in some form into the future. This review article summarizes the evidence about telenutrition applications in the management of IBD patients, and we gave an overview of the acceptance and impact of these interventions on health outcomes.
Collapse
Affiliation(s)
- Merve Güney Coşkun
- Department of Nutrition and Dietetics, Istanbul Medipol University, Faculty of Health Sciences, Istanbul 34810, Turkey
- Department of Nutrition and Dietetics, Institute of Health Sciences, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Ezgi Kolay
- Dietitian, Independent Researcher, Istanbul 34000, Turkey
| | - Metin Basaranoglu
- Department of Gastroenterology, Bezmialem Vakif University Faculty of Medicine, Istanbul 34093, Turkey
| |
Collapse
|
4
|
Fourier-Transform Infra-Red Microspectroscopy Can Accurately Diagnose Colitis and Assess Severity of Inflammation. Int J Mol Sci 2022; 23:ijms23052849. [PMID: 35269993 PMCID: PMC8911059 DOI: 10.3390/ijms23052849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/27/2022] [Indexed: 11/16/2022] Open
Abstract
The diagnosis and management of inflammatory bowel disease relies on histological assessment, which is costly, subjective, and lacks utility for point-of-care diagnosis. Fourier-transform infra-red spectroscopy provides rapid, non-destructive, reproducible, and automatable label-free biochemical imaging of tissue for diagnostic purposes. This study characterises colitis using spectroscopy, discriminates colitis from healthy tissue, and classifies inflammation severity. Hyperspectral images were obtained from fixed intestinal sections of a murine colitis model treated with cell therapy to improve inflammation. Multivariate analyses and classification modelling were performed using supervised and unsupervised machine-learning algorithms. Quantitative analysis of severe colitis showed increased protein, collagen, and nucleic acids, but reduced glycogen when compared with normal tissue. A partial least squares discriminant analysis model, including spectra from all intestinal layers, classified normal colon and severe colitis with a sensitivity of 91.4% and a specificity of 93.3%. Colitis severity was classified by a stacked ensemble model yielding an average area under the receiver operating characteristic curve of 0.95, 0.88, 0.79, and 0.85 for controls, mild, moderate, and severe colitis, respectively. Infra-red spectroscopy can detect unique biochemical features of intestinal inflammation and accurately classify normal and inflamed tissue and quantify the severity of inflammation. This is a promising alternative to histological assessment.
Collapse
|
5
|
Guleken Z, Bulut H, Depciuch J, Tarhan N. Diagnosis of endometriosis using endometrioma volume and vibrational spectroscopy with multivariate methods as a noninvasive method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120246. [PMID: 34371315 DOI: 10.1016/j.saa.2021.120246] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Endometriomas are typically an advanced form of endometriosis that leads to the formation of scar tissue, adhesions, and an inflammatory reaction. There is no certain serum marker for the diagnosis of endometriosis. This study aims to research the correlation between the amount of peaks corresponding to proteins and lipids with the volume of endometrioma and determine the chemical structure of blood serum collected from women suffering from endometriosis patients with endometrioma and healthy subjects using Fourier Transform Infrared (FTIR) spectroscopy. FTIR spectroscopy is used as a non-invasive diagnostic technique for the discrimination of endometriosis women with endometrioma and control blood sera. The FTIR spectra of 100 serum samples acquired from 50 patients and 50 healthy individuals were used for this study. For this purpose, multivariate analyses such as Principal Component Analysis (PCA), Partial Last Square analysis (PLS) with Variables Importance in Projection (VIP), and probability models, were performed. Our results showed that FTIR range 1500 cm-1 and 1700 cm-1 and around 2700 cm-1 - 3000 cm-1, regions may be used for the diagnosis of endometriosis. Also, we find that proteins and lipids fraction increase with the volume of endometrioma. Moreover, PLS and VIP analysis suggested that lipids could be helpful in the diagnosis of endometriosis women with endometrioma.
Collapse
Affiliation(s)
- Zozan Guleken
- Uskudar University Faculty of Medicine, Department of Physiology Istanbul, Turkey.
| | - Huri Bulut
- Istinye University of Faculty of Medicine, Department Medical Biochemistry, Istanbul, Turkey
| | - Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Science, Krakow 31-342, Poland.
| | - Nevzat Tarhan
- Uskudar University, NPIstanbul Hospital, Istanbul, Turkey
| |
Collapse
|
6
|
Willenbacher E, Brunner A, Zelger B, Unterberger SH, Stalder R, Huck CW, Willenbacher W, Pallua JD. Application of mid-infrared microscopic imaging for the diagnosis and classification of human lymphomas. JOURNAL OF BIOPHOTONICS 2021; 14:e202100079. [PMID: 34159739 DOI: 10.1002/jbio.202100079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Mid-infrared (MIR) microscopic imaging of indolent and aggressive lymphomas was performed including formalin-fixed and paraffin-embedded samples of six follicular lymphomas and 12 diffuse large B-cell-lymphomas as well as reactive lymph nodes to investigate benefits and challenges for lymphoma diagnosis. MIR images were compared to defined pathological characteristics such as indolent versus aggressive versus reactive, germinal centre versus activated cell-of-origin (COO) subtypes, or a low versus a high proliferative index and level of PD-L1 expression. We demonstrated that MIR microscopic imaging can differentiate between reactive lymph nodes, indolent and aggressive lymphoma samples. Also, it has potential to be used in the subtyping of lymphomas, as shown with the differentiation between COO subtypes, the level of proliferation and PD-L1 expression. MIR microscopic imaging is a promising tool for diagnosis and subtyping of lymphoma and further evaluation is needed to fully explore the advantages and disadvantages of this method for pathological diagnosis.
Collapse
Affiliation(s)
- Ella Willenbacher
- Internal Medicine V: Hematology & Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Brunner
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Zelger
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Roland Stalder
- Institute of Mineralogy and Petrography, Leopold-Franzens University Innsbruck, Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, Innsbruck, Austria
| | - Wolfgang Willenbacher
- Internal Medicine V: Hematology & Oncology, Medical University of Innsbruck, Innsbruck, Austria
- Oncotyrol, Center for personalized Cancer Medicine, Innsbruck, Austria
| | - Johannes D Pallua
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- University Hospital for Orthopedics and Traumatology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Depciuch J, Barnaś E, Skręt-Magierło J, Skręt A, Kaznowska E, Łach K, Jakubczyk P, Cebulski J. Spectroscopic evaluation of carcinogenesis in endometrial cancer. Sci Rep 2021; 11:9079. [PMID: 33907297 PMCID: PMC8079695 DOI: 10.1038/s41598-021-88640-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Carcinogenesis is a multifaceted process of cancer formation. The transformation of normal cells into cancerous ones may be difficult to determine at a very early stage. Therefore, methods enabling identification of initial changes caused by cancer require novel approaches. Although physical spectroscopic methods such as FT-Raman and Fourier Transform InfraRed (FTIR) are used to detect chemical changes in cancer tissues, their potential has not been investigated with respect to carcinogenesis. The study aimed to evaluate the usefulness of FT-Raman and FTIR spectroscopy as diagnostic methods of endometrial cancer carcinogenesis. The results indicated development of endometrial cancer was accompanied with chemical changes in nucleic acid, amide I and lipids in Raman spectra. FTIR spectra showed that tissues with development of carcinogenesis were characterized by changes in carbohydrates and amides vibrations. Principal component analysis and hierarchical cluster analysis of Raman spectra demonstrated similarity of tissues with cancer cells and lesions considered precursor of cancer (complex atypical hyperplasia), however they differed from the control samples. Pearson correlation test showed correlation between cancer and complex atypical hyperplasia tissues and between non-cancerous tissue samples. The results of the study indicate that Raman spectroscopy is more effective in assessing the development of carcinogenesis in endometrial cancer than FTIR.
