1
|
Su J, Wang H, Wang Z. The Multiple Roles of Heat Shock Proteins in the Development of Inflammatory Bowel Disease. Curr Mol Med 2025; 25:132-145. [PMID: 38465431 DOI: 10.2174/0115665240286793240306053111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
Inflammatory bowel disease (IBD), a chronic inflammatory condition of the human intestine, comprises Crohn's disease (CD) and ulcerative colitis (UC). IBD causes severe gastrointestinal symptoms and increases the risk of developing colorectal carcinoma. Although the etiology of IBD remains ambiguous, complex interactions between genetic predisposition, microbiota, epithelial barrier, and immune factors have been implicated. The disruption of intestinal homeostasis is a cardinal characteristic of IBD. Patients with IBD exhibit intestinal microbiota dysbiosis, impaired epithelial tight junctions, and immune dysregulation; however, the relationship between them is not completely understood. As the largest body surface is exposed to the external environment, the gastrointestinal tract epithelium is continuously subjected to environmental and endogenous stressors that can disrupt cellular homeostasis and survival. Heat shock proteins (HSPs) are endogenous factors that play crucial roles in various physiological processes, such as maintaining intestinal homeostasis and influencing IBD progression. Specifically, HSPs share an intricate association with microbes, intestinal epithelium, and the immune system. In this review, we aim to elucidate the impact of HSPs on IBD development by examining their involvement in the interactions between the intestinal microbiota, epithelial barrier, and immune system. The recent clinical and animal models and cellular research delineating the relationship between HSPs and IBD are summarized. Additionally, new perspectives on IBD treatment approaches have been proposed.
Collapse
Affiliation(s)
- Jinfeng Su
- Department of Neonatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518100, China
| | - Haiyan Wang
- Department of Obstetrics and Gynecology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518100, China
| | - Zun Wang
- Department of Breast and Thyroid Surgery, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518100, China
| |
Collapse
|
2
|
Hermo L, Oliveira R, Dufresne J, Gregory M, Cyr DG. Basal and Immune Cells of the Epididymis: An Electron Microscopy View of Their Association. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:67-87. [PMID: 40301253 DOI: 10.1007/978-3-031-82990-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The epididymis is a highly coiled duct divided into the initial segment, caput, corpus, and cauda regions. It is a pseudostratified epithelium consisting of principal, narrow, apical, basal, and clear cells. Circulating halo cells, identified as nonepithelial cells, monocytes/macrophages (M/M) and T-lymphocytes, in addition to dendritic cells and a resident population of M/M cells, also inhabit the epididymal epithelium. Using electron microscopy (EM), we characterized the ultrastructural features of each of these different cell types. Basal cells with stem cell characteristics suggest a role in sustaining the epithelium following injury and inflammation, as well as maintaining the steady state of the epithelium. Interestingly, a close morphological affiliation was noted between circulating M/M cells with basal cells and an intraepithelial resident M/M population of cells, as well as between T-lymphocytes and dendritic cells. The association of all these cell types with one another suggests complex interactions enabling the coordination of their functions related to maturation, protection, survival of sperm, and renewal of the epithelium.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Regiana Oliveira
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Julie Dufresne
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Daniel G Cyr
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada.
| |
Collapse
|
3
|
Stolovich-Rain M, Fridlich O, Azulai S, Klochendler A, Anzi S, Magenheim J, Stein I, Mushasha F, Glaser B, Pikarsky E, Ben-Zvi D, Dor Y. Extensive elimination of acinar cells during normal postnatal pancreas growth. Cell Rep 2023; 42:113457. [PMID: 37995187 DOI: 10.1016/j.celrep.2023.113457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/01/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
While programmed cell death plays important roles during morphogenetic stages of development, post-differentiation organ growth is considered an efficient process whereby cell proliferation increases cell number. Here we demonstrate that early postnatal growth of the pancreas unexpectedly involves massive acinar cell elimination. Measurements of cell proliferation and death in the human pancreas in comparison to the actual increase in cell number predict daily elimination of 0.7% of cells, offsetting 88% of cell formation over the first year of life. Using mouse models, we show that death is associated with mitosis, through a failure of dividing cells to generate two viable daughters. In p53-deficient mice, acinar cell death and proliferation are reduced, while organ size is normal, suggesting that p53-dependent developmental apoptosis triggers compensatory proliferation. We propose that excess cell turnover during growth of the pancreas, and presumably other organs, facilitates robustness to perturbations and supports maintenance of tissue architecture.
Collapse
Affiliation(s)
- Miri Stolovich-Rain
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ori Fridlich
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shira Azulai
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Agnes Klochendler
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shira Anzi
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Judith Magenheim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ilan Stein
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel; Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Fatima Mushasha
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eli Pikarsky
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel; Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
4
|
Galenza A, Moreno-Roman P, Su YH, Acosta-Alvarez L, Debec A, Guichet A, Knapp JM, Kizilyaprak C, Humbel BM, Kolotuev I, O'Brien LE. Basal stem cell progeny establish their apical surface in a junctional niche during turnover of an adult barrier epithelium. Nat Cell Biol 2023; 25:658-671. [PMID: 36997641 PMCID: PMC10317055 DOI: 10.1038/s41556-023-01116-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/23/2023] [Indexed: 04/01/2023]
Abstract
Barrier epithelial organs face the constant challenge of sealing the interior body from the external environment while simultaneously replacing the cells that contact this environment. New replacement cells-the progeny of basal stem cells-are born without barrier-forming structures such as a specialized apical membrane and occluding junctions. Here, we investigate how new progeny acquire barrier structures as they integrate into the intestinal epithelium of adult Drosophila. We find they gestate their future apical membrane in a sublumenal niche created by a transitional occluding junction that envelops the differentiating cell and enables it to form a deep, microvilli-lined apical pit. The transitional junction seals the pit from the intestinal lumen until differentiation-driven, basal-to-apical remodelling of the niche opens the pit and integrates the now-mature cell into the barrier. By coordinating junctional remodelling with terminal differentiation, stem cell progeny integrate into a functional, adult epithelium without jeopardizing barrier integrity.
Collapse
Affiliation(s)
- Anthony Galenza
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paola Moreno-Roman
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Foldscope Instruments, Inc., Palo Alto, CA, USA
| | - Yu-Han Su
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lehi Acosta-Alvarez
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alain Debec
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Institute of Ecology and Environmental Sciences, iEES, Sorbonne University, UPEC, CNRS, IRD, INRA, Paris, France
| | - Antoine Guichet
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Caroline Kizilyaprak
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
| | - Bruno M Humbel
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Provost's Office, Okinawa Institute of Science and Technology, Tancha, Japan
| | - Irina Kolotuev
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
| | - Lucy Erin O'Brien
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
5
|
Iwanaga T, Takahashi-Iwanaga H. Disposal of intestinal apoptotic epithelial cells and their fate via divergent routes. Biomed Res 2022; 43:59-72. [PMID: 35718446 DOI: 10.2220/biomedres.43.59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gut epithelial cells are characterized by rapid, constant cell renewal. The disposal of aging epithelial cells around the villus tips of the small intestine occurs so regularly that it has been regarded as a consequence of well-controlled cell death, designated as apoptosis. However, the notion of live cell extrusion in the intestine has been intensively built among researchers, and the disposal processes of effete epithelial cells display species and regional differences. Chemical mediators and mechanical forces rising from surrounding cells contribute to the regulated cell replacement. Cytotoxic intraepithelial lymphocytes and lamina propria macrophages play a leading role in the selection of disposal cells and their extrusion to maintain fully the epithelial homeostasis in tandem with the dynamic reconstruction of junctional devices. Lymphocyte-mediated cell killing is predominant in the mouse and rat, while the disposal of epithelial cells in the guinea pig, monkey, and human is characterized by active phagocytosis by subepithelially gathering macrophages. The fenestrated basement membrane formed by immune cells supports their involvement and explains species differences in the disposal of epithelial cells. Via these fenestrations, macrophages and dendritic cells can engulf apoptotic epithelial cells and debris and convey substantial information to regional lymph nodes. In this review, we attempt to focus on morphological aspects concerning the apoptosis and disposal process of effete epithelial cells; in vitro or ex vivo analyses using cultured monolayer has become predominant in recent studies concerning the exfoliation of apoptotic enterocytes. Furthermore, we give attention to their species differences, which is controversial but crucial to our understanding.
