Copyright
©The Author(s) 2021.
Artif Intell Med Imaging. Oct 28, 2021; 2(5): 95-103
Published online Oct 28, 2021. doi: 10.35711/aimi.v2.i5.95
Published online Oct 28, 2021. doi: 10.35711/aimi.v2.i5.95
Table 1 Summary of artificial intelligence applications in detection of suspected diabetic retinopathy, age related macular degeneration, and glaucoma
| Ref. | Imaging modality | AI algorithm | Dataset for training | Dataset for validation | AUC | Sensitivity (%) | Specificity (%) |
| Diabetic retinopathy | |||||||
| Abràmoff et al[9], 2016 | CFP | AlexNet and VGGNet | 10000 to 1250000 images | Messidor-2: 1748 | 0.980 | 96.8 | 87 |
| Gulshan et al[29], 2016 | CFP | Inception-V3 | 128175 images | EyePACS-1: 8788 Messidor-2: 1745 | 0.9910.990 | 97.596.1 | 93.493.9 |
| Ting et al[6], 2017 | CFP | VGG -19 | 76370 images | SiDRP: 71896 images | 0.936 | 90.5 | 91.6 |
| Guangdong: 15798 | 0.949 | 98.7 | 81.6 | ||||
| SIMES: 3052 | 0.889 | 97.1 | 82 | ||||
| SINDI: 4512 | 0.917 | 99.3 | 73.3 | ||||
| SCES: 1936 | 0.919 | 100 | 76.3 | ||||
| BES: 1052 | 0.929 | 94.4 | 88.5 | ||||
| AFEDS: 1968 | 0.98 | 98.8 | 86.5 | ||||
| RVEEH: 2302 | 0.983 | 98.9 | 92.2 | ||||
| MEXICAN: 1172 | 0.95 | 91.8 | 84.8 | ||||
| CUHK: 1254 | 0.948 | 99.3 | 83.1 | ||||
| HKU: 7706 | 0.964 | 100 | 81.3 | ||||
| Abràmoff et al[30], 2018 | CFP | AlexNet and VGGNet | 10000 to 1250000 images | 819 patients | N/A | 87.2 | 90.7 |
| Li et al[10], 2018 | CFP | Inception V3 | 58790 images | 8000 images for referable DR | 0.989 | 97 | 91.4 |
| Ruamviboonsuk et al[31], 2019 | CFP | Inception V4 | 1665151 images | 25326 images | 0.987 | 96.8 | 95.6 |
| Son et al[11], 2020 | CFP | Custom CNN | 95350 images | Two data sets: IDRiD: 144 images & | 0.957 to 0.980 | 88.9-92.6 | 94.0- 100 |
| e-ophtha: 434 images | 0.947 to 0.965 | 89.2-93.6 | 91.4 - 97.1 | ||||
| Age related macular degeneration | |||||||
| Ting et al[6], 2017 | CFP | VGG-19 | 72610 images | 35948 images | 0.932 | 93.20 | 88.70 |
| Lee et al[13], 2017 | OCT scans - Spectralis | Modified VGG 16 | 80839 images | 20163 images | 0.974 | 92.64 | 93.69 |
| Zapata et al[14], 2020 | CFP | CNN 1 image type selection | 53396 | 20% of training datasets | 0.979 | 97.7 | 92.4 |
| CNN 1 CFP quality selection | 150075 | 0.989 | 98.3 | 96.6 | |||
| CNN 1 OD/OS | 30119 | 0.947 | 96.9 | 81.8 | |||
| AMDNET | 8832 | 0.936 | 90.2 | 82.5 | |||
| Modified RESNET 50 (23) Referable GON | 3776 | 0.863 | 76.8 | 83.8 | |||
| Glaucoma suspect | |||||||
| Ting et al[6], 2017 | CFP | VGG-19 | 125189 images | 71896 images | 0.942 | 96.40 | 93.20 |
| Li et al[18], 2018 | CFP | 31745 images | 8000 images | 0.986 | 95.6 | 92 |
- Citation: Jahangir S, Khan HA. Artificial intelligence in ophthalmology and visual sciences: Current implications and future directions. Artif Intell Med Imaging 2021; 2(5): 95-103
- URL: https://www.wjgnet.com/2644-3260/full/v2/i5/95.htm
- DOI: https://dx.doi.org/10.35711/aimi.v2.i5.95
