Minireviews
Copyright ©The Author(s) 2021.
Artif Intell Med Imaging. Oct 28, 2021; 2(5): 95-103
Published online Oct 28, 2021. doi: 10.35711/aimi.v2.i5.95
Table 1 Summary of artificial intelligence applications in detection of suspected diabetic retinopathy, age related macular degeneration, and glaucoma
Ref.
Imaging modality
AI algorithm
Dataset for training
Dataset for validation
AUC
Sensitivity (%)
Specificity (%)
Diabetic retinopathy
Abràmoff et al[9], 2016CFPAlexNet and VGGNet10000 to 1250000 imagesMessidor-2: 17480.98096.887
Gulshan et al[29], 2016CFPInception-V3128175 imagesEyePACS-1: 8788 Messidor-2: 17450.9910.99097.596.193.493.9
Ting et al[6], 2017CFPVGG -1976370 imagesSiDRP: 71896 images0.936 90.5 91.6
Guangdong: 157980.94998.781.6
SIMES: 30520.88997.182
SINDI: 45120.91799.373.3
SCES: 19360.91910076.3
BES: 10520.92994.488.5
AFEDS: 19680.9898.886.5
RVEEH: 23020.98398.992.2
MEXICAN: 11720.9591.884.8
CUHK: 12540.94899.383.1
HKU: 77060.96410081.3
Abràmoff et al[30], 2018CFPAlexNet and VGGNet10000 to 1250000 images819 patients N/A87.290.7
Li et al[10], 2018CFPInception V358790 images8000 images for referable DR0.9899791.4
Ruamviboonsuk et al[31], 2019CFPInception V41665151 images25326 images0.98796.895.6
Son et al[11], 2020CFPCustom CNN95350 images Two data sets: IDRiD: 144 images & 0.957 to 0.98088.9-92.6 94.0- 100
e-ophtha: 434 images 0.947 to 0.96589.2-93.6 91.4 - 97.1
Age related macular degeneration
Ting et al[6], 2017CFPVGG-19 72610 images35948 images 0.93293.2088.70
Lee et al[13], 2017OCT scans - SpectralisModified VGG 16 80839 images20163 images 0.97492.6493.69
Zapata et al[14], 2020CFPCNN 1 image type selection 5339620% of training datasets 0.97997.792.4
CNN 1 CFP quality selection 1500750.98998.396.6
CNN 1 OD/OS301190.94796.981.8
AMDNET88320.93690.282.5
Modified RESNET 50 (23) Referable GON37760.86376.883.8
Glaucoma suspect
Ting et al[6], 2017CFPVGG-19125189 images 71896 images0.94296.4093.20
Li et al[18], 2018CFP31745 images8000 images 0.98695.692