1
|
Zhang Y, Yan R, Zhang X, Ma J. Disease-Associated Q159X Mutant Prion Protein Is Sufficient to Cause Fatal Degenerative Disease in Mice. Mol Neurobiol 2024; 61:10517-10528. [PMID: 38743210 DOI: 10.1007/s12035-024-04224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
PRNP Q160X is one of the five dominantly inheritable nonsense mutations causing familial prion diseases. Till now, it remains unclear how this type of nonsense mutations causes familial prion diseases with unique clinical and pathological characteristics. Human prion protein (PrP) Q160X mutation is equivalent to Q159X in mouse PrP, which produces the mutant fragment PrP1-158. Through intracerebroventricular injection of recombinant adeno-associated virus in newborn mice, we successfully overexpressed mouse PrP1-158-FLAG in the central nervous system. Interestingly, high level PrP1-158-FLAG expression in the brain caused death in these mice with an average survival time of 60 ± 9.1 days. Toxicity correlated with levels of PrP1-158-FLAG but was independent of endogenous PrP. Histopathological analyses showed microgliosis and astrogliosis in mouse brains expressing PrP1-158-FLAG and most of PrP1-158-FLAG staining appeared intracellular. Biochemical characterization revealed that the majority of PrP1-158-FLAG were insoluble and a significant part of PrP1-158-FLAG appeared to contain an un-cleaved signal peptide that may contribute to its cytoplasmic localization. Importantly, an ~10-kDa proteinase K-resistant PrP fragment was detected, which was the same as those observed in patients suffering from this type of prion diseases. To our knowledge, this is the first animal study of familial prion disease caused by Q159X that recapitulates key features of human disease. It will be a valuable tool for investigating the pathogenic mechanisms underlying familial prion diseases caused by nonsense mutations.
Collapse
Affiliation(s)
- Yan Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Runchuan Yan
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Xiangyi Zhang
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Jiyan Ma
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
2
|
Gojanovich AD, Le NTT, Mercer RCC, Park S, Wu B, Anane A, Vultaggio JS, Mostoslavsky G, Harris DA. Abnormal synaptic architecture in iPSC-derived neurons from a multi-generational family with genetic Creutzfeldt-Jakob disease. Stem Cell Reports 2024; 19:1474-1488. [PMID: 39332406 PMCID: PMC11561462 DOI: 10.1016/j.stemcr.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Genetic prion diseases are caused by mutations in PRNP, which encodes the prion protein (PrPC). Why these mutations are pathogenic, and how they alter the properties of PrPC are poorly understood. We have consented and accessed 22 individuals of a multi-generational Israeli family harboring the highly penetrant E200K PRNP mutation and generated a library of induced pluripotent stem cells (iPSCs) representing nine carriers and four non-carriers. iPSC-derived neurons from E200K carriers display abnormal synaptic architecture characterized by misalignment of postsynaptic NMDA receptors with the cytoplasmic scaffolding protein PSD95. Differentiated neurons from mutation carriers do not produce PrPSc, the aggregated and infectious conformer of PrP, suggesting that loss of a physiological function of PrPC may contribute to the disease phenotype. Our study shows that iPSC-derived neurons can provide important mechanistic insights into the pathogenesis of genetic prion diseases and can offer a powerful platform for testing candidate therapeutics.
Collapse
Affiliation(s)
- Aldana D Gojanovich
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Nhat T T Le
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Robert C C Mercer
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Seonmi Park
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Bei Wu
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alice Anane
- Creutzfeldt-Jakob Disease Foundation, Pardes Hanna-Karkur, Israel
| | - Janelle S Vultaggio
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; Department of Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - David A Harris
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
3
|
Zerr I, Ladogana A, Mead S, Hermann P, Forloni G, Appleby BS. Creutzfeldt-Jakob disease and other prion diseases. Nat Rev Dis Primers 2024; 10:14. [PMID: 38424082 DOI: 10.1038/s41572-024-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Prion diseases share common clinical and pathological characteristics such as spongiform neuronal degeneration and deposition of an abnormal form of a host-derived protein, termed prion protein. The characteristic features of prion diseases are long incubation times, short clinical courses, extreme resistance of the transmissible agent to degradation and lack of nucleic acid involvement. Sporadic and genetic forms of prion diseases occur worldwide, of which genetic forms are associated with mutations in PRNP. Human to human transmission of these diseases has occurred due to iatrogenic exposure, and zoonotic forms of prion diseases are linked to bovine disease. Significant progress has been made in the diagnosis of these disorders. Clinical tools for diagnosis comprise brain imaging and cerebrospinal fluid tests. Aggregation assays for detection of the abnormally folded prion protein have a clear potential to diagnose the disease in peripherally accessible biofluids. After decades of therapeutic nihilism, new treatment strategies and clinical trials are on the horizon. Although prion diseases are relatively rare disorders, understanding their pathogenesis and mechanisms of prion protein misfolding has significantly enhanced the field in research of neurodegenerative diseases.
Collapse
Affiliation(s)
- Inga Zerr
- National Reference Center for CJD Surveillance, Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany.
| | - Anna Ladogana
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Peter Hermann
- National Reference Center for CJD Surveillance, Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Brian S Appleby
- Departments of Neurology, Psychiatry and Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
4
|
Fukuda A, Tominaga T, Matsumoto T, Nonaka T, Kosai K, Yanagihara K, Inoue T, Irie H, Miyoshi Y, Sugio T, Sakai T, Sakae E, Hamada M, Matsumoto K, Nagayasu T. Feasibility and efficacy of newly developed eco-friendly, automatic washer for endoscope using electrolyzed alkaline and acidic water. Asian J Endosc Surg 2024; 17:e13245. [PMID: 37724691 DOI: 10.1111/ases.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION As well as preventing nosocomial and healthcare-associated infections, a reliable and eco-friendly washer for medical equipment would also be safe for the global environment. The aim of this study was to evaluate the efficacy of a newly developed automatic washing system (Nano-washer) that uses electrolyzed water and ultrasonication without detergent for washing endoscopes. METHODS Patients who underwent laparoscopic lobectomy or laparoscopic colectomy at Nagasaki University between 2018 and 2022 were included. A total of 60 cases of endoscope use were collected and classified according to endoscope washing method into the Nano-washer group (using no detergent) (n = 40) and the manual washing group (n = 20). Protein and bacterial residues were measured before and after washing, using absorbance spectrometry and 16S rRNA polymerase chain reaction. The effectiveness of protein and bacterial removal and endoscope surface damage after washing were compared under specular vision between the groups. RESULTS Nano-washer did not use detergent unlike manual washing. There was no difference in demographic or clinical characteristics between the groups except for the presence of comorbidities in the lobectomy group (Nano-washer, 85%; manual washing, 40%, P = .031). Compared with the manual washing group, residual protein levels in the Nano-washer group were significantly reduced after washing (lobectomy, 0.956 mg/mL vs 0.016 mg/mL, P < .001; colectomy, 0.144 mg/mL vs 0.002 mg/mL, P = .008). Nano-washer group showed a significant reduction in bacteria between before and after lobectomy (9437 copies/cm2 vs 4612 copies/cm2 , P = .024). CONCLUSION Nano-washer is a promising, effective, and eco-friendly automatic washing device that is safer and more efficient than manual washing.
Collapse
Affiliation(s)
- Akiko Fukuda
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tetsuro Tominaga
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takamune Matsumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Nonaka
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kosuke Kosai
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takumi Inoue
- Department of Materials, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiromi Irie
- Department of Materials, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | - Keitaro Matsumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
5
|
Madineni KUC, S V NP, Bhuma V. A Study of Clinical Profile, Radiological and Electroencephalographic Characteristics of Sporadic Creutzfeldt-Jakob Disease From a Tertiary Care Hospital. Cureus 2023; 15:e50008. [PMID: 38186537 PMCID: PMC10767236 DOI: 10.7759/cureus.50008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Background Sporadic Creutzfeldt-Jakob disease (CJD), the most common form of human prion disease, is the archetypal diagnosis in this category. However, the spectrum of possible diagnoses is wide, encompassing various treatable conditions. A lack of standardized diagnostic criteria and a tendency to opt for brain biopsies and clinical autopsies can be limiting factors in reaching a conclusive diagnosis. Objective This study aims to retrospectively analyze clinical and investigative findings in patients referred to a specialized neurology clinic exhibiting rapidly progressive dementia. These patients were ultimately diagnosed with Probable sporadic Creutzfeldt-Jakob disease (CJD) based on the 2018 CDC criteria for sporadic CJD. Materials and Methods This study included cases of CJD diagnosed based on clinical, electrophysiological, and imaging parameters at a tertiary care hospital in India from 2016 to 2020. The diagnostic criteria proposed by the CDC (Centers for Disease Control and Prevention) were employed to categorize patients as definite, probable, or possible CJD cases. All patients underwent MRI (magnetic resonance imaging) imaging and EEG ( electroencephalography) recording, while diagnostic brain biopsies were not conducted due to a lack of consent from close relatives. Results This observational descriptive study comprised four patients diagnosed with Probable sporadic CJD (sCJD), all of whom were female. The patients exhibited an age range of 57 to 75 years at the onset of the disease, with a mean age of onset at 67.5 years. Unfortunately, all patients succumbed to the disease within 6 months of its onset. Rapidly progressive dementia was a common symptom in all cases. Additionally, patient one and patient four displayed myoclonus and dystonia, patient two exhibited myoclonus and akinetic mutism, and patient three had myoclonus, chorea, and ataxia. MR brain imaging, including T2 sequence, FLAIR sequence, and DWI/ADC mapping, was performed on all patients, revealing both cortical gray matter and deep gray matter (basal ganglia) T2/FLAIR hyperintensities with DWI restriction. A cortical ribboning pattern was observed in all cases. EEG results indicated generalized delta slow waves with triphasic complexes in three patients, while patient three alone displayed periodic sharp wave complexes at a frequency of 1 per 1 - 1.5 seconds. Conclusion MRI with DWI and ADC brain mapping emerges as the most valuable diagnostic tool for patients with clinical presentations suggesting sCJD. In this study, all patients displayed restricted diffusion, as confirmed by ADC mapping. Regrettably, the characteristic features of sCJD with restricted diffusion in the cortex, thalamus, and basal ganglia may often elude detection by radiologists outside specialized centers, resulting in diagnostic delays. Conversely, when basal ganglia or cortical signal abnormalities are detected in conjunction with parenchymal swelling, alternative diagnoses such as encephalitis or lymphoma should be considered, as parenchymal swelling is not a typical feature of sCJD as revealed by MRI.