Collapse
Affiliation(s)
- Toshihiko Iwanaga
- Department of Anatomy, Hokkaido University Graduate School of Medicine
| | | |
Collapse
|
6
|
Hirano M, So Y, Tsunekawa S, Kabata M, Ohta S, Sagara H, Sankoda N, Taguchi J, Yamada Y, Ukai T, Kato M, Nakamura J, Ozawa M, Yamamoto T, Yamada Y. MYCL-mediated reprogramming expands pancreatic insulin-producing cells. Nat Metab 2022; 4:254-268. [PMID: 35145326 DOI: 10.1038/s42255-022-00530-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 01/11/2022] [Indexed: 11/09/2022]
Abstract
β cells have a limited capacity for regeneration, which predisposes towards diabetes. Here, we show that, of the MYC family members, Mycl plays a key role in proliferation of pancreatic endocrine cells. Genetic ablation of Mycl causes a reduction in the proliferation of pancreatic endocrine cells in neonatal mice. By contrast, the expression of Mycl in adult mice stimulates the proliferation of β and α cells, and the cells persist after withdrawal of Mycl expression. A subset of the expanded α cells give rise to insulin-producing cells after this withdrawal. Transient Mycl expression in vivo is sufficient to normalize the hyperglycaemia of diabetic mice. In vitro expression of Mycl similarly provokes active replication in islet cells, even in those from aged mice. Finally, we show that MYCL stimulates the division of human adult cadaveric islet cells. Our results demonstrate that the induction of Mycl alone expands the functional β-cell population, which may provide a regenerative strategy for β cells.
Collapse
Affiliation(s)
- Michitada Hirano
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yusei So
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shin Tsunekawa
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Aichi, Japan
| | - Mio Kabata
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Sho Ohta
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hiroshi Sagara
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Nao Sankoda
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Jumpei Taguchi
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yosuke Yamada
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Tomoyo Ukai
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Makoto Kato
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Aichi, Japan
| | - Jiro Nakamura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Aichi, Japan
| | - Manabu Ozawa
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- AMED-CREST, AMED, Tokyo, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Yasuhiro Yamada
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- AMED-CREST, AMED, Tokyo, Japan.
| |
Collapse
|
7
|
Cracking the Skin Barrier: Liquid-Liquid Phase Separation Shines under the Skin. JID INNOVATIONS 2021; 1:100036. [PMID: 34909733 PMCID: PMC8659386 DOI: 10.1016/j.xjidi.2021.100036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 12/25/2022] Open
Abstract
Central to forming and sustaining the skin’s barrier, epidermal keratinocytes (KCs) fluxing to the skin surface undergo a rapid and enigmatic transformation into flat, enucleated squames. At the crux of this transformation are intracellular keratohyalin granules (KGs) that suddenly disappear as terminally differentiating KCs transition to the cornified skin surface. Defects in KGs have long been linked to skin barrier disorders. Through the biophysical lens of liquid-liquid phase separation (LLPS), these enigmatic KGs recently emerged as liquid-like membraneless organelles whose assembly and subsequent pH-triggered disassembly drive squame formation. To stimulate future efforts toward cracking the complex process of skin barrier formation, in this review, we integrate the key concepts and foundational work spanning the fields of LLPS and epidermal biology. We review the current progress in the skin and discuss implications in the broader context of membraneless organelles across stratifying epithelia. The discovery of environmentally sensitive LLPS dynamics in the skin points to new avenues for dissecting the skin barrier and for addressing skin barrier disorders. We argue that skin and its appendages offer outstanding models to uncover LLPS-driven mechanisms in tissue biology.
Collapse
Key Words
- 3D, three-dimensional
- AD, atopic dermatitis
- CE, cornified envelope
- EDC, epidermal differentiation complex
- ER, endoplasmic reticulum
- IDP, intrinsically-disordered protein
- KC, keratinocyte
- KG, keratohyalin granule
- LCST, lower critical solution temperature
- LLPS, liquid-liquid phase separation
- PTM, post-translational modification
- TG, trichohyalin granule
- UCST, upper critical solution temperature
Collapse
|
8
|
Tallapragada NP, Cambra HM, Wald T, Keough Jalbert S, Abraham DM, Klein OD, Klein AM. Inflation-collapse dynamics drive patterning and morphogenesis in intestinal organoids. Cell Stem Cell 2021; 28:1516-1532.e14. [PMID: 33915079 DOI: 10.1016/j.stem.2021.04.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 12/29/2020] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
How stem cells self-organize to form structured tissues is an unsolved problem. Intestinal organoids offer a model of self-organization as they generate stem cell zones (SCZs) of typical size even without a spatially structured environment. Here we examine processes governing the size of SCZs. We improve the viability and homogeneity of intestinal organoid cultures to enable long-term time-lapse imaging of multiple organoids in parallel. We find that SCZs are shaped by fission events under strong control of ion channel-mediated inflation and mechanosensitive Piezo-family channels. Fission occurs through stereotyped modes of dynamic behavior that differ in their coordination of budding and differentiation. Imaging and single-cell transcriptomics show that inflation drives acute stem cell differentiation and induces a stretch-responsive cell state characterized by large transcriptional changes, including upregulation of Piezo1. Our results reveal an intrinsic capacity of the intestinal epithelium to self-organize by modulating and then responding to its mechanical state.
Collapse
Affiliation(s)
- Naren P Tallapragada
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hailey M Cambra
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tomas Wald
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Samantha Keough Jalbert
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Diana M Abraham
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Allon M Klein
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Protection from β-cell apoptosis by inhibition of TGF-β/Smad3 signaling. Cell Death Dis 2020; 11:184. [PMID: 32170115 PMCID: PMC7070087 DOI: 10.1038/s41419-020-2365-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
Abstract
Prevailing insulin resistance and the resultant hyperglycemia elicits a compensatory response from pancreatic islet beta cells (β-cells) that involves increases in β-cell function and β-cell mass. However, the sustained metabolic stress eventually leads to β-cell failure characterized by severe β-cell dysfunction and progressive loss of β-cell mass. Whereas, β-cell dysfunction is relatively well understood at the mechanistic level, the avenues leading to loss of β-cell mass are less clear with reduced proliferation, dedifferentiation, and apoptosis all potential mechanisms. Butler and colleagues documented increased β-cell apoptosis in pancreas from lean and obese human Type 2 diabetes (T2D) subjects, with no changes in rates of β-cell replication or neogenesis, strongly suggesting a role for apoptosis in β-cell failure. Here, we describe a permissive role for TGF-β/Smad3 in β-cell apoptosis. Human islets undergoing β-cell apoptosis release increased levels of TGF-β1 ligand and phosphorylation levels of TGF-β's chief transcription factor, Smad3, are increased in human T2D islets suggestive of an autocrine role for TGF-β/Smad3 signaling in β-cell apoptosis. Smad3 phosphorylation is similarly increased in diabetic mouse islets undergoing β-cell apoptosis. In mice, β-cell-specific activation of Smad3 promotes apoptosis and loss of β-cell mass in association with β-cell dysfunction, glucose intolerance, and diabetes. In contrast, inactive Smad3 protects from apoptosis and preserves β-cell mass while improving β-cell function and glucose tolerance. At the molecular level, Smad3 associates with Foxo1 to propagate TGF-β-dependent β-cell apoptosis. Indeed, genetic or pharmacologic inhibition of TGF-β/Smad3 signals or knocking down Foxo1 protects from β-cell apoptosis. These findings reveal the importance of TGF-β/Smad3 in promoting β-cell apoptosis and demonstrate the therapeutic potential of TGF-β/Smad3 antagonism to restore β-cell mass lost in diabetes.