Collapse
Affiliation(s)
- Joanna Depciuch
- Institute of Nuclear Physics, Polish Academy of Science, 31-342, Krakow, Poland.
| | - Edyta Barnaś
- Institute of Health Sciences, Medical College, University of Rzeszow, Kopisto 2a, 35-959, Rzeszow, Poland
| | - Joanna Skręt-Magierło
- Institute of Medical Sciences, Medical College, University of Rzeszow, Kopisto 2a, 35-959, Rzeszow, Poland
| | - Andrzej Skręt
- Institute of Medical Sciences, Medical College, University of Rzeszow, Kopisto 2a, 35-959, Rzeszow, Poland
| | - Ewa Kaznowska
- Chair of Morphological Sciences, Department of Pathomorphology, Medical College, University of Rzeszow, Kopisto 2a , 35-959, Rzeszow, Poland
| | - Kornelia Łach
- Department of Pediatrics, Institute of Medical Sciences, Medical College, University of Rzeszow, Warzywna 1A, 35-310, Rzeszow, Poland
| | - Paweł Jakubczyk
- Institute of Physics, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Jozef Cebulski
- Institute of Physics, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| |
Collapse
|
8
|
Cuthill H, Elleman C, Curwen T, Wolf B. Colloidal Particles for Pickering Emulsion Stabilization Prepared via Antisolvent Precipitation of Lignin-Rich Cocoa Shell Extract. Foods 2021; 10:foods10020371. [PMID: 33572134 PMCID: PMC7914710 DOI: 10.3390/foods10020371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022] Open
Abstract
This study concerns the preparation and functionality testing of a new class of Pickering particles for food emulsion stabilization: colloidal lignin-rich particles (CLRPs) derived from ethanol-soluble extract of cocoa shell. A further goal was to achieve Pickering functionality without the need to add co-emulsifying surfactants during emulsion processing. Cocoa shell is a co-product of the food manufacturing industry. As such it is anticipated that the particles would be accepted as a natural food ingredient, provided no harmful solvents are used in any step of their processing. The cocoa shell particles were milled, dispersed in water and exposed to 250 °C for 1 h in a stainless-steel tubular reactor followed by ethanol extraction to obtain a lignin-rich extract (46% (w/w) lignin with the remainder predominantly lipids). CLRPs were then fabricated by the precipitation of ethanol-dissolved extract into water (antisolvent). By employing an agitated process and droplet dosing into a non-agitated process, four particle suspensions of a range of submicron diameters were obtained. All particle suspensions contained the same mass fraction of extract and were surface active, with surface tension decreasing with increasing particle size. The smallest particles were obtained when lipids were removed from the extract prior to particle processing. In contrast to the other four particle suspensions, this one failed to stabilize a 10% (w/w) sunflower oil-in-water emulsion. We hypothesize that the phospholipids indigenously present in these CLRP formulations are a critical component for Pickering functionality. It can be concluded that we have successfully introduced a new class of Pickering particles, fabricated from an industry co-product and anticipated to be food grade.
Collapse
Affiliation(s)
- Holly Cuthill
- Division of Food, Nutrition and Dietetics, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, UK;
| | - Carole Elleman
- The Reading Science Centre, Whiteknights Campus, Mondelēz International, Reading Scientific Services Ltd., Pepper Lane, Reading, Berkshire RG6 6LA, UK; (C.E.); (T.C.)
| | - Thomas Curwen
- The Reading Science Centre, Whiteknights Campus, Mondelēz International, Reading Scientific Services Ltd., Pepper Lane, Reading, Berkshire RG6 6LA, UK; (C.E.); (T.C.)
| | - Bettina Wolf
- Division of Food, Nutrition and Dietetics, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, UK;
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence:
| |
Collapse
|
9
|
Simultaneous FTIR and Raman Spectroscopy in Endometrial Atypical Hyperplasia and Cancer. Int J Mol Sci 2020; 21:ijms21144828. [PMID: 32650484 PMCID: PMC7402178 DOI: 10.3390/ijms21144828] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 01/26/2023] Open
Abstract
Currently, endometrial carcinoma (EC) is the most common genital cancer in high-income countries. Some types of endometrial hyperplasia (EH) may be progressing to this malignancy. The diagnosis of EC and EH is based on time consuming histopathology evaluation, which is subjective and causes discrepancies in reassessment. Therefore, there is a need to create methods of objective evaluation allowing the diagnosis of early changes. The study aimed to simultaneously asses Fourier Transform Infrared (FTIR) and Raman spectroscopy combined with multidimensional analysis to identify the tissues of endometrial cancer, atypical hyperplasia and the normal control group, and differentiate them. The results of FTIR and Raman spectroscopy revealed quantitative and qualitative changes in the nucleic acid and protein in the groups of cancer and atypical hyperplasia, in comparison with the control group. Changes in the lipid region were also observed in Raman spectra. Pearson correlation coefficient demonstrated a statistically significant correlation between Raman spectra for the cancer and atypical hyperplasia groups (0.747, p < 0.05) and for atypical hyperplasia and the controls (0.507, p < 0.05), while FTIR spectra demonstrated a statistically significant positive correlation for the same group as in Raman data and for the control and cancer groups (0.966, p < 0.05). To summarize, the method of spectroscopy enables differentiation of atypical hyperplasia and endometrial cancer tissues from the physiological endometrial tissue.
Collapse
|
10
|
Paluszkiewicz C, Pięta E, Woźniak M, Piergies N, Koniewska A, Ścierski W, Misiołek M, Kwiatek WM. Saliva as a first-line diagnostic tool: A spectral challenge for identification of cancer biomarkers. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
Beć KB, Grabska J, Huck CW. Biomolecular and bioanalytical applications of infrared spectroscopy - A review. Anal Chim Acta 2020; 1133:150-177. [PMID: 32993867 DOI: 10.1016/j.aca.2020.04.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Infrared (IR; or mid-infrared, MIR; 4000-400 cm-1; 2500-25,000 nm) spectroscopy has become one of the most powerful and versatile tools at the disposal of modern bioscience. Because of its high molecular specificity, applicability to wide variety of samples, rapid measurement and non-invasivity, IR spectroscopy forms a potent approach to elucidate qualitative and quantitative information from various kinds of biological material. For these reasons, it became an established bioanalytical technique with diverse applications. This work aims to be a comprehensive and critical review of the recent accomplishments in the field of biomolecular and bioanalytical IR spectroscopy. That progress is presented on a wider background, with fundamental characteristics, the basic principles of the technique outlined, and its scientific capability directly compared with other methods being used in similar fields (e.g. near-infrared, Raman, fluorescence). The article aims to present a complete examination of the topic, as it touches the background phenomena, instrumentation, spectra processing and data analytical methods, spectra interpretation and related information. To suit this goal, the article includes a tutorial information essential to obtain a thorough perspective of bio-related applications of the reviewed methodologies. The importance of the fundamental factors to the final performance and applicability of IR spectroscopy in various areas of bioscience is explained. This information is interpreted in critical way, with aim to gain deep understanding why IR spectroscopy finds extraordinarily intensive use in this remarkably diverse and dynamic field of research and utility. The major focus is placed on the diversity of the applications in which IR biospectroscopy has been established so far and those onto which it is expanding nowadays. This includes qualitative and quantitative analytical spectroscopy, spectral imaging, medical diagnosis, monitoring of biophysical processes, and studies of physicochemical properties and dynamics of biomolecules. The application potential of IR spectroscopy in light of the current accomplishments and the future prospects is critically evaluated and its significance in the progress of bioscience is comprehensively presented.
Collapse
Affiliation(s)
- Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria.
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria.
| |
Collapse
|
12
|
Wöss C, Unterberger SH, Degenhart G, Akolkar A, Traxl R, Kuhn V, Schirmer M, Pallua AK, Tappert R, Pallua JD. Comparison of structure and composition of a fossil Champsosaurus vertebra with modern Crocodylidae vertebrae: A multi-instrumental approach. J Mech Behav Biomed Mater 2020; 104:103668. [PMID: 32174426 DOI: 10.1016/j.jmbbm.2020.103668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 11/30/2022]
Abstract
Information on the adaptation of bone structures during evolution is rare since histological data are limited. Micro- and nano-computed tomography of a fossilized vertebra from Champsosaurus sp., which has an estimated age of 70-73 million years, revealed lower porosity and higher bone density compared to modern Crocodylidae vertebrae. Mid-infrared reflectance and energy dispersive X-ray mapping excluded a petrification process, and demonstrated a typical carbonate apatite distribution, confirming histology in light- and electron microscopy of the preserved vertebra. As a consequence of this evolutionary process, the two vertebrae of modern Crocodylidae show reduced overall stiffness in the finite element analysis simulation compared to the fossilized Champsosaurus sp. vertebra, with predominant stiffness along the longitudinal z-axes.
