| For: | Mihara H, Nanjo S, Motoo I, Ando T, Fujinami H, Yasuda I. Artificial intelligence model on images of functional dyspepsia. Artif Intell Gastrointest Endosc 2025; 6(1): 105674 [DOI: 10.37126/aige.v6.i1.105674] |
|---|---|
| URL: | https://www.wjgnet.com/2689-7164/full/v6/i1/105674.htm |
| Number | Citing Articles |
| 1 |
Heeyoung Moon, Da-Eun Yoon, Junsuk Kim, Younkuk Choi, Heekyung Kim, In-Seon Lee, Younbyoung Chae. Identifying key features for determining the patterns of patients with functional dyspepsia using machine learning. Frontiers in Physiology 2025; 16 doi: 10.3389/fphys.2025.1658866
|
| 2 |
Miguel Suarez, Raquel Martínez, Félix González-Martínez, Ana María Torres, Jorge Mateo. Artificial intelligence and digital transformation of gastroenterology and hepatology: A critical review of clinical applications and future challenges. World Journal of Hepatology 2026; 18(2): 114834 doi: 10.4254/wjh.v18.i2.114834
Abstract(14) |
Core Tip(9) |
Full Article(HTML)(46)
|
Full Article with Cover (PDF)-1525K(8)
|
Audio-1495K(6)
|
Peer-Review Report-253K(8)
|
Answering Reviewers-139K(7)
|
Supplementary Material-398K(6)
|
Full Article (PDF)-1282K(10)
|
Full Article (XML)-621K(10)
|
Times Cited (0)
|
Total Visits (329)
|
Open
|
| 3 |
Chaehyun Park, Hayun Jin, Boram Lee, Young-Eun Choi, Ojin Kwon, Mi Young Lim, Donghyun Nam, Dong-Jun Choi, Jun-Hwan Lee, Jae-Woo Park, Seok-Jae Ko, Hojun Kim. Machine learning-based prediction of herbal medicine response in functional dyspepsia: protocol for a randomized, assessor-blinded, multicenter trial. Frontiers in Medicine 2026; 13 doi: 10.3389/fmed.2026.1716891
|
| 4 |
Yi-Nan Yan, Jing-Qi Zeng, Xia Ding. Artificial intelligence in functional gastrointestinal disorders: From precision diagnosis to preventive healthcare. Artificial Intelligence in Gastroenterology 2026; 7(1): 112357 doi: 10.35712/aig.v7.i1.112357
|