Collapse
|
10
|
Sachs S, Bastidas-Ponce A, Tritschler S, Bakhti M, Böttcher A, Sánchez-Garrido MA, Tarquis-Medina M, Kleinert M, Fischer K, Jall S, Harger A, Bader E, Roscioni S, Ussar S, Feuchtinger A, Yesildag B, Neelakandhan A, Jensen CB, Cornu M, Yang B, Finan B, DiMarchi RD, Tschöp MH, Theis FJ, Hofmann SM, Müller TD, Lickert H. Targeted pharmacological therapy restores β-cell function for diabetes remission. Nat Metab 2020; 2:192-209. [PMID: 32694693 DOI: 10.1038/s42255-020-0171-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/15/2020] [Indexed: 12/27/2022]
Abstract
Dedifferentiation of insulin-secreting β cells in the islets of Langerhans has been proposed to be a major mechanism of β-cell dysfunction. Whether dedifferentiated β cells can be targeted by pharmacological intervention for diabetes remission, and ways in which this could be accomplished, are unknown as yet. Here we report the use of streptozotocin-induced diabetes to study β-cell dedifferentiation in mice. Single-cell RNA sequencing (scRNA-seq) of islets identified markers and pathways associated with β-cell dedifferentiation and dysfunction. Single and combinatorial pharmacology further show that insulin treatment triggers insulin receptor pathway activation in β cells and restores maturation and function for diabetes remission. Additional β-cell selective delivery of oestrogen by Glucagon-like peptide-1 (GLP-1-oestrogen conjugate) decreases daily insulin requirements by 60%, triggers oestrogen-specific activation of the endoplasmic-reticulum-associated protein degradation system, and further increases β-cell survival and regeneration. GLP-1-oestrogen also protects human β cells against cytokine-induced dysfunction. This study not only describes mechanisms of β-cell dedifferentiation and regeneration, but also reveals pharmacological entry points to target dedifferentiated β cells for diabetes remission.
Collapse
Affiliation(s)
- Stephan Sachs
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
- Department of Medicine, Technical University of Munich, Munich, Germany
| | - Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Miguel A Sánchez-Garrido
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
- Department of Medicine, Technical University of Munich, Munich, Germany
| | - Maximilian Kleinert
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Katrin Fischer
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | - Sigrid Jall
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | - Alexandra Harger
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Erik Bader
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Sara Roscioni
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Siegfried Ussar
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Medicine, Technical University of Munich, Munich, Germany
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Center Munich, Neuherberg, Germany
| | | | | | | | - Marion Cornu
- Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| | - Bin Yang
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Richard D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Matthias H Tschöp
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany.
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Department of Mathematics, Technical University of Munich, Munich, Germany.
| | - Susanna M Hofmann
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medical Clinic and Polyclinic IV, Ludwig Maximilian University of Munich, Munich, Germany.
| | - Timo D Müller
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany.
- Department of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
11
|
Tumour Necrosis Factor Alpha in Intestinal Homeostasis and Gut Related Diseases. Int J Mol Sci 2019; 20:ijms20081887. [PMID: 30995806 PMCID: PMC6515381 DOI: 10.3390/ijms20081887] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium constitutes an indispensable single-layered barrier to protect the body from invading pathogens, antigens or toxins. At the same time, beneficial nutrients and water have to be absorbed by the epithelium. To prevent development of intestinal inflammation or tumour formation, intestinal homeostasis has to be tightly controlled and therefore a strict balance between cell death and proliferation has to be maintained. The proinflammatory cytokine tumour necrosis factor alpha (TNFα) was shown to play a striking role for the regulation of this balance in the gut. Depending on the cellular conditions, on the one hand TNFα is able to mediate cell survival by activating NFκB signalling. On the other hand, TNFα might trigger cell death, in particular caspase-dependent apoptosis but also caspase-independent programmed necrosis. By regulating these cell death and survival mechanisms, TNFα exerts a variety of beneficial functions in the intestine. However, TNFα signalling is also supposed to play a critical role for the pathogenesis of inflammatory bowel disease (IBD), infectious diseases, intestinal wound healing and tumour formation. Here we review the literature about the physiological and pathophysiological role of TNFα signalling for the maintenance of intestinal homeostasis and the benefits and difficulties of anti-TNFα treatment during IBD.
Collapse
|
12
|
Slack JMW. What is a stem cell? WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e323. [PMID: 29762894 DOI: 10.1002/wdev.323] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/04/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022]
Abstract
The historical roots of the stem cell concept are traced with respect to its usage in embryology and in hematology. The modern consensus definition of stem cells, comprising both pluripotent stem cells in culture and tissue-specific stem cells in vivo, is explained and explored. Methods for identifying stem cells are discussed with respect to cell surface markers, telomerase, label retention and transplantability, and properties of the stem cell niche are explored. The CreER method for identifying stem cells in vivo is explained, as is evidence in favor of a stochastic rather than an obligate asymmetric form of cell division. In conclusion, it is found that stem cells do not possess any unique and specific molecular markers; and stem cell behavior depends on the environment of the cell as well as the stem cell's intrinsic qualities. Furthermore, the stochastic mode of division implies that stem cell behavior is a property of a cell population not of an individual cell. In this sense, stem cells do not exist in isolation but only as a part of multicellular system. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Methods and Principles Adult Stem Cells, Tissue Renewal, and Regeneration > Environmental Control of Stem Cells.
Collapse
|
13
|
Ou C, Sun Z, Li S, Li G, Li X, Ma J. Dual roles of yes-associated protein (YAP) in colorectal cancer. Oncotarget 2017; 8:75727-75741. [PMID: 29088905 PMCID: PMC5650460 DOI: 10.18632/oncotarget.20155] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/30/2017] [Indexed: 02/07/2023] Open
Abstract
Yes-associated protein (YAP) is a downstream effector molecule of a newly emerging tumour suppressor pathway called the Hippo pathway. YAP is a transcriptional co-activator and mis-expressed in various cancers, including colorectal cancer (CRC). Accumulating studies show that the high expression of nuclear YAP is linked with tumour progression and decreased survival. Nuclear YAP can interact with other transcription factors to promote cancer cell proliferation, apoptosis, metastasis and maintenance of stemness. Therefore, YAP has the potential to be a tumour biomarker or therapeutic target for CRC. However, recently, a number of studies have supported a contradictory role for YAP as a tumour suppressor, demonstrating inhibition of the tumorigenesis of CRC, involvement in promoting cell apoptosis, and inhibiting the maintenance of intestinal stem cells and inflammatory activity. In these studies, high expression of YAP was highly correlated with worse survival in CRC. In this review, we will comprehensively summarize and analyse these paradoxical reports, and discuss both the oncogenic and tumour suppressor functions of YAP in the differential status of CRC progression. Further investigation into the mechanisms responsible for the dual function of YAP will be of great value in the prevention, early diagnosis, and therapy of CRC.
Collapse
Affiliation(s)
- Chunlin Ou
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhenqiang Sun
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Gastrointestinal Surgery, Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Shen Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | - Guiyuan Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
14
|
|
15
|
Van Spaendonk H, Ceuleers H, Witters L, Patteet E, Joossens J, Augustyns K, Lambeir AM, De Meester I, De Man JG, De Winter BY. Regulation of intestinal permeability: The role of proteases. World J Gastroenterol 2017; 23:2106-2123. [PMID: 28405139 PMCID: PMC5374123 DOI: 10.3748/wjg.v23.i12.2106] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/20/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal barrier is - with approximately 400 m2 - the human body's largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases.
Collapse
|
16
|
Aoi T. Biology of lung cancer: genetic mutation, epithelial-mesenchymal transition, and cancer stem cells. Gen Thorac Cardiovasc Surg 2016; 64:517-23. [PMID: 27376535 DOI: 10.1007/s11748-016-0682-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/27/2016] [Indexed: 12/13/2022]
Abstract
At present, most cases of unresectable cancer cannot be cured. Genetic mutations, EMT, and cancer stem cells are three major issues linked to poor prognosis in such cases, all connected by inter- and intra-tumor heterogeneity. Issues on inter-/intra-tumor heterogeneity of genetic mutation could be resolved with recent and future technologies of deep sequencers, whereas, regarding such issues as the "same genome, different epigenome/phenotype", we expect to solve many of these problems in the future through further research in stem cell biology. We herein review and discuss the three major issues in the biology of cancers, especially from the standpoint of stem cell biology.
Collapse
Affiliation(s)
- Takashi Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan. .,Department of iPS cell Applications, Graduate School of Medicine, Kobe University, Kobe, Japan. .,Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan.
| |
Collapse
|
17
|
Zhang Y, Sun H, Liu Y, Chen S, Cai S, Zhu Y, Guo P. The Limbal Epithelial Progenitors in the Limbal Niche Environment. Int J Med Sci 2016; 13:835-840. [PMID: 27877075 PMCID: PMC5118754 DOI: 10.7150/ijms.16563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/01/2016] [Indexed: 02/06/2023] Open
Abstract
Limbal epithelial progenitors are stem cells located in limbal palisades of vogt. In this review, we present the audience with recent evidence that limbal epithelial progenitors may be a powerful stem cell resource for the cure of human corneal stem cell deficiency. Further understanding of their mechanism may shed lights to the future successful application of stem cell therapy not only to the eye tissue, but also to the other tissues in the human body.