Collapse
Affiliation(s)
- C Wöss
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria
| | - S H Unterberger
- Unit for Material Technology, University of Innsbruck, Technikerstraße 13, 6020, Innsbruck, Austria
| | - G Degenhart
- Department of Radiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - A Akolkar
- Illwerke vkw Professorship for Energy Efficiency, Vorarlberg University of Applied Sciences, Hochschulstraße 1, 6850, Dornbirn, Austria; Josef Ressel Center for Applied Computational Science in Energy, Finance, and Logistics, Hochschulstraße 1, 6850, Dornbirn, Austria
| | - R Traxl
- Unit for Material Technology, University of Innsbruck, Technikerstraße 13, 6020, Innsbruck, Austria
| | - V Kuhn
- Department of Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - M Schirmer
- Department of Internal Medicine, Clinic II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - A K Pallua
- Former Institute for Computed Tomography-Neuro CT, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - R Tappert
- Hyperspectral Intelligence Inc., Box 851, Gibsons, British Columbia, V0N 1V0, Canada
| | - J D Pallua
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria; Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria.
| |
Collapse
|
13
|
Pallua JD, Brunner A, Zelger B, Stalder R, Unterberger SH, Schirmer M, Tappert MC. Clinical infrared microscopic imaging: An overview. Pathol Res Pract 2018; 214:1532-1538. [PMID: 30220435 DOI: 10.1016/j.prp.2018.08.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/22/2018] [Accepted: 08/26/2018] [Indexed: 11/16/2022]
Abstract
New developments in Mid-infrared microscopic imaging instrumentation and data analysis have turned this method into a conventional technique. This imaging method offers a global analysis of samples, with a resolution close to the cellular level enabling the acquisition of local molecular expression profiles. It is possible to get chemo-morphological information about the tissue status, which represents an essential benefit for future analytical interpretation of pathological changes of tissue. In this review, we give an overview of Mid-infrared microscopic imaging and its applications in clinical research.
Collapse
Affiliation(s)
- J D Pallua
- Department of Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria; Institute of Legal Medicine, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria.
| | - A Brunner
- Department of Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria
| | - B Zelger
- Department of Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria
| | - R Stalder
- Institute of Mineralogy and Petrography, Leopold-Franzens University Innsbruck, Innrain 52, 6020, Innsbruck, Austria
| | - S H Unterberger
- Material-Technology, Leopold-Franzens University Innsbruck, Technikerstraße 13, 6020, Innsbruck, Austria
| | - M Schirmer
- Department of Internal Medicine, Clinic II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - M C Tappert
- Hyperspectral Intelligence Inc., Box 851, V0N 1V0, Gibsons, Canada
| |
Collapse
|
14
|
Woess C, Unterberger SH, Roider C, Ritsch-Marte M, Pemberger N, Cemper-Kiesslich J, Hatzer-Grubwieser P, Parson W, Pallua JD. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains. PLoS One 2017; 12:e0174552. [PMID: 28334006 PMCID: PMC5363948 DOI: 10.1371/journal.pone.0174552] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 03/11/2017] [Indexed: 11/18/2022] Open
Abstract
Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI) of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR) microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization) was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies) between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43-at 450 cm-1 and ν4PO43- from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio decreases with time. Cluster-analyses of data from Raman microscopic imaging reconstructed histo-anatomical features in comparison to the light microscopic image and finally, by application of principal component analyses (PCA), it was possible to see a clear distinction between forensic and archaeological bone samples. Hence, the spectral characterization of inorganic and organic compounds by the afore mentioned techniques, followed by analyses such as multivariate imaging analysis (MIAs) and principal component analyses (PCA), appear to be suitable for the post mortem interval (PMI) estimation of human skeletal remains.
Collapse
Affiliation(s)
- Claudia Woess
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Clemens Roider
- Division for Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Monika Ritsch-Marte
- Division for Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadin Pemberger
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold Franzens University of Innsbruck, Innsbruck, Austria
| | - Jan Cemper-Kiesslich
- Interfaculty Department of Legal Medicine, University of Salzburg, Salzburg, Austria
| | | | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Dominikus Pallua
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
- Department of Pathology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Titus J, Viennois E, Merlin D, Perera AGU. Minimally invasive screening for colitis using attenuated total internal reflectance fourier transform infrared spectroscopy. JOURNAL OF BIOPHOTONICS 2017; 10:465-472. [PMID: 27094092 PMCID: PMC5073046 DOI: 10.1002/jbio.201600041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/09/2016] [Accepted: 03/28/2016] [Indexed: 05/23/2023]
Abstract
This article describes a rapid, simple and cost-effective technique that could lead to a screening method for colitis without the need for biopsies or in vivo measurements. This screening technique includes the testing of serum using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy for the colitis-induced increased presence of mannose. Chronic (Interleukin 10 knockout) and acute (Dextran Sodium Sulphate-induced) models for colitis are tested using the ATR-FTIR technique. Arthritis (Collagen Antibody Induced Arthritis) and metabolic syndrome (Toll like receptor 5 knockout) models are also tested as controls. The marker identified as mannose uniquely screens and distinguishes the colitic from the non-colitic samples and the controls. The reference or the baseline spectrum could be the pooled and averaged spectra of non-colitic samples or the subject's previous sample spectrum. This shows the potential of having individualized route maps of disease status, leading to personalized diagnosis and drug management.
Collapse
Affiliation(s)
- Jitto Titus
- Department of Physics and Astronomy, GSU, Atlanta, GA 30303, USA
| | - Emilie Viennois
- Institute for Biomedical Sciences, GSU, Atlanta, GA 30302, USA
- Center for Diagnostics and Therapeutics, GSU, Atlanta, GA 30302, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, GSU, Atlanta, GA 30302, USA
- Center for Diagnostics and Therapeutics, GSU, Atlanta, GA 30302, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - A. G. Unil Perera
- Department of Physics and Astronomy, GSU, Atlanta, GA 30303, USA
- Center for Diagnostics and Therapeutics, GSU, Atlanta, GA 30302, USA
| |
Collapse
|
16
|
Sahu RK, Salman A, Mordechai S. Tracing overlapping biological signals in mid-infrared using colonic tissues as a model system. World J Gastroenterol 2017; 23:286-296. [PMID: 28127202 PMCID: PMC5236508 DOI: 10.3748/wjg.v23.i2.286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 10/19/2016] [Accepted: 11/16/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To understand the interference of carbohydrates absorbance in nucleic acids signals during diagnosis of malignancy using Fourier transform infrared (FTIR) spectroscopy.
METHODS We used formalin fixed paraffin embedded colonic tissues to obtain infrared (IR) spectra in the mid IR region using a bruker II IR microscope with a facility for varying the measurement area by varying the aperture available. Following this procedure we could measure different regions of the crypt circles containing different biochemicals. Crypts from 18 patients were measured. Circular crypts with a maximum diameter of 120 μm and a lumen of about 30 μm were selected for uniformity. The spectral data was analyzed using conventional and advanced computational methods.
RESULTS Among the various components that are observed to contribute to the diagnostic capabilities of FTIR, the carbohydrates and nucleic acids are prominent. However there are intrinsic difficulties in the diagnostic capabilities due to the overlap of major absorbance bands of nucleic acids, carbohydrates and phospholipids in the mid-IR region. The result demonstrates colonic tissues as a biological system suitable for studying interference of carbohydrates and nucleic acids under ex vivo conditions. Among the diagnostic parameters that are affected by the absorbance from nucleic acids is the RNA/DNA ratio, dependent on absorbance at 1121 cm-1 and 1020 cm-1 that is used to classify the normal and cancerous tissues especially during FTIR based diagnosis of colonic malignancies. The signals of the nucleic acids and the ratio (RNA/DNA) are likely increased due to disappearance of interfering components like carbohydrates and phosphates along with an increase in amount of RNA.
