Copyright
©The Author(s) 2020.
Artif Intell Gastrointest Endosc. Oct 28, 2020; 1(2): 33-43
Published online Oct 28, 2020. doi: 10.37126/aige.v1.i2.33
Published online Oct 28, 2020. doi: 10.37126/aige.v1.i2.33
Ref. | Class/outcome variable | Deep network architecture | Device/image resolution | Training and internal validation dataset | Testing/external validation dataset | Accuracy (%)/AUC | Sensitivity (%)/specificity (%) |
Majid et al[19], 2020, NA | Multiple lesions (bleeding, esophagitis, ulcer, polyp) | CNN with classical features fusion and selection | NA/224 × 224 pixels | 70% of 12889 images from multiple databases | 30% of 12889 images from multiple databases | 96.5/NA | 96.5/NA |
Ding et al[20], 2019, China | Multiple SB lesions1 | CNN (ResNet 152) | SB-CE by Ankon Technologies/480 × 480 pixels | 158235 images from 1970 patients | 113268334 images from 5000 patients | NA/NA | 99.88/100 (per patient); 99.90/100 (per lesion) |
Iakovidis et al[21], 2018, NA | Multiple SB lesions2 | CNN and iterative cluster unification | (1) NA/489 × 409 pixels; and (2) MiroCam CE/320 × 320 pixels | (1) 465 images from 1063 volunteers; and (2) 852 images | (1) 233 images from 1063 volunteers; and (2) 344 images | (1) 89.9/0.963; and (2) 77.5/0.814 | (1) 90.7/88.2; and (2) 36.2/91.3 |
Aoki et al[22], 2020, Japan | Bleeding (blood content) | CNN (ResNet50) | Pillcam SB2 or SB3 CE / 224 × 224 pixels | 27847 images from 41 patients | 10208 images from 25 patients | 99.89/0.9998 | 96.63/99.96 |
Tsuboi et al[23], 2019, Japan | Bleeding (SB angioectasia) | CNN (SSD) | Pillcam SB2 or SB3 CE/300 × 300 pixels | 2237 images from 141 patients | 10488 images from 28 patients | NA/0.998 | 98.8/98.4 |
Leenhardt et al[24], 2019, France | Bleeding (SB angioectasia) | CNN-based semantic segmentation | Pillcam SB3 CE / NA | 600 images | 600 images | NA/NA | 96/100 |
Li et al[25], 2017, China | Bleeding (intestinal hemorrhage) | CNNs: (1) LeNet; (2) AlexNet; (3) GoogLeNet; and (4) VGG-Net | NA/NA | 9672 images | 2418 images | NA/NA | (1) 99.91/96.2; (2) 99.96/98.72; (3) 100/98.73; and (4) 99.96/98.72 |
Jia et al[26], 2017, Hong Kong, China | Bleeding (both active and inactive) | CNN | NA/240 × 240 pixels | 1000 images | 500 images | NA/NA | 91.0/NA |
Jia et al[27], 2016, Hong Kong, China | Bleeding (both active and inactive) | CNN (Inspired by AlexNet) | NA/240 × 240 pixels | 8200 images | 1800 images | NA/NA | 99.2/NA |
Aoki et al[28], 2019, Japan | Ulcer (erosion or ulceration) | CNN (SSD) | Pillcam SB2 or SB3 CE/300 × 300 pixels | 5360 images from 115 patients | 10440 images from 65 patients | 90.8/0.958 | 88.2/90.9 |
Wang et al[29], 2019, China | Ulcer | CNN (RetinaNet) | Magnetic-guided CE by Ankon Technologies/480 × 480 pixels | 37278 images from 1204 patient cases | 9924 images from 300 patient cases | 90.10/0.9469 | 89.71/90.48 |
Wang et al[30], 2019, China | Ulcer | CNN (based on ResNet 34) | Magnetic-guided CE by Ankon Technologies/480 × 480 pixels | 80% of dataset from 1416 patients | 20% of dataset from 1416 patients | 92.05/0.9726 | 91.64/92.42 |
Alaskar et al[31], 2019, NA | Ulcer | CNN: (1) GoogLeNet; and (2) AlexNet | NA /(1) 224 × 224 pixels; and (2) 227 × 227 pixels | 336 images | 105 images | (1) 100/1; and (2) 100/1 | (1) 100/100; and (2) 100/100 |