Collapse
Affiliation(s)
- Yuan Zhang
- Research and Development Department, TissueTech, Inc., 7000 SW 97th Avenue, Suite 212, Miami, FL 33173, USA
| | - Hong Sun
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yongsong Liu
- Department of Ophthalmology, Yan' An Hospital of Kunming City, Kunming, 650051, China
| | - Shuangling Chen
- Research and Development Department, TissueTech, Inc., 7000 SW 97th Avenue, Suite 212, Miami, FL 33173, USA
| | - Subo Cai
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yingting Zhu
- Research and Development Department, TissueTech, Inc., 7000 SW 97th Avenue, Suite 212, Miami, FL 33173, USA
| | - Ping Guo
- Shenzhen Eye Hospital, School of Optometry & Ophthalmology of Shenzhen University, Shenzhen Key Laboratory of Department of Ophthalmology, Shenzhen, 518000, China
| |
Collapse
|
18
|
Historical Perspective of Periodontal Progenitor Cells: Early Studies That Clarified Identity and Function. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40496-015-0061-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Nakamura T, Inatomi T, Sotozono C, Koizumi N, Kinoshita S. Ocular surface reconstruction using stem cell and tissue engineering. Prog Retin Eye Res 2015; 51:187-207. [PMID: 26187034 DOI: 10.1016/j.preteyeres.2015.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 12/22/2022]
Abstract
Most human sensory information is gained through eyesight, and integrity of the ocular surface, including cornea and conjunctiva, is known to be indispensable for good vision. It is believed that severe damage to corneal epithelial stem cells results in devastating ocular surface disease, and many researchers and scientists have tried to reconstruct the ocular surface using medical and surgical approaches. Ocular surface reconstruction via regenerative therapy is a newly developed medical field that promises to be the next generation of therapeutic modalities, based on the use of tissue-specific stem cells to generate biological substitutes and improve tissue functions. The accomplishment of these objectives depends on three key factors: stem cells, which have highly proliferative capacities and longevities; the substrates determining the environmental niche; and growth factors that support them appropriately. This manuscript describes the diligent development of ocular surface reconstruction using tissue engineering techniques, both past and present, and discusses and validates their future use for regenerative therapy in this field.
Collapse
Affiliation(s)
- Takahiro Nakamura
- Department of Frontier Medical Sciences and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Tsutomu Inatomi
- Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chie Sotozono
- Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Noriko Koizumi
- Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Sciences and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
20
|
Systematic Review and Meta-analysis on Transplantation of Ex Vivo Cultivated Limbal Epithelial Stem Cell on Amniotic Membrane in Limbal Stem Cell Deficiency. Cornea 2015; 34:592-600. [DOI: 10.1097/ico.0000000000000398] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Rué P, Martinez Arias A. Cell dynamics and gene expression control in tissue homeostasis and development. Mol Syst Biol 2015; 11:792. [PMID: 25716053 PMCID: PMC4358661 DOI: 10.15252/msb.20145549] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During tissue and organ development and maintenance, the dynamic regulation of cellular proliferation and differentiation allows cells to build highly elaborate structures. The development of the vertebrate retina or the maintenance of adult intestinal crypts, for instance, involves the arrangement of newly created cells with different phenotypes, the proportions of which need to be tightly controlled. While some of the basic principles underlying these processes developing and maintaining these organs are known, much remains to be learnt from how cells encode the necessary information and use it to attain those complex but reproducible arrangements. Here, we review the current knowledge on the principles underlying cell population dynamics during tissue development and homeostasis. In particular, we discuss how stochastic fate assignment, cell division, feedback control and cellular transition states interact during organ and tissue development and maintenance in multicellular organisms. We propose a framework, involving the existence of a transition state in which cells are more susceptible to signals that can affect their gene expression state and influence their cell fate decisions. This framework, which also applies to systems much more amenable to quantitative analysis like differentiating embryonic stem cells, links gene expression programmes with cell population dynamics.
Collapse
Affiliation(s)
- Pau Rué
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
22
|
Sangwan VS, Jain R, Basu S, Bagadi AB, Sureka S, Mariappan I, Macneil S. Transforming ocular surface stem cell research into successful clinical practice. Indian J Ophthalmol 2014; 62:29-40. [PMID: 24492499 PMCID: PMC3955067 DOI: 10.4103/0301-4738.126173] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It has only been a quarter of a century since the discovery of adult stem cells at the human corneo-scleral limbus. These limbal stem cells are responsible for generating a constant and unending supply of corneal epithelial cells throughout life, thus maintaining a stable and uniformly refractive corneal surface. Establishing this hitherto unknown association between ocular surface disease and limbal dysfunction helped usher in therapeutic approaches that successfully addressed blinding conditions such as ocular burns, which were previously considered incurable. Subsequent advances in ocular surface biology through basic science research have translated into innovations that have made the surgical technique of limbal stem cell transplantation simpler and more predictable. This review recapitulates the basic biology of the limbus and the rationale and principles of limbal stem cell transplantation in ocular surface disease. An evidence-based algorithm is presented, which is tailored to clinical considerations such as laterality of affliction, severity of limbal damage and concurrent need for other procedures. Additionally, novel findings in the form of factors influencing the survival and function of limbal stem cells after transplantation and the possibility of substituting limbal cells with epithelial stem cells of other lineages is also discussed. Finally this review focuses on the future directions in which both basic science and clinical research in this field is headed.
Collapse
Affiliation(s)
- Virender S Sangwan
- Clinical Trial Center, Dr. Paul Dubord Chair in Cornea, L V Prasad Eye Institute, Hyderabad, Andhra Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
23
|
Nagata T. Cell Aging of Mouse Gastrointestinal Tract Observed by Light and Electron Microscopic Radioautography. Gastroenterology Res 2014; 7:81-92. [PMID: 27785275 PMCID: PMC5040522 DOI: 10.14740/gr617e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2014] [Indexed: 11/11/2022] Open
Abstract
The term "cell aging" initially means how the cells change due to their aging. There are two meanings, i.e. how a cell changes when it is isolated from original animals such as in vitro cells in cell culture, otherwise how all the cells of an animal change in vivo due to the aging of the individual animal. We have been studying the latter changes from the viewpoint of the cell nutrients, the precursors for the macromolecular synthesis such as deoxyribonucleic acid (DNA), ribonucleic acid (RNA), proteins, glucides and lipids, which are incorporated and synthesized into various cells of individual animals. Therefore, this article deals with only the cell aging of animal cells in vivo, how the metabolism, i.e. incorporations and syntheses of respective nutrient precursors in various kinds of cells change due to the aging of individual experimental animals such as mice by means of microscopic radioautography to localize the RI-labeled precursors. The incorporations and syntheses of various precursors for macromolecules such as DNA, RNA, proteins, glucides, lipids and others in various kinds of cells of various organs in the gastrointestinal tract such as the mouth, esophagus, stomach and intestines are reviewed referring many original papers already published from our laboratory during these 60 years since the late 20th century.
Collapse
Affiliation(s)
- Tetsuji Nagata
- Department of Anatomy and Cell Biology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan.
| |
Collapse
|
24
|
Koropatnick T, Goodson MS, Heath-Heckman EAC, McFall-Ngai M. Identifying the cellular mechanisms of symbiont-induced epithelial morphogenesis in the squid-Vibrio association. THE BIOLOGICAL BULLETIN 2014; 226:56-68. [PMID: 24648207 PMCID: PMC4245202 DOI: 10.1086/bblv226n1p56] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The symbiotic association between the Hawaiian bobtail squid Euprymna scolopes and the luminous marine bacterium Vibrio fischeri provides a unique opportunity to study epithelial morphogenesis. Shortly after hatching, the squid host harvests bacteria from the seawater using currents created by two elaborate fields of ciliated epithelia on the surface of the juvenile light organ. After light organ colonization, the symbiont population signals the gradual loss of the ciliated epithelia through apoptosis of the cells, which culminates in the complete regression of these tissues. Whereas aspects of this process have been studied at the morphological, biochemical, and molecular levels, no in-depth analysis of the cellular events has been reported. Here we describe the cellular structure of the epithelial field and present evidence that the symbiosis-induced regression occurs in two steps. Using confocal microscopic analyses, we observed an initial epithelial remodeling, which serves to disable the function of the harvesting apparatus, followed by a protracted regression involving actin rearrangements and epithelial cell extrusion. We identified a metal-dependent gelatinolytic activity in the symbiont-induced morphogenic epithelial fields, suggesting the involvement of Zn-dependent matrix metalloproteinase(s) (MMP) in light organ morphogenesis. These data show that the bacterial symbionts not only induce apoptosis of the field, but also change the form, function, and biochemistry of the cells as part of the morphogenic program.