CONCLUSION The present work, proposes one mechanism for the observed changes in the nucleic acid absorbance in mid-IR during disease progression (carcinogenesis).
Collapse
|
17
|
Barlev E, Zelig U, Bar O, Segev C, Mordechai S, Kapelushnik J, Nathan I, Flomen F, Kashtan H, Dickman R, Madhala-Givon O, Wasserberg N. A novel method for screening colorectal cancer by infrared spectroscopy of peripheral blood mononuclear cells and plasma. J Gastroenterol 2016; 51:214-221. [PMID: 26112122 DOI: 10.1007/s00535-015-1095-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/04/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Early detection of colorectal cancer (CRC) can reduce mortality and morbidity. Current screening methods include colonoscopy and stool tests, but a simple low-cost blood test would increase compliance. This preliminary study assessed the utility of analyzing the entire bio-molecular profile of peripheral blood mononuclear cells (PBMCs) and plasma using Fourier transform infrared (FTIR) spectroscopy for early detection of CRC. METHODS Blood samples were prospectively collected from 62 candidates for CRC screening/diagnostic colonoscopy or surgery for colonic neoplasia. PBMCs and plasma were separated by Ficoll gradient, dried on zinc selenide slides, and placed under a FTIR microscope. FTIR spectra were analyzed for biomarkers and classified by principal component and discriminant analyses. Findings were compared among diagnostic groups. RESULTS Significant changes in multiple bands that can serve as CRC biomarkers were observed in PBMCs (p = ~0.01) and plasma (p = ~0.0001) spectra. There were minor but statistically significant differences in both blood components between healthy individuals and patients with benign polyps. Following multivariate analysis, the healthy individuals could be well distinguished from patients with CRC, and the patients with benign polyps were mostly distributed as a distinct subgroup within the overlap region. Leave-one-out cross-validation for evaluating method performance yielded an area under the receiver operating characteristics curve of 0.77, with sensitivity 81.5% and specificity 71.4%. CONCLUSIONS Joint analysis of the biochemical profile of two blood components rather than a single biomarker is a promising strategy for early detection of CRC. Additional studies are required to validate our preliminary clinical results.
Collapse
Affiliation(s)
- Eyal Barlev
- Department of Surgery B, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Udi Zelig
- Todos Medical Ltd, 1 HaMada St, 76703, Rehovot, Israel.
| | - Omri Bar
- Todos Medical Ltd, 1 HaMada St, 76703, Rehovot, Israel
| | - Cheli Segev
- Todos Medical Ltd, 1 HaMada St, 76703, Rehovot, Israel
| | - Shaul Mordechai
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Joseph Kapelushnik
- Pediatric Hemato-Oncology Unit, Soroka University Medical Center, Beer-Sheva, Israel
- Faculty of Medicine, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ilana Nathan
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Institute of Hematology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Felix Flomen
- Todos Medical Ltd, 1 HaMada St, 76703, Rehovot, Israel
| | - Hanoch Kashtan
- Division of General Surgery, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
| | - Ram Dickman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Gastroenterology, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
| | - Osnat Madhala-Givon
- Department of Surgery B, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Wasserberg
- Department of Surgery B, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Woess C, Drach M, Villunger A, Tappert R, Stalder R, Pallua JD. Application of mid-infrared (MIR) microscopy imaging for discrimination between follicular hyperplasia and follicular lymphoma in transgenic mice. Analyst 2015; 140:6363-72. [PMID: 26236782 PMCID: PMC4562367 DOI: 10.1039/c5an01072a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mid-infrared (MIR) microscopy imaging is a vibrational spectroscopic technique that uses infrared radiation to image molecules of interest in thin tissue sections. A major advantage of this technology is the acquisition of local molecular expression profiles, while maintaining the topographic integrity of the tissue. Therefore, this technology has become an essential tool for the detection and characterization of the molecular components of many biological processes. Using this method, it is possible to investigate the spatial distribution of proteins and small molecules within biological systems by in situ analysis. In this study, we have evaluated the potential of mid-infrared microscopy imaging to study biochemical changes which distinguish between reactive lymphadenopathy and cancer in genetically modified mice with different phenotypes. We were able to demonstrate that MIR microscopy imaging and multivariate image analyses of different mouse genotypes correlated well with the morphological tissue features derived from HE staining. Using principal component analyses, we were also able to distinguish spectral clusters from different phenotype samples, particularly from reactive lymphadenopathy (follicular hyperplasia) and cancer (follicular lymphoma).
Collapse
Affiliation(s)
- C Woess
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
19
|
Lima CA, Goulart VP, Côrrea L, Pereira TM, Zezell DM. ATR-FTIR spectroscopy for the assessment of biochemical changes in skin due to cutaneous squamous cell carcinoma. Int J Mol Sci 2015; 16:6621-30. [PMID: 25811925 PMCID: PMC4424979 DOI: 10.3390/ijms16046621] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/18/2015] [Accepted: 03/13/2015] [Indexed: 11/29/2022] Open
Abstract
Nonmelanoma skin cancers represent 95% of cutaneous neoplasms. Among them, squamous cell carcinoma (SCC) is the more aggressive form and shows a pattern of possible metastatic profile. In this work, we used Fourier transform infrared spectroscopy (FTIR) spectroscopy to assess the biochemical changes in normal skin caused by squamous cell carcinoma induced by multi-stage chemical carcinogenesis in mice. Changes in the absorption intensities and shifts were observed in the vibrational modes associated to proteins, indicating changes in secondary conformation in the neoplastic tissue. Hierarchical cluster analysis was performed to evaluate the potential of the technique to differentiate the spectra of neoplastic and normal skin tissue, so that the accuracy obtained for this classification was 86.4%. In this sense, attenuated total reflection (ATR)-FTIR spectroscopy provides a useful tool to complement histopathological analysis in the clinical routine for the diagnosis of cutaneous squamous cell carcinoma.
Collapse
Affiliation(s)
- Cássio A Lima
- Center for Lasers and Applications, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo SP 05508-000, Brazil.
| | - Viviane P Goulart
- Center for Lasers and Applications, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo SP 05508-000, Brazil.
| | - Luciana Côrrea
- School of Dentistry, Universidade de São Paulo, São Paulo SP 05508-000, Brazil.
| | - Thiago M Pereira
- Center for Lasers and Applications, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo SP 05508-000, Brazil.
- Instituto de Ciência e Tecnologia (ICT), Universidade Federal de São Paulo, São José dos Campos SP 12.231-280, Brazil.
| | - Denise M Zezell
- Center for Lasers and Applications, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo SP 05508-000, Brazil.
| |
Collapse
|
20
|
Zohdi V, Whelan DR, Wood BR, Pearson JT, Bambery KR, Black MJ. Importance of tissue preparation methods in FTIR micro-spectroscopical analysis of biological tissues: 'traps for new users'. PLoS One 2015; 10:e0116491. [PMID: 25710811 PMCID: PMC4339720 DOI: 10.1371/journal.pone.0116491] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/10/2014] [Indexed: 11/19/2022] Open
Abstract
Fourier Transform Infrared (FTIR) micro-spectroscopy is an emerging technique for the biochemical analysis of tissues and cellular materials. It provides objective information on the holistic biochemistry of a cell or tissue sample and has been applied in many areas of medical research. However, it has become apparent that how the tissue is handled prior to FTIR micro-spectroscopic imaging requires special consideration, particularly with regards to methods for preservation of the samples. We have performed FTIR micro-spectroscopy on rodent heart and liver tissue sections (two spectroscopically very different biological tissues) that were prepared by desiccation drying, ethanol substitution and formalin fixation and have compared the resulting spectra with that of fully hydrated freshly excised tissues. We have systematically examined the spectra for any biochemical changes to the native state of the tissue caused by the three methods of preparation and have detected changes in infrared (IR) absorption band intensities and peak positions. In particular, the position and profile of the amide I, key in assigning protein secondary structure, changes depending on preparation method and the lipid absorptions lose intensity drastically when these tissues are hydrated with ethanol. Indeed, we demonstrate that preserving samples through desiccation drying, ethanol substitution or formalin fixation significantly alters the biochemical information detected using spectroscopic methods when compared to spectra of fresh hydrated tissue. It is therefore imperative to consider tissue preparative effects when preparing, measuring, and analyzing samples using FTIR spectroscopy.