Collapse
Affiliation(s)
| | - Naveen Prasad S V
- Neurology, Sri Venkateswara Institute of Medical Sciences, Tirupati, IND
| | - Vengamma Bhuma
- Neurology, Sri Venkateswara Institute of Medical Sciences, Tirupati, IND
| |
Collapse
|
6
|
Hermann P, Schmitz M, Cramm M, Goebel S, Bunck T, Schütte-Schmidt J, Schulz-Schaeffer W, Stadelmann C, Matschke J, Glatzel M, Zerr I. Application of real-time quaking-induced conversion in Creutzfeldt-Jakob disease surveillance. J Neurol 2023; 270:2149-2161. [PMID: 36624183 PMCID: PMC9829526 DOI: 10.1007/s00415-022-11549-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Evaluation of the application of CSF real-time quaking-induced conversion in Creutzfeldt-Jakob disease surveillance to investigate test accuracy, influencing factors, and associations with disease incidence. METHODS In a prospective surveillance study, CSF real-time quaking-induced conversion was performed in patients with clinical suspicion of prion disease (2014-2022). Clinically or histochemically characterized patients with sporadic Creutzfeldt-Jakob disease (n = 888) and patients with final diagnosis of non-prion disease (n = 371) were included for accuracy and association studies. RESULTS The overall test sensitivity for sporadic Creutzfeldt-Jakob disease was 90% and the specificity 99%. Lower sensitivity was associated with early disease stage (p = 0.029) and longer survival (p < 0.001). The frequency of false positives was significantly higher in patients with inflammatory CNS diseases (3.7%) than in other diagnoses (0.4%, p = 0.027). The incidence increased from 1.7 per million person-years (2006-2017) to 2.0 after the test was added to diagnostic the criteria (2018-2021). CONCLUSION We validated high diagnostic accuracy of CSF real-time quaking-induced conversion but identified inflammatory brain disease as a potential source of (rare) false-positive results, indicating thorough consideration of this condition in the differential diagnosis of Creutzfeldt-Jakob disease. The surveillance improved after amendment of the diagnostic criteria, whereas the incidence showed no suggestive alterations during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Peter Hermann
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Center Göttingen, Robert-Koch Street 40, 37075, Goettingen, Germany.
| | - Matthias Schmitz
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Center Göttingen, Robert-Koch Street 40, 37075, Goettingen, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Göttingen, Germany
| | - Maria Cramm
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Center Göttingen, Robert-Koch Street 40, 37075, Goettingen, Germany
| | - Stefan Goebel
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Center Göttingen, Robert-Koch Street 40, 37075, Goettingen, Germany
| | - Timothy Bunck
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Center Göttingen, Robert-Koch Street 40, 37075, Goettingen, Germany
| | - Julia Schütte-Schmidt
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Center Göttingen, Robert-Koch Street 40, 37075, Goettingen, Germany
| | | | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Inga Zerr
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Center Göttingen, Robert-Koch Street 40, 37075, Goettingen, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Göttingen, Germany
| |
Collapse
|
7
|
de Fisenne MA, Yilmaz Z, De Decker R, Suain V, Buée L, Ando K, Brion JP, Leroy K. Alzheimer PHF-tau aggregates do not spread tau pathology to the brain via the Retino-tectal projection after intraocular injection in mouse models. Neurobiol Dis 2022; 174:105875. [PMID: 36154878 DOI: 10.1016/j.nbd.2022.105875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/27/2022] [Accepted: 09/21/2022] [Indexed: 10/31/2022] Open
Abstract
Neurofibrillary tangles (NFT), a neuronal lesion found in Alzheimer's disease (AD), are composed of fibrillary aggregates of modified forms of tau proteins. The propagation of NFT follows neuroanatomical pathways suggesting that synaptically connected neurons could transmit tau pathology by the recruitment of normal tau in a prion-like manner. Moreover, the intracerebral injection of pathological tau from AD brains induces the seeding of normal tau in mouse brain. Creutzfeldt-Jacob disease has been transmitted after ocular transplants of cornea or sclera and the scrapie agent can spread across the retino-tectal pathway after intraocular injection of scrapie mouse brain homogenates. In AD, a tau pathology has been detected in the retina. To investigate the potential risk of tau pathology transmission during eye surgery using AD tissue material, we have analysed the development of tau pathology in the visual pathway of mice models expressing murine tau, wild-type or mutant human tau after intraocular injection of pathological tau proteins from AD brains. Although these pathological tau proteins were internalized in retinal ganglion cells, they did not induce aggregation of endogenous tau nor propagation of a tau pathology in the retino-tectal pathway after a 6-month incubation period. These results suggest that retinal ganglion cells exhibit a resistance to develop a tau pathology, and that eye surgery is not a major iatrogenic risk of transmission of tau pathology, contrary to what has been observed for transmission of infectious prions in prion diseases.
Collapse
Affiliation(s)
- M-A de Fisenne
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - Z Yilmaz
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - R De Decker
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - V Suain
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - L Buée
- INSERM, U837. Université de Lille 2, Lille, France
| | - K Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - J-P Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - K Leroy
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium.
| |
Collapse
|
8
|
Mortberg MA, Minikel EV, Vallabh SM. Analysis of non-human primate models for evaluating prion disease therapeutic efficacy. PLoS Pathog 2022; 18:e1010728. [PMID: 35994510 PMCID: PMC9436048 DOI: 10.1371/journal.ppat.1010728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/01/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Prion disease is a fatal neurodegenerative disease caused by the conformational corruption of the prion protein (PrP), encoded by the prion protein gene (PRNP). While no disease-modifying therapy is currently available, genetic and pharmacological proofs of concept support development of therapies that lower PrP levels in the brain. In light of proposals for clinical testing of such drugs in presymptomatic individuals at risk for genetic prion disease, extensive nonclinical data are likely to be required, with extra attention paid to choice of animal models. Uniquely, the entire prion disease process can be faithfully modeled through transmission of human prions to non-human primates (NHPs), raising the question of whether NHP models should be used to assess therapeutic efficacy. Here we systematically aggregate data from N = 883 prion-inoculated animals spanning six decades of research studies. Using this dataset, we assess prion strain, route of administration, endpoint, and passage number to characterize the relationship of tested models to currently prevalent human subtypes of prion disease. We analyze the incubation times observed across diverse models and perform power calculations to assess the practicability of testing prion disease therapeutic efficacy in NHPs. We find that while some models may theoretically be able to support therapeutic efficacy studies, pilot studies would be required to confirm incubation time and attack rate before pivotal studies could be designed, cumulatively requiring several years. The models with the shortest and most tightly distributed incubation times are those with smaller brains and weaker homology to humans. Our findings indicate that it would be challenging to conduct efficacy studies in NHPs in a paradigm that honors the potential advantages of NHPs over other available models, on a timeframe that would not risk unduly delaying patient access to promising drug candidates.
Collapse
Affiliation(s)
- Meredith A. Mortberg
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Eric Vallabh Minikel
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Prion Alliance, Cambridge, Massachusetts, United States of America
| | - Sonia M. Vallabh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Prion Alliance, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
9
|
Gosset P, Camu W, Raoul C, Mezghrani A. Prionoids in amyotrophic lateral sclerosis. Brain Commun 2022; 4:fcac145. [PMID: 35783556 PMCID: PMC9242622 DOI: 10.1093/braincomms/fcac145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/16/2022] [Accepted: 06/01/2022] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most frequent neurodegenerative disease after Alzheimer’s and Parkinson’s disease. ALS is characterized by the selective and progressive loss of motoneurons in the spinal cord, brainstem and cerebral cortex. Clinical manifestations typically occur in midlife and start with focal muscle weakness, followed by the rapid and progressive wasting of muscles and subsequent paralysis. As with other neurodegenerative diseases, the condition typically begins at an initial point and then spreads along neuroanatomical tracts. This feature of disease progression suggests the spreading of prion-like proteins called prionoids in the affected tissues, which is similar to the spread of prion observed in Creutzfeldt-Jakob disease. Intensive research over the last decade has proposed the ALS-causing gene products Cu/Zn superoxide dismutase 1, TAR DNA-binding protein of 43 kDa, and fused in sarcoma as very plausible prionoids contributing to the spread of the pathology. In this review, we will discuss the molecular and cellular mechanisms leading to the propagation of these prionoids in ALS.
Collapse
Affiliation(s)
- Philippe Gosset
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | - William Camu
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | - Cedric Raoul
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | | |
Collapse
|
10
|
Non-human primates in prion diseases. Cell Tissue Res 2022; 392:7-20. [PMID: 35661921 DOI: 10.1007/s00441-022-03644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/21/2022] [Indexed: 11/02/2022]
Abstract
The fascinating history of prion diseases is intimately linked to the use of nonhuman primates as experimental models, which brought so fundamental and founding information about transmissibility, pathogenesis, and resistance of prions. These models are still of crucial need for risk assessment of human health and may contribute to pave a new way towards the moving field of prion-like entities which now includes the main human neurodegenerative diseases (especially Alzheimer's and Parkinson's diseases).
Collapse
|
11
|
Khadka A, Spiers JG, Cheng L, Hill AF. Extracellular vesicles with diagnostic and therapeutic potential for prion diseases. Cell Tissue Res 2022; 392:247-267. [PMID: 35394216 PMCID: PMC10113352 DOI: 10.1007/s00441-022-03621-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/25/2022] [Indexed: 12/14/2022]
Abstract
Prion diseases (PrD) or transmissible spongiform encephalopathies (TSE) are invariably fatal and pathogenic neurodegenerative disorders caused by the self-propagated misfolding of cellular prion protein (PrPC) to the neurotoxic pathogenic form (PrPTSE) via a yet undefined but profoundly complex mechanism. Despite several decades of research on PrD, the basic understanding of where and how PrPC is transformed to the misfolded, aggregation-prone and pathogenic PrPTSE remains elusive. The primary clinical hallmarks of PrD include vacuolation-associated spongiform changes and PrPTSE accumulation in neural tissue together with astrogliosis. The difficulty in unravelling the disease mechanisms has been related to the rare occurrence and long incubation period (over decades) followed by a very short clinical phase (few months). Additional challenge in unravelling the disease is implicated to the unique nature of the agent, its complexity and strain diversity, resulting in the heterogeneity of the clinical manifestations and potentially diverse disease mechanisms. Recent advances in tissue isolation and processing techniques have identified novel means of intercellular communication through extracellular vesicles (EVs) that contribute to PrPTSE transmission in PrD. This review will comprehensively discuss PrPTSE transmission and neurotoxicity, focusing on the role of EVs in disease progression, biomarker discovery and potential therapeutic agents for the treatment of PrD.
Collapse
Affiliation(s)
- Arun Khadka
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jereme G Spiers
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Lesley Cheng
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Andrew F Hill
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia. .,Institute for Health and Sport, Victoria University, Footscray, VIC, Australia.
| |
Collapse
|
12
|
Aguilar-Calvo P, Sevillano AM, Rasool S, Cao KJ, Randolph LM, Rissman RA, Sarraf ST, Yang J, Sigurdson CJ. Noninvasive Antemortem Detection of Retinal Prions by a Fluorescent Tracer. J Alzheimers Dis 2022; 88:1137-1145. [PMID: 35754278 PMCID: PMC10080909 DOI: 10.3233/jad-220314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neurodegenerative diseases are widespread yet challenging to diagnose and stage antemortem. As an extension of the central nervous system, the eye harbors retina ganglion cells vulnerable to degeneration, and visual symptoms are often an early manifestation of neurodegenerative disease. OBJECTIVE Here we test whether prion protein aggregates could be detected in the eyes of live mice using an amyloid-binding fluorescent probe and high-resolution retinal microscopy. METHODS We performed retinal imaging on an experimental mouse model of prion-associated cerebral amyloid angiopathy in a longitudinal study. An amyloid-binding fluorophore was intravenously administered, and retinal imaging was performed at timepoints corresponding to early, mid-, and terminal prion disease. Retinal amyloid deposits were quantified and compared to the amyloid load in the brain. RESULTS We report that by early prion disease (50% timepoint), discrete fluorescent foci appeared adjacent to the optic disc. By later timepoints, the fluorescent foci surrounded the optic disc and tracked along retinal vasculature. CONCLUSION The progression of perivascular amyloid can be directly monitored in the eye by live imaging, illustrating the utility of this technology for diagnosing and monitoring the progression of cerebral amyloid angiopathy.