Collapse
Affiliation(s)
| | | | | | - Margaret McFall-Ngai
- To whom correspondence should be addressed: Dept. of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706 USA Telephone: 608 262 2393; Fax: 608 262 8418;
| |
Collapse
|
25
|
Dutta J, Mukhopadhyay S, Lahiri KD, Datta H. Two separate methods of stem cell transplantation in both eyes of a single patient presented with bilateral stem cell deficiency following exposure to Euphorbia latex. J Ocul Biol Dis Infor 2012; 5:86-8. [PMID: 24596945 DOI: 10.1007/s12177-013-9109-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 06/03/2013] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jayanta Dutta
- Department of Ophthalmology, Institute of Post Graduate Medical Education And Research (IPGME&R), 244 A.J.C Bose Road, Kolkata, 700 020 West Bengal India
| | - Somnath Mukhopadhyay
- NRS Medical College and Hospital, 138 Acharya Jagadish Chandra Bose Road, Kolkata, 700014 West Bengal India
| | - Kapil D Lahiri
- Department of Biochemistry, RG Kar Medical College, 1, Kshudiram Bose Sarani, Kolkata, 700004 West Bengal India
| | - Himadri Datta
- Regional Institute of Ophthalmology, Medical College and Hospital, Kolkata, West Bengal India
| |
Collapse
|
26
|
Klochendler A, Weinberg-Corem N, Moran M, Swisa A, Pochet N, Savova V, Vikeså J, Van de Peer Y, Brandeis M, Regev A, Nielsen FC, Dor Y, Eden A. A transgenic mouse marking live replicating cells reveals in vivo transcriptional program of proliferation. Dev Cell 2012; 23:681-90. [PMID: 23000141 DOI: 10.1016/j.devcel.2012.08.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/15/2012] [Accepted: 08/14/2012] [Indexed: 12/26/2022]
Abstract
Most adult mammalian tissues are quiescent, with rare cell divisions serving to maintain homeostasis. At present, the isolation and study of replicating cells from their in vivo niche typically involves immunostaining for intracellular markers of proliferation, causing the loss of sensitive biological material. We describe a transgenic mouse strain, expressing a CyclinB1-GFP fusion reporter, that marks replicating cells in the S/G2/M phases of the cell cycle. Using flow cytometry, we isolate live replicating cells from the liver and compare their transcriptome to that of quiescent cells to reveal gene expression programs associated with cell proliferation in vivo. We find that replicating hepatocytes have reduced expression of genes characteristic of liver differentiation. This reporter system provides a powerful platform for gene expression and metabolic and functional studies of replicating cells in their in vivo niche.
Collapse
Affiliation(s)
- Agnes Klochendler
- Department of Cell and Developmental Biology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Klein AM, Simons BD. Universal patterns of stem cell fate in cycling adult tissues. Development 2011; 138:3103-11. [DOI: 10.1242/dev.060103] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In cycling tissues that exhibit high turnover, tissue maintenance and repair are coordinated by stem cells. But, how frequently stem cells are replaced following differentiation, aging or injury remains unclear. By drawing together the results of recent lineage-tracing studies, we propose that tissue stem cells are routinely lost and replaced in a stochastic manner. We show that stem cell replacement leads to neutral competition between clones, resulting in two characteristic and recurring patterns of clone fate dynamics, which provide a unifying framework for interpreting clone fate data and for measuring rates of stem cell loss and replacement in vivo. Thus, we challenge the concept of the stem cell as an immortal, slow-cycling, asymmetrically dividing cell.
Collapse
Affiliation(s)
- Allon M. Klein
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
- Cavendish Laboratory, Department of Physics, JJ Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
| | - Benjamin D. Simons
- Cavendish Laboratory, Department of Physics, JJ Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
- Wellcome Trust/CR-UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
28
|
Akay BN, Sanli H, Topcuoglu P, Zincircioğlu G, Gurgan C, Heper AO. Black hairy tongue after allogeneic stem cell transplantation: an unrecognized cutaneous presentation of graft-versus-host disease. Transplant Proc 2011; 42:4603-7. [PMID: 21168745 DOI: 10.1016/j.transproceed.2010.09.177] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 07/06/2010] [Accepted: 09/16/2010] [Indexed: 12/18/2022]
Abstract
Black hairy tongue (BHT) is an unusual condition in adults characterized by marked accumulation of keratin on the dorsum of the tongue, resulting in a hair-like appearance. Herein, we have described 15 patients developing BHT after allogeneic stem cell transplantation (allo-SCT). BHT was generally accompanied by other cutaneous manifestations of cutaneous graft-versus-host disease (GVHD) or a precursor of GVHD. Our experience in this series emphasized that histopathologic evaluation is required for seemingly harmless eruptions like BHT in the posttransplantation period. Given the important prognostic implications of GVHD, physicians should be careful when confronted with BHT.
Collapse
Affiliation(s)
- B N Akay
- University of Ankara School of Medicine, Department of Dermatology, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
29
|
Classification and Staging of Ocular Surface Disease. Cornea 2011. [DOI: 10.1016/b978-0-323-06387-6.00161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Maneewan B, Yamauchi K. Recovery of duodenal villi and cells in chickens refed protein, carbohydrate and fat. Br Poult Sci 2010; 46:415-23. [PMID: 16268098 DOI: 10.1080/00071660500158105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1. To clarify how histological recovery of villi and cells would be affected after refeeding single nutrients such as protein, carbohydrate and fat, male chickens were divided as follows: (1) intact control fed ad libitum a commercial finisher mash diet (CP, 140 g; ME, 11.71 MJ/kg, ALM), (2) 3 d feed withdrawal (FW), (3) FW followed by one day ad libitum free access to the mash diet (FW-ALM), and FW followed by one day force-feeding of (4) a commercial finisher pellet diet (FW-FFM) and an isocaloric diet of (5) a protein (FW-FFP), (6) a carbohydrate (FW-FFC) or (7) a fat (FW-FFF). 2. After refeeding, the formula diet groups increased in villus height and villus area and tended to increase in cell area and cell mitosis. Furthermore, flat cells on the villus tip in the F group developed to dome-shaped cells. This suggests that nutritionally well-balanced diets can induce histological recovery at villus and cellular levels. 3. Not all of the single nutrient groups recovered to the extent of the formula diet groups in all light microscopic variables after refeeding, suggesting that a single nutrient cannot induce histological recovery of the villus. 4. However, the dome-shaped cells were more distributed on the villus tip in these single nutrient groups than in the well-balanced formula diet groups, although cell diameter of the former groups was smaller than that of the latter. This suggests that the single nutrients would be effectively absorbed from cells and can induce histological recovery at the cellular level.
Collapse
Affiliation(s)
- B Maneewan
- Laboratory of Animal Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa-ken, Japan
| | | |
Collapse
|
31
|
Karam SM. A focus on parietal cells as a renewing cell population. World J Gastroenterol 2010; 16:538-546. [PMID: 20128020 PMCID: PMC2816264 DOI: 10.3748/wjg.v16.i5.538] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/04/2009] [Accepted: 11/11/2009] [Indexed: 02/06/2023] Open
Abstract
The fact that the acid-secreting parietal cells undergo continuous renewal has been ignored by many gastroenterologists and cell biologists. In the past, it was thought that these cells were static. However, by using (3)H-thymidine radioautography in combination with electron microscopy, it was possible to demonstrate that parietal cells belong to a continuously renewing epithelial cell lineage. In the gastric glands, stem cells anchored in the isthmus region are responsible for the production of parietal cells. The stem cells give rise to three main progenitors: prepit, preneck and preparietal cells. Parietal cells develop either directly from the non-cycling preparietal cells or less commonly via differentiation of the cycling prepit and preneck cell progenitors. The formation of a parietal cell is a sequential process which involves diminishment of glycocalyx, production of cytoplasmic tubulovesicles, an increase in number and length of microvilli, an increase in number and size of mitochondria, and finally, expansion and invagination of the apical membrane with the formation of an intracellular canalicular system. Little is known about the genetic counterparts of these morphological events. However, the time dimension of parietal cell production and the consequences of its alteration on the biological features of the gastric gland are well documented. The production of a new parietal cell takes about 2 d. However, mature parietal cells have a long lifespan during which they migrate bi-directionally while their functional activity for acid secretion gradually diminishes. Following an average lifespan of about 54 d, in mice, old parietal cells undergo degeneration and elimination. Various approaches for genetic alteration of the development of parietal cells have provided evidence in support of their role as governors of the stem/progenitor cell proliferation and differentiation programs. Revealing the dynamic features and the various roles of parietal cells would help in a better understanding of the biological features of the gastric glands and would hopefully help in providing a basis for the development of new strategies for prevention, early detection and/or therapy of various gastric disorders in which parietal cells are involved, such as atrophic gastritis, peptic ulcer disease and gastric cancer.
