Copyright
©The Author(s) 2021.
Artif Intell Med Imaging. Aug 28, 2021; 2(4): 86-94
Published online Aug 28, 2021. doi: 10.35711/aimi.v2.i4.86
Published online Aug 28, 2021. doi: 10.35711/aimi.v2.i4.86
Ref. | Task | Method | Images | Metric |
Kang et al[30], 2017 | Low-dose CT reconstruction | CNN | Abdominal CT images | PSNR: 34.55 |
Chen et al[31], 2017 | Low-dose CT reconstruction | RED-CNN | Low-dose abdominal CT images | PSNR: 43.79 ± 2.01; SSIM: 0.98 ± 0.01; RMSE: 0.69 ± 0.07 |
Han et al[27], 2018 | Accelerated projection-reconstruction MRI | U-netCNN | Low-dose abdominal CT images; synthetic radial abdominal MR images | PSNR: 31.55 |
Lv et al[26], 2018 | Undersampled radial free-breathing 3D abdominal MRI | Auto-encoderCNN | 3D golden angle-radial SOS liver MR images | P < 0.001 |
Ge et al[32], 2020 | CT image reconstruction directly from a sinogram | Residual encoder-decoder + CNN | Low-dose abdominal CT images | PSNR: 43.15 ± 1.93; SSIM: 0.97 ± 0.01; NRMSE: 0.71 ± 0.16 |
MacDougall et al[33], 2019 | Improving low-dose pediatric abdominal CT | CNN | Liver CT images;Spleen CT images | P < 0.001 |
Tamada et al[29], 2020 | DCE MR imaging of the liver | CNN | T1-weighted liver MR images | SSIM: 0.91 |
Zhou et al[28], 2019 | Applications in low-latency accelerated real-time imaging | PICNN | bSSFP cardiac MR images; bSSFP abdominal MR images | Abdominal: NRMSE: 0.08 ± 0.02; SSIM: 0.90 ± 0.02 |
Zhang et al[34], 2020 | Reconstructing 3D liver vessel morphology from contrasted CT images | GNNCNN | Multi-phase contrasted liver CT images | F1 score: 0.8762 ± 0.0549 |
Zhou et al[35], 2020 | Limited view tomographic reconstruction | Residual dense spatial-channel attention + CNN | Whole body CT images | LAR: PSNR: 35.82; SSIM: 0.97 SVR: PSNR: 41.98; SSIM: 0.97 |
Kazuo et al[36], 2021 | Image reconstructionin low-dose and sparse-view CT | CS + CNN | Low-dose abdominal CT images; Sparse-view abdominal CT images | Low-Dose CT case: PSNR: 33.2; SSIM: 0.91 Sparse-View CT case: PSNR: 29.2; SSIM: 0.91 |
Ref. | Task | Method | Images | Metric |
Mardani et al[41], 2017 | Compressed sensing automates MRI reconstruction | GANCS | Abdominal MR images | SNR: 20.48; SSIM: 0.87 |
Yang et al[50], 2018 | Low dose CT image denoising | WGAN | Abdominal CT images | PSNR: 23.39; SSIM: 0.79 |
Kuanar et al[52], 2019 | Low-dose abdominal CT image reconstruction | Auto-encoderWGAN | Abdominal CT images | PSNR: 37.76; SSIM: 0.94; RMSE: 0.92 |
Lv et al[45], 2021 | A comparative study of GAN-based fast MRI reconstruction | DAGANKIGANReconGANRefineGAN | T2-weighted liver images; 3D FSE CUBE knee images; T1-weighted brain images | Liver: PSNR: 36.25 ± 3.39; SSIM: 0.95 ± 0.02; RMSE: 2.12 ± 1.54; VIF: 0.93 ± 0.05; FID: 31.94 |
Zhang et al[53], 2020 | 3D reconstruction for super-resolution CT images | Conditional GAN | 3D-IRCADb-01database liver CT images | Male: PSNR: 34.51; SSIM: 0.90Female: PSNR: 34.75; SSIM: 0.90 |
Cole et al[49], 2020 | Unsupervised MRI reconstruction | UnsupervisedGAN | 3D FSE CUBE knee images; DCE abdominal MR images | PSNR: 31.55; NRMSE: 0.23; SSIM: 0.83 |
Lv et al[48], 2021 | Accelerated multichannel MRI reconstruction | PIGAN | 3D FSE CUBE knee MR images; abdominal MR images | Abdominal: PSNR: 31.76 ± 3.04; SSIM: 0.86 ± 0.02; NMSE: 1.22 ± 0.97 |
Zhang et al[54], 2019 | 4D abdominal and in utero MR imaging | Self-supervised RNN | bSSFP uterus MR images; bSSFP kidney MR images | PSNR: 36.08 ± 1.13; SSIM: 0.96 ± 0.01 |
Ref. | Task | Method | Images | Metric |
Lv et al[55], 2018 | Respiratory motion correction for free-breathing 3D abdominal MRI | CNN | 3D golden angle-radial SOS abdominal images | SNR: 207.42 ± 96.73 |
Jiang et al[56], 2019 | Respiratory motion correction in abdominal MRI | U-NetGAN | T1-weighted abdominal images | FSE: 0.920; GRE: 0.910; Simulated motion: 0.928 |
Küstner et al[57], 2020 | Motion-corrected image reconstruction in 4D MRI | U-netCNN | T1-weighted in-vivo 4D MR images | EPE: 0.17 ± 0.26; EAE: 7.9 ± 9.9; SSIM: 0.94 ± 0.04; NRMSE: 0.5 ± 0.1 |
Akagi et al[58], 2019 | Improving image quality of abdominal U-HRCT using DLR method | DLR | U-HRCT abdominal CT images | P < 0.01 |
Nakamura et al[59], 2019 | To evaluate the effect of a DLR method | DLR | Abdominal CT images | P < 0.001 |
- Citation: Li GY, Wang CY, Lv J. Current status of deep learning in abdominal image reconstruction. Artif Intell Med Imaging 2021; 2(4): 86-94
- URL: https://www.wjgnet.com/2644-3260/full/v2/i4/86.htm
- DOI: https://dx.doi.org/10.35711/aimi.v2.i4.86