Collapse
Affiliation(s)
| | | | | | - Kevin J. Cao
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Christina J. Sigurdson
- Department of Pathology, UC San Diego, La Jolla, CA, USA
- Department of Pathology, Microbiology, and Immunology, UC Davis, Davis, CA, USA
- Department of Medicine, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
13
|
Phenotypic diversity of genetic Creutzfeldt-Jakob disease: a histo-molecular-based classification. Acta Neuropathol 2021; 142:707-728. [PMID: 34324063 PMCID: PMC8423680 DOI: 10.1007/s00401-021-02350-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 01/05/2023]
Abstract
The current classification of sporadic Creutzfeldt–Jakob disease (sCJD) includes six major clinicopathological subtypes defined by the physicochemical properties of the protease-resistant core of the pathologic prion protein (PrPSc), defining two major PrPSc types (i.e., 1 and 2), and the methionine (M)/valine (V) polymorphic codon 129 of the prion protein gene (PRNP). How these sCJD subtypes relate to the well-documented phenotypic heterogeneity of genetic CJD (gCJD) is not fully understood. We analyzed molecular and phenotypic features in 208 individuals affected by gCJD, carrying 17 different mutations, and compared them with those of a large series of sCJD cases. We identified six major groups of gCJD based on the combination PrPSc type and codon 129 genotype on PRNP mutated allele, each showing distinctive histopathological characteristics, irrespectively of the PRNP associated mutation. Five gCJD groups, named M1, M2C, M2T, V1, and V2, largely reproduced those previously described in sCJD subtypes. The sixth group shared phenotypic traits with the V2 group and was only detected in patients carrying the E200K-129M haplotype in association with a PrPSc type of intermediate size (“i”) between type 1 and type 2. Additional mutation-specific effects involved the pattern of PrP deposition (e.g., a “thickened” synaptic pattern in E200K carriers, cerebellar “stripe-like linear granular deposits” in those with insertion mutations, and intraneuronal globular dots in E200K-V2 or -M”i”). A few isolated cases linked to rare PRNP haplotypes (e.g., T183A-129M), showed atypical phenotypic features, which prevented their classification into the six major groups. The phenotypic variability of gCJD is mostly consistent with that previously found in sCJD. As in sCJD, the codon 129 genotype and physicochemical properties of PrPSc significantly correlated with the phenotypic variability of gCJD. The most common mutations linked to CJD appear to have a variable and overall less significant effect on the disease phenotype, but they significantly influence disease susceptibility often in a strain-specific manner. The criteria currently used for sCJD subtypes can be expanded and adapted to gCJD to provide an updated classification of the disease with a molecular basis.
Collapse
|
14
|
Carta M, Aguzzi A. Molecular foundations of prion strain diversity. Curr Opin Neurobiol 2021; 72:22-31. [PMID: 34416480 DOI: 10.1016/j.conb.2021.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
Despite being caused by a single protein, prion diseases are strikingly heterogenous. Individual prion variants, known as strains, possess distinct biochemical properties, form aggregates with characteristic morphologies and preferentially seed certain brain regions, causing markedly different disease phenotypes. Strain diversity is determined by protein structure, post-translational modifications and the presence of extracellular matrix components, with single amino acid substitutions or altered protein glycosylation exerting dramatic effects. Here, we review recent advances in the study of prion strains and discuss how a deeper knowledge of the molecular origins of strain heterogeneity is providing a foundation for the development of anti-prion therapeutics.
Collapse
Affiliation(s)
- Manfredi Carta
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland.
| |
Collapse
|
15
|
Hamaguchi T, Sakai K, Kobayashi A, Kitamoto T, Ae R, Nakamura Y, Sanjo N, Arai K, Koide M, Katada F, Harada M, Murai H, Murayama S, Tsukamoto T, Mizusawa H, Yamada M. Characterization of Sporadic Creutzfeldt-Jakob Disease and History of Neurosurgery to Identify Potential Iatrogenic Cases. Emerg Infect Dis 2021; 26:1140-1146. [PMID: 32442393 PMCID: PMC7258447 DOI: 10.3201/eid2606.181969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We previously reported a phenotype of Creutzfeldt-Jakob disease (CJD), CJD-MMiK, that could help identify iatrogenic CJD. To find cases mimicking CJD-MMiK, we investigated clinical features and pathology of 1,155 patients with diagnosed sporadic CJD or unclassified CJD with and without history of neurosurgery. Patients with history of neurosurgery more frequently had an absence of periodic sharp-wave complexes on electroencephalogram than patients without a history of neurosurgery. Among 27 patients with history of neurosurgery, 5 had no periodic sharp-wave complexes on electroencephalogram. We confirmed 1 case of CJD-MMiK and suspected another. Both had methionine homozygosity at codon 129 of the prion protein gene and hyperintensity lesions in the thalamus on magnetic resonance images of the brain, which might be a clinical marker of CJD-MMiK. A subgroup with a history of neurosurgery and clinical features mimicking dura mater graft-associated CJD might have been infected during neurosurgery and had symptoms develop after many years.
Collapse
|
16
|
Bistaffa E, Marín-Moreno A, Espinosa JC, De Luca CMG, Cazzaniga FA, Portaleone SM, Celauro L, Legname G, Giaccone G, Torres JM, Moda F. PMCA-generated prions from the olfactory mucosa of patients with Fatal Familial Insomnia cause prion disease in mice. eLife 2021; 10:65311. [PMID: 33851575 PMCID: PMC8064759 DOI: 10.7554/elife.65311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Fatal Familial Insomnia (FFI) is a genetic prion disease caused by the D178N mutation in the prion protein gene (PRNP) in coupling phase with methionine at PRNP 129. In 2017, we have shown that the olfactory mucosa (OM) collected from FFI patients contained traces of PrPSc detectable by Protein Misfolding Cyclic Amplification (PMCA). Methods: In this work, we have challenged PMCA-generated products obtained from OM and brain homogenate of FFI patients in BvPrP-Tg407 transgenic mice expressing the bank vole prion protein to test their ability to induce prion pathology. Results: All inoculated mice developed mild spongiform changes, astroglial activation, and PrPSc deposition mainly affecting the thalamus. However, their neuropathological alterations were different from those found in the brain of BvPrP-Tg407 mice injected with raw FFI brain homogenate. Conclusions: Although with some experimental constraints, we show that PrPSc present in OM of FFI patients is potentially infectious. Funding: This work was supported in part by the Italian Ministry of Health (GR-2013-02355724 and Ricerca Corrente), MJFF, ALZ, Alzheimer’s Research UK and the Weston Brain Institute (BAND2015), and Euronanomed III (SPEEDY) to FM; by the Spanish Ministerio de Economía y Competitividad (grant AGL2016-78054-R [AEI/FEDER, UE]) to JMT and JCE; AM-M was supported by a fellowship from the INIA (FPI-SGIT-2015-02).
Collapse
Affiliation(s)
- Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milan, Italy
| | - Alba Marín-Moreno
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Juan Carlos Espinosa
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Chiara Maria Giulia De Luca
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milan, Italy.,Scuola Internazionale Superiore di Studi Avanzati (SISSA), Department of Neuroscience, Laboratory of Prion Biology, Trieste, Italy
| | - Federico Angelo Cazzaniga
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milan, Italy
| | - Sara Maria Portaleone
- ASST Santi Paolo e Carlo, Department of Health Sciences, Otolaryngology Unit, Università Degli Studi di Milano, Milan, Italy
| | - Luigi Celauro
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Department of Neuroscience, Laboratory of Prion Biology, Trieste, Italy
| | - Giuseppe Legname
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Department of Neuroscience, Laboratory of Prion Biology, Trieste, Italy
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milan, Italy
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milan, Italy
| |
Collapse
|
17
|
de Alcantara BN, Imbeloni AA, de Brito Simith Durans D, de Araújo MTF, do Rosário Moutinho da Cruz E, de Carvalho CAM, de Mendonça MHR, de Sousa JR, Moraes AF, Filho AJM, de Lourdes Gomes Lima M, Neto OPA, Chiang JO, de Azevedo Scalercio SRR, Carneiro LA, Quaresma JAS, da Costa Vasconcelos PF, de Almeida Medeiros DB. Histopathological lesions of congenital Zika syndrome in newborn squirrel monkeys. Sci Rep 2021; 11:6099. [PMID: 33731800 PMCID: PMC7971060 DOI: 10.1038/s41598-021-85571-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
The absence of an adequate animal model for studies has limited the understanding of congenital Zika syndrome (CZS) in humans during the outbreak in America. In this study, we used squirrel monkeys (Saimiri collinsi), a neotropical primate (which mimics the stages of human pregnancy), as a model of Zika virus (ZIKV) infection. Seven pregnant female squirrel monkeys were experimentally infected at three different gestational stages, and we were able reproduce a broad range of clinical manifestations of ZIKV lesions observed in newborn humans. Histopathological and immunohistochemical analyses of early-infected newborns (2/4) revealed damage to various areas of the brain and ZIKV antigens in the cytoplasm of neurons and glial cells, indicative of CZS. The changes caused by ZIKV infection were intrauterine developmental delay, ventriculomegaly, simplified brain gyri, vascular impairment and neuroprogenitor cell dysfunction. Our data show that the ZIKV infection outcome in squirrel monkeys is similar to that in humans, indicating that this model can be used to help answer questions about the effect of ZIKV infection on neuroembryonic development and the morphological changes induced by CZS.
Collapse
Affiliation(s)
- Bianca Nascimento de Alcantara
- Post-Graduate Programme in Virology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Aline Amaral Imbeloni
- National Primate Centre, Evandro Chagas Institute, Highway BR-316, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Darlene de Brito Simith Durans
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | | | | | - Carlos Alberto Marques de Carvalho
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil.,Pará State University, 2623 Perebebuí Lane, Belém, Pará, 66095-662, Brazil
| | | | - Jorge Rodrigues de Sousa
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Adriana Freitas Moraes
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Arnaldo Jorge Martins Filho
- Department of Pathology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Maria de Lourdes Gomes Lima
- Department of Pathology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Orlando Pereira Amador Neto
- Department of Pathology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Jannifer Oliveira Chiang
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | | | - Liliane Almeida Carneiro
- National Primate Centre, Evandro Chagas Institute, Highway BR-316, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Juarez Antônio Simões Quaresma
- Department of Pathology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil.,Pará State University, 2623 Perebebuí Lane, Belém, Pará, 66095-662, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Post-Graduate Programme in Virology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil.,Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil.,Pará State University, 2623 Perebebuí Lane, Belém, Pará, 66095-662, Brazil
| | - Daniele Barbosa de Almeida Medeiros
- Post-Graduate Programme in Virology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil. .,Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil.
| |
Collapse
|
18
|
Creutzfeldt-Jakob Disease May Present Early With Unusual Bulbar Predominance. Neurologist 2021; 26:69-72. [PMID: 33646993 DOI: 10.1097/nrl.0000000000000321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Creutzfeldt-Jakob disease (CJD) is a prion protein disorder of significant consequence and currently incurable. Diagnosis can be challenging early in the disease course. CJD can present in many ways but often fits a pattern of cognitive problems, cerebellar disturbance, behavioral/psychological changes, and perhaps myoclonus. CASE REPORT We herein present the case of a 69-year-old White male with subacute progressive bulbar and limb weakness over ten weeks period. Early on, he was diagnosed with amyotrophic lateral sclerosis versus autoimmune-related bulbar neuropathy and treated as such. However, he continued to deteriorate clinically that prompted another admission, upon readmission, his cerebrospinal fluid RTQuick and 14-3-3 from the National Prion Disease Pathology Surveillance Center (NPDPSC) did eventually return positive. Hence he was diagnosed with CJD. CONCLUSIONS CJD may present with progressive bulbar symptoms similar to acute inflammatory demyelinating polyradiculoneuropathy (MF variant), motor neuron disease, or autoimmune brainstem encephalitis. It becomes even higher on the differentials especially with no response to immunotherapy.