Collapse
Affiliation(s)
- Vladislava Zohdi
- Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Donna R. Whelan
- Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Bayden R. Wood
- Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - James T. Pearson
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Keith R. Bambery
- Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - M. Jane Black
- Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
- * E-mail:
| |
Collapse
|
21
|
Surowka AD, Adamek D, Szczerbowska-Boruchowska M. The combination of artificial neural networks and synchrotron radiation-based infrared micro-spectroscopy for a study on the protein composition of human glial tumors. Analyst 2015; 140:2428-38. [DOI: 10.1039/c4an01867b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein-related changes associated with the development of human brain gliomas are of increasing interest in modern neuro-oncology.
Collapse
Affiliation(s)
- A. D. Surowka
- AGH University of Science and Technology
- Faculty of Physics and Applied Computer Science
- 30-059 Krakow
- Poland
| | - D. Adamek
- Jagiellonian University
- Faculty of Medicine
- Department of Neuropathology
- Chair of Pathomorphology
- Krakow
| | | |
Collapse
|
22
|
Khanmohammadi M, Ghasemi K, Garmarudi AB. Genetic algorithm spectral feature selection coupled with quadratic discriminant analysis for ATR-FTIR spectrometric diagnosis of basal cell carcinoma via blood sample analysis. RSC Adv 2014. [DOI: 10.1039/c4ra04965a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A diagnostic approach for basal cell carcinoma (BCC) has been developed based on investigation of the infrared spectra of blood samples.
Collapse
Affiliation(s)
| | - Keyvan Ghasemi
- Chemistry Department, Faculty of Science
- IKIU
- Qazvin, Iran
| | | |
Collapse
|
23
|
Nallala J, Diebold MD, Gobinet C, Bouché O, Sockalingum GD, Piot O, Manfait M. Infrared spectral histopathology for cancer diagnosis: a novel approach for automated pattern recognition of colon adenocarcinoma. Analyst 2014; 139:4005-15. [DOI: 10.1039/c3an01022h] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Automated and label-free colon cancer diagnosis and identification of tumor-associated features using FTIR spectral histopathology directly on paraffinized tissue arrays.
Collapse
Affiliation(s)
- Jayakrupakar Nallala
- Université de Reims Champagne-Ardenne
- MéDIAN-Biophotonique et Technologies pour la Santé
- UFR de Pharmacie
- 51096 Reims Cedex, France
- CNRS UMR7369
| | - Marie-Danièle Diebold
- Université de Reims Champagne-Ardenne
- MéDIAN-Biophotonique et Technologies pour la Santé
- UFR de Pharmacie
- 51096 Reims Cedex, France
- CNRS UMR7369
| | - Cyril Gobinet
- Université de Reims Champagne-Ardenne
- MéDIAN-Biophotonique et Technologies pour la Santé
- UFR de Pharmacie
- 51096 Reims Cedex, France
- CNRS UMR7369
| | - Olivier Bouché
- Université de Reims Champagne-Ardenne
- MéDIAN-Biophotonique et Technologies pour la Santé
- UFR de Pharmacie
- 51096 Reims Cedex, France
- CNRS UMR7369
| | - Ganesh Dhruvananda Sockalingum
- Université de Reims Champagne-Ardenne
- MéDIAN-Biophotonique et Technologies pour la Santé
- UFR de Pharmacie
- 51096 Reims Cedex, France
- CNRS UMR7369
| | - Olivier Piot
- Université de Reims Champagne-Ardenne
- MéDIAN-Biophotonique et Technologies pour la Santé
- UFR de Pharmacie
- 51096 Reims Cedex, France
- CNRS UMR7369
| | - Michel Manfait
- Université de Reims Champagne-Ardenne
- MéDIAN-Biophotonique et Technologies pour la Santé
- UFR de Pharmacie
- 51096 Reims Cedex, France
- CNRS UMR7369
| |
Collapse
|
24
|
Giorgini E, Balercia P, Conti C, Ferraris P, Sabbatini S, Rubini C, Tosi G. Insights on diagnosis of oral cavity pathologies by infrared spectroscopy: A review. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Lee S, Kim K, Lee H, Jun CH, Chung H, Park JJ. Improving the classification accuracy for IR spectroscopic diagnosis of stomach and colon malignancy using non-linear spectral feature extraction methods. Analyst 2013; 138:4076-82. [DOI: 10.1039/c3an00256j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Pezzei C, Brunner A, Bonn GK, Huck CW. Fourier transform infrared imaging analysis in discrimination studies of bladder cancer. Analyst 2013; 138:5719-25. [DOI: 10.1039/c3an01101a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Vernocchi P, Vannini L, Gottardi D, Del Chierico F, Serrazanetti DI, Ndagijimana M, Guerzoni ME. Integration of datasets from different analytical techniques to assess the impact of nutrition on human metabolome. Front Cell Infect Microbiol 2012; 2:156. [PMID: 23248777 PMCID: PMC3518793 DOI: 10.3389/fcimb.2012.00156] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 11/25/2012] [Indexed: 12/14/2022] Open
Abstract
Bacteria colonizing the human intestinal tract exhibit a high phylogenetic diversity that reflects their immense metabolic potentials. The catalytic activity of gut microbes has an important impact on gastrointestinal (GI) functions and host health. The microbial conversion of carbohydrates and other food components leads to the formation of a large number of compounds that affect the host metabolome and have beneficial or adverse effects on human health. Metabolomics is a metabolic-biology system approach focused on the metabolic responses understanding of living systems to physio-pathological stimuli by using multivariate statistical data on human body fluids obtained by different instrumental techniques. A metabolomic approach based on an analytical platform could be able to separate, detect, characterize and quantify a wide range of metabolites and its metabolic pathways. This approach has been recently applied to study the metabolic changes triggered in the gut microbiota by specific diet components and diet variations, specific diseases, probiotic and synbiotic food intake. This review describes the metabolomic data obtained by analyzing human fluids by using different techniques and particularly Gas Chromatography Mass Spectrometry Solid-phase Micro Extraction (GC-MS/SPME), Proton Nuclear Magnetic Resonance (1H-NMR) Spectroscopy and Fourier Transform Infrared (FTIR) Spectroscopy. This instrumental approach has a good potential in the identification and detection of specific food intake and diseases biomarkers.
Collapse
Affiliation(s)
- Pamela Vernocchi
- Interdipartimental Centre for Industrial Research-CIRI-AGRIFOOD, Alma Mater Studiorum, University of Bologna Bologna, Italy ; Parasitology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Pallua JD, Pezzei C, Zelger B, Schaefer G, Bittner LK, Huck-Pezzei VA, Schoenbichler SA, Hahn H, Kloss-Brandstaetter A, Kloss F, Bonn GK, Huck CW. Fourier transform infrared imaging analysis in discrimination studies of squamous cell carcinoma. Analyst 2012; 137:3965-74. [PMID: 22792538 DOI: 10.1039/c2an35483g] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oral squamous cell carcinoma (OSCC) of the oral cavity and oropharynx represents more than 95% of all malignant neoplasms in the oral cavity. Histomorphological evaluation of this cancer type is invasive and remains a time consuming and subjective technique. Therefore, novel approaches for histological recognition are necessary to identify malignancy at an early stage. Fourier transform infrared (FTIR) imaging has become an essential tool for the detection and characterization of the molecular components of biological processes, such as those responsible for the dynamic properties of tumor progression. FTIR imaging is a modern analytical technique enabling molecular imaging of a complex biological sample and is based on the absorption of IR radiation by vibrational transitions in covalent bonds. One major advantage of this technique is the acquisition of local molecular expression profiles, while maintaining the topographic integrity of the tissue and avoiding time-consuming extraction, purification, and separation steps. With this imaging technique, it is possible to obtain unique images of the spatial distribution of proteins, lipids, carbohydrates, cholesterols, nucleic acids, phospholipids, and small molecules with high spatial resolution. Analysis and visualization of FTIR imaging datasets are challenging and the use of chemometric tools is crucial in order to take advantage of the full measurement. Therefore, methodologies for this task based on the novel developed algorithm for multivariate image analysis (MIA) are often necessary. In the present study, FTIR imaging and data analysis methods were combined to optimize the tissue measurement mode after deparaffinization and subsequent data evaluation (univariate analysis and MIAs). We demonstrate that it is possible to collect excellent IR spectra from formalin-fixed paraffin-embedded (FFPE) tissue microarrays (TMAs) of OSCC tissue sections employing an optimised analytical protocol. The correlation of FTIR imaging to the morphological tissue features obtained by histological staining of the sections demonstrated that many histomorphological tissue patterns can be visualized in the colour images. The different algorithms used for MIAs of FTIR imaging data dramatically increased the information content of the IR images from squamous cell tissue sections. These findings indicate that intra-operative and surgical specimens of squamous cell carcinoma tissue can be characterized by FTIR imaging.