Collapse
|
32
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: Background to spermatogenesis, spermatogonia, and spermatocytes. Microsc Res Tech 2009; 73:241-78. [DOI: 10.1002/jemt.20783] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Lim P, Fuchsluger TA, Jurkunas UV. Limbal Stem Cell Deficiency and Corneal Neovascularization. Semin Ophthalmol 2009; 24:139-48. [DOI: 10.1080/08820530902801478] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Akinci MAM, Turner H, Taveras M, Barash A, Wang Z, Reinach P, Wolosin JM. Molecular profiling of conjunctival epithelial side-population stem cells: atypical cell surface markers and sources of a slow-cycling phenotype. Invest Ophthalmol Vis Sci 2009; 50:4162-72. [PMID: 19324848 DOI: 10.1167/iovs.08-2861] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Side-population (SP) cells isolated from limbal and conjunctival epithelia derive from cells that are slow cycling in vivo, a known feature of tissue stem cells. The purpose of this study was to define the molecular signature of the conjunctival SP cells and identify markers and signaling pathways associated with the phenotype of these cells. METHODS Overnight cultures of freshly isolated human conjunctival epithelial cells stained with Hoechst 33342 were sorted by flow cytometry into SP and non-SP cohorts. Isolated RNA was processed for microarray analysis using a commercial oligonucleotide spotted array. Results were validated at the gene and protein levels by quantitative PCR and immunologic methods. Data mining methods were used to identify cellular processes relevant for stem cell function. RESULTS Comparative analyses of transcripts expression based on present and absent software calls across four replicate experiments identified 16,993 conjunctival epithelial transcripts including 10,266 unique known genes of approximately 24,000 represented in the array. Of those genes, 1254 and 363 were overexpressed (>2-fold) or underexpressed (<0.5-fold), respectively, in the SP. The overexpressed set included genes coding for proteins that have been associated with (1) embryonic development and/or stem cell self renewal (MSX, MEIS, ID, Hes1, and SIX homeodomain genes); (2) cell survival (e.g., CYP1A1 to degrade aromatic genotoxic compounds); (3) cycling rate (e.g., DUSPs and Pax6 to foster slow cycling); and (4) genes whose expression is not typical in epithelia (e.g., CD62E). CONCLUSIONS The molecular signature of conjunctival SP cells is consistent with a stem cell phenotype. Their gene expression patterns underpin slow cycling and plasticity, features associated with tissue stem cells. The results provide valuable insights for the preservation and/or expansion of epithelial stem cells.
Collapse
Affiliation(s)
- M A Murat Akinci
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Vemuganti GK, Fatima A, Madhira SL, Basti S, Sangwan VS. Chapter 5 Limbal Stem Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 275:133-81. [DOI: 10.1016/s1937-6448(09)75005-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Abstract
Gastric cancer is the second leading cause of cancer deaths worldwide. Although the link between Helicobacter pylori infection and gastric cancer is well established, little is known about the early development and detection of this malignant disease. Cancer is the disease of epithelia and recently, it has been suggested that some cancers originate in adult stem cells. Advances have been made in identifying the gastric epithelial stem cells and their immediate descendents, which act as progenitors giving rise to mucus-, acid-, pepsinogen-, and hormone-secreting cell lineages. Analyses of some genetically manipulated animal models in which the proliferation and differentiation program of the gastric stem/progenitor cells was altered by different approaches have provided some clues to the cellular origin of gastric cancer. Despite the challenges and the similarity between gastric epithelial progenitors and their differentiation program in mice and humans, it remains to be determined whether observations made in genetically engineered mice are also applicable to humans.
Collapse
Affiliation(s)
- Sherif M Karam
- Department of Anatomy, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates.
| |
Collapse
|
37
|
Abstract
The use of microarrays to evaluate the transcriptome has transformed our view of biology. In addition to the focused, hypothesis-testing studies that we have traditionally conducted in cell biology, we are now able to see global changes within the entire system of the cell in response to a treatment. By examining a biological question under multiple complementary perturbations model systems (e.g. yeast, C. Elegans) have revealed new complexity that would have been impossible to see on a gene-by-gene approach. Unfortunately, beyond the use of transcript profiles to define the molecular signature of diseases (e.g. cancer), transcriptomics has not been extensively used to study intestinal biology. This review will provide a roadmap for effective use of gene expression profiling for biological research and will review some of the microarray work that has been done to better understand the nature of intestinal development and enterocyte differentiation.
Collapse
Affiliation(s)
- J C Fleet
- Department of Foods and Nutrition and Interdepartmental Nutrition Program, Purdue University, 700 West State St., West Lafayette, IN 47906-2059, USA.
| |
Collapse
|
38
|
Yamauchi K, Buwjoom T, Koge K, Ebashi T. Histological alterations of the intestinal villi and epithelial cells in chickens fed dietary sugar cane extract. Br Poult Sci 2007; 47:544-53. [PMID: 17050097 DOI: 10.1080/00071660600963149] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
1. Sugar cane extract (SCE) is the residue after removing glucose, fructose and sucrose from sugar cane juice. To investigate the effects of dietary SCE on growth performance and alterations to intestinal histology, 36 male Sanuki Cochin chickens were divided into three groups: a control group was fed a commercial diet (180 g/kg CP, 13.59 MJ/kg ME) and the treatment groups were fed the commercial diet supplemented with 0.5 or 10 g/kg SCE ad libitum for 35 d. 2. Feed intake and weight gain tended to be higher in the 0.5 and 10 g/kg SCE groups than in the control group. No specific gross morphological alterations were observed in the visceral organs of chickens in any of the groups. However, intestinal villus height, villus area, epithelial cell area and cell mitosis in each intestinal segment had higher values in the SCE groups than in the control group. In the 0.5 and 10 g/kg SCE groups, but not in the control group, the cells on the villus apical surface protuberated and had larger cell clusters and some areas with cells with no microvilli. 3. The observed alterations to intestinal histology in chickens fed dietary SCE diets demonstrate that the function of villi and cells on the villus tip might be activated in all the intestinal segments and that cell turnover is also accelerated. These activated intestinal functions appear to promote growth and immuno-stimulation in chickens fed SCE diets, especially in the 0.5 g/kg group.
Collapse
Affiliation(s)
- K Yamauchi
- Faculty of Agriculture, Laboratory of Animal Science, Kagawa University, Miki-cho, Kagawa-ken, Japan.
| | | | | | | |
Collapse
|
39
|
Abstract
The neonatal adaptive immune system, relatively naïve to foreign antigens, requires synergy with the innate immune system to protect the intestine. Goblet cells provide mucins, Paneth cells produce antimicrobial peptides, and dendritic cells (DCs) present luminal antigens. Intracellular signaling by Toll-like receptors (TLRs) elicits chemokines and cytokines that modulate inflammation. Enteric neurons and lymphocytes provide paracrine and endocrine signaling. However, full protection requires human milk. Breast-feeding reduces enteric infection and may reduce chronic disease in later life. Although human milk contains significant secretory immunoglobulin A (sIgA), most of its protective factors are constitutively expressed. Multifunctional milk components are nutrients whose partial digestion products inhibit pathogens. Cytokines, cytokine receptors, TLR agonists and antagonists, hormones, anti-inflammatory agents, and nucleotides in milk modulate inflammation. Human milk is rich in glycans (complex carbohydrates): As prebiotics, indigestible glycans stimulate colonization by probiotic organisms, modulating mucosal immunity and protecting against pathogens. Through structural homology to intestinal cell surface receptors, glycans inhibit pathogen binding, the essential first step of pathogenesis. Bioactive milk components comprise an innate immune system of human milk whereby the mother protects her nursing infant. Interactions between human milk glycans, intestinal microflora, and intestinal mucosa surface glycans underlie ontogeny of innate mucosal immunity, pathobiology of enteric infection, and inflammatory bowel diseases.