Collapse
|
19
|
Douet JY, Huor A, Cassard H, Lugan S, Aron N, Arnold M, Vilette D, Torres JM, Ironside JW, Andreoletti O. Wide distribution of prion infectivity in the peripheral tissues of vCJD and sCJD patients. Acta Neuropathol 2021; 141:383-397. [PMID: 33532912 PMCID: PMC7882550 DOI: 10.1007/s00401-021-02270-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/25/2022]
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD) is the commonest human prion disease, occurring most likely as the consequence of spontaneous formation of abnormal prion protein in the central nervous system (CNS). Variant Creutzfeldt–Jakob disease (vCJD) is an acquired prion disease that was first identified in 1996. In marked contrast to vCJD, previous investigations in sCJD revealed either inconsistent levels or an absence of PrPSc in peripheral tissues. These findings contributed to the consensus that risks of transmitting sCJD as a consequence of non-CNS invasive clinical procedures were low. In this study, we systematically measured prion infectivity levels in CNS and peripheral tissues collected from vCJD and sCJD patients. Unexpectedly, prion infectivity was detected in a wide variety of peripheral tissues in sCJD cases. Although the sCJD infectivity levels varied unpredictably in the tissues sampled and between patients, these findings could impact on our perception of the possible transmission risks associated with sCJD.
Collapse
Affiliation(s)
- Jean-Yves Douet
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Alvina Huor
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Hervé Cassard
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Séverine Lugan
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Naima Aron
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Mark Arnold
- APHA Sutton Bonington, Loughborough, LE12 5NB, Leicestershire, UK
| | - Didier Vilette
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Juan-Maria Torres
- Centro de Investigación en Sanidad Animal, CISA-INIA, Valdeolmos, Spain
| | - James W Ironside
- Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Olivier Andreoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France.
| |
Collapse
|
20
|
Huntington's disease: lessons from prion disorders. J Neurol 2021; 268:3493-3504. [PMID: 33625583 DOI: 10.1007/s00415-021-10418-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Decades of research on the prion protein and its associated diseases have caused a paradigm shift in our understanding of infectious agents. More recent years have been marked by a surge of studies supporting the application of these findings to a broad array of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Here, we present evidence to suggest that Huntington's disease, a monogenic disorder of the central nervous system, shares features with prion disorders and that, it too, may be governed by similar mechanisms. We further posit that these similarities could suggest that, like other common neurodegenerative disorders, sporadic forms of Huntington's disease may exist.
Collapse
|
21
|
Ritchie DL, Barria MA. Prion Diseases: A Unique Transmissible Agent or a Model for Neurodegenerative Diseases? Biomolecules 2021; 11:biom11020207. [PMID: 33540845 PMCID: PMC7912988 DOI: 10.3390/biom11020207] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
The accumulation and propagation in the brain of misfolded proteins is a pathological hallmark shared by many neurodegenerative diseases such as Alzheimer's disease (Aβ and tau), Parkinson's disease (α-synuclein), and prion disease (prion protein). Currently, there is no epidemiological evidence to suggest that neurodegenerative disorders are infectious, apart from prion diseases. However, there is an increasing body of evidence from experimental models to suggest that other pathogenic proteins such as Aβ and tau can propagate in vivo and in vitro in a prion-like mechanism, inducing the formation of misfolded protein aggregates such as amyloid plaques and neurofibrillary tangles. Such similarities have raised concerns that misfolded proteins, other than the prion protein, could potentially transmit from person-to-person as rare events after lengthy incubation periods. Such concerns have been heightened following a number of recent reports of the possible inadvertent transmission of Aβ pathology via medical and surgical procedures. This review will provide a historical perspective on the unique transmissible nature of prion diseases, examining their impact on public health and the ongoing concerns raised by this rare group of disorders. Additionally, this review will provide an insight into current evidence supporting the potential transmissibility of other pathogenic proteins associated with more common neurodegenerative disorders and the potential implications for public health.
Collapse
|
22
|
Imbeloni AA, de Alcantara BN, Coutinho LN, de Azevedo Scalercio SRR, Carneiro LA, Oliveira KG, Filho AJM, de Brito Simith Durans D, da Silva WB, Nunes BTD, Casseb LMN, Chiang JO, de Carvalho CAM, Machado MB, Quaresma JAS, de Almeida Medeiros DB, da Costa Vasconcelos PF. Prenatal disorders and congenital Zika syndrome in squirrel monkeys. Sci Rep 2021; 11:2698. [PMID: 33514824 PMCID: PMC7846595 DOI: 10.1038/s41598-021-82028-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 01/06/2021] [Indexed: 12/31/2022] Open
Abstract
During the Zika virus (ZIKV) outbreak in Brazil (2015–2016), the clinical manifestations associated with its infection were complex and included miscarriage and congenital malformations, not previously described. In this study, we evaluated the prenatal conditions of pregnant female squirrel monkeys (Saimiri collinsi) infected during different gestational thirds (GTs) and assessed all clinical aspects, diagnostic imaging, viremia and the immune response. In our study, 75% of the infected animals in the 1st GT group had significant clinical manifestations, such as miscarriage and prolonged viremia associated with a late immune response. Consequently, their neonates showed fetal neuropathology, such as cerebral hemorrhage, lissencephaly or malformations of the brain grooves, ventriculomegaly, and craniofacial malformations. Thus, our study demonstrated the relevance of pregnant squirrel monkeys as a model for the study of ZIKV infection in neonates due to the broad clinical manifestations presented, including the typical congenital Zika syndrome manifestations described in humans.
Collapse
Affiliation(s)
- Aline Amaral Imbeloni
- National Primate Center, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil.,Post-Graduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | | | | | | | - Liliane Almeida Carneiro
- National Primate Center, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | - Karol Guimarães Oliveira
- National Primate Center, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | - Arnaldo Jorge Martins Filho
- Department of Pathology, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | - Darlene de Brito Simith Durans
- Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | | | - Bruno Tardelli Diniz Nunes
- Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | - Livia Medeiros Neves Casseb
- Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | - Jannifer Oliveira Chiang
- Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | | | - Mariana Borges Machado
- University Center of Para, Governador Jose Malcher Avenue, 485, Belem, Para, 66035-065, Brazil
| | - Juarez Antônio Simões Quaresma
- Department of Pathology, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil.,University of Pará State, Tv. Perebebuí-Marco, 2623, Belém, Para State, 66087-662, Brazil
| | - Daniele Barbosa de Almeida Medeiros
- Post-Graduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil. .,Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil.
| | - Pedro Fernando da Costa Vasconcelos
- Post-Graduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil. .,Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil. .,University of Pará State, Tv. Perebebuí-Marco, 2623, Belém, Para State, 66087-662, Brazil.
| |
Collapse
|
23
|
Sacco S, Paoletti M, Staffaroni AM, Kang H, Rojas J, Marx G, Goh SY, Luisa Mandelli M, Allen IE, Kramer JH, Bastianello S, Henry RG, Rosen H, Caverzasi E, Geschwind MD. Multimodal MRI staging for tracking progression and clinical-imaging correlation in sporadic Creutzfeldt-Jakob disease. Neuroimage Clin 2020; 30:102523. [PMID: 33636540 PMCID: PMC7906895 DOI: 10.1016/j.nicl.2020.102523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/02/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022]
Abstract
Diffusion imaging is very useful for the diagnosis of sporadic Creutzfeldt-Jakob disease, but it has limitations in tracking disease progression as mean diffusivity changes non-linearly across the disease course. We previously showed that mean diffusivity changes across the disease course follow a quasi J-shaped curve, characterized by decreased values in earlier phases and increasing values later in the disease course. Understanding how MRI metrics change over-time, as well as their correlations with clinical deficits are crucial steps in developing radiological biomarkers for trials. Specifically, as mean diffusivity does not change linearly and atrophy mainly occurs in later stages, neither alone is likely to be a sufficient biomarker throughout the disease course. We therefore developed a model combining mean diffusivity and Volume loss (MRI Disease-Staging) to take into account mean diffusivity's non-linearity. We then assessed the associations between clinical outcomes and mean diffusivity alone, Volume alone and finally MRI Disease-Staging. In 37 sporadic Creutzfeldt-Jakob disease subjects and 30 age- and sex-matched healthy controls, high angular resolution diffusion and high-resolution T1 imaging was performed cross-sectionally to compute z-scores for mean diffusivity (MD) and Volume. Average MD and Volume were extracted from 41 GM volume of interest (VOI) per hemisphere, within the images registered to the Montreal Neurological Institute (MNI) space. Each subject's volume of interest was classified as either "involved" or "not involved" using a statistical threshold of ± 2 standard deviation (SD) for mean diffusivity changes and/or -2 SD for Volume. Volumes of interest were MRI Disease-Staged as: 0 = no abnormalities; 1 = decreased mean diffusivity only; 2 = decreased mean diffusivity and Volume; 3 = normal ("pseudo-normalized") mean diffusivity, reduced Volume; 4 = increased mean diffusivity, reduced Volume. We correlated Volume, MD and MRI Disease-Staging with several clinical outcomes (scales, score and symptoms) using 4 major regions of interest (Total, Cortical, Subcortical and Cerebellar gray matter) or smaller regions pre-specified based on known neuroanatomical correlates. Volume and MD z-scores correlated inversely with each other in all four major ROIs (cortical, subcortical, cerebellar and total) highlighting that ROIs with lower Volumes had higher MD and vice-versa. Regarding correlations with symptoms and scores, higher MD correlated with worse Mini-Mental State Examination and Barthel scores in cortical and cerebellar gray matter, but subjects with cortical sensory deficits showed lower MD in the primary sensory cortex. Volume loss correlated with lower Mini-Mental State Examination, Barthel scores and pyramidal signs. Interestingly, for both Volume and MD, changes within the cerebellar ROI showed strong correlations with both MMSE and Barthel. Supporting using a combination of MD and Volume to track sCJD progression, MRI Disease-Staging showed correlations with more clinical outcomes than Volume or MD alone, specifically with Mini-Mental State Examination, Barthel score, pyramidal signs, higher cortical sensory deficits, as well as executive and visual-spatial deficits. Additionally, when subjects in the cohort were subdivided into tertiles based on their Barthel scores and their percentile of disease duration/course ("Time-Ratio"), subjects in the lowest (most impaired) Barthel tertile showed a much greater proportion of more advanced MRI Disease-Stages than the those in the highest tertile. Similarly, subjects in the last Time-Ratio tertile (last tertile of disease) showed a much greater proportion of more advanced MRI Disease-Stages than the earliest tertile. Therefore, in later disease stages, as measured by time or Barthel, there is overall more Volume loss and increasing MD. A combined multiparametric quantitative MRI Disease-Staging is a useful tool to track sporadic Creutzfeldt-Jakob- disease progression radiologically.