Collapse
Affiliation(s)
- J D Pallua
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80-82-52a, 6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Liu Q, Lu X, Swanson BG, Rasco BA, Kang DH. Monitoring Ultraviolet (UV) Radiation Inactivation of Cronobacter sakazakii in Dry Infant Formula Using Fourier Transform Infrared Spectroscopy. J Food Sci 2011; 77:M86-93. [DOI: 10.1111/j.1750-3841.2011.02503.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Fourier transform infrared microspectroscopy as a diagnostic tool for distinguishing between normal and malignant human gastric tissue. J Biosci 2011; 36:669-77. [DOI: 10.1007/s12038-011-9090-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Erukhimovitch V, Bogomolny E, Huleihil M, Huleihel M. Infrared spectral changes identified during different stages of herpes viruses infection in vitro. Analyst 2011; 136:2818-24. [PMID: 21611647 DOI: 10.1039/c1an15319f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Microscopic Fourier transform infrared spectroscopy (FTIR) which is based on the characteristic molecular vibrational spectra of cells was previously applied for the identification of various biological samples. In the present study, FTIR spectroscopy was used for the characterization of different stages during the development of herpes viruses infection. Vero cells in culture were infected with high and low doses of different herpes viruses [herpes simplex virus types 1 and 2 (HSV-1, -2) or varicella-zoster virus (VZV)], and cellular changes were observed by optical and electron microscopy and analyzed by FTIR microscopy at different periods of time post-infection. Specific different spectral changes were observed at various stages of the viral infection development. The spectral intensity in the 1220-1260 cm(-1) region (mainly attributed to phosphate levels) was considerably increased in all infected cells compared to normal uninfected cells during the early stages of the viral infection development. However, at the late stages of the viral infection development (when all the cells in the infected culture lost their spindle shape and became circular) the spectral intensities in this region significantly decreased in the infected compared to the control cells. In addition, the peak at 1023 cm(-1), attributed to carbohydrates, almost fully disappeared at early stages of the viral infection development, whereas at late stages of the infection it raised to an equivalent or higher level than that of the uninfected control cells. These results support the potential of developing FTIR microspectroscopy as a simple, reagent free method for the early detection and accurate differentiation of different stages during the development of herpes virus infection.
Collapse
Affiliation(s)
- V Erukhimovitch
- Analytical Equipment Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
32
|
Sahu RK, Mordechai S. Spectral signatures of colonic malignancies in the mid-infrared region: from basic research to clinical applicability. Future Oncol 2011; 6:1653-67. [PMID: 21062162 DOI: 10.2217/fon.10.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The process of carcinogenesis in the colon progresses through several overlapping stages, making the evaluation process challenging, as well as subjective. Owing to the complexity of colonic tissues and the search for a technique that is rapid and foolproof for precise grading and evaluation of biopsies, many spectroscopic techniques have been evaluated in the past few decades for their efficiency and clinical compatibility. Fourier-transform infrared spectroscopy, being quantitative and objective, has the capacity for automation and relevance to cancer diagnosis. This article highlights investigations on the application of Fourier-transform infrared spectroscopy (particularly microscopy) in colon cancer diagnosis and parallel developments in data analysis techniques for the characterization of spectral signatures of malignant tissues in the colon.
Collapse
Affiliation(s)
- Ranjit K Sahu
- Center for Autoimmune & Musculoskeletal Disease, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | | |
Collapse
|
33
|
Katukuri VK, Hargrove J, Miller SJ, Rahal K, Kao JY, Wolters R, Zimmermann EM, Wang TD. Detection of colonic inflammation with Fourier transform infrared spectroscopy using a flexible silver halide fiber. BIOMEDICAL OPTICS EXPRESS 2010; 1:1014-1025. [PMID: 21258526 PMCID: PMC3018051 DOI: 10.1364/boe.1.001014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/16/2010] [Accepted: 09/19/2010] [Indexed: 05/03/2023]
Abstract
Persistent colonic inflammation increases risk for cancer, but mucosal appearance on conventional endoscopy correlates poorly with histology. Here we demonstrate the use of a flexible silver halide fiber to collect mid-infrared absorption spectra and an interval model to distinguish colitis from normal mucosa in dextran sulfate sodium treated mice. The spectral regime between 950 and 1800 cm(-1) was collected from excised colonic specimens and compared with histology. Our model identified 3 sub-ranges that optimize the classification results, and the performance for detecting inflammation resulted in a sensitivity, specificity, accuracy, and positive predictive value of 92%, 88%, 90%, and 88%, respectively.
Collapse
Affiliation(s)
- Vinay K. Katukuri
- Department of Medicine, University of Michigan, 109 Zina Pitcher Place,
Ann Arbor, MI 48109, USA
| | | | - Sharon J. Miller
- Department of Medicine, University of Michigan, 109 Zina Pitcher Place,
Ann Arbor, MI 48109, USA
| | - Kinan Rahal
- Department of Medicine, University of Michigan, 109 Zina Pitcher Place,
Ann Arbor, MI 48109, USA
| | - John Y. Kao
- Department of Medicine, University of Michigan, 109 Zina Pitcher Place,
Ann Arbor, MI 48109, USA
| | | | - Ellen M. Zimmermann
- Department of Medicine, University of Michigan, 109 Zina Pitcher Place,
Ann Arbor, MI 48109, USA
| | - Thomas D. Wang
- Department of Medicine, University of Michigan, 109 Zina Pitcher Place,
Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, 109 Zina Pitcher Place,
Ann Arbor, MI 48109, USA
| |
Collapse
|
34
|
Mackanos MA, Contag CH. Fiber-optic probes enable cancer detection with FTIR spectroscopy. Trends Biotechnol 2010; 28:317-23. [DOI: 10.1016/j.tibtech.2010.04.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/24/2010] [Accepted: 04/05/2010] [Indexed: 12/16/2022]
|
35
|
Mackanos MA, Contag CH. FTIR microspectroscopy for improved prostate cancer diagnosis. Trends Biotechnol 2009; 27:661-3. [DOI: 10.1016/j.tibtech.2009.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 08/25/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
|
36
|
Mackanos MA, Hargrove JT, Du CB, Friedland S, Soetikno RM, Contag CH, Wolters R, Arroyo MR, Crawford JM, Wang TD. Use of an endoscope-compatible probe to detect colonic dysplasia with Fourier transform infrared spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:044006. [PMID: 19725718 PMCID: PMC3232016 DOI: 10.1117/1.3174387] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Fourier transform infrared (FTIR) spectroscopy is sensitive to the molecular composition of tissue and has the potential to identify premalignant tissue (dysplasia) as an adjunct to endoscopy. We demonstrate collection of mid-infrared absorption spectra with a silver halide (AgCl(0.4)Br(0.6)) optical fiber and use spectral preprocessing to identify optimal subranges that classify colonic mucosa as normal, hyperplasia, or dysplasia. We collected spectra (n=83) in the 950 to 1800 cm(-1) regime on biopsy specimens obtained from human subjects (n=37). Subtle differences in the magnitude of the absorbance peaks at specific wave numbers were observed. The best double binary algorithm for distinguishing normal-versus-dysplasia and hyperplasia-versus-dysplasia was determined from an exhaustive search of spectral intervals and preprocessing techniques. Partial least squares discriminant analysis was used to classify the spectra using a leave-one-subject-out cross-validation strategy. The results were compared with histology reviewed independently by two gastrointestinal pathologists. The optimal thresholds identified resulted in an overall sensitivity, specificity, accuracy, and positive predictive value of 96%, 92%, 93%, and 82%, respectively. These results indicated that mid-infrared absorption spectra collected remotely with an optical fiber can be used to identify colonic dysplasia with high accuracy, suggesting that continued development of this technique for the early detection of cancer is promising.
