BPG is committed to discovery and dissemination of knowledge
Cited by in CrossRef
For: Mihara H, Nanjo S, Motoo I, Ando T, Fujinami H, Yasuda I. Artificial intelligence model on images of functional dyspepsia. Artif Intell Gastrointest Endosc 2025; 6(1): 105674 [DOI: 10.37126/aige.v6.i1.105674]
URL: https://www.wjgnet.com/2689-7164/full/v6/i1/105674.htm
Number Citing Articles
1
Heeyoung Moon, Da-Eun Yoon, Junsuk Kim, Younkuk Choi, Heekyung Kim, In-Seon Lee, Younbyoung Chae. Identifying key features for determining the patterns of patients with functional dyspepsia using machine learningFrontiers in Physiology 2025; 16 doi: 10.3389/fphys.2025.1658866
2
Miguel Suarez, Raquel Martínez, Félix González-Martínez, Ana María Torres, Jorge Mateo. Artificial intelligence and digital transformation of gastroenterology and hepatology: A critical review of clinical applications and future challengesWorld Journal of Hepatology 2026; 18(2): 114834 doi: 10.4254/wjh.v18.i2.114834
3
Chaehyun Park, Hayun Jin, Boram Lee, Young-Eun Choi, Ojin Kwon, Mi Young Lim, Donghyun Nam, Dong-Jun Choi, Jun-Hwan Lee, Jae-Woo Park, Seok-Jae Ko, Hojun Kim. Machine learning-based prediction of herbal medicine response in functional dyspepsia: protocol for a randomized, assessor-blinded, multicenter trialFrontiers in Medicine 2026; 13 doi: 10.3389/fmed.2026.1716891
4
Yi-Nan Yan, Jing-Qi Zeng, Xia Ding. Artificial intelligence in functional gastrointestinal disorders: From precision diagnosis to preventive healthcareArtificial Intelligence in Gastroenterology 2026; 7(1): 112357 doi: 10.35712/aig.v7.i1.112357