Collapse
Affiliation(s)
- Simone Sacco
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
- Institute of Radiology, Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Matteo Paoletti
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Adam M. Staffaroni
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Huicong Kang
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
- Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Julio Rojas
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Gabe Marx
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Sheng-yang Goh
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Maria Luisa Mandelli
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Isabel E. Allen
- Department of Epidemiology and Biostatistics, University of California San Francisco San Francisco (UCSF), San Francisco, CA, USA
| | - Joel H. Kramer
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Stefano Bastianello
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Roland G. Henry
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Howie.J. Rosen
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Eduardo Caverzasi
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Michael D. Geschwind
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
24
|
Hara H, Sakaguchi S. N-Terminal Regions of Prion Protein: Functions and Roles in Prion Diseases. Int J Mol Sci 2020; 21:ijms21176233. [PMID: 32872280 PMCID: PMC7504422 DOI: 10.3390/ijms21176233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/30/2023] Open
Abstract
The normal cellular isoform of prion protein, designated PrPC, is constitutively converted to the abnormally folded, amyloidogenic isoform, PrPSc, in prion diseases, which include Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals. PrPC is a membrane glycoprotein consisting of the non-structural N-terminal domain and the globular C-terminal domain. During conversion of PrPC to PrPSc, its 2/3 C-terminal region undergoes marked structural changes, forming a protease-resistant structure. In contrast, the N-terminal region remains protease-sensitive in PrPSc. Reverse genetic studies using reconstituted PrPC-knockout mice with various mutant PrP molecules have revealed that the N-terminal domain has an important role in the normal function of PrPC and the conversion of PrPC to PrPSc. The N-terminal domain includes various characteristic regions, such as the positively charged residue-rich polybasic region, the octapeptide repeat (OR) region consisting of five repeats of an octapeptide sequence, and the post-OR region with another positively charged residue-rich polybasic region followed by a stretch of hydrophobic residues. We discuss the normal functions of PrPC, the conversion of PrPC to PrPSc, and the neurotoxicity of PrPSc by focusing on the roles of the N-terminal regions in these topics.
Collapse
|
25
|
Supattapone S. Cofactor molecules: Essential partners for infectious prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:53-75. [PMID: 32958241 DOI: 10.1016/bs.pmbts.2020.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The protein-only hypothesis predicts that infectious mammalian prions are composed solely of PrPSc, a misfolded conformer of the normal prion protein, PrPC. However, to date, all wild type protein-only PrPSc preparations lack significant levels of prion infectivity. Using a systemic biochemical approach, our laboratory isolated and identified two different endogenous cofactor molecules, RNA (Deleault et al., 2003 [50]; Deleault et al., 2007 [59]) and phosphatidylethanolamine (Deleault et al., 2012 [61]; Deleault et al., 2012 [18]), which facilitate the formation of prions with high levels of specific infectivity, leading us to propose to the alternative hypothesis that cofactor molecules are required to form wild type infectious prions (Deleault et al., 2007 [59]; Deleault et al., 2012 [18]; Geoghegan et al., 2007 [57]). In addition, we found that purified cofactor molecules restrict the strain properties of chemically defined infectious prions (Deleault et al., 2012 [18]), suggesting a "cofactor selection" model in which natural variation in the distribution of strain-specific cofactor molecules in different parts of the brain may be responsible for strain-dependent patterns of neurotropism (Deleault et al., 2012 [18]; Geoghegan et al., 2007 [57]).
Collapse
Affiliation(s)
- Surachai Supattapone
- Department of Biochemistry and Cell Biology and Department of Medicine, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States.
| |
Collapse
|
26
|
Raymond GJ, Race B, Orrú CD, Raymond LD, Bongianni M, Fiorini M, Groveman BR, Ferrari S, Sacchetto L, Hughson AG, Monaco S, Pocchiari M, Zanusso G, Caughey B. Transmission of CJD from nasal brushings but not spinal fluid or RT-QuIC product. Ann Clin Transl Neurol 2020; 7:932-944. [PMID: 32538552 PMCID: PMC7318090 DOI: 10.1002/acn3.51057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/04/2022] Open
Abstract
Objective The detection of prion seeding activity in CSF and olfactory mucosal brushings using real‐time quaking‐induced conversion assays allows highly accurate clinical diagnosis of sporadic Creutzfeldt–Jakob disease. To gauge transmission risks associated with these biospecimens and their testing, we have bioassayed prion infectivity levels in patients’ brain tissue, nasal brushings, and CSF, and assessed the pathogenicity of amplified products of real‐time quaking‐induced conversion assays seeded with Creutzfeldt–Jakob disease prions. Methods We obtained olfactory mucosal brushings and CSF from patients with a final diagnosis of sporadic Creutzfeldt–Jakob disease subtype MM1 (n = 3). Samples were inoculated intracerebrally into Tg66 transgenic mice that overexpress the homologous human 129M prion protein. The mice were evaluated for clinical, neuropathological, and biochemical evidence of prion infection. Results Patients’ brain tissue at 102 to 105 fold dilutions affected 47/48 Tg66 mice. In contrast, maximum acutely tolerable doses of insoluble pellets from their olfactory mucosa brushings caused evidence of prion disease in only 4/28 inoculated mice, and no effects were seen with 10‐fold dilutions. No clinical prion disease was observed in mice inoculated with antemortem CSF samples or prion‐seeded real‐time quaking‐induced conversion assay products. Interpretation Pellets from patients’ olfactory mucosa brushings had ≥10,000‐fold lower infectivity per unit volume than brain tissue, while CSF lacked detectable infectivity. Nonetheless, the results suggest that appropriate precautions may be warranted in surgical interventions involving the olfactory areas. The lack of pathogenic infectivity in the real‐time quaking‐induced conversion assay products provides evidence that the assay does not replicate biohazardous prions in vitro.
Collapse
Affiliation(s)
- Gregory J Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Christina D Orrú
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Lynne D Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Matilde Bongianni
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Fiorini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Bradley R Groveman
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Sergio Ferrari
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Luca Sacchetto
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Andrew G Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Salvatore Monaco
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| |
Collapse
|
27
|
Ward A, Hollister JR, McNally K, Ritchie DL, Zanusso G, Priola SA. Transmission characteristics of heterozygous cases of Creutzfeldt-Jakob disease with variable abnormal prion protein allotypes. Acta Neuropathol Commun 2020; 8:83. [PMID: 32517816 PMCID: PMC7285538 DOI: 10.1186/s40478-020-00958-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/31/2022] Open
Abstract
In the human prion disease Creutzfeldt-Jakob disease (CJD), different CJD neuropathological subtypes are defined by the presence in normal prion protein (PrPC) of a methionine or valine at residue 129, by the molecular mass of the infectious prion protein PrPSc, by the pattern of PrPSc deposition, and by the distribution of spongiform change in the brain. Heterozygous cases of CJD potentially add another layer of complexity to defining CJD subtypes since PrPSc can have either a methionine (PrPSc-M129) or valine (PrPSc-V129) at residue 129. We have recently demonstrated that the relative amount of PrPSc-M129 versus PrPSc-V129, i.e. the PrPSc allotype ratio, varies between heterozygous CJD cases. In order to determine if differences in PrPSc allotype correlated with different disease phenotypes, we have inoculated 10 cases of heterozygous CJD (7 sporadic and 3 iatrogenic) into two transgenic mouse lines overexpressing PrPC with a methionine at codon 129. In one case, brain-region specific differences in PrPSc allotype appeared to correlate with differences in prion disease transmission and phenotype. In the other 9 cases inoculated, the presence of PrPSc-V129 was associated with plaque formation but differences in PrPSc allotype did not consistently correlate with disease incubation time or neuropathology. Thus, while the PrPSc allotype ratio may contribute to diverse prion phenotypes within a single brain, it does not appear to be a primary determinative factor of disease phenotype.
Collapse
|
28
|
Saá P. Is sporadic Creutzfeldt‐Jakob disease transfusion‐transmissible? Transfusion 2020; 60:655-658. [DOI: 10.1111/trf.15763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Paula Saá
- Scientific AffairsAmerican Red Cross Gaithersburg MD USA
| |
Collapse
|
29
|
Detection of Pathognomonic Biomarker PrP Sc and the Contribution of Cell Free-Amplification Techniques to the Diagnosis of Prion Diseases. Biomolecules 2020; 10:biom10030469. [PMID: 32204429 PMCID: PMC7175149 DOI: 10.3390/biom10030469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Transmissible spongiform encephalopathies or prion diseases are rapidly progressive neurodegenerative diseases, the clinical manifestation of which can resemble other promptly evolving neurological maladies. Therefore, the unequivocal ante-mortem diagnosis is highly challenging and was only possible by histopathological and immunohistochemical analysis of the brain at necropsy. Although surrogate biomarkers of neurological damage have become invaluable to complement clinical data and provide more accurate diagnostics at early stages, other neurodegenerative diseases show similar alterations hindering the differential diagnosis. To solve that, the detection of the pathognomonic biomarker of disease, PrPSc, the aberrantly folded isoform of the prion protein, could be used. However, the amounts in easily accessible tissues or body fluids at pre-clinical or early clinical stages are extremely low for the standard detection methods. The solution comes from the recent development of in vitro prion propagation techniques, such as Protein Misfolding Cyclic Amplification (PMCA) and Real Time-Quaking Induced Conversion (RT-QuIC), which have been already applied to detect minute amounts of PrPSc in different matrixes and make early diagnosis of prion diseases feasible in a near future. Herein, the most relevant tissues and body fluids in which PrPSc has been detected in animals and humans are being reviewed, especially those in which cell-free prion propagation systems have been used with diagnostic purposes.
Collapse
|
30
|
Holec SA, Block AJ, Bartz JC. The role of prion strain diversity in the development of successful therapeutic treatments. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:77-119. [PMID: 32958242 PMCID: PMC8939712 DOI: 10.1016/bs.pmbts.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prions are a self-propagating misfolded conformation of a cellular protein. Prions are found in several eukaryotic organisms with mammalian prion diseases encompassing a wide range of disorders. The first recognized prion disease, the transmissible spongiform encephalopathies (TSEs), affect several species including humans. Alzheimer's disease, synucleinopathies, and tauopathies share a similar mechanism of self-propagation of the prion form of the disease-specific protein reminiscent of the infection process of TSEs. Strain diversity in prion disease is characterized by differences in the phenotype of disease that is hypothesized to be encoded by strain-specific conformations of the prion form of the disease-specific protein. Prion therapeutics that target the prion form of the disease-specific protein can lead to the emergence of drug-resistant strains of prions, consistent with the hypothesis that prion strains exist as a dynamic mixture of a dominant strain in combination with minor substrains. To overcome this obstacle, therapies that reduce or eliminate the template of conversion are efficacious, may reverse neuropathology, and do not result in the emergence of drug resistance. Recent advancements in preclinical diagnosis of prion infection may allow for a combinational approach that treats the prion form and the precursor protein to effectively treat prion diseases.