Fan et al[32], 2018, China | (1) Ulcer; and (2) Erosion | CNN (AlexNet) | NA/511 × 511 pixels | (1) 5500 images; and (2) 7410 images | (1) 2750 images; and (2) 5500 images | (1) 95.16/0.9891; and (2) 95.34/0.9863 | (1) 96.80/94.79; and (2) 93.67/95.98 |
Zhou et al[6], 2017, USA | Celiac disease | CNN (GoogLeNet) | Pillcam SB2 CE/512 × 512 pixels | 8800 images from 11 patients | 8000 images from 10 patients | NA/NA | 100/100 |
Klang et al[33], 2020, Israel | Crohn’s disease | CNN (Xception) | Pillcam SB2 CE/299 × 299 pixels | Experiment 1: 80% of 17640 images from 49 patients; Experiment 2: Images from 48 patients | Experiment 1: 20% of 17,640 images from 49 patients; Experiment 2: Images from 1 individual patient | Experiment 1: 95.4-96.7/0.989-0.994; Experiment 2: 73.7–98.2/0.940-0.999 | Experiment 1: 92.5-97.1/96.0-98.1; Experiment 2: 69.5-100/56.8-100 |
Saito et al[34], 2020, Japan | Polyp (protruding lesion) | CNN (SSD) | Pillcam SB2 or SB3 CE/300 × 300 pixels | 30584 images from 292 patients | 17507 images from 93 patients | 84.5/0.911 | 90.7/79.8 |
Yuan et al[7], 2017, Hong Kong, China | Polyp | Deep neural network | Pillcam SB CE/64 × 64 pixels | Unknown proportion of 4000 images from 35 patients | Unknown proportion of 4000 images from 35 patients | 98/NA | 98/99 |
He et al[35], 2018, Israel | Hookworm | CNN | Pillcam SB CE/227 × 227 pixels | 10 out of 11 patients (436796 images from 11 patients) | 1 individual patient (11-fold cross-validation) | 88.5/NA | 84.6/88.6 |
Ref. | Class/outcome variable | Deep network architecture | Device/image resolution | Training and internal validation dataset | Testing/external validation dataset | Accuracy (%)/AUC | Sensitivity (%)/specificity (%) |
Seguí et al[38], 2016, Spain | Scenes (turbid, bubbles, clear blob, wrinkles, wall) | CNN | Pillcam SB2 CE/100 × 100 pixels | 100000 images from 50 videos | 20000 images from 50 videos | 96/NA | NA/NA |
Zou et al[5], 2015, NA | Organ locations (stomach, small intestine, and colon) | CNN (AlexNet) | NA/480 × 480 pixels | 60000 images | 15000 images | 95.52/NA | NA/NA |
Ref. | Experiment type | Scope of WCE reading /device | Conventional reading | Deep learning assisted reading | P value |
Aoki et al[39], 2019, Japan | Retrospective study using anonymized data | SB section only/Pillcam SB3 | mean reading time (min): Trainee: 20.7; Expert: 12.2 | mean reading time (min): Trainee: 5.2; Expert: 3.1 | < 0.001 |
Overall lesion detection rate: Trainee: 47%; Expert: 84% | Overall lesion detection rate: Trainee: 55%; Expert: 87% | NS | |||
Ding et al[20], 2019, China | Retrospective study by randomly selected videos | Small bowel abnormalities/SB-CE by Ankon Technologies | mean reading time ± standard deviation (min): 96.6 ± 22.53 | mean reading time ± standard deviation (min): 5.9 ± 2.23 | < 0.001 |
Overall lesion detection rate: 41.43% | Overall lesion detection rate: 47.00% | NA1 |
- Citation: Atsawarungruangkit A, Elfanagely Y, Asombang AW, Rupawala A, Rich HG. Understanding deep learning in capsule endoscopy: Can artificial intelligence enhance clinical practice? Artif Intell Gastrointest Endosc 2020; 1(2): 33-43
- URL: https://www.wjgnet.com/2689-7164/full/v1/i2/33.htm
- DOI: https://dx.doi.org/10.37126/aige.v1.i2.33