| For: | Na JE, Lee YC, Kim TJ, Lee H, Won HH, Min YW, Min BH, Lee JH, Rhee PL, Kim JJ. Utility of a deep learning model and a clinical model for predicting bleeding after endoscopic submucosal dissection in patients with early gastric cancer. World J Gastroenterol 2022; 28(24): 2721-2732 [PMID: 35979158 DOI: 10.3748/wjg.v28.i24.2721] |
|---|---|
| URL: | https://www.wjgnet.com/1007-9327/full/v28/i24/2721.htm |
| Number | Citing Articles |
| 1 |
Yuanbo Gu, Shuchang Zhao. Risk factors for postoperative bleeding following endoscopic submucosal dissection in early gastric cancer: A systematic review and meta-analysis. Medicine 2024; 103(15): e37762 doi: 10.1097/MD.0000000000037762
|
| 2 |
Shohei Mukai, Kenichiro Okimoto, Tomoaki Matsumura, Tsubasa Ishikawa, Yuhei Oyama, Hayato Nakazawa, Yukiyo Mamiya, Satsuki Takahashi, Chihiro Goto, Ryosuke Horio, Akane Kurosugi, Michiko Sonoda, Tatsuya Kaneko, Yuki Ohta, Takashi Taida, Keisuke Matsusaka, Jun-ichiro Ikeda, Jun Kato. Comparison of the preventive effects of proton pump inhibitors and vonoprazan on delayed bleeding after gastric endoscopic submucosal dissection. Therapeutic Advances in Gastroenterology 2025; 18 doi: 10.1177/17562848251386760
|
| 3 |
Yan Zeng, Jian Yang, Jun-Wen Zhang. Early gastric cancer recurrence after endoscopic submucosal dissection: Not to be ignored!. World Journal of Gastrointestinal Oncology 2024; 16(1): 8-12 doi: 10.4251/wjgo.v16.i1.8
Abstract(749) |
Core Tip(701) |
Full Article(HTML)(1948)
|
Full Article with Cover (PDF)-699K(171)
|
Full Article (Word)-109K(20)
|
Audio-602K(13)
|
Peer-Review Report-198K(112)
|
Answering Reviewers-129K(123)
|
Full Article (PDF)-361K(144)
|
Full Article (XML)-67K(108)
|
Times Cited (2)
|
Total Visits (6723)
|
Open
|
| 4 |
Chukwudum Prince, Ekwealor Uzoamaka, Uchefuna Ikenna, Ezuruka Ogochukwu. Real-Time Big Data Analytics for Detecting Credit Card Fraud in Cyber Forensics Using Deep Learning Models
. Software Engineering 2024; 10(2): 15 doi: 10.11648/j.se.20231002.11
|
| 5 |
João Santos-Antunes. Non-Curative Endoscopic Submucosal Dissection: Current Concepts, Pitfalls and Future Perspectives. Journal of Clinical Medicine 2025; 14(7): 2488 doi: 10.3390/jcm14072488
|
| 6 |
Hong-Yi Zhu, Jie Wu, Yuan-Miao Zhang, Fang-Lan Li, Jin Yang, Bin Qin, Jiong Jiang, Ning Zhu, Meng-Yao Chen, Bai-Cang Zou. Characteristics of early gastric tumors with different differentiation and predictors of long-term outcomes after endoscopic submucosal dissection. World Journal of Gastroenterology 2024; 30(14): 1990-2005 doi: 10.3748/wjg.v30.i14.1990
|
| 7 |
Hiroki Maruyama, Kazuya Takahashi, Kosuke Kojima, Nao Nakajima, Hiroki Sato, Ken‐ichi Mizuno, Soichi Sugitani, Shuji Terai. Machine‐Learning Prediction of Bleeding After Endoscopic Submucosal Dissection for Early Gastric Cancer: A Multicenter Study. JGH Open 2025; 9(7) doi: 10.1002/jgh3.70203
|
| 8 |
Zhe Wang, Yang Liu, Xing Niu. Application of artificial intelligence for improving early detection and prediction of therapeutic outcomes for gastric cancer in the era of precision oncology. Seminars in Cancer Biology 2023; 93: 83 doi: 10.1016/j.semcancer.2023.04.009
|
| 9 |
Shuyun Zhang, Shumin Zheng, Huizhen Cai, Xiangling Hong, Hao Zhang, Jinshui He. The Role of Neonatal Nosocomial Infection towards Health Behavior: A Multivariate Analysis and Deep Learning Approach of Informationized Health Management. American Journal of Health Behavior 2023; 47(5): 1003 doi: 10.5993/AJHB.47.5.13
|
| 10 |
Zaheer Nabi, D. Nageshwar Reddy. Therapeutic endoscopy: Recent updates and future directions. Digestive and Liver Disease 2024; 56(11): 1810 doi: 10.1016/j.dld.2024.03.011
|
| 11 |
Li-Hua Guo, Ke-Feng Hu, Min Miao, Yong Ding, Xin-Jun Zhang, Guo-Liang Ye. Endoscopic resection of colorectal laterally spreading tumors: Clinicopathologic characteristics and risk factors for treatment outcomes. World Journal of Gastrointestinal Endoscopy 2025; 17(6): 106412 doi: 10.4253/wjge.v17.i6.106412
|
| 12 |
Ryosuke Fukuyo, Masanori Tokunaga, Hiroyuki Yamamoto, Hideki Ueno, Yusuke Kinugasa. Which Method Best Predicts Postoperative Complications: Deep Learning, Machine Learning, or Conventional Logistic Regression?. Annals of Gastroenterological Surgery 2025; doi: 10.1002/ags3.70145
|