Collapse
Affiliation(s)
- Sara A.M. Holec
- Institute for Applied Life Sciences and Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States,Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| | - Alyssa J. Block
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States,Corresponding author:
| |
Collapse
|
31
|
Yap TE, Balendra SI, Almonte MT, Cordeiro MF. Retinal correlates of neurological disorders. Ther Adv Chronic Dis 2019; 10:2040622319882205. [PMID: 31832125 PMCID: PMC6887800 DOI: 10.1177/2040622319882205] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
Considering the retina as an extension of the brain provides a platform from which to study diseases of the nervous system. Taking advantage of the clear optical media of the eye and ever-increasing resolution of modern imaging techniques, retinal morphology can now be visualized at a cellular level in vivo. This has provided a multitude of possible biomarkers and investigative surrogates that may be used to identify, monitor and study diseases until now limited to the brain. In many neurodegenerative conditions, early diagnosis is often very challenging due to the lack of tests with high sensitivity and specificity, but, once made, opens the door to patients accessing the correct treatment that can potentially improve functional outcomes. Using retinal biomarkers in vivo as an additional diagnostic tool may help overcome the need for invasive tests and histological specimens, and offers the opportunity to longitudinally monitor individuals over time. This review aims to summarise retinal biomarkers associated with a range of neurological conditions including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and prion diseases from a clinical perspective. By comparing their similarities and differences according to primary pathological processes, we hope to show how retinal correlates can aid clinical decisions, and accelerate the study of this rapidly developing area of research.
Collapse
Affiliation(s)
- Timothy E. Yap
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, UK
| | - Shiama I. Balendra
- Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London, UK
| | - Melanie T. Almonte
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, UK
| | - M. Francesca Cordeiro
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, NW1 5QH, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College, London, NW1 5QH, UK
- Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, 11–43 Bath Street, London, EC1V 9EL UK
| |
Collapse
|
32
|
Caughey B, Kraus A. Transmissibility versus Pathogenicity of Self-Propagating Protein Aggregates. Viruses 2019; 11:E1044. [PMID: 31717531 PMCID: PMC6893620 DOI: 10.3390/v11111044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
The prion-like spreading and accumulation of specific protein aggregates appear to be central to the pathogenesis of many human diseases, including Alzheimer's and Parkinson's. Accumulating evidence indicates that inoculation of tissue extracts from diseased individuals into suitable experimental animals can in many cases induce the aggregation of the disease-associated protein, as well as related pathological lesions. These findings, together with the history of the prion field, have raised the questions about whether such disease-associated protein aggregates are transmissible between humans by casual or iatrogenic routes, and, if so, do they propagate enough in the new host to cause disease? These practical considerations are important because real, and perhaps even only imagined, risks of human-to-human transmission of diseases such as Alzheimer's and Parkinson's may force costly changes in clinical practice that, in turn, are likely to have unintended consequences. The prion field has taught us that a single protein, PrP, can aggregate into forms that can propagate exponentially in vitro, but range from being innocuous to deadly when injected into experimental animals in ways that depend strongly on factors such as conformational subtleties, routes of inoculation, and host responses. In assessing the hazards posed by various disease-associated, self-propagating protein aggregates, it is imperative to consider both their actual transmissibilities and the pathological consequences of their propagation, if any, in recipient hosts.
Collapse
Affiliation(s)
- Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
33
|
Baiardi S, Capellari S, Bartoletti Stella A, Parchi P. Unusual Clinical Presentations Challenging the Early Clinical Diagnosis of Creutzfeldt-Jakob Disease. J Alzheimers Dis 2019; 64:1051-1065. [PMID: 30010123 DOI: 10.3233/jad-180123] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The introduction of prion RT-QuIC, an ultrasensitive specific assay for the in vivo detection of the abnormal prion protein, has significantly increased the potential for an early and accurate clinical diagnosis of Creutzfeldt-Jakob disease (CJD). However, in the clinical setting, the early identification of patients with possible CJD is often challenging. Indeed, CJD patients may present with isolated symptoms that remain the only clinical manifestation for some time, or with neurological syndromes atypical for CJD. To enhance awareness of unusual disease presentations and promote earlier diagnosis, we reviewed the entire spectrum of atypical early manifestations of CJD, mainly reported to date as case descriptions or small case series. They included sensory either visual or auditory disturbances, seizures, isolated psychiatric manifestations, atypical parkinsonian syndromes (corticobasal syndrome, progressive supranuclear palsy-like), pseudobulbar syndrome, isolated involuntary movements (dystonia, myoclonus, chorea, blepharospasm), acute or subacute onsets mimicking a stroke, isolated aphasia, and neuropathy. Since CJD is a rare disease and its clinical course rapidly progressive, an in-depth understanding and awareness of early clinical features are mandatory to enhance the overall diagnostic accuracy in its very early stages and to recruit optimal candidates for future therapeutic trials.
Collapse
Affiliation(s)
- Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences, Bologna, Italy
| | | | - Piero Parchi
- IRCCS Institute of Neurological Sciences, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
34
|
Rossi M, Baiardi S, Parchi P. Understanding Prion Strains: Evidence from Studies of the Disease Forms Affecting Humans. Viruses 2019; 11:E309. [PMID: 30934971 PMCID: PMC6520670 DOI: 10.3390/v11040309] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Prion diseases are a unique group of rare neurodegenerative disorders characterized by tissue deposition of heterogeneous aggregates of abnormally folded protease-resistant prion protein (PrPSc), a broad spectrum of disease phenotypes and a variable efficiency of disease propagation in vivo. The dominant clinicopathological phenotypes of human prion disease include Creutzfeldt⁻Jakob disease, fatal insomnia, variably protease-sensitive prionopathy, and Gerstmann⁻Sträussler⁻Scheinker disease. Prion disease propagation into susceptible hosts led to the isolation and characterization of prion strains, initially operatively defined as "isolates" causing diseases with distinctive characteristics, such as the incubation period, the pattern of PrPSc distribution, and the regional severity of neuropathological changes after injection into syngeneic hosts. More recently, the structural basis of prion strains has been linked to amyloid polymorphs (i.e., variant amyloid protein conformations) and the concept extended to all protein amyloids showing polymorphic structures and some evidence of in vivo or in vitro propagation by seeding. Despite the significant advances, however, the link between amyloid structure and disease is not understood in many instances. Here we reviewed the most significant contributions of human prion disease studies to current knowledge of the molecular basis of phenotypic variability and the prion strain phenomenon and underlined the unsolved issues from the human disease perspective.
Collapse
Affiliation(s)
- Marcello Rossi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna 40138, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy.
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy.
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna 40138, Italy.
| |
Collapse
|
35
|
Striebel JF, Race B, Williams K, Carroll JA, Klingeborn M, Chesebro B. Microglia are not required for prion-induced retinal photoreceptor degeneration. Acta Neuropathol Commun 2019; 7:48. [PMID: 30909963 PMCID: PMC6432762 DOI: 10.1186/s40478-019-0702-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 12/28/2022] Open
Abstract
Degeneration of photoreceptors in the retina is a major cause of blindness in humans. Often retinal degeneration is due to inheritance of mutations in genes important in photoreceptor (PR) function, but can also be induced by other events including retinal trauma, microvascular disease, virus infection or prion infection. The onset of apoptosis and degeneration of PR neurons correlates with invasion of the PR cellular areas by microglia or monocytes, suggesting a causal role for these cells in pathogenesis of PR degenerative disease. To study the role of microglia in prion-induced retinal disease, we fed prion-infected mice a CSF-1 receptor blocking drug, PLX5622, to eliminate microglia in vivo, and the effects on retinal degeneration were analyzed over time. In mice not receiving drug, the main inflammatory cells invading the degenerating PR areas were microglia, not monocytes. Administration of PLX5622 was highly effective at ablating microglia in retina. However, lack of microglia during prion infection did not prevent degeneration of PR cells. Therefore, microglia were not required for the PR damage process during prion infection. Indeed, mice lacking microglia had slightly faster onset of PR damage. Similar results were seen in C57BL/10 mice and transgenic mice expressing GFP or RFP on microglia and monocytes, respectively. These results were supported by experiments using prion-infected Cx3cr1 knockout mice without PLX5622 treatment, where microglial expansion in retina was delayed, but PR degeneration was not. Contrary to predictions, microglia were not a causative factor in retinal damage by prion infection. Instead, newly generated PrPSc accumulated around the inner segment region of the PR cells and appeared to correlate with initiation of the pathogenic process in the absence of microglia.
Collapse
|
36
|
Scialò C, De Cecco E, Manganotti P, Legname G. Prion and Prion-Like Protein Strains: Deciphering the Molecular Basis of Heterogeneity in Neurodegeneration. Viruses 2019; 11:E261. [PMID: 30875755 PMCID: PMC6466326 DOI: 10.3390/v11030261] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that neurodegenerative disorders share a common pathogenic feature: the presence of deposits of misfolded proteins with altered physicochemical properties in the Central Nervous System. Despite a lack of infectivity, experimental data show that the replication and propagation of neurodegenerative disease-related proteins including amyloid-β (Aβ), tau, α-synuclein and the transactive response DNA-binding protein of 43 kDa (TDP-43) share a similar pathological mechanism with prions. These observations have led to the terminology of "prion-like" to distinguish between conditions with noninfectious characteristics but similarities with the prion replication and propagation process. Prions are considered to adapt their conformation to changes in the context of the environment of replication. This process is known as either prion selection or adaptation, where a distinct conformer present in the initial prion population with higher propensity to propagate in the new environment is able to prevail over the others during the replication process. In the last years, many studies have shown that prion-like proteins share not only the prion replication paradigm but also the specific ability to aggregate in different conformations, i.e., strains, with relevant clinical, diagnostic and therapeutic implications. This review focuses on the molecular basis of the strain phenomenon in prion and prion-like proteins.
Collapse
Affiliation(s)
- Carlo Scialò
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
| | - Elena De Cecco
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, University of Trieste, 34149 Trieste, Italy.
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
- ELETTRA Sincrotrone Trieste S.C.p.A, Basovizza, 34149 Trieste, Italy.
| |
Collapse
|
37
|
Kuru, the First Human Prion Disease. Viruses 2019; 11:v11030232. [PMID: 30866511 PMCID: PMC6466359 DOI: 10.3390/v11030232] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/17/2022] Open
Abstract
Kuru, the first human prion disease was transmitted to chimpanzees by D. Carleton Gajdusek (1923–2008). In this review, we summarize the history of this seminal discovery, its anthropological background, epidemiology, clinical picture, neuropathology, and molecular genetics. We provide descriptions of electron microscopy and confocal microscopy of kuru amyloid plaques retrieved from a paraffin-embedded block of an old kuru case, named Kupenota. The discovery of kuru opened new vistas of human medicine and was pivotal in the subsequent transmission of Creutzfeldt–Jakob disease, as well as the relevance that bovine spongiform encephalopathy had for transmission to humans. The transmission of kuru was one of the greatest contributions to biomedical sciences of the 20th century.