Collapse
Affiliation(s)
- David S Newburg
- Pediatric Gastroenterology and Nutrition Unit, MassGeneral Hospital for Children and Harvard Medical School, Boston, Massachusetts, USA.
| | | |
Collapse
|
40
|
Tremblay E, Auclair J, Delvin E, Levy E, Ménard D, Pshezhetsky AV, Rivard N, Seidman EG, Sinnett D, Vachon PH, Beaulieu JF. Gene expression profiles of normal proliferating and differentiating human intestinal epithelial cells: a comparison with the Caco-2 cell model. J Cell Biochem 2006; 99:1175-86. [PMID: 16795037 DOI: 10.1002/jcb.21015] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
cDNA microarray technology enables detailed analysis of gene expression throughout complex processes such as differentiation. The aim of this study was to analyze the gene expression profile of normal human intestinal epithelial cells using cell models that recapitulate the crypt-villus axis of intestinal differentiation in comparison with the widely used Caco-2 cell model. cDNA microarrays (19,200 human genes) and a clustering algorithm were used to identify patterns of gene expression in the crypt-like proliferative HIEC and tsFHI cells, and villus epithelial cells as well as Caco-2/15 cells at two distinct stages of differentiation. Unsupervised hierarchical clustering analysis of global gene expression among the cell lines identified two branches: one for the HIEC cells versus a second comprised of two sub-groups: (a) the proliferative Caco-2 cells and (b) the differentiated Caco-2 cells and closely related villus epithelial cells. At the gene level, supervised hierarchical clustering with 272 differentially expressed genes revealed distinct expression patterns specific to each cell phenotype. We identified several upregulated genes that could lead to the identification of new regulatory pathways involved in cell differentiation and carcinogenesis. The combined use of microarray analysis and human intestinal cell models thus provides a powerful tool for establishing detailed gene expression profiles of proliferative to terminally differentiated intestinal cells. Furthermore, the molecular differences between the normal human intestinal cell models and Caco-2 cells clearly point out the strengths and limitations of this widely used experimental model for studying intestinal cell proliferation and differentiation.
Collapse
Affiliation(s)
- Eric Tremblay
- CIHR Group on Functional Development and Physiopathology of the Digestive Tract, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Nakamura T, Endo KI, Kinoshita S. Identification of human oral keratinocyte stem/progenitor cells by neurotrophin receptor p75 and the role of neurotrophin/p75 signaling. Stem Cells 2006; 25:628-38. [PMID: 17110619 DOI: 10.1634/stemcells.2006-0494] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study was undertaken to determine whether human oral keratinocyte stem cells characteristically express higher levels of the low-affinity neurotrophin receptor p75 and to elucidate the function of p75 in oral keratinocytes. Examination of their expression patterns and cell-cycling status in vivo showed that p75 was exclusively expressed in the basal cell layer of both the tips of the papillae and the deep rete ridges. These immunostaining patterns suggest a cluster organization; most p75(+) cells did not actively cycle in vivo. Cell sorting showed that cells in the p75(+) subset were smaller and possessed higher in vitro proliferative capacity and clonal growth potential than the p75(-) subset. Clonal analysis revealed that holoclone-type (stem cell compartment), meroclone-type (intermediate compartment), and paraclone-type (transient amplifying cell compartment) cells, previously identified in skin and the ocular surface, were present in human oral mucosal epithelium. Holoclone-type cells showed stronger p75 expression at both the mRNA and protein level than did meroclone- and paraclone-type cells. Among the several neurotrophins, nerve growth factor (NGF) and neurotrophin-3 stimulated p75(+) oral keratinocyte cell proliferation, and only NGF protected them from apoptosis. Our in vivo and in vitro findings indicate that p75 is a potential marker of oral keratinocyte stem/progenitor cells and that some neurotrophin/p75 signaling affects cell growth and survival.
Collapse
Affiliation(s)
- Takahiro Nakamura
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-0841, Japan.
| | | | | |
Collapse
|
42
|
Wolosin JM. Cell markers and the side population phenotype in ocular surface epithelial stem cell characterization and isolation. Ocul Surf 2006; 4:10-23. [PMID: 16669522 DOI: 10.1016/s1542-0124(12)70261-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ocular surface is covered by tworapidly renewing and embryologically-related linings, the corneal and conjunctival epithelia. The long-term survival of thesetissues is ultimately dependent on their respective resident stem cells. In the corneal epithelium, the stem cells and their early precursors are exclusively circumscribed to the narrow vasscularize limbal rim that provides epithelial precursor cells to the critically transparent central cornea. Limbal damage causes an interruption of this essential cell supply and allows the invasion of the corneal surface by the conjunctival epithelium, an event that ultimately leads to corneal scarring. The limited supply of immunocompatible tissue is a major hindrance to efforts to develop effective procedures for ocular surface reconstruction. This review describes some of the current work and strategies being developed to achieve the isolation of the limbal stem cell and define its genetic, biochemical, and functional make-up. The study of isolated ocular surface stem cells will foster basic understanding of the environmentalrequisites for their survival and proliferation in a self-replicative mode, leading eventually to advances in therapeutic approaches.
Collapse
Affiliation(s)
- J Mario Wolosin
- Department of Ophthalmology and Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
43
|
Abstract
The corneal epithelium is a self-renewing tissue and must, by definition, have a resident basal cell population necessary for homeostasis and wound healing. There is a substantial body of evidence, both experimental and clinical, pointing to the basal cells of the limbus as the location of corneal epithelial stem cells. However, in the absence of a definitive marker of limbal stem cells, the evidence remains largely circumstantial. Many markers such as p63 and integrin alpha9 are preferentially localized to the limbus but cannot be regarded as stem cell-specific. Other markers such as K3 and connexin 43 can be regarded as markers of corneal differentiation. The discovery of stem cell markers in other organ systems, such as the haematopoietic system, offers optimism that a marker of limbal stem cells will one day be found. Such a discovery will have far-reaching implications for the study of ocular surface biology and stratified squamous epithelia in general.
Collapse
Affiliation(s)
- Kevin Y H Chee
- Stem Cell Unit, Department of Molecular Ophthalmology, Lions Eye Institute, 2 Verdun Street, Nedlands, WA 6009, Australia
| | | | | |
Collapse
|
44
|
Germain L, Larouche D, Paquet C. [Canadian founders of haematopoietic stem cell research receive the Lasker Award]. Med Sci (Paris) 2006; 22:212-3. [PMID: 16457766 DOI: 10.1051/medsci/2006222212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lucie Germain
- Laboratoire d'Organogenèse expérimentale (LOEX), Département de Chirurgie de l'Université Laval, Hôpital du Saint-Sacrement du CHA, 1050, chemin Sainte-Foy, Québec, G1S 4L8 Canada.
| | | | | |
Collapse
|
45
|
|
46
|
Gout S, Marie C, Lainé M, Tavernier G, Block MR, Jacquier-Sarlin M. Early enterocytic differentiation of HT-29 cells: biochemical changes and strength increases of adherens junctions. Exp Cell Res 2004; 299:498-510. [PMID: 15350547 DOI: 10.1016/j.yexcr.2004.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 05/20/2004] [Indexed: 12/11/2022]
Abstract
We have characterized the modulation of cell-cell adhesion and the structure of adherens junctions in the human colon adenocarcinoma HT-29 cell line that differentiates into enterocytes after glucose substitution for galactose in the medium. We demonstrate that differentiated cells (HT-29 Gal) rapidly established E-cadherin-mediated interactions in aggregation assays. This effect is not due to an increase in E-cadherin expression during this early stage of cell differentiation, but rather results from the maturation of preexisting adherens junctions. These junctions are characterized by the redistribution of E-cadherin to the basolateral membrane and its co-localization with the actin cytoskeleton. Subcellular fractionation studies indicate that actin-associated E-cadherins bind beta-catenin and p120ctn. Furthermore, the p120ctn/E-cadherin association is upregulated. These data reveal a cooperative interaction between p120ctn and E-cadherin that corresponds to mature functional adherens junctions able to initiate tight cell-cell adhesion required for epithelium architecture and further affirm the gatekeeper role of p120ctn.
