Minireviews
Copyright ©The Author(s) 2021.
Artif Intell Med Imaging. Aug 28, 2021; 2(4): 86-94
Published online Aug 28, 2021. doi: 10.35711/aimi.v2.i4.86
Table 1 Abdominal image reconstruction algorithms based on a convolutional neural network
Ref.
Task
Method
Images
Metric
Kang et al[30], 2017Low-dose CT reconstructionCNNAbdominal CT imagesPSNR: 34.55
Chen et al[31], 2017Low-dose CT reconstructionRED-CNNLow-dose abdominal CT imagesPSNR: 43.79 ± 2.01; SSIM: 0.98 ± 0.01; RMSE: 0.69 ± 0.07
Han et al[27], 2018Accelerated projection-reconstruction MRIU-netCNNLow-dose abdominal CT images; synthetic radial abdominal MR imagesPSNR: 31.55
Lv et al[26], 2018Undersampled radial free-breathing 3D abdominal MRIAuto-encoderCNN3D golden angle-radial SOS liver MR imagesP < 0.001
Ge et al[32], 2020CT image reconstruction directly from a sinogramResidual encoder-decoder + CNNLow-dose abdominal CT imagesPSNR: 43.15 ± 1.93; SSIM: 0.97 ± 0.01; NRMSE: 0.71 ± 0.16
MacDougall et al[33], 2019Improving low-dose pediatric abdominal CTCNNLiver CT images;Spleen CT imagesP < 0.001
Tamada et al[29], 2020DCE MR imaging of the liverCNNT1-weighted liver MR imagesSSIM: 0.91
Zhou et al[28], 2019Applications in low-latency accelerated real-time imagingPICNNbSSFP cardiac MR images; bSSFP abdominal MR imagesAbdominal: NRMSE: 0.08 ± 0.02; SSIM: 0.90 ± 0.02
Zhang et al[34], 2020Reconstructing 3D liver vessel morphology from contrasted CT imagesGNNCNNMulti-phase contrasted liver CT imagesF1 score: 0.8762 ± 0.0549
Zhou et al[35], 2020Limited view tomographic reconstructionResidual dense spatial-channel attention + CNNWhole body CT imagesLAR: PSNR: 35.82; SSIM: 0.97 SVR: PSNR: 41.98; SSIM: 0.97
Kazuo et al[36], 2021Image reconstructionin low-dose and sparse-view CT CS + CNNLow-dose abdominal CT images; Sparse-view abdominal CT imagesLow-Dose CT case: PSNR: 33.2; SSIM: 0.91 Sparse-View CT case: PSNR: 29.2; SSIM: 0.91
Table 2 Abdominal image reconstruction based on generative adversarial network and recurrent neural network
Ref.
Task
Method
Images
Metric
Mardani et al[41], 2017Compressed sensing automates MRI reconstructionGANCSAbdominal MR imagesSNR: 20.48; SSIM: 0.87
Yang et al[50], 2018Low dose CT image denoisingWGANAbdominal CT imagesPSNR: 23.39; SSIM: 0.79
Kuanar et al[52], 2019Low-dose abdominal CT image reconstructionAuto-encoderWGANAbdominal CT imagesPSNR: 37.76; SSIM: 0.94; RMSE: 0.92
Lv et al[45], 2021A comparative study of GAN-based fast MRI reconstructionDAGANKIGANReconGANRefineGANT2-weighted liver images; 3D FSE CUBE knee images; T1-weighted brain imagesLiver: PSNR: 36.25 ± 3.39; SSIM: 0.95 ± 0.02; RMSE: 2.12 ± 1.54; VIF: 0.93 ± 0.05; FID: 31.94
Zhang et al[53], 20203D reconstruction for super-resolution CT images Conditional GAN3D-IRCADb-01database liver CT imagesMale: PSNR: 34.51; SSIM: 0.90Female: PSNR: 34.75; SSIM: 0.90
Cole et al[49], 2020Unsupervised MRI reconstruction UnsupervisedGAN3D FSE CUBE knee images; DCE abdominal MR imagesPSNR: 31.55; NRMSE: 0.23; SSIM: 0.83
Lv et al[48], 2021Accelerated multichannel MRI reconstructionPIGAN3D FSE CUBE knee MR images; abdominal MR imagesAbdominal: PSNR: 31.76 ± 3.04; SSIM: 0.86 ± 0.02; NMSE: 1.22 ± 0.97
Zhang et al[54], 20194D abdominal and in utero MR imagingSelf-supervised RNNbSSFP uterus MR images; bSSFP kidney MR imagesPSNR: 36.08 ± 1.13; SSIM: 0.96 ± 0.01
Table 3 Applications of deep learning in abdominal reconstruction
Ref.
Task
Method
Images
Metric
Lv et al[55], 2018Respiratory motion correction for free-breathing 3D abdominal MRICNN3D golden angle-radial SOS abdominal imagesSNR: 207.42 ± 96.73
Jiang et al[56], 2019Respiratory motion correction in abdominal MRIU-NetGANT1-weighted abdominal imagesFSE: 0.920; GRE: 0.910; Simulated motion: 0.928
Küstner et al[57], 2020Motion-corrected image reconstruction in 4D MRI U-netCNNT1-weighted in-vivo 4D MR imagesEPE: 0.17 ± 0.26; EAE: 7.9 ± 9.9; SSIM: 0.94 ± 0.04; NRMSE: 0.5 ± 0.1
Akagi et al[58], 2019Improving image quality of abdominal U-HRCT using DLR methodDLRU-HRCT abdominal CT imagesP < 0.01
Nakamura et al[59], 2019To evaluate the effect of a DLR method DLRAbdominal CT imagesP < 0.001