Collapse
|
38
|
Burke CM, Walsh DJ, Steele AD, Agrimi U, Di Bari MA, Watts JC, Supattapone S. Full restoration of specific infectivity and strain properties from pure mammalian prion protein. PLoS Pathog 2019; 15:e1007662. [PMID: 30908557 PMCID: PMC6448948 DOI: 10.1371/journal.ppat.1007662] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/04/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
The protein-only hypothesis predicts that infectious mammalian prions are composed solely of PrPSc, a misfolded conformer of the normal prion protein, PrPC. However, protein-only PrPSc preparations lack significant levels of prion infectivity, leading to the alternative hypothesis that cofactor molecules are required to form infectious prions. Here, we show that prions with parental strain properties and full specific infectivity can be restored from protein-only PrPSc in vitro. The restoration reaction is rapid, potent, and requires bank vole PrPC substrate, post-translational modifications, and cofactor molecules. To our knowledge, this represents the first report in which the essential properties of an infectious mammalian prion have been restored from pure PrP without adaptation. These findings provide evidence for a unified hypothesis of prion infectivity in which the global structure of protein-only PrPSc accurately stores latent infectious and strain information, but cofactor molecules control a reversible switch that unmasks biological infectivity.
Collapse
Affiliation(s)
- Cassandra M. Burke
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Daniel J. Walsh
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Alexander D. Steele
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Angelo Di Bari
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Surachai Supattapone
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
39
|
Baiardi S, Rossi M, Capellari S, Parchi P. Recent advances in the histo-molecular pathology of human prion disease. Brain Pathol 2019; 29:278-300. [PMID: 30588685 DOI: 10.1111/bpa.12695] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Prion diseases are progressive neurodegenerative disorders affecting humans and other mammalian species. The term prion, originally put forward to propose the concept that a protein could be infectious, refers to PrPSc , a misfolded isoform of the cellular prion protein (PrPC ) that represents the pathogenetic hallmark of these disorders. The discovery that other proteins characterized by misfolding and seeded aggregation can spread from cell to cell, similarly to PrPSc , has increased interest in prion diseases. Among neurodegenerative disorders, however, prion diseases distinguish themselves for the broader phenotypic spectrum, the fastest disease progression and the existence of infectious forms that can be transmitted through the exposure to diseased tissues via ingestion, injection or transplantation. The main clinicopathological phenotypes of human prion disease include Creutzfeldt-Jakob disease, by far the most common, fatal insomnia, variably protease-sensitive prionopathy, and Gerstmann-Sträussler-Scheinker disease. However, clinicopathological manifestations extend even beyond those predicted by this classification. Because of their transmissibility, the phenotypic diversity of prion diseases can also be propagated into syngenic hosts as prion strains with distinct characteristics, such as incubation period, pattern of PrPSc distribution and regional severity of histopathological changes in the brain. Increasing evidence indicates that different PrPSc conformers, forming distinct ordered aggregates, encipher the phenotypic variants related to prion strains. In this review, we summarize the most recent advances concerning the histo-molecular pathology of human prion disease focusing on the phenotypic spectrum of the disease including co-pathologies, the characterization of prion strains by experimental transmission and their correlation with the physicochemical properties of PrPSc aggregates.
Collapse
Affiliation(s)
- Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marcello Rossi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Piero Parchi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
40
|
Abstract
Recent advances in understanding of the molecular biology of prion diseases and improved clinical diagnostic techniques might allow researchers to think about therapeutic trials in Creutzfeldt-Jakob disease (CJD) patients. Some attempts have been made in the past and various compounds have been tested in single case reports and patient series. Controlled trials are rare. However, in the past few years, it has been demonstrated that clinical trials are feasible. The clinicians might face several specific problems when evaluating the efficacy of the drug in CJD, such as rareness of the disease, lack of appropriate preclinical tests and heterogeneous clinical presentation in humans. These problems have to be carefully addressed in future.
Collapse
Affiliation(s)
- Saima Zafar
- Clinical Dementia Center and German Center for Neurodegenerative Diseases, Department of Neurology, Georg-August University, University Medical Center Göttingen, Göttingen, Germany; Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Aneeqa Noor
- Clinical Dementia Center and German Center for Neurodegenerative Diseases, Department of Neurology, Georg-August University, University Medical Center Göttingen, Göttingen, Germany
| | - Inga Zerr
- Clinical Dementia Center and German Center for Neurodegenerative Diseases, Department of Neurology, Georg-August University, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
41
|
Review: Fluid biomarkers in the human prion diseases. Mol Cell Neurosci 2018; 97:81-92. [PMID: 30529227 DOI: 10.1016/j.mcn.2018.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/27/2023] Open
Abstract
The human prion diseases are a diverse set of often rapidly progressive neurodegenerative conditions associated with abnormal forms of the prion protein. We review work to establish diagnostic biomarkers and assays that might fill other important roles, particularly those that could assist the planning and interpretation of clinical trials. The field now benefits from highly sensitive and specific diagnostic biomarkers using cerebrospinal fluid: detecting by-products of rapid neurodegeneration or specific functional properties of abnormal prion protein, with the second generation real time quaking induced conversion (RT-QuIC) assay being particularly promising. Blood has been a more challenging analyte, but has now also yielded valuable biomarkers. Blood-based assays have been developed with the potential to screen for variant Creutzfeldt-Jakob disease, although it remains uncertain whether these will ever be used in practice. The very rapid neurodegeneration of prion disease results in strong signals from surrogate protein markers in the blood that reflect neuronal, axonal, synaptic or glial pathology in the brain: notably the tau and neurofilament light chain proteins. We discuss early evidence that such tests, applied alongside robust diagnostic biomarkers, may have potential to add value as clinical trial outcome measures, predictors of future disease course (including for asymptomatic individuals at high risk of prion disease), and as rapidly accessible and sensitive markers to aid early diagnosis.
Collapse
|
42
|
Orrù CD, Soldau K, Cordano C, Llibre-Guerra J, Green AJ, Sanchez H, Groveman BR, Edland SD, Safar JG, Lin JH, Caughey B, Geschwind MD, Sigurdson CJ. Prion Seeds Distribute throughout the Eyes of Sporadic Creutzfeldt-Jakob Disease Patients. mBio 2018; 9:e02095-18. [PMID: 30459197 PMCID: PMC6247090 DOI: 10.1128/mbio.02095-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022] Open
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD) is the most common prion disease in humans and has been iatrogenically transmitted through corneal graft transplantation. Approximately 40% of sCJD patients develop visual or oculomotor symptoms and may seek ophthalmological consultation. Here we used the highly sensitive real-time quaking-induced conversion (RT-QuIC) assay to measure postmortem prion seeding activities in cornea, lens, ocular fluid, retina, choroid, sclera, optic nerve, and extraocular muscle in the largest series of sCJD patient eyes studied by any assay to date. We detected prion seeding activity in 100% of sCJD eyes, representing three common sCJD subtypes, with levels varying by up to 4 log-fold among individuals. The retina consistently showed the highest seed levels, which in some cases were only slightly lower than brain. Within the retina, prion deposits were detected by immunohistochemistry (IHC) in the retinal outer plexiform layer in most sCJD cases, and in some eyes the inner plexiform layer, consistent with synaptic prion deposition. Prions were not detected by IHC in any other eye region. With RT-QuIC, prion seed levels generally declined in eye tissues with increased distance from the brain, and yet all corneas had prion seeds detectable. Prion seeds were also present in the optic nerve, extraocular muscle, choroid, lens, vitreous, and sclera. Collectively, these results reveal that sCJD patients accumulate prion seeds throughout the eye, indicating the potential diagnostic utility as well as a possible biohazard.IMPORTANCE Cases of iatrogenic prion disease have been reported from corneal transplants, yet the distribution and levels of prions throughout the eye remain unknown. This study probes the occurrence, level, and distribution of prions in the eyes of patients with sporadic Creutzfeldt-Jakob disease (sCJD). We tested the largest series of prion-infected eyes reported to date using an ultrasensitive technique to establish the prion seed levels in eight regions of the eye. All 11 cases had detectable prion seeds in the eye, and in some cases, the seed levels in the retina approached those in brain. In most cases, prion deposits could also be seen by immunohistochemical staining of retinal tissue; other ocular tissues were negative. Our results have implications for estimating the risk for iatrogenic transmission of sCJD as well as for the development of antemortem diagnostic tests for prion diseases.
Collapse
Affiliation(s)
- Christina D Orrù
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, USA
| | - Katrin Soldau
- Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | - Christian Cordano
- Department of Neurology, Multiple Sclerosis Center, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Jorge Llibre-Guerra
- Cognitive and Behavioral Research Unit, National Institute of Neurology, Havana, Cuba
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Ari J Green
- Department of Neurology, Multiple Sclerosis Center, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Henry Sanchez
- Department of Pathology, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Bradley R Groveman
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, USA
| | - Steven D Edland
- Department of Family Medicine & Public Health, University of California, San Diego, La Jolla, California, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Jiri G Safar
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jonathan H Lin
- Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, USA
| | - Michael D Geschwind
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Christina J Sigurdson
- Department of Pathology, University of California, San Diego, La Jolla, California, USA
- Department of Pathology, Immunology, and Microbiology, University of California, Davis, Davis, California, USA
| |
Collapse
|
43
|
Abstract
Prions diseases are uniformly fatal neurodegenerative diseases that occur in sporadic, genetic, and acquired forms. Acquired prion diseases, caused by infectious transmission, are least common. Most prion diseases are not infectious, but occur spontaneously through misfolding of normal prion proteins or genetic mutations in the prion protein gene. Although most prion diseases are not caused by infection, they can be transmitted accidentally. Certain infection control protocols should be applied when handling central nervous system and other high-risk tissues. New diagnostic methods are improving premortem and earlier diagnosis. Treatment trials have not shown improved survival, but therapies may be available soon.
Collapse
Affiliation(s)
- Boon Lead Tee
- Global Brain Health Institute, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94518, USA; Department of Neurology, Buddhist Tzu Chi General Hospital, No. 707, Section 3, Zhong Yang Road, Hualien City, Hualien County 97002, Taiwan
| | - Erika Mariana Longoria Ibarrola
- Global Brain Health Institute, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94518, USA; Dementia Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suarez, Av. Insurgentes Sur 3877, Col. La Fama, Del. Tlalpan, Ciudad de México. C.P. 14269, Mexico
| | - Michael D Geschwind
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94158, USA.
| |
Collapse
|
44
|
Abstract
Sporadic Creutzfeldt-Jakob disease (CJD), the most common human prion disease, is generally regarded as a spontaneous neurodegenerative illness, arising either from a spontaneous PRNP somatic mutation or a stochastic PrP structural change. Alternatively, the possibility of an infection from animals or other source remains to be completely ruled out. Sporadic CJD is clinically characterized by rapidly progressive dementia with ataxia, myoclonus, or other neurologic signs and, neuropathologically, by the presence of aggregates of abnormal prion protein, spongiform change, neuronal loss, and gliosis. Despite these common features the disease shows a wide phenotypic variability which was recognized since its early descriptions. In the late 1990s the identification of key molecular determinants of phenotypic expression and the availability of a large series of neuropathologically verified cases led to the characterization of definite clinicopathologic and molecular disease subtypes and to an internationally recognized disease classification. By showing that these disease subtypes correspond to specific agent strain-host genotype combinations, recent transmission studies have confirmed the biologic basis of this classification. The introduction of brain magnetic resonance imaging techniques such as fluid-attenuated inversion recovery and diffusion-weighted imaging sequences and cerebrospinal fluid biomarker assays for the detection of brain-derived proteins as well as real-time quaking-induced conversion assay, allowing the specific detection of prions in accessible biologic fluids and tissues, has significantly contributed to the improved accuracy of the clinical diagnosis of sporadic CJD in recent years.