Collapse
Affiliation(s)
- Mark A. Mackanos
- Department of Pediatrics, Microbiology and Immunology, Stanford University, Stanford, CA 94305
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305
| | | | - Christine B. Du
- Department of Medicine, Division of Gastroenterology, Stanford University, Stanford, CA 94305
| | | | | | - Christopher H. Contag
- Department of Pediatrics, Microbiology and Immunology, Stanford University, Stanford, CA 94305
| | | | - May R. Arroyo
- University of Florida College of Medicine, Department of Pathology, P.O. Box 100275, Gainesville, FL 32610
| | - James M. Crawford
- University of Florida College of Medicine, Department of Pathology, P.O. Box 100275, Gainesville, FL 32610
| | - Thomas D. Wang
- Department of Medicine, Division of Gastroenterology, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
37
|
Khanmohammadi M, Ansari MA, Garmarudi AB, Hassanzadeh G, Garoosi G. Cancer Diagnosis by Discrimination between Normal and Malignant Human Blood Samples Using Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy. Cancer Invest 2009; 25:397-404. [PMID: 17882650 DOI: 10.1080/02770900701512555] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
FTIR spectroscopy is a common technique for cancer diagnosis. Applied tissue samples are heterogeneous and may be damaged in preparation procedures. Easier sampling, more available samples and also easier process with assured results would be interesting. Whole blood samples include all of these qualifications and our hypothesis was the bio-molecular changes in blood which manifest themselves in different optical signatures, detectable by FTIR spectroscopy. Noncancerous blood samples were differentiated from cancerous ones using ATR-FTIR spectroscopy and LDA classification method. Procedure was 100 percent and 90 percent accurate in prediction of cancerous or noncancerous situation for 33 known and 10 unknown samples, respectively.
Collapse
Affiliation(s)
- M Khanmohammadi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | | | | | | | | |
Collapse
|
38
|
Optical diagnosis of peritoneal metastases by infrared microscopic imaging. Anal Bioanal Chem 2009; 393:1619-27. [DOI: 10.1007/s00216-009-2630-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 02/04/2023]
|
39
|
Kelly JG, Singh MN, Stringfellow HF, Walsh MJ, Nicholson JM, Bahrami F, Ashton KM, Pitt MA, Martin-Hirsch PL, Martin FL. Derivation of a subtype-specific biochemical signature of endometrial carcinoma using synchrotron-based Fourier-transform infrared microspectroscopy. Cancer Lett 2009; 274:208-17. [DOI: 10.1016/j.canlet.2008.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 07/19/2008] [Accepted: 09/10/2008] [Indexed: 11/16/2022]
|
40
|
Walsh MJ, Singh MN, Stringfellow HF, Pollock HM, Hammiche A, Grude O, Fullwood NJ, Pitt MA, Martin-Hirsch PL, Martin FL. FTIR Microspectroscopy Coupled with Two-Class Discrimination Segregates Markers Responsible for Inter- and Intra-Category Variance in Exfoliative Cervical Cytology. Biomark Insights 2008; 3:179-189. [PMID: 18677422 PMCID: PMC2493409 DOI: 10.4137/bmi.s592] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Infrared (IR) absorbance of cellular biomolecules generates a vibrational spectrum, which can be exploited as a "biochemical fingerprint" of a particular cell type. Biomolecules absorb in the mid-IR (2-20 mum) and Fourier-transform infrared (FTIR) microspectroscopy applied to discriminate different cell types (exfoliative cervical cytology collected into buffered fixative solution) was evaluated. This consisted of cervical cytology free of atypia (i.e. normal; n = 60), specimens categorised as containing low-grade changes (i.e. CIN1 or LSIL; n = 60) and a further cohort designated as high-grade (CIN2/3 or HSIL; n = 60). IR spectral analysis was coupled with principal component analysis (PCA), with or without subsequent linear discriminant analysis (LDA), to determine if normal versus low-grade versus high-grade exfoliative cytology could be segregated. With increasing severity of atypia, decreases in absorbance intensity were observable throughout the 1,500 cm(-1) to 1,100 cm(-1) spectral region; this included proteins (1,460 cm(-1)), glycoproteins (1,380 cm(-1)), amide III (1,260 cm(-1)), asymmetric (nu(as)) PO(2) (-) (1,225 cm(-1)) and carbohydrates (1,155 cm(-1)). In contrast, symmetric (nu(s)) PO(2) (-) (1,080 cm(-1)) appeared to have an elevated intensity in high-grade cytology. Inter-category variance was associated with protein and DNA conformational changes whereas glycogen status strongly influenced intra-category. Multivariate data reduction of IR spectra using PCA with LDA maximises inter-category variance whilst reducing the influence of intra-class variation towards an objective approach to class cervical cytology based on a biochemical profile.
Collapse
Affiliation(s)
- Michael J. Walsh
- Biomedical Sciences Unit, Department of Biological Sciences, Lancaster University, Lancaster, U.K
| | - Maneesh N. Singh
- Biomedical Sciences Unit, Department of Biological Sciences, Lancaster University, Lancaster, U.K
- Lancashire Teaching Hospitals NHS Trust, Preston, U.K. and
| | | | | | | | - Olaug Grude
- Department of Physics, Lancaster University, Lancaster, U.K
| | - Nigel J. Fullwood
- Biomedical Sciences Unit, Department of Biological Sciences, Lancaster University, Lancaster, U.K
| | - Mark A. Pitt
- Lancashire Teaching Hospitals NHS Trust, Preston, U.K. and
| | - Pierre L. Martin-Hirsch
- Biomedical Sciences Unit, Department of Biological Sciences, Lancaster University, Lancaster, U.K
- Lancashire Teaching Hospitals NHS Trust, Preston, U.K. and
| | - Francis L. Martin
- Biomedical Sciences Unit, Department of Biological Sciences, Lancaster University, Lancaster, U.K
| |
Collapse
|
41
|
Khanmohammadi M, Nasiri R, Ghasemi K, Samani S, Bagheri Garmarudi A. Diagnosis of basal cell carcinoma by infrared spectroscopy of whole blood samples applying soft independent modeling class analogy. J Cancer Res Clin Oncol 2007; 133:1001-10. [PMID: 17671793 DOI: 10.1007/s00432-007-0286-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 07/17/2007] [Indexed: 11/30/2022]
Abstract
Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was applied to discriminate the blood samples obtained from healthy people and those with basal cell carcinoma, demonstrating high accuracy while soft independent modeling class analogy (SIMCA) chemometric technique is benefited. It was aimed to classify the normal case and cancer case blood samples through the use of ATR-FTIR spectroscopy as a rapid method while the sample preparation is so easy in comparison with the common pathologic methods. A total of 72 blood samples, including 32 cancer and 40 normal cases, were analyzed in 1,800-900 cm(-1) spectral region. Results showed 97.6% of accuracy being compared with the current clinical methods. Research results were exemplified with comparable data of other classification methods such as principal component analysis (PCA) and Cluster analysis. The residual errors in prediction (REP) of calibration model for normal and cancerous groups in SIMCA method were 0.00362 and 0.00343, respectively.