Collapse
Affiliation(s)
- S Gout
- Laboratoire d'Etude de la Différenciation et de l'Adhérence Cellulaires, UMR UJF/CNRS 5538, Institut Albert Bonniot, Faculté de Médecine de Grenoble, 38706 La Tronche Cedex, France
| | | | | | | | | | | |
Collapse
|
47
|
Günşar C, Vatansever HS, Arslan OA, Sencan A, Müftüoğlu S, Ozbilgin K, Kaymaz F, Mir E. The maturity of intestinal neomucosa: integrin expression and ultrastructural aspects. J Pediatr Surg 2004; 39:1368-75. [PMID: 15359392 DOI: 10.1016/j.jpedsurg.2004.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND/PURPOSE The maturity of neomucosa growing on a serosal surface for the treatment of short bowel syndrome still is questionable. The aim of this study was to evaluate the intestinal neomucosa to assess its histologic maturity. METHODS A 6-cm-long isolated ileal segment (IS) was prepared in 8 Wistar albino-type rats. The IS was divided from the antimesenteric side, and 2 intestinal tubes were established, which shared a common wall and a common pedicle. After ileal biopsy sampling for the control group (CG), the IS was fashioned into a mucous fistula. Eight weeks later, all the rats were killed, and the ISs were investigated for neomucosal growth. Sections were prepared with periodic acid shift (PAS) and H & E staining for light microscopy. They also were evaluated by transmission electron microscopy. The microscopic morphology of the 2 groups was evaluated. Immunohistochemical staining was performed to show the expression of the tissue beta1, alpha3 and alpha2beta1 integrin subunits of both the neomucosa (NS) and control group (CG) segments. RESULTS Sections of the NS showed a well-arranged columnar epithelial cell layer with goblet cells that were generally located superficially and with a complete basement membrane. Under the electron microscope, the sections from the NS group showed an epithelial cell layer with proper microvilli of the same height, although they were shorter than those of the CG, and tight intercellular junctions between the epithelial cells. Significant differences between the NS and CG groups were found in the measurements of villus width at base, microvillus surface, and microvillus height. The lamina propria consisted of rich collagen fibers and active fibroblasts in the NS group. In the immunohistochemical staining, although beta1 integrine showed a dense distribution (+++) in the lamina propria, particularly localizing at the depth of the tunica mucosa layer, alpha3 integrin was observed to have a less dense immunoreactivity (++) in both groups. The expression of alpha2beta1 integrin showed slight and dispersed (+) staining. CONCLUSIONS The NS showed histologic maturity and ultimate structural similarity with the native small bowel mucosa, which provides strong indirect evidence for the proper functioning of the neomucosa.
Collapse
Affiliation(s)
- Cüneyt Günşar
- Department of Pediatric Surgery, Celal Bayar University Medical Faculty, Manisa, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Van Lieshout EMM, Van Doesburg W, Van der Meer R. Real-time PCR of host DNA in feces to study differential exfoliation of colonocytes between rats and humans. Scand J Gastroenterol 2004; 39:852-7. [PMID: 15513383 DOI: 10.1080/00365520410006891] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Colonic mucosa has a high turnover rate. At the end of their lifespan, colonocytes become senescent and die. Histological studies indicate that senescent colonocytes are shed (exfoliated) into the fecal stream in rats, but phagocytosed by mucosal macrophages in humans. We study whether quantification of host DNA in feces can be used as a non-invasive marker for this differential disposal of colonocytes. METHODS Selective primers and probes for the rat and human beta-globin genes were designed and used in real-time PCR reactions. RESULTS Host DNA was quantitatively extracted and detected in fecal samples of both species. Feces of rats fed a humanized diet contained approximately 100 microg rat DNA per g freeze-dried feces. In human feces, however, only 5 out of 12 samples contained detectable, though very low (less than 0.35 microg/g), levels of host DNA. This about 300-fold difference could not be attributed to differences in DNase activities in the fecal stream. CONCLUSION Our results indicate that there is considerable luminal shedding of senescent colonocytes in rats, whereas mucosal phagocytosis is the main route of colonocyte disposal in humans. Thus, real-time PCR of host DNA in feces can be applied as a non-invasive method for studying the differential exfoliation of colonocytes.
Collapse
Affiliation(s)
- E M M Van Lieshout
- Nutrition and Health Program, Wagenigen Center for Food Sciences/NIZO Food Research, 6710 BA Ede, The Netherlands
| | | | | |
Collapse
|
49
|
Hsueh YJ, Wang DY, Cheng CC, Chen JK. Age-related expressions of p63 and other keratinocyte stem cell markers in rat cornea. J Biomed Sci 2004; 11:641-51. [PMID: 15316140 DOI: 10.1007/bf02256130] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Accepted: 11/21/2003] [Indexed: 10/25/2022] Open
Abstract
In this study, we examined the postnatal expression patterns of p63 and other keratinocyte stem cell markers in the rat cornea in an attempt to determine the markers that best represent characteristics of corneal keratinocyte stem cells. We show that the expression of p63 in the rat cornea is unique and differs from that observed in humans. It changes with age, from central cornea-positive, peripheral cornea-positive, and limbus-positive, to central cornea-positive, peripheral cornea-positive, and limbus-negative, and finally to central cornea-negative, peripheral cornea-positive, and limbus-negative, as examined by immunohistochemical staining. However, when a more sensitive staining method was used, the limbus was also shown to be positive for p63, indicating a lower level of expression than that of the peripheral cornea. The basal layer of the rat limbal epithelium is the site where beta-catenin+, K14+, PCNA-, and K3- cells reside. This cell layer is also the site where slow-cycling cells are located. In contrast with observations made in humans, our results clearly indicate that p63 is expressed in stem cells and young transient amplifying cells of the rat cornea, with higher levels of expression in the latter.
Collapse
Affiliation(s)
- Yi-Jen Hsueh
- Department of Physiology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | | | | |
Collapse
|
50
|
Beck K, Hayashi K, Nishiguchi B, Le Saux O, Hayashi M, Boyd CD. The distribution of Abcc6 in normal mouse tissues suggests multiple functions for this ABC transporter. J Histochem Cytochem 2003; 51:887-902. [PMID: 12810839 DOI: 10.1177/002215540305100704] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have studied the tissue distribution of Abcc6, a member of the ABC transmembrane transporter subfamily C, in normal C57BL/6 mice. RNase protection assays revealed that although almost all tissues studied contained detectable levels of the mRNA encoding Abcc6, the highest levels of Abcc6 mRNA were found in the liver. In situ hybridization (ISH) demonstrated abundant Abcc6 mRNA in epithelial cells from a variety of tissues, including hepatic parenchymal cells, bile duct epithelia, kidney proximal tubules, mucosa and gland cells of the stomach, intestine, and colon, squamous epithelium of the tongue, corneal epithelium of the eye, keratinocytes of the skin, and tracheal and bronchial epithelium. Furthermore, we detected Abcc6 mRNA in arterial endothelial cells, smooth muscle cells of the aorta and myocardium, in circulating leukocytes, lymphocytes in the thymus and lymph nodes, and in neurons of the brain, spinal cord, and the specialized neurons of the retina. Immunohistochemical analysis using a polyclonal Abcc6 rabbit antibody confirmed the tissue distribution of Abcc6 suggested by our ISH studies and revealed the cellular localization of Abcc6 in the basolateral plasma membrane in the epithelial cells of proximal convoluted tubules in the kidney. Although the function of Abcc6 is unknown, mutations in the human ABCC6 gene result in a heritable disorder of connective tissue called pseudoxanthoma elasticum (PXE). Our results demonstrating the presence of Abcc6 in epithelial and endothelial cells in a variety of tissues, including those tissues affected in PXE patients, suggest a possible role for Abcc6 in the normal assembly of extracellular matrix components. However, the presence of Abcc6 in neurons and leukocytes, two cell populations not associated with connective tissue, also suggests a more complex multifunctional role for Abcc6.
Collapse
Affiliation(s)
- Konstanze Beck
- Lab of Matrix Pathobiology, The Pacific Biomedical Research Center, University of Hawai'i, 1993 East-West Road, Honolulu, HI 96822, USA
| | | | | | | | | | | |
Collapse
|