Collapse
Affiliation(s)
- Inga Zerr
- Department of Neurology, University Hospital, Georg-August-University, Goettingen, Germany.
| | - Piero Parchi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and IRCCS Institute of Neurological Sciences, Bologna, Italy
| |
Collapse
|
45
|
Processing of high-titer prions for mass spectrometry inactivates prion infectivity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1174-1180. [PMID: 30282615 DOI: 10.1016/j.bbapap.2018.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/20/2018] [Accepted: 08/18/2018] [Indexed: 12/15/2022]
Abstract
Prions represent a class of universally fatal and transmissible neurodegenerative disorders that affect humans and other mammals. The prion agent contains a pathologically aggregated form of the host prion protein that can transmit infectivity without any bacterial or viral component and is thus difficult to inactivate using disinfection protocols designed for infectious microorganisms. Methods for prion inactivation include treatment with acids, bases, detergents, bleach, prolonged autoclaving and incineration. During these procedures, the sample is often either destroyed or damaged such that further analysis for research purposes is compromised. In this study we show that a straightforward denaturation and in-gel protease digestion protocol used to prepare prion-infected samples for mass spectroscopy leads to the loss of at least 7 logs of prion infectivity, yielding a final product that fails to transmit prion disease in vivo. We further show that the resultant sample remains suitable for mass spectrometry-based protein identifications. Thus, the procedure described can be used to prepare prion-infected samples for mass spectrometry analysis with greatly reduced biosafety concerns.
Collapse
|
46
|
Cali I, Mikhail F, Qin K, Gregory C, Solanki A, Martinez MC, Zhao L, Appleby B, Gambetti P, Norstrom E, Mastrianni JA. Impaired transmissibility of atypical prions from genetic CJD G114V. Neurol Genet 2018; 4:e253. [PMID: 30109268 PMCID: PMC6089695 DOI: 10.1212/nxg.0000000000000253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/14/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To describe the clinicopathologic, molecular, and transmissible characteristics of genetic prion disease in a young man carrying the PRNP-G114V variant. METHODS We performed genetic, histologic, and molecular studies, combined with in vivo transmission studies and in vitro replication studies, to characterize this genetic prion disease. RESULTS A 24-year-old American man of Polish descent developed progressive dementia, aphasia, and ataxia, leading to his death 5 years later. Histologic features included widespread spongiform degeneration, gliosis, and infrequent PrP plaque-like deposits within the cerebellum and putamen, best classifying this as a Creutzfeldt-Jakob disease (CJD) subtype. Molecular typing of proteinase K-resistant PrP (resPrPSc) revealed a mixture of type 1 (∼21 kDa) and type 2 (∼19 kDa) conformations with only 2, rather than the usual 3, PrPSc glycoforms. Brain homogenates from the proband failed to transmit prion disease to transgenic Tg(HuPrP) mice that overexpress human PrP and are typically susceptible to sporadic and genetic forms of CJD. When subjected to protein misfolding cyclic amplification, the PrPSc type 2 (∼19 kDa) was selectively amplified. CONCLUSIONS The features of genetic CJDG114V suggest that residue 114 within the highly conserved palindromic region (113-AGAAAAGA-120) plays an important role in prion conformation and propagation.
Collapse
Affiliation(s)
- Ignazio Cali
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Fadi Mikhail
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Kefeng Qin
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Crystal Gregory
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Ani Solanki
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Manuel Camacho Martinez
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Lili Zhao
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Brian Appleby
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Pierluigi Gambetti
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Eric Norstrom
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - James A Mastrianni
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| |
Collapse
|
47
|
Vilette D, Courte J, Peyrin JM, Coudert L, Schaeffer L, Andréoletti O, Leblanc P. Cellular mechanisms responsible for cell-to-cell spreading of prions. Cell Mol Life Sci 2018; 75:2557-2574. [PMID: 29761205 PMCID: PMC11105574 DOI: 10.1007/s00018-018-2823-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
Abstract
Prions are infectious agents that cause fatal neurodegenerative diseases. Current evidence indicates that they are essentially composed of an abnormally folded protein (PrPSc). These abnormal aggregated PrPSc species multiply in infected cells by recruiting and converting the host PrPC protein into new PrPSc. How prions move from cell to cell and progressively spread across the infected tissue is of crucial importance and may provide experimental opportunity to delay the progression of the disease. In infected cells, different mechanisms have been identified, including release of infectious extracellular vesicles and intercellular transfer of PrPSc-containing organelles through tunneling nanotubes. These findings should allow manipulation of the intracellular trafficking events targeting PrPSc in these particular subcellular compartments to experimentally address the relative contribution of these mechanisms to in vivo prion pathogenesis. In addition, such information may prompt further experimental strategies to decipher the causal roles of protein misfolding and aggregation in other human neurodegenerative diseases.
Collapse
Affiliation(s)
- Didier Vilette
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France.
| | - Josquin Courte
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France
- Laboratoire Physico Chimie Curie, UMR168, UPMC, IPGG, Sorbonne Universités, 6 Rue Jean Calvin, 75005, Paris, France
| | - Jean Michel Peyrin
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France.
| | - Laurent Coudert
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Laurent Schaeffer
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Olivier Andréoletti
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France
| | - Pascal Leblanc
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France.
| |
Collapse
|
48
|
Lack of Transmission of Chronic Wasting Disease to Cynomolgus Macaques. J Virol 2018; 92:JVI.00550-18. [PMID: 29695429 DOI: 10.1128/jvi.00550-18] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/19/2018] [Indexed: 11/20/2022] Open
Abstract
Chronic wasting disease (CWD) is a fatal prion disease that can infect deer, elk, and moose. CWD was first recognized in captive deer kept in wildlife facilities in Colorado from 1967 to 1979. CWD has now been detected in 25 U.S. states, 2 Canadian provinces, South Korea, Norway, and Finland. It is currently unknown if humans are susceptible to CWD infection. Understanding the health risk from consuming meat and/or products from CWD-infected cervids is a critical human health concern. Previous research using transgenic mouse models and in vitro conversion assays suggests that a significant species barrier exists between CWD and humans. To date, reported epidemiologic studies of humans consuming cervids in areas where CWD is endemic have found no evidence to confirm CWD transmission to humans. Previously, we reported data from ongoing cross-species CWD transmission studies using two species of nonhuman primates as models. Squirrel monkeys (SM) and cynomolgus macaques (CM) were inoculated by either the intracerebral or oral route with brain homogenates from CWD-infected deer and elk containing high levels of infectivity. SM were highly susceptible to CWD infection, while CM were not. In the present study, we present new data for seven CWD-inoculated CM euthanized 11 to 13 years after CWD inoculation and eight additional uninoculated control CM. New and archival CM tissues were screened for prion infection by using the ultrasensitive real-time quaking-induced conversion (RT-QuIC) assay, immunohistochemistry, and immunoblotting. In this study, there was no clinical, pathological, or biochemical evidence suggesting that CWD was transmitted from cervids to CM.IMPORTANCE Chronic wasting disease (CWD) is a fatal prion disease found in deer, elk, and moose. Since it was first discovered in the late 1960s, CWD has now spread to at least 25 U.S. states, 2 Canadian provinces, South Korea, Norway, and Finland. Eradication of CWD from areas of endemicity is very unlikely, and additional spread will occur. As the range and prevalence of CWD increase, so will the potential for human exposure to CWD prions. It is currently unknown if CWD poses a risk to human health. However, determining this risk is critical to preventing a scenario similar to that which occurred when mad cow disease was found to be transmissible to humans. In the present study, we used cynomolgus macaque monkeys as a surrogate model for CWD transmission to humans. After 13 years, no evidence for CWD transmission to macaques was detected clinically or by using highly sensitive prion disease-screening assays.
Collapse
|
49
|
Rapidly Progressive Dementia: Prevalence and Causes in a Neurologic Unit of a Tertiary Hospital in Brazil. Alzheimer Dis Assoc Disord 2018; 31:239-243. [PMID: 27849640 DOI: 10.1097/wad.0000000000000170] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Rapidly progressive dementia (RPD) is usually associated with Creutzfeldt-Jakob disease, a fatal condition. Current advances in the understanding of immune-mediated diseases allow the diagnosis of previously unrecognized treatable RPDs. OBJECTIVE OF THE STUDY The objective of the study was to describe the prevalence and causes of RPD in a neurology service, identifying potentially reversible causes. METHODS We carried out a cross-sectional evaluation of all patients admitted to the neurology unit of a tertiary hospital in Brazil between March 2012 and February 2015. We included patients who had progressed to moderate or severe dementia within a few months or up to 2 years at the time of hospitalization, and used multivariable logistic regression analysis to identify factors associated with a favorable outcome. RESULTS We identified 61 RPD (3.7%) cases among 1648 inpatients. Mean RPD patients' age was 48 years, and median time to progression was 6.4 months. Immune-mediated diseases represented the most commonly observed disease group in this series (45.9% of cases). Creutzfeldt-Jakob disease (11.5%) and nonprion neurodegenerative diseases (8.2%) were less common in this series. Outcome was favorable in 36/61 (59.0%) RPD cases and in 28/31 (89.3%) of immune-mediated cases. Favorable outcome was associated with shorter time from symptom onset to diagnosis and abnormal cerebrospinal fluid findings. CONCLUSIONS Immune-mediated diseases were the most common cause of RPD in this series. Timely evaluation and diagnosis along with institution of appropriate therapy are required in RPD, especially in view of potentially reversible causes.
Collapse
|
50
|
Abstract
Genetic prion diseases (gPrDs) caused by mutations in the prion protein gene (PRNP) have been classified as genetic Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker disease, or fatal familial insomnia. Mutations in PRNP can be missense, nonsense, and/or octapeptide repeat insertions or, possibly, deletions. These mutations can produce diverse clinical features. They may also show varying ancillary testing results and neuropathological findings. Although the majority of gPrDs have a rapid progression with a short survival time of a few months, many also present as ataxic or parkinsonian disorders, which have a slower decline over a few to several years. A few very rare mutations manifest as neuropsychiatric disorders, with systemic symptoms that include gastrointestinal disorders and neuropathy; these forms can progress over years to decades. In this review, we classify gPrDs as rapid, slow, or mixed types based on their typical rate of progression and duration, and we review the broad spectrum of phenotypes manifested by these diseases.
Collapse
Affiliation(s)
- Mee-Ohk Kim
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Leonel T Takada
- Cognitive and Behavioral Neurology Unit, Department of Neurology, University of São Paulo, São Paulo, 05403-900, Brazil
| | - Katherine Wong
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Sven A Forner
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Michael D Geschwind
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|