Collapse
Affiliation(s)
- Mohammadreza Khanmohammadi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, P.O. Box 288, Qazvin, Iran.
| | | | | | | | | |
Collapse
|
42
|
Abstract
The rapid developments in the field of infrared spectroscopy in the past decade have demonstrated a potential for disease diagnosis using noninvasive technologies. Several earlier studies have highlighted the advantage of using infrared spectroscopy both in the near- and mid-infrared regions for diagnostic purposes at clinical levels. The areas of focus have been the distinction of premalignant and malignant cells and tissues from their normal state using specific parameters obtained from Fourier transform infrared spectra, making it a rapid and reagent-free method. While it still requires pilot studies and designed clinical trials to ensure the applicability of such systems for cancer diagnosis, substantial progress has been made in incorporating advances in computational methods into the system to increase the sensitivity of the entire setup, making it an objective and sensitive technique suitable for automation to suit the demands of the medical community. The development of fiber-optics systems for infrared spectroscopy have further opened up new and modern avenues in medical diagnosis at various levels of cells, tissues and organs under laboratory and clinical conditions.
Collapse
Affiliation(s)
- R K Sahu
- Ben Gurion University, Department of Physics and the Cancer Research Institute, Beer-Sheva, Israel.
| | | |
Collapse
|
43
|
Bogomolny E, Huleihel M, Suproun Y, Sahu RK, Mordechai S. Early spectral changes of cellular malignant transformation using Fourier transform infrared microspectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:024003. [PMID: 17477718 DOI: 10.1117/1.2717186] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Fourier transform infrared microspectroscopy (FTIR-MSP) is potentially a powerful analytical method for identifying the spectral properties of biological activity in cells. The goal of the present research is the implementation of FTIR-MSP to study early spectral changes accompanying malignant transformation of cells. As a model system, cells in culture are infected by the murine sarcoma virus (MuSV), which induces malignant transformation. The spectral measurements are taken at various postinfection time intervals. To follow up systematically the progress of the spectral changes at early stages of cell transformation, it is essential first to determine and validate consistent and significant spectral parameters (biomarkers), which can evidently discriminate between normal and cancerous cells. Early stages of cell transformation are classified by an array of spectral biomarkers utilizing cluster analysis and discriminant classification function techniques. The classifications indicate that the first spectral changes are detectable much earlier than the first morphological signs of cell transformation. Our results point out that the first spectral signs of malignant transformation are observed on the first and third day of postinfection (PI) (for NIH/3T3 and MEF cell cultures, respectively), while the first visible morphological alterations are observed only on the third and seventh day, respectively. These results strongly support the potential of developing FTIR microspectroscopy as a simple, reagent-free method for early detection of malignancy.
Collapse
Affiliation(s)
- Evgeny Bogomolny
- Ben Gurion University, Department of Physics, Beer-Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
44
|
Walsh MJ, German MJ, Singh M, Pollock HM, Hammiche A, Kyrgiou M, Stringfellow HF, Paraskevaidis E, Martin-Hirsch PL, Martin FL. IR microspectroscopy: potential applications in cervical cancer screening. Cancer Lett 2007; 246:1-11. [PMID: 16713674 DOI: 10.1016/j.canlet.2006.03.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Revised: 03/14/2006] [Accepted: 03/16/2006] [Indexed: 01/11/2023]
Abstract
Screening exfoliative cytology for early dysplastic cells reduces incidence and mortality from squamous carcinoma of the cervix. In the developed world, screening programmes have adopted a 3-5 years recall system. In its absence, cervical cancer would be the second most common female cancer in these regions; instead, it is currently eleventh. However, there exist a number of limitations to the smear test even given the removal of contaminants using liquid-based cytology. It is prohibitively expensive, labour-intensive and subject to inaccuracies that give rise to significant numbers of false negatives. There remains a need for novel approaches to allow efficient and objective interrogation of exfoliative cytology. Methods that variously exploit infrared (IR) microspectroscopy are one possibility. Using IR microspectroscopy, an integrated 'biochemical-cell fingerprint' of the lipid, protein and carbohydrate composition of a biomolecular entity may be derived in the form of a spectrum via vibrational transitions of individual chemical bonds. Powerful statistical approaches (e.g. principal component analysis) now facilitate the interrogation of large amounts of spectroscopic data to allow the extraction of what may be small but extremely significant biomarker differences between disease-free and pre-malignant or malignant samples. An increasing wealth of literature points to the ability of IR microspectroscopy to allow the segregation of cells based on their disease status. We review the current evidence supporting its diagnostic potential in cancer biology.
Collapse
Affiliation(s)
- Michael J Walsh
- Biomedical Sciences Unit, Department of Biological Sciences, Lancaster University, Lancaster, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Toyran N, Turan B, Severcan F. Selenium alters the lipid content and protein profile of rat heart: an FTIR microspectroscopic study. Arch Biochem Biophys 2007; 458:184-93. [PMID: 17240348 DOI: 10.1016/j.abb.2006.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 12/11/2006] [Accepted: 12/12/2006] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease is one of the most important causes of morbidity and mortality in Western countries. In addition, it is well documented that selenium (Se) deficiency has been linked to cardiovascular diseases. This study was undertaken to present the effect of sodium selenite on left and right myocardia, and small veins of normal control rat heart at molecular level by using Fourier transform infrared (FTIR) microspectroscopy. The results mainly reveal that, Se treatment causes an increase in lipid content both in the saturated and unsaturated lipids, and an alteration in protein profile with a decrease in alpha-helix and an increase in beta-sheet structure of the rat heart which might be reflecting a slight subtoxic effect of selenium supplementation on normal rat heart at the dose used in this study.
Collapse
Affiliation(s)
- Neslihan Toyran
- Department of Physiology, Faculty of Medicine, Baskent University, 06530 Ankara, Turkey.
| | | | | |
Collapse
|
46
|
German MJ, Hammiche A, Ragavan N, Tobin MJ, Cooper LJ, Matanhelia SS, Hindley AC, Nicholson CM, Fullwood NJ, Pollock HM, Martin FL. Infrared spectroscopy with multivariate analysis potentially facilitates the segregation of different types of prostate cell. Biophys J 2006; 90:3783-95. [PMID: 16500983 PMCID: PMC1440759 DOI: 10.1529/biophysj.105.077255] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prostate gland is conventionally divided into zones or regions. This morphology is of clinical significance as prostate cancer (CaP) occurs mainly in the peripheral zone (PZ). We obtained tissue sets consisting of paraffin-embedded blocks of cancer-free transition zone (TZ) and PZ and adjacent CaP from patients (n = 6) who had undergone radical retropubic prostatectomy; a seventh tissue set of snap-frozen PZ and TZ was obtained from a CaP-free gland removed after radical cystoprostatectomy. Paraffin-embedded tissue slices were sectioned (10-mum thick) and mounted on suitable windows to facilitate infrared (IR) spectra acquisition before being dewaxed and air dried; cryosections were dessicated on BaF(2) windows. Spectra were collected employing synchrotron Fourier-transform infrared (FTIR) microspectroscopy in transmission mode or attenuated total reflection-FTIR (ATR) spectroscopy. Epithelial cell and stromal IR spectra were subjected to principal component analysis to determine whether wavenumber-absorbance relationships expressed as single points in "hyperspace" might on the basis of multivariate distance reveal biophysical differences between cells in situ in different tissue regions. After spectroscopic analysis, plotted clusters and their loadings curves highlighted marked variation in the spectral region containing DNA/RNA bands ( approximately 1490-1000 cm(-1)). By interrogating the intrinsic dimensionality of IR spectra in this small cohort sample, we found that TZ epithelial cells appeared to align more closely with those of CaP while exhibiting marked structural differences compared to PZ epithelium. IR spectra of PZ stroma also suggested that these cells are structurally more different to CaP than those located in the TZ. Because the PZ exhibits a higher occurrence of CaP, other factors (e.g., hormone exposure) may modulate the growth kinetics of initiated epithelial cells in this region. The results of this pilot study surprisingly indicate that TZ epithelial cells are more likely to exhibit what may be a susceptibility-to-adenocarcinoma spectral signature. Thus, IR spectroscopy on its own may not be sufficient to identify premalignant prostate epithelial cells most likely to progress to CaP.
Collapse
Affiliation(s)
- Matthew